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Abstract 13 

Agricultural landscapes provide many functions simultaneously including food production, regulation 14 

of water and regulation of greenhouse gases. Thus, it is challenging to make land management 15 

decisions, particularly transformative changes, that improve on one function without unintended 16 

consequences on other functions. To make informed decisions the trade-offs between different 17 

landscape functions must be considered. Here, we use a multi-objective optimization algorithm with 18 

a model of crop production that also simulates environmental effects such as nitrous oxide 19 

emissions to identify trade-off frontiers and associated possibilities for agricultural management. 20 

Trade-offs are identified in three soil types, using wheat production in the UK as an example, then 21 

the trade-off for combined management of the three soils is considered. The optimisation algorithm 22 

identifies trade-offs between different objectives and allows them to be visualised. For example, we 23 

observed a highly non-linear trade-off between wheat yield and nitrous oxide emissions, illustrating 24 
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where small changes might have a large impact. We used a cluster analysis to identify distinct 25 

management strategies with similar management actions and use these clusters to link the trade-off 26 

curves to possibilities for management. There were more possible strategies for achieving desirable 27 

environmental outcomes and remaining profitable when the management of different soil types was 28 

considered together. Interestingly, it was on the soil capable of the highest potential profit that 29 

lower profit strategies were identified as useful for combined management. Meanwhile, to maintain 30 

average profitability across the soils, it was necessary to maximise the profit from the soil with the 31 

lowest potential profit. These results are somewhat counterintuitive and so the range of strategies 32 

supplied by the model could be used to stimulate discussion amongst stakeholders. In particular, as 33 

some key objectives can be met in different ways, stakeholders could discuss the impact of these 34 

management strategies on other objectives not quantified by the model.  35 

Highlights 36 

 Trade-offs between different objectives in agricultural landscapes are complex 37 

 Cluster analysis helped visualise effects of management on trade-offs  38 

 Minimum N2O emissions scaled linearly with yield until ~85-90% of maximum yield  39 

 A more fertile soil could be managed more flexibly and remain profitable 40 

 Achieving profitability on the least fertile soil was key for overall profitability 41 

Graphical Abstract 42 

 43 
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 44 

Introduction 45 

The United Nations Sustainable Development Goals (SDGs) set out an ambitious suite of targets to 46 

stimulate effort to improve sustainability globally. Core to the SDGs is that these targets should not 47 

be considered in isolation, but that the interlinkages between the goals should be accounted for. The 48 

agricultural sector plays an important role in achieving many of the goals, most obviously ‘zero 49 

hunger' which cannot be achieved without food production, but also impacts on goals relating to the 50 

environment (Gil et al., 2018) such as ‘life on land’, ‘climate action’ and ‘end poverty’. Indeed, 51 

agricultural production systems have been identified as a major contributor to key global issues such 52 

as biodiversity loss, climate change and unsustainable nutrient cycling (Steffen et al, 2015; Burns et 53 

al., 2016; Campbell et al., 2017). This has led to increasing interest in understanding how agricultural 54 

production systems could be transformed to reduce negative environmental impacts whilst 55 

providing nutritious food and prosperous livelihoods within the sector (Kanter et al., 2018). Yet the 56 

complexity of these systems, their global scale and even their variability at local scale is a barrier to 57 

transformative change because it is difficult to identify alternatives to the current situation that take 58 

account of all the processes that might be affected by change and the multiple functions of 59 

agricultural landscapes. 60 

One particular challenge is to stimulate informed stakeholder discussion about trade-offs within 61 

agricultural landscapes so that priorities can be identified collectively. This requires information 62 

about the likely trade-offs within agricultural systems and associated possibilities for managing these 63 
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systems to meet different combinations of objectives. Various methods have been used for 64 

identifying trade-offs in agricultural systems, including participatory methods, empirical methods, 65 

the use of multi-objective algