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Abstract

The Fredholm property of Toeplitz operators on the p-Fock spaces
F p

α on Cn is studied. A general Fredholm criterion for arbitrary opera-
tors from the Toeplitz algebra Tp,α on F p

α in terms of the invertibility of
limit operators is derived. This paper is based on previous work, which
establishes corresponding results on the unit balls Bn [10].

AMS subject classification: Primary: 47B35; Secondary: 47L80,
47A53, 47A10

Keywords: Toeplitz operators, Fock spaces, essential spectrum, limit
operators

1 Introduction

Consider the weighted Gaussian measure dµν(z) = (ν/π)ne−ν|z|
2

dz on Cn,
where ν > 0 and dz denotes the usual Lebesgue measure on Cn ∼= R2n. The
Fock space F pα for α > 0, 1 < p < ∞ is the closed subspace of Lp(Cn, µpα/2)
consisting of entire functions. Toeplitz operators on these spaces are defined to
be the composition of a multiplication operator Mf , where f ∈ L∞(Cn), and a
certain projection Pα (see below) back onto the closed subspace F pα, i.e.

Tf = PαMf .

The function f is then called the symbol of Tf or Mf , respectively.
When studying such Toeplitz operators a natural property to consider is the

Fredholmness of such operators, that is: are the kernel and the cokernel of Tf
finite dimensional? Inspired by Toeplitz operators on other spaces, e.g. on the
Hardy space or on the Bergman space over the unit ball, one expects that the
information about the Fredholmness of Tf can be extracted from the symbol,
more precisely from the behaviour of f near infinity [5, 24]. For symbols which
extend continuously to the boundary sphere of Cn theorems of the following form
are known: If f is nowhere zero on the boundary sphere, then Tf is Fredholm
[6][7, Theorem 2.1]. Results for a more general class of symbols are known for the
case p = 2: If f is of vanishing oscillation, then Tf is Fredholm if f is bounded
away from zero close to the boundary (cf. [17, 25] for the Bergman space or
[4, 22] for the Fock space). Corresponding results can be proven without the
restriction p = 2, cf. Section 6 in this article. For Toeplitz operators with more
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general symbols, or even other operators from the Toeplitz algebra Tp,α, which
is just the norm closure of the algebra generated by Toeplitz operators, such
results were missing.

Only recently the methods of limit operators, known from the theory of band-
dominated operators on sequence spaces, were adapted to the case of Toeplitz
operators on Bergman- and Fock spaces. It was realized that the notion of
“boundary of Cn (resp. Bn in the Bergman space case)” in the usual sense was
too restrictive. Instead, one densely embeds Cn (resp. Bn) into the maximal
ideal space M of BUC(Cn) (resp. BUC(Bn)), the space of bounded uniformly
continuous functions. We thus consider M\Cn as the boundary of Cn and the
boundary values of an operator A ∈ Tp,α at M\ Cn are obtained by “shifting”
A to the boundary (we will make this precise below). For each x ∈ M \ Cn

we will get a boundary operator Ax, called a limit operator. In [16] and [23] a
limit operator theory for the Bergman space over the unit ball was developed,
whereas the corresponding results for the Fock space were derived in [3]. In
both cases it was shown that operators in the Toeplitz algebra are compact
if and only if all of their limit operators vanish. In [10] some ideas from the
limit operator theory on sequence spaces were adapted to show that an operator
in the Toeplitz algebra over the unit ball is Fredholm if and only if all of its
limit operators are invertible. Let us briefly review a few of these ideas and
where they originate. The main objective of study in limit operator theory is
the class of band-dominated operators, which was first studied in its entirety
by Simonenko [20, 21]. Specific classes of band-dominated operators were also
considered earlier, e.g. by Gohberg and Krein [8]. In 1985 it was shown by
Lange and Rabinovich [13] (see also [18, 19]) that a band-dominated operator is
Fredholm if and only if all of its limit operators are invertible and their inverses
are uniformly bounded. For the subsequent 25 years it was unclear whether
the uniform boundedness condition is necessary or not. Various subclasses of
operators have been studied by many different authors and in every case it was
shown that the uniform boundedness condition is actually redundant, i.e. the
inverses are automatically uniformly bounded if all limit operators are invertible.
For the general case this was then shown by Lindner and Seidel [15] in 2014.
The corresponding result for (essential) norms can be found in [11]. For a more
detailed history of limit operators on sequence spaces we refer to [14] and [19].

In this paper, we further adapt these results to the Fock space to obtain the
following main theorem:

Theorem 1. An operator A ∈ Tp,α is Fredholm if and only if all of its limit
operators are invertible.

Theorem 1 improves an earlier result by Bauer and Isralowitz ([3, Theorem
7.2]) for p = 2, where the inverses of the limit operators are additionally assumed
to be uniformly bounded. Hence, besides generalizing to arbitrary p, we show
that the uniform boundedness condition is redundant. We closely follow the
lines of [10] in this paper. Since the Fock space is in some aspects simpler than
the Bergman space, we can avoid some technical difficulties and can focus more
on the actual ideas.

The paper is organized as follows: In Section 2 we introduce our notation and
recall some basic results. In Section 3 we introduce band-dominated operators
and provide some properties of them. Section 4 will be devoted to the theory
of limit operators and the main theorem of this paper. In Section 5 methods
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similar to those from Section 4 will be sketched to derive results on the essential
norm of operators from the Toeplitz algebra. In the end, Section 6 will be used
to show how the expected results on the Fredholmness of Toeplitz operators
with symbols of vanishing oscillation can be derived from our main theorem.

2 Notation and basic definitions

In this section we present the main definitions and some basic results which are
well-known and/or easy to prove.

For ν > 0 let dµν denote the Gaussian measure

dµν(z) =
( ν
π

)n
e−ν|z|

2

dz

on Cn, where dz denotes the Lebesgue measure on Cn ≃ R2n and | · | denotes
the norm coming from the standard hermitian inner product 〈·, ·〉 on Cn, which
is linear in the first and antilinear in the second component. dµν is easily seen
to be a probability measure. The space Lpα is given by

Lpα = {f : Cn → C; f measurable and ‖f‖p,α <∞} = Lp(Cn, dµpα/2)

for α > 0 and 1 < p <∞, where

‖f‖pp,α :=

∫

Cn

|f(z)|pdµpα/2(z).

Further, F pα denotes the closed subspace of entire functions in Lpα. Throughout
this paper we will assume, unless stated otherwise, p ∈ (1,∞) and α ∈ (0,∞)
without further mentioning it.

For a Banach space X we denote by L(X) the space of bounded linear
operators on X and by K(X) the ideal of compact operators. By Mf we will
denote the operator of multiplication by the function f ∈ L∞(Cn). We will use
this symbol for both multiplication operators acting as Lpα → Lpα or F pα → Lpα
without mentioning p or α in the notation. A Toeplitz operator is an operator
of the form PαMf : F pα → F pα, where f is called the symbol of the operator.
Here Pα is the projection Lpα → F pα onto the closed subspace given by the
formula in Proposition 2 below. By Tp,α we denote the norm-closed subalgebra
of L(F pα) generated by all Toeplitz operators with bounded symbols. A net of
bounded linear operators (Aγ)γ on some Banach space X is said to converge
∗-strongly to A ∈ L(X) if Aγ → A strongly and A∗

γ → A∗ strongly, where B∗

denotes the Banach space adjoint of B ∈ L(X). For a set M ⊆ Cn we denote
its characteristic function by χM . By B(z, r) we will denote the Euclidean ball
around z ∈ Cn with radius r > 0.

We will need the following result regarding projections from Lpα to F pα:

Proposition 2 ([12, Theorem 7.1]). The linear operator Pα : Lpα → Lpα given
by

(Pαf)(z) =

∫

Cn

eα〈z,w〉f(w)dµα(w)

is a bounded projection onto F pα . In particular, Pα|Fp
α
= Id.
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The following duality results will also be of importance:

Proposition 3. Let 1
p + 1

q = 1. Then the following assertions hold under the

usual dual pairing induced by the scalar product on L2
α:

(i) (Lpα)
′ ∼= Lqα,

(ii) for g ∈ Lqα it holds

‖〈·, g〉α‖(Lp
α)′ =

2n

pn/pqn/q
‖g‖q,α,

(iii) (Pα : Lpα → Lpα)
∗ ∼= (Pα : Lqα → Lqα).

Proof. The standard proof of Lp ∼= Lq yields (i) and (ii). Using the symmetry
of Pα (see Proposition 2), one immediately gets (iii). We refer to [12, 27] for
details.

Similarly, we have the following duality of Fock spaces:

Proposition 4. Let 1
p + 1

q = 1. Then the following assertions hold under the

usual dual pairing induced by the scalar product on F 2
α:

(i) (F pα)
′ ∼= F qα,

(ii) for g ∈ F qα it holds

‖g‖q,α ≤ ‖〈·, g〉α‖(Fp
α)′ ≤

2n

pn/pqn/q
‖g‖q,α.

Proof. (i) is again standard (cf. [12, 27]), (ii) is [9, Theorem 1.2].

Note that in both cases the isomorphism is not isometric for p 6= 2. However,
these quasi-isometries still allow for the usual adjoint arguments, which we will
use occasionally.

Proposition 5. Let (Uj)j∈N be a sequence of measurable subsets of Cn such that
every z ∈ Cn belongs to at most N of the sets Uj for some N ∈ N. Further, let
(fj)j∈N be a sequence of measurable functions fj : C

n → C such that supp fj ⊆
Uj and |fj(z)| ≤ 1 for all z ∈ Cn. Then, for every g ∈ Lpa

∞∑

j=1

∫

Cn

|fj(z)g(z)|pdµpα/2(z) ≤ N‖g‖pp,α.

In particular,

∞∑

j=1

‖Mfjg‖pp,α ≤ N‖g‖pp,α.

Proof. As in [10, Proposition 5].

The following two results are well-known and are provided here for com-
pleteness:
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Lemma 6. Let α, β, γ > 0. The function

(z, w) 7→ eα〈z,w〉−β|z|2−γ|w|2

is bounded on Cn × Cn if and only if 4βγ − α2 ≥ 0.

Proof. For

|eα〈z,w〉−β|z|2−γ|w|2| = eαRe〈z,w〉−β|z|2−γ|w|2

to be bounded it suffices to show that αRe〈z, w〉 − β|z|2 − γ|w|2 is bounded
from above. Since

αRe〈z, w〉 − β|z|2 − γ|w|2 ≤ α|z||w| − β|z|2 − γ|w|2

and the right-hand side of this inequality is just the polynomial p(x, y) = αxy−
βx2 − γy2 evaluated at x = |z|, y = |w|, the boundedness follows from the
well-known fact that p(x, y) is bounded from above for 4βγ − α2 ≥ 0.

Conversely, if 4βγ − α2 < 0, set w =
√

β
γ z to obtain

eα〈z,w〉−β|z|2−γ|w|2 = e
|z|2(α

√

β
γ
−2β)

.

Since α > 2
√
βγ, this function is unbounded.

Proposition 7. Let D ⊂ Cn be compact. Then the operators PαMχD
and

MχD
Pα : Lpα → Lpα are compact operators.

Proof. It is

PαMχD
(f)(z) =

(α
π

)n ∫

Cn

eα〈z,w〉χD(w)e
−α|w|2f(w)dw

=
(2
p

)n ∫

Cn

eα〈z,w〉− 2α−pα
2 |w|2χD(w)f(w)dµpα/2(w).

By the Hille-Tamarkin theorem [26, Theorem 41.6] it suffices to check (recall:
Lpα = Lp(Cn, µpα/2)) that

∫

Cn

(∫

Cn

|eα〈z,w〉− 2α−pα
2 |w|2|qχD(w)dµpα/2(z)

) p
q

dµpα/2(w) <∞,
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where 1
p + 1

q = 1. A direct computation shows

∫

Cn

(∫

Cn

|eα〈z,w〉− 2α−pα
2 |w|2|qχD(w)dµpα/2(z)

) p
q

dµpα/2(w)

=
(pα
2π

)np ∫

D

(∫

Cn

eqαRe〈z,w〉− 2qα−pqα
2 |w|2− pα

2 |z|2dz

) p
q

e−
pα
2 |w|2dw

=
(pα
2π

)np ∫

D

(∫

Cn

eqαRe〈z,w〉−pα
4 |z|2− q2α

p
|w|2e−

pα
4 |z|2dz

·e
−2pqα+p2qα+2q2α

2p |w|2
) p

q

e−
pα
2 |w|2dw

=
(pα
2π

)np ∫

D

(∫

Cn

eqαRe〈z,w〉−pα
4 |z|2− q2α

p
|w|2e−

pα
4 |z|2dz

) p
q

· e−3pα+p2α+2qα
2 |w|2dw

≤
(pα
2π

)np ∫

D

(∫

Cn

Ce−
pα
4 |z|2dz

) q
p

e
−3pα+p2α+2qα

2 |w|2dw

<∞,

where C is the bound from Lemma 6 with γ = q2α
p . The proof for MχD

Pα is
similar.

The next lemma is essentially a sloppy version of Jensen’s inequality. Since
we won’t need the stronger form and the notation will be more convenient with
this variant, we will just mention this weak estimate. It can easily be shown
and will frequently be used.

Lemma 8. For k ∈ N, p ∈ (1,∞) and x1, . . . , xk ≥ 0 it is

( k∑

j=1

xj

)p
≤ kp

k∑

j=1

xpj .

3 Band-dominated operators

The aim of this section is to introduce band-dominated operators in L(Lpα) and
to provide some basic properties of them. Most of the proofs are similar to those
in [10] and use techniques adapted from the sequence space case (see [14, 19]
and the references therein).

Definition 9. (i) An operator A ∈ L(Lpα) is called a band operator if there
is a positive real number ω such that MfAMg = 0 for all f, g ∈ L∞(Cn)
with dist(supp f, supp g) > ω. The infimum over all such ω will be denoted
by ω(A) and is called the band width of A.

(ii) An operator A ∈ L(Lpα) is called a band-dominated operator if it is the
norm limit of a sequence of band operators. The set of band-dominated
operators on Lpα will be denoted by BDOpα.

6
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0
-4 -2 0 2 4

Figure 1: The function φ

Denote by |z|∞ the induced sup-norm from R2n ∼= Cn and dist∞(z,B) =
inf{|z − w|∞;w ∈ B} for z ∈ Cn and B ⊆ Cn. Set

ζ = {[−3, 3)2n + σ ⊂ R2n;σ ∈ 6Z2n}

and enumerate ζ as ζ = {Bj}∞j=1 such that it is 0 ∈ B1. Furthermore, we denote

Ωk(Bj) := {z ∈ Cn; dist∞(z,Bj) ≤ k}

for k = 1, 2, 3 and j ∈ N.

Proposition 10 ([3, Lemma 3.1]). The Bj satisfy

(i) Bj ∩Bk = ∅ for j 6= k;

(ii) every z ∈ Cn belongs to at most 22n of the sets Ω1(Bj) and at most 42n

of the sets Ω3(Bj);

(iii) diam(Bj) = 6
√
2n, where diam(Bj) denotes the Euclidean diameter of Bj.

We will now construct a sequence of auxiliary functions, which will give a
partition of unity of Cn with particularly nice properties. Define the function
φ : R → [0, 1] as in Figure 1. Further, define ϕ̃0 : Cn ≃ R2n → [0, 1] by

ϕ̃0(x1, . . . , x2n) = φ(x1) · φ(x2) · . . . · φ(x2n).

Now, for every σ = (σ1, . . . , σ2n) ∈ 6Z2n set

ϕ̃σ(x1, . . . , x2n) = ϕ̃0(x1 − σ1, . . . , x2n − σ2n).

Let (σj)j∈N be the enumeration of 6Z2n which coincides with the enumeration
of ζ, i.e. σj ∈ Bj for all j ∈ N. We set ϕj = ϕ̃σj

. It is easily seen that the ϕj
fulfill the following properties:

(i) suppϕj = Ω1(Bj) for all j,

(ii)

∞∑

j=1

ϕj(z) = 1 for all z ∈ Cn,

(iii) the sequence (ϕj)j∈N is uniformly equicontinuous (every function is even
Lipschitz continuous with Lipschitz constant at most 1

2 · 2n = n).

In a similar way we can construct another sequence (ψj)j∈N of functions, now
such that the functions are non-negative and uniformly equicontinuous map-
pings from Cn to [0, 1] with

7



(i) ψj(z) = 1 for all z ∈ Ω2(Bj) for all j ∈ N,

(ii) suppψj = Ω3(Bj) for all j ∈ N.

For each t ∈ (0, 1) and each j ∈ N we define the functions ϕj,t(z) := ϕj(tz)
and ψj,t(z) = ψj(tz). The following proposition gives a few characterisations of
band-dominated operators:

Proposition 11. Let A ∈ L(Lpα). The following are equivalent:

(i) A is band-dominated;

(ii) lim
t→0

sup
‖f‖=1

∞∑

j=1

‖Mϕj,t
AM1−ψj,t

f‖p = 0;

(iii) lim
t→0

∥∥∥
∞∑

j=1

Mϕj,t
AM1−ψj,t

∥∥∥ = 0, where the convergence of the operator sum

should be understood as strong convergence;

(iv) lim
t→0

sup
‖f‖=1

∞∑

j=1

‖[A,Mϕj,t
]f‖p = 0, where [A,Mϕj,t

] = AMϕj,t
−Mϕj,t

A is

the commutator.

Proof. The strong convergence in (iii) follows from the fact that
∑∞
j=1Mϕj,t

A
converges strongly, which can easily be seen, and the following Lemma 12.
(i) =⇒ (ii): Let ε > 0 and B be a band operator such that ‖A − B‖ < ε.
Further, let t > 0 be small enough such that

dist
(
supp(ϕj,t), supp(1− ψj,t)

)
> ω(B),

where the distance on the left-hand side is by construction independend of j.
Then, for all j ∈ N

Mϕj,t
BM1−ψj,t

= 0.

We thus get for f ∈ Lpα

∞∑

j=1

‖Mϕj,t
AM1−ψj,t

f‖p =
∞∑

j=1

‖Mϕj,t
(A−B)M1−ψj,t

f‖p

≤ 2p
∞∑

j=1

(‖Mϕj,t
(A−B)f‖p

+ ‖Mϕj,t
(A−B)Mψj,t

f‖p)
≤ 2p22n(‖(A−B)f‖p + ‖(A−B)Mψj,t

f‖p)
≤ 2p+122nεp‖f‖p,

where we used Proposition 5 and Lemma 8. Since ε > 0 was arbitrary, the
result follows.

8



(ii) =⇒ (iii): Using Lemma 8 combined with Proposition 10 it is

∥∥∥
∞∑

j=1

Mϕj,t
AM1−ψj,t

f
∥∥∥
p

=

∫

Cn

∣∣∣
∞∑

j=1

(Mϕj,t
AM1−ψj,t

f)(z)
∣∣∣
p

dµpα/2

≤
∫

Cn

(22n)p
∞∑

j=1

|(Mϕj,t
AM1−ψj,t

f)(z)|pdµpα/2

= (22n)p
∞∑

j=1

∫

Cn

|(Mϕj,t
AM1−ψj,t

f)(z)|pdµpα/2

= (22n)p
∞∑

j=1

‖Mϕj,t
AM1−ψj,t

f‖p.

Taking the supremum over all f with ‖f‖ = 1 and then the limit t → 0 gives
the result.
(iii) =⇒ (i): The operator

Am :=

∞∑

j=1

Mϕ
j, 1

m

AMψ
j, 1

m

can easily be seen to be a band operator. Since
∑

j ϕj,t = 1 for all t > 0 it is

‖A−Am‖ =
∥∥∥

∞∑

j=1

(Mϕ
j, 1

m

A−Mϕ
j, 1

m

AMψ
j, 1

m

)
∥∥∥

=
∥∥∥

∞∑

j=1

Mϕ
j, 1

m

AM1−ψ
j, 1

m

∥∥∥

→ 0

for m→ ∞.
The equivalence (i) ⇐⇒ (iv) is more technical and we refer to the identical
proof in the unit ball case [10, Proposition 11].

Lemma 12. For every j ∈ N let aj , bj : Cn → [0, 1] be measurable functions
and assume that there is some N ∈ N such that each z ∈ C belongs to at most
N of the sets supp(aj) and at most M of the sets supp(bj). If A ∈ L(Lpα), then
the series

∞∑

j=1

MajAMbj

converges strongly and ‖
∑∞
j=1MajAMbj‖ ≤ NM‖A‖.

Proof. Observe that for each f ∈ Lpα we have, as a consequence of Proposition
5,

∑∞
j=m ‖Mbjf‖p → 0 for m→ ∞. To prove the lemma it suffices to show that

∥∥∥
∞∑

j=m

MajAMbjf
∥∥∥
p

→ 0

9



for each f ∈ Lpα as m→ ∞. So let f ∈ Lpα. Then

∥∥∥
∞∑

j=m

MajAMbjf
∥∥∥
p

=

∫

Cn

∣∣∣
∞∑

j=m

(MajAMbjf)(z)
∣∣∣
p

dµpα/2(z)

≤
∫

Cn

( ∞∑

j=m

|(MajAMbjf)(z)|
)p
dµpα/2(z).

By assumption, the sum under the integral is pointwise a finite sum with at
most N terms. Using Lemma 8 we can continue the estimate as follows:

≤
∫

Cn

Np
∞∑

j=m

|(MajAMbjf)(z)|pdµpα/2(z)

= Np
∞∑

j=m

∫

Cn

|(MajAMbjf)(z)|pdµpα/2(z)

= Np
∞∑

j=m

‖MajAMbjf‖p.

Using |aj(z)| ≤ 1, it follows:

≤ Np‖A‖p
∞∑

j=m

‖Mbjf‖p

→ 0

as m→ ∞. The norm estimate follows easily as well.

Here are some of the properties of BDOpα:

Proposition 13. (i) Mf ∈ BDOpα for all f ∈ L∞(Cn).

(ii) BDOpα is a closed subalgebra of L(Lpα).

(iii) If A ∈ BDOpα is Fredholm and B is a Fredholm regularizer of A, then
B ∈ BDOpα. In particular, BDOpα is inverse closed.

(iv) K(Lpα) is a closed and two-sided ideal in BDOpα.

(v) A ∈ BDOpα if and only if A∗ ∈ BDOqα, where
1
p + 1

q = 1. In particular,

BDO2
α is a C∗-algebra.

Proof. (i), (ii) and (v) are easy consequences of the definition of BDOpα. The
proofs of (iii) and (iv) are quite technical. Since we will not need those state-
ments for our purposes, we only refer to the identical proofs in the unit ball case
in [10, Proposition 13].

In the following we will show that Toeplitz operators are, in a sense made
precise below, in BDOpα. The next lemma will be crucial for this.
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Lemma 14. There is a function βp,α : [1,∞) → [0,∞) with lim
σ→∞

βp,α(σ) = 0

which satisfies the following property: If (aj)j∈N, (bj)j∈N are sequences of mea-
surable functions from Cn to [0, 1] such that

• there exists N ∈ N such that each z ∈ Cn is contained in at most N of the
sets supp(aj) and in at most N of the sets supp(bj),

• there exists σ ≥ 1 such that dist
(
supp aj , supp(1− bj)

)
≥ σ for all j ∈ N,

then

∥∥∥
∞∑

j=1

MajPαM1−bj

∥∥∥ ≤ N2βp,α(σ).

In particular,

∥∥∥
∞∑

j=1

MajPαM1−bj

∥∥∥ → 0

for inf
j∈N

dist
(
supp aj , supp(1− bj)

)
→ ∞.

Proof. Observe that all operator series mentioned in the statement above and
in the following proof converge ∗-strongly as an easy consequence of Lemma 12.
We borrow ideas from the proof of [3, Lemma 2.6] and sketch them here. It will
be appropriate to start with the case N = 1. We first consider the limit case
p = ∞. Define

L∞
α := {f : Cn → C; f measurable and ‖f‖∞,α <∞}

with

‖f‖∞,α := esssup
z∈Cn

|f(z)|e−α
2 |z|2 .

Pα, that is the integral operator with the same integral kernel as for the case
p < ∞, is a projection from L∞

α to F∞
α , the closed subspace of holomorphic

functions, and can hence be considered as an operator on L∞
α (see [27, Corollary

2.22]). For f ∈ L∞
α and z ∈ Cn, we get

∣∣∣
∞∑

j=1

(MajPαM1−bjf)(z)
∣∣∣e−

α
2 |z|2

≤
(α
π

)n ∞∑

j=1

|aj(z)|
∫

Cn

|1− bj(w)||f(w)|e−
α
2 |w|2e−

α
2 |w−z|2dw

≤ 2n‖f‖∞,α

and hence it is ‖∑∞
j=1MajPαM1−bj‖ ≤ 2n for p = ∞. Observe that, by the

same argument with a1 ≡ 1 ≡ bj and aj ≡ 0 ≡ b1 for all j > 1 we get that Pα
is bounded on L∞

α with norm ≤ 2n. If we can prove an estimate of the form
‖∑∞

j=1MajPαM1−bj‖ ≤ βp,α(σ) for p = 2, the result follows by interpolation
for all 2 ≤ p < ∞ (see e.g. [12, Section 9] or [27, Chapter 2.4] for results on
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interpolation of the spaces Lpα). As in the proof of [3, Lemma 2.6], one can
prove the estimate for p = 2 using the Schur test.

For 1 < p < 2, instead of proving ‖
∑∞
j=1MajPαM1−bj‖ ≤ βp,α(σ) directly,

we will prove an estimate ‖∑∞
j=1M1−bjPαMaj‖ ≤ β′

q,α(σ) for the operator
norm on Lqα

∼= (Lpα)
′ and then consider adjoints (see Proposition 3). As before,

the estimate on Lqα can be proven with the two limit steps q = ∞, q = 2 and
then using interpolation. For the case q = ∞, observe that in the same way as
above one can show

∣∣∣
∞∑

j=1

(MajPαMbjf)(z)
∣∣∣e−

α
2 |z|2 ≤ 2n‖f‖∞,α

(i.e. replace 1− bj by bj) for f ∈ L∞
α . Using

∥∥∥
∞∑

j=1

PαMajf
∥∥∥
∞,α

≤ ‖Pα‖
∥∥∥

∞∑

j=1

Majf
∥∥∥
∞,α

≤ ‖Pα‖‖f‖∞,α

one gets

∥∥∥
∞∑

j=1

M1−bjPαMaj

∥∥∥ ≤ 2n + ‖Pα‖

for the case q = ∞. For q = 2, we already have the estimate since




∞∑

j=1

M1−bjPαMaj




∗

=

∞∑

j=1

MajPαM1−bj

and the two series converge strongly.
For the case N > 1 we set Λ1(z) = {j ∈ N; z ∈ supp(aj)} and Λ2(z) = {j ∈

N; z ∈ supp(bj)}, both sets are considered to be ordered in the natural way.
With

Akj = {z ∈ supp(aj); j is the k-th element of Λ1(z)}

and

Blj = {z ∈ supp(bj); j is the l-th element of Λ2(z)}

we have the disjoint unions supp(aj) = A1
j∪. . .∪ANj and supp(bj) = B1

j∪. . .∪BNj
and both Akj1∩Akj2 = ∅ andBlj1∩Blj2 = ∅ hold for j1 6= j2 and all k, l = 1, . . . , N .
It follows

∞∑

j=1

MajPαM1−bj =
N∑

k=1

N∑

l=1

∞∑

j=1

MajχAk
j

PαM1−bjχBl
j

and we can write the operator as a finite sum of operators which fulfill the
requirements of the lemma for N = 1.
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For an operator A ∈ L(F pα) we define its extension to Lpα by Â = APα+Qα,
where Qα = Id−Pα. Now we can prove the announced result about Toeplitz
operators being band-dominated:

Theorem 15. For any A ∈ Tp,α it holds Â ∈ BDOpα.

Proof. We obtain that Pα is in BDOpα by combining Lemma 14 and Proposition
11 with the fact that

lim
t→0

inf
j∈N

dist
(
supp(ϕj,t), supp(1− ψj,t)

)
≥ lim

t→0

2

t
= ∞.

By Proposition 13, the extension of every Toeplitz operator is in BDOpα and
hence, since BDOpα is a norm-closed algebra, the result follows.

The last result in this section will be a criterion about Fredholmness for
band-dominated operators.

Proposition 16. Let A ∈ BDOpα be such that [A,Pα] = 0. Assume that there
is a positive constant M such that for every t > 0 there is an integer j0(t) > 0
such that for all j ≥ j0(t) there are operators Bj,t, Cj,t ∈ L(Lpα) with

‖Bj,t‖, ‖Cj,t‖ ≤M

and

Bj,tAMψj,t
=Mψj,t

=Mψj,t
ACj,t.

Then A|Fp
α
is Fredholm and ‖

(
A|Fp

α
+K(F pα)

)−1‖ ≤ 26n+1‖Pα‖M .

Proof. The proof goes similarly to the unit ball case [10, Proposition 17]. We
give a sketch of the proof here: For t > 0 define an operator

Bt :=

∞∑

j=j0(t)

Mψj,t
Bj,tMϕj,t

,

where the series converges strongly ‖Bt‖ ≤ 26nM by Lemma 12. Using the
identity

BtA =

∞∑

j=j0(t)

Mψj,t
Bj,tAMϕj,t

Mψj,t
+

∞∑

j=j0(t)

Mψj,t
Bj,t[Mϕj,t

, A]Mψj,t

+

∞∑

j=j0(t)

Mψj,t
Bj,tMϕj,t

AM1−ψj,t

and some properties of band-dominated operators from Proposition 11, one can
show

lim
t→0

∥∥∥BtA−
∞∑

j=j0(t)

Mϕj,t

∥∥∥ = 0

13



(see [10, Proposition 17]). With this fact we directly obtain

lim
t→0

∥∥∥PαBtA|Fp
α
−

∞∑

j=j0(t)

PαMϕj,t
|Fp

α

∥∥∥ = 0.

Now since
∑j0(t)−1
j=1 PαMϕj,t

|Fp
α
is compact (Proposition 7) and

∞∑

j=1

PαMϕj,t
|Fp

α
= Pα

∞∑

j=1

Mϕj,t
|Fp

α
= Id,

PαBtA|Fp
α
+ K(F pα) converges to Id+K(F pα) in the norm of the Calkin algebra

L(F pα)/K(F pα) as t→ 0. Using a standard Neumann series argument, we obtain
the existence of B ∈ L(F pα) such that BA|Fp

α
∈ Id+K(F pα) and

‖B +K(F pα)‖ ≤ 2‖Pα‖‖Bt‖ ≤ 26n+1‖Pα‖M.

The other Fredholm regularizer (i.e. A|Fp
α
C ∈ Id+K(F pα) for some C ∈ L(F pα))

can be obtained similarly, defining operators Ct:

Ct :=

∞∑

j=j0(t)

Mϕj,t
Cj,tMψj,t

.

Using that A∗ ∈ BDOqα one can analogously show

lim
t→0

∥∥∥ACt −
∞∑

j=j0(t)

Mϕj,t

∥∥∥ = lim
t→0

∥∥∥C∗
t A

∗ −
∞∑

j=j0(t)

Mϕj,t

∥∥∥ = 0

and conclude again, using [A,Pα] = 0, that

lim
t→0

∥∥∥APαCt|Fp
α
−

∞∑

j=j0(t)

PαMϕj,t
|Fp

α

∥∥∥ = 0.

Now proceed as in the first case.

4 Limit operators

In this section we show our main result. As in Section 3, we use some techniques
from limit operator theory on sequence spaces (see [14, 19]). The construction
in Lemma 27 is due to Lindner and Seidel [15].

For each z ∈ Cn consider the weighted shift operators Cz : Lpα → Lpα given
by

(Czf)(w) = f(w − z)eα〈w,z〉−
α
2 |z|2 .

Cz is an isometry from Lpα onto itself and from F pα onto itself for each z ∈ Cn.

Also, C−1
z = C−z . By C̃z we will denote the restriction to F pα. It is easy to verify

that the adjoint of C̃z : F pα → F pα (in the sense of Proposition 4) is given by
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C̃−z : F qα → F qα, where q is the dual exponent of p. For an operator A ∈ L(F pα)
and z ∈ Cn we define the shifted operator Az by

Az = C̃zAC̃−z .

Let M denote the maximal ideal space of BUC(Cn), the unital C∗-algebra of
bounded and uniformly continuous functions on Cn, where M is equipped with
the weak-∗ topology. We consider Cn as a subset of M by identifying each
z ∈ Cn with the functional of point evaluation at z, δz : f 7→ f(z). In this
sense, Cn is known to be a dense subspace of M. If A ∈ Tp,α and (zγ) is a net
in Cn converging to x ∈ M \ Cn, then Azγ is known to converge ∗-strongly to
some limit operator, denoted by Ax, which does not depend on the particular
choice of the net (zγ) [3, Corollary 5.4].

In the following we will denote by τz : C
n → Cn the function w 7→ w− z for

each z ∈ Cn. For later reference we collect a few results in the following lemma.

Lemma 17. (i) For f ∈ L∞(Cn) and z ∈ Cn it is

CzMfC−z =Mf◦τz .

(ii) For z ∈ Cn it is

PαCz = C̃zPα.

(iii) For f ∈ L∞(Cn) and z ∈ Cn it is

(Tf)z = Tf◦τz .

Proof. (iii) is a direct consequence of (i) and (ii). For (i), observe that for
g ∈ Lpα and w ∈ Cn it is

(CzMfC−zg)(w) = eα〈w,z〉−
α
2 |z|2(MfC−zg)(w − z)

= eα〈w,z〉−
α
2 |z|2f(w − z)(C−zg)(w − z)

= f(w − z)g(w)

and hence

CzMfC−z =Mf◦τz

for every z ∈ Cn. (ii) holds since

(PαCzg)(w) =

∫

Cn

eα〈w,u〉(Czg)(u)dµα(u)

=
(α
π

)n ∫

Cn

eα〈w,u〉+α〈u,z〉−
α
2 |z|2g(u− z)e−α|u|

2

du

=
(α
π

)n ∫

Cn

eα〈w,v+z〉+α〈v+z,z〉−
α
2 |z|2g(v)e−α|v+z|

2

dv

= eα〈w,z〉−
α
2 |z|2

∫

Cn

eα〈w−z,v〉g(v)dµα(v)

= (C̃zPαg)(w)

for all w ∈ Cn and g ∈ Lpα.
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Proposition 18. Let A ∈ Tp,α and let (zγ) be a net in Cn converging to x ∈
M \ Cn such that Ax is invertible. Let f ∈ L∞(Cn) be with compact support.
Then there is a γ0 such that for all γ ≥ γ0 there are operators Bγ , Dγ ∈ L(Lpα)
satisfying

‖Bγ‖, ‖Dγ‖ ≤ 2(‖A−1
x ‖‖Pα‖+ ‖Qα‖)

and

BγÂMf◦τ−zγ
=Mf◦τ−zγ

=Mf◦τ−zγ
ÂDγ .

Proof. The proof is similar to the proof of [10, Proposition 19]. Let R > 0 such
that supp f ⊂ B(0, R). PαMχB(0,R)

is compact by Proposition 7 and therefore
it follows

∥∥∥
(
Czγ (APα +Qα)C−zγ − (AxPα +Qα)

)
MχB(0,R)

∥∥∥

=
∥∥∥
(
CzγAPαC−zγ −AxPα)MχB(0,R)

∥∥∥

=
∥∥∥(C̃zγAC̃−zγ −Ax)PαMχB(0,R)

∥∥∥

→ 0

for zγ → x, where we also used CzγQαC−zγ = Qα (which is a consequence of
Lemma 17 (ii)). Therefore there exists a γ0 such that

Rγ : = (A−1
x Pα +Qα)

(
Czγ (APα +Qα)C−zγ − (AxPα +Qα)

)
MχB(0,R)

= (A−1
x Pα +Qα)Czγ (APα +Qα)C−zγMχB(0,R)

−MχB(0,R)

fulfills ‖Rγ‖ < 1
2 for γ ≥ γ0. Here we used that A−1

x Pα + Qα is the inverse
of AxPα + Qα. In particular, Id+Rγ ∈ L(Lpα) is invertible for all γ ≥ γ0.
Multiplying Rγ by Mf yields

(A−1
x Pα +Qα)Czγ (APα +Qα)C−zγMf = (Id+Rγ)Mf

and thus

Mf = (Id+Rγ)
−1(A−1

x Pα +Qα)Czγ (APα +Qα)C−zγMf .

Multiplying by C−zγ from the left and Czγ from the right and using Lemma 17
(i) gives

C−zγ (Id+Rγ)
−1(A−1

x Pα +Qα)Czγ (APα +Qα)Mf◦τ−zγ
=Mf◦τ−zγ

,

and the claimed norm estimate follows easily with

Bγ := C−zγ (Id+Rγ)
−1(A−1

x Pα +Qα)Czγ .

The result for Dγ can be derived similarly: Since MχB(0,R)
Pα is also compact,

∥∥∥MχB(0,R)

(
Czγ (APα +Qα)C−zγ − (AxPα +Qα)

)∥∥∥

=
∥∥∥MχB(0,R)

Pα(CzγAC−zγ −Ax)Pα

∥∥∥

→ 0
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for zγ → x. Therefore

Sγ :=MχB(0,R)

(
Czγ (APα +Qα)C−zγ − (AxPα +Qα)

)
(A−1

x Pα +Qα)

has norm < 1
2 for large γ and we get

Mf◦τ−zγ
(APα +Qα)Dγ =Mf◦τ−zγ

with
Dγ := C−zγ (A

−1
x Pα +Qα)(Id+Sγ)

−1Czγ .

We get the following theorem:

Theorem 19. If A ∈ Tp,α is such that Ax is invertible for every x ∈ M \ Cn
and sup

x∈M\Cn

‖A−1
x ‖ <∞, then A is Fredholm.

Proof. The proof works entirely as in [10, Theorem 20]. For the readers conve-
nience we reproduce it here.

Assume A is not Fredholm. One easily sees that [Â, Pα] = 0. By Proposition
16, there exists a strictly increasing sequence (jm)m∈N and some t > 0 with

BÂMψjm,t
6=Mψjm,t

or

Mψjm,t
ÂB 6=Mψjm,t

for all m ∈ N and all B ∈ L(Lpα) with ‖B‖ ≤ 2
(

sup
x∈M\Cn

‖A−1
x ‖‖Pα‖ + ‖Qα‖

)
.

Since both cases can be dealt with in the same way, we may assume

BÂMψjm,t
6=Mψjm,t

.

As diam(suppψj,t) ≤ 12
√
2n
t =: R for all j ∈ N by definition of ψj,t and Propo-

sition 10 (iii), there is a sequence (wjm )m∈N with |wjm | → ∞ such that

suppψjm,t ⊆ B(wjm , R).

By the compactness of M we may choose a convergent subnet (wγ) of (wjm)
such that (−wγ) converges to some y ∈ M \ Cn. By Proposition 18 there is
a γ0 such that for each γ ≥ γ0 there is an operator Bγ ∈ L(Lpα) with ‖Bγ‖ ≤
2(‖A−1

y ‖‖Pα‖+ ‖Qα‖) and

BγÂMχB(wγ,R)
= BγÂMχB(0,R)◦τwγ

=MχB(0,R)◦τwγ
=MχB(wγ,R)

,

which is a contradiction.

We will need the following proposition:

Proposition 20. Let A ∈ Tp,α be compact and (zγ) be a net in Cn converging
to x ∈ M \ Cn. Then Azγ converges ∗-strongly to 0.

Proof. This is the statement of [3, Theorem 1.1 and Lemma 6.1].
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The following theorem provides the converse of the previous theorem:

Theorem 21. Let A ∈ L(F pα) be Fredholm. Let (zγ) be a net in Cn converging
to x ∈ M \ Cn such that Azγ converges ∗-strongly to Ax ∈ L(F pα). Then Ax is

invertible with ‖A−1
x ‖ ≤ ‖

(
A+K(F pα)

)−1‖. If further B is a Fredholm regularizer
of A, then Bzγ converges ∗-strongly to A−1

x as zγ → x.

Proof. As in [10, Theorem 21]. Since AB − Id and BA− Id are both compact,
(AB − Id)zγ and (BA− Id)zγ converge ∗-strongly to 0 for zγ → x. Further,

‖f‖ = ‖C̃zγ C̃−zγf‖
≤ ‖C̃zγBAC̃−zγf‖+ ‖C̃zγ (I −BA)C̃−zγf‖
≤ ‖C̃zγBC̃−zγ‖‖C̃zγAC̃−zγf‖+ ‖C̃zγ (I −BA)C̃−zγf‖
= ‖B‖‖C̃zγAC̃−zγf‖+ ‖C̃zγ (I −BA)C̃−zγf‖

for all f ∈ F pα . Letting zγ → x we get ‖f‖ ≤ ‖B‖‖Axf‖. Ax is hence injective
with closed range. Using the same argument for the adjoint operators (see
Proposition 4), we get ‖g‖ ≤ ‖B‖‖A∗

xg‖ for all g ∈ F qα and hence the surjectivity
ofAx. Ax is therefore invertible. We also get ‖A−1

x ‖ ≤ ‖B‖ from these estimates.
Since B was an arbitrary Fredholm regularizer of A, we have ‖A−1

x ‖ ≤ ‖
(
A +

K(F pα)
)−1‖. Using the identity

Bzγ (Ax −Azγ )A
−1
x + (BA− Id)zγA

−1
x = Bzγ −A−1

x ,

which can easily be established, we also get the ∗-strong convergence of Bzγ to
A−1
x , since Azγ → Ax, (BA− I)zγ → 0 and ‖Bzγ‖ ≤ ‖B‖.

Combining Theorem 21 and Theorem 19 with [3, Corollary 5.4], the fact
that all limit operators exist for operators in Tp,α, we obtain:

Proposition 22. A ∈ Tp,α is Fredholm if and only if Ax is invertible for all
x ∈ M \ Cn and sup

x∈M\Cn

‖A−1
x ‖ <∞.

The condition sup ‖A−1
x ‖ <∞ is actually redundant. This will be shown in

the remaining part of this section. Denote

rt := diam(suppϕj,t) =
8
√
2n

t
,

which, of course, is independent of j, and define for t > 0, F ⊆ Cn and A ∈
L(Lpα)

ν(A|F ) := inf{‖Af‖; f ∈ Lpα, ‖f‖ = 1, supp f ⊆ F}

and

νt(A|F ) := inf
w∈Cn

ν(A|F∩B(w,rt)).

We also use the notation ν(A) := ν(A|Cn).

Proposition 23. For A,B ∈ L(Lpα) and F ⊆ Cn it is
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(i) |ν(A|F )− ν(B|F )| ≤ ‖(A−B)MχF
‖ ≤ ‖A−B‖,

(ii) |νt(A|F )− νt(B|F )| ≤ ‖A−B‖.

Proof. (i): As in [10, Proposition 27]: For the first statement let ε > 0 and pick
f ∈ Lpα with ‖f‖ = 1, supp f ⊆ F and ‖Bf‖ ≤ ν(B|F ) + ε. Then

ν(A|F )− ν(B|F )− ε ≤ ν(A|F )− ‖Bf‖
≤ ‖Af‖ − ‖Bf‖
≤ ‖(A−B)f‖
≤ ‖(A−B)MχF

‖.

Since the inequalities are symmetric in A and B, the result follows.
(ii): Let again ε > 0, pick w ∈ Cn such that

ν(B|F∩B(w,rt)) ≤ νt(B|F ) + ε.

Then

νt(A|F )− νt(B|F )− 2ε ≤ νt(A|F )− ν(B|F∩B(w,rt))− ε

≤ ν(A|F∩B(w,rt))− ν(B|F∩B(w,rt))− ε

≤ ‖(A−B)MχF∩B(w,rt)
‖

≤ ‖A−B‖,

where the second-to-last estimate can be concluded as in the first statement.
Now use again the symmetry in A and B.

Proposition 24. Let A ∈ Tp,α. For every ε > 0 there exists some t > 0 such

that for all F ⊆ Cn and all B ∈ {Â} ∪ {Âx;x ∈ M \ Cn}:

ν(B|F ) ≤ νt(B|F ) ≤ ν(B|F ) + ε.

Proof. The first inequality follows by definition. For the second inequality: Let
(Am)m∈N be a sequence of band operators that converges to Â in norm. Further,
let ε > 0 and choose m ∈ N such that ‖Â−Am‖ < ε

4 . For x ∈ M \ Cn let (zγ)
be a net in Cn converging to x. (Am)zγ is a bounded net in L(Lpα), hence we
may pass to a weakly convergent subnet, which we also denote by (Am)zγ . Let

the limit of this net be denoted by (Am)x. The strong convergence of Âzγ to

Âx implies that Czγ (Â−Am)C−zγ converges weakly to Âx − (Am)x. Thus,

‖Âx − (Am)x‖ ≤ sup
γ

‖Czγ (Â−Am)C−zγ‖ = ‖Â− Am‖ < ε

4
.

Now let f, g ∈ L∞(Cn) be such that dist(supp f, supp g) > ω(Am). Then
Lemma 17 gives

Mf (CzγAmC−zγ )Mg = CzγMf◦τ−zγ
AmMg◦τ−zγ

C−zγ = 0,

since dist(supp f ◦ τ−zγ , supp g ◦ τ−zγ ) = dist(supp f, supp g). This implies
ω((Am)zγ ) ≤ ω(Am) and hence ω((Am)x) ≤ ω(Am) by passing to the limit.
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Observe now that, if we know that there exists a t ∈ (0, 1) such that for all
F ⊆ Cn and all B ∈ {Am} ∪ {(Am)x;x ∈ M \ Cn} it is

νt(B|F ) ≤ ν(B|F ) +
ε

2
,

we are done, since by Proposition 23 it is

|ν(Â|F )− ν(Am|F )| ≤ ‖Â−Am‖ < ε

4

and

|ν(Âx|F )− ν((Am)x|F )| ≤ ‖Âx − (Am)x‖ <
ε

4
.

For the existence of such a t, we refer to the corresponding part of the proof of
the unit ball case in [10, Proposition 23], which is identical to the situation in
the Fock space.

Proposition 25. {Ax;x ∈ M} and {Ax;x ∈ M\Cn} are both compact in the
strong operator topology for each A ∈ Tp,α.
Proof. M and M\Cn are compact and x 7→ Ax is continuous w.r.t. the strong
operator topology [3, Proposition 5.3].

Lemma 26. Let A ∈ Tp,α, w ∈ Cn and r > 0. Then, for each f ∈ Lpα with
supp f ⊆ B(w, r) and every x ∈ M\Cn there exists g ∈ Lpα and y ∈ M\Cn with
‖g‖ = ‖f‖, supp g ⊆ B(0, r) and ‖Âxf‖ = ‖Âyg‖. Further, ν(Ây|B(0,r+|w|)) ≤
ν(Âx|B(0,r)).

Proof. Using the definition, one can quickly check that

C̃w1C̃w2 = C̃w1+w2e
α
2 (〈w2,w1〉−〈w1,w2〉)

for every w1, w2 ∈ Cn. Let (zγ) be a net in Cn that converges to x. Taking a
suitable subsequence if necessary, we may assume that

C̃−wC̃zγAC̃−zγ C̃w = C̃zγ−wAC̃−(zγ−w) → Ay

for some y ∈ M \ Cn by Proposition 25, and hence C̃−wAxC̃w = Ay. Since

PαCw = C̃wPα, we also have C−wÂxCw = Ây. Now let f ∈ Lpα be such that
supp f ⊆ B(w, r). Then g := C−wf satisfies ‖g‖ = ‖f‖, supp g ⊆ B(0, r) and
‖Âyg‖ = ‖Âxf‖.
For the second statement, pick a function h ∈ Lpα such that supph ⊆ B(0, r).
Then C−wh satisfies supp(C−wh) ⊆ B(−w, r) ⊆ B(0, r + |w|) and ‖Âxh‖ =
‖ÂyC−wh‖.

Lemma 27. Let A ∈ Tp,α. Then there exists a y ∈ M \ Cn such that

ν(Ây) = inf{ν(Âx);x ∈ M \ Cn}.

Proof. We only give a sketch of the proof here, since it is identical (up to the
obvious changes) to the proof in [10, Lemma 25].
Using Proposition 24 we get a sequence (tk)k∈N with rtk+1

> 2rtk and

νtk(B|F ) ≤ ν(B|F ) +
1

2k+1
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for all k ∈ N, F ⊆ Cn and B ∈ {Â} ∪ {Âx;x ∈ M \ Cn}. Further, let (xj)j∈N

be a sequence in M\ Cn such that

lim
j→∞

ν(Âxj
) = inf{ν(Âx); x ∈ M \ Cn}.

Using Lemma 26 repeatedly we can construct a sequence (yj)j∈N ⊆ M \ Cn

such that

ν(Âyj |B(0,4rtk )
) ≤ ν(Âxj

) +
1

2k−1
.

Passing to a strongly convergent subnet (Ayjγ )γ of (Ayj )j∈N (Proposition 25),
which converges to Ay for some y ∈ M \ Cn, we get

‖(Âyjγ − Ây)MχB(0,4rtk
)
‖ → 0

by Proposition 7 and hence

ν(Âyjγ |B(0,4rtk )
) → ν(Ây |B(0,4rtk )

)

by Proposition 23. Then

ν(Ây) ≤ ν(Ây|B(0,4rtk )
) = lim

γ
ν(Âyjγ |B(0,4rtk )

)

≤ lim
γ
ν(Âxjγ

) +
1

2k−1
= lim

j→∞
ν(Âxj

) +
1

2k−1
.

Taking the limit k → ∞, we get the desired result.

We can now finally state and prove our main result. This extends a result
of Bauer and Isralowitz ([3, Theorem 7.2]) to arbitary p and shows that the
uniform boundedness condition is actually redundant. Suárez et al. showed a
similar result for the unit ball ([16, Theorem 5.8], [23, Theorem 10.3]), which
was then improved in [10].

Theorem 28. For A ∈ Tp,α the following are equivalent:

(i) A is Fredholm,

(ii) Ax is invertible and ‖A−1
x ‖ ≤ ‖

(
A+K(F pα)

)−1‖ for all x ∈ M \ Cn,

(iii) Ax is invertible for all x ∈ M \ Cn and sup
x∈M\Cn

‖A−1
x ‖ <∞,

(iv) Ax is invertible for all x ∈ M \ Cn,
(v) Âx is invertible for all x ∈ M \ Cn.

Proof. The equivalence of (i), (ii) and (iii) was already proven in Proposition 22.
That (iii) implies (iv) is clear. If Ax is invertible, A−1

x Pα +Qα is an inverse of
Âx. Therefore (iv) implies (v). We finish the proof by showing that (v) implies
(iii): Using that ν(B) = ‖B−1‖−1 > 0 if B is invertible, we get

sup
x∈M\Cn

‖Â−1
x ‖ = sup

x∈M\Cn

1

ν(Âx)
=

1

ν(Ây)
<∞,

where y is from Lemma 27. An inverse for each Ax is given by Â−1
x |Fp

α
. Since

‖B‖ ≤ ‖B̂‖ for every B ∈ L(F pα) we also get sup
x∈M\Cn

‖A−1
x ‖ <∞. The fact that

ν(B) = ‖B−1‖−1 for invertible B can be found in [14, Lemma 2.35].
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We get the following corollary directly from the definition of the essential
spectrum, which is defined as

σess(A) := {λ ∈ C; A− λ is not Fredholm}

for a bounded linear operator A.

Corollary 29. For each A ∈ Tp,α it is

σess(A) =
⋃

x∈M\Cn

σ(Ax).

We emphasize that the redundancy of the uniform boundedness condition
in Theorem 28 is essential for this corollary (cf. [3, Theorem 7.3], [16, Corollary
5.9], [23, Corollary 10.4]).

5 Norm estimates

The aim of this section is to provide estimates of the essential norm for operators
A ∈ Tp,α. Here we adapt some ideas from [10] and [11] and (slightly) improve
[3, Theorem 6.2, Theorem 7.1].

Define for t > 0, F ⊆ Cn and A ∈ L(F pα)

‖APα|F ‖ := sup{‖APαf‖; f ∈ Lpα, ‖f‖ = 1, supp f ⊆ F}

and

|||APα|F |||t := sup
w∈Cn

‖APα|F∩B(w,rt)‖.

Proposition 30. For every A ∈ Tp,α and every ε > 0 there exists a t > 0 such
that for all F ⊆ Cn and every B ∈ {A} ∪ {Ax;x ∈ M \ Cn} it is

‖BPα|F ‖ ≥ |||BPα|F |||t ≥ ‖BPα|F ‖ − ε.

Proof. The proof is very similar to the proof of Proposition 24. Only the second
inequality needs to be proven, as the first follows directly from the definition.
If Am is a band operator such that ‖APα −Am‖ < ε

4 , one can prove that

|||C|F |||t ≥ ‖C|F ‖ − ε

holds for all F ⊂ Cn and all C ∈ {Am}∪ {(Am)x;x ∈ M\Cn}, where (Am)x is
defined as in the proof of Proposition 24 (cf. [10, Proposition 27]). Then, using
estimates similar to those in Proposition 23, one gets the desired result.

This now allows us to give an alternative proof of the second part of [3,
Theorem 6.2]. Our approach additionally shows that the constants there may

in fact be chosen as 1 and ‖Pα‖−1
. We do not know whether these constants

are optimal, though.

Theorem 31. Let A ∈ Tp,α. Then

1

‖Pα‖
‖A+K(F pα)‖ ≤ sup

x∈M\Cn

‖Ax‖ ≤ ‖A+K(F pα)‖.
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Proof. Let (zγ) be a net converging to x ∈ M \ Cn. (A + K)zγ converges ∗-
strongly to Ax for every K ∈ K(F pα) since Kzγ converges to 0 by Proposition 20.

Using Banach-Steinhaus and the fact that C̃w is an isometry for each w ∈ Cn,
one gets

‖Ax‖ ≤ sup
γ

‖C̃zγ (A+K)C̃−zγ‖ = ‖A+K‖.

Since this holds for all x ∈ M \ Cn and all compact operators K, the second
inequality follows. We give a sketch for the proof of the first inequality, and
refer to [10, Theorem 28] for the missing details.
It can be seen that it suffices to prove

inf
K∈K(Lp

α,F
p
α)
‖APα +K‖ ≤ sup

x∈M\Cn

‖AxPα‖,

where K(Lpα, F
p
α) is the set of compact operators from Lpα to F pα. This will be

proven by contradiction: Assume that

inf
K∈K(Lp

α,F
p
α)

‖APα +K‖ > sup
x∈M\Cn

‖AxPα‖+ ε

for some ε > 0. By Proposition 7,

‖APα|Cn\B(0,s)‖ = ‖APα −APαMχB(0,s)
‖ > sup

x∈M\Cn

‖AxPα‖+ ε

for all s > 0. By Proposition 30 there is a t ∈ (0, 1) with

∣∣∣∣∣∣APα|Cn\B(0,s)

∣∣∣∣∣∣
t
≥ ‖APα|Cn\B(0,s)‖ −

ε

2
> sup

x∈M\Cn

‖AxPα‖+
ε

2
.

Using the definition, for each s > 0 there must be some ws ∈ Cn such that

‖APαMχB(ws,rt)
‖ ≥ ‖APαMχB(ws,rt)\B(0,s)

‖ > sup
x∈M\Cn

‖AxPα‖+
ε

2
.

Using that MχB(ws,rt)
= Cws

MχB(0,rt)
C−ws

, PαCws
= C̃ws

Pα (Lemma 17) and

the fact that C̃−ws
and Cws

are surjective isometries, we get

‖A−ws
PαMχB(0,rt)

‖ > sup
x∈M\Cn

‖AxPα‖+
ε

2
.

Since (ws) clearly cannot converge in Cn and M is compact, there is a subnet
of (ws), also denoted by (ws), such that −ws converges to y ∈ M \ Cn and
A−ws

converges to Ay strongly, which implies by the compactness of PαMχB(0,rt)

(Proposition 7)

‖A−ws
PαMχB(0,rt)

‖ → ‖AyPαMχB(0,rt)
‖.

But this implies

‖AyPαMχB(0,rt)
‖ ≥ sup

x∈M\Cn

‖AxPα‖+
ε

2
,

which is a contradiction.
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An improvement of this can be obtained if p = 2. Comparing to [3, Theorem
7.1] (or [16, Theorem 5.6], [23, Theorem 10.1] in case of the unit ball), this shows
that the supremum is actually a maximum.

Theorem 32. For A ∈ T2,α it is

‖A+ K(F 2
α)‖ = max

x∈M\Cn
‖Ax‖.

Proof. Replacing ν and νt by ‖ · ‖ and |||·|||t in the proof of Lemma 27 and
using Proposition 30, one can show that there is a y ∈ M \ Cn such that
‖AyPα‖ = sup{‖AxPα‖;x ∈ M \ Cn}. Since ‖AxPα‖ = ‖Ax‖ for p = 2, we get
that the supremum in the theorem is actually a maximum. The equality follows
by Theorem 31 with ‖Pα‖ = 1.

6 Symbols of vanishing oscillation and vanishing

mean oscillation

For a bounded and continuous function f : Cn → C we define

Oscrz(f) := sup{|f(z)− f(w)|;w ∈ Cn, |z − w| ≤ r}

for z ∈ Cn and r > 0. A basic result about oscillations is that

lim
|z|→∞

Oscrz(f) = 0 for all r > 0 ⇔ lim
|z|→∞

Oscrz(f) = 0 for one r > 0.

Set

VO(Cn) :=
{
f : Cn → C; f bounded and continuous, lim

|z|→∞
Osc1z(f) = 0

}
.

It is easy to see that VO(Cn) ⊂ BUC(Cn). In the case p = 2 it is well-known
[4, 22] that for VO-symbols the Fredholm information is located at the boundary,
i.e. for f ∈ VO(Cn) it holds

σess(Tf ) = f(∂Cn),

where f(∂Cn) denotes the set of limit points of f(z) as |z| → ∞. We get those
results for every 1 < p <∞ as a special case of Corollary 29:

Theorem 33. For f ∈ VO(Cn) it holds

σess(Tf ) = f(∂Cn).

Proof. By Corollary 29 we need to show that

⋃

x∈M\Cn

σ((Tf )x) = f(∂Cn).

Let (zγ) be a net in Cn converging to x ∈ M \ Cn. Since f ∈ BUC(Cn) it is
f ◦ τzγ (0) = f(zγ) → x(f). Further, observe that

|(f ◦ τzγ )(0)− (f ◦ τzγ )(w)| = |f(zγ)− f(zγ − w)| ≤ Oscrzγ (f) → 0
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for |w| ≤ r. Therefore f ◦ τzγ converges uniformly on compact subsets to the
constant function x(f). Hence, using Lemma 17,

(Tf )zγ = Tf◦τzγ
s→ Tx(f) = (Tf )x

where Tx(f) is just x(f) · Id, thus σ((Tf )x) = {x(f)}. But since f(zγ) converges
to x(f), this needs to be in f(∂Cn) and hence

σess(Tf ) ⊆ f(∂Cn).

On the other hand, if w ∈ f(∂Cn), let (zm) be a sequence such that f(zm) → w.
Using Proposition 25 we may choose a convergent subnet ((Tf )zγ )γ of ((Tf )zm)m
and, as above, it converges to w Id and we get the other implication.

We also get the following corollary for symbols with vanishing mean oscilla-
tion (see e.g. [2] for a definition):

Corollary 34. If f ∈ VMO(Cn) ∩ L∞(Cn), then

σess(Tf ) = f̃(∂Cn),

where f̃ is the Berezin transform of f .

Proof. It is f̃ ∈ VO(Cn) [2, Corollary 2.8] and also ˜|f − f̃ |2 ∈ C0(C
n), i.e.

˜|f − f̃ |2 vanishes at infinity [2, Theorem 5.3]. This of course implies ˜f − f̃ ∈
C0(C

n). Therefore, Tf−f̃ is compact [3, Theorem 1.1] and hence

σess(Tf ) = σess(Tf̃ ) = f̃(∂Cn).

Remark. After submitting this paper, we noticed that Theorem 33 was indepen-
dently found recently by Al-Qabani and Virtanen [1] using different methods.
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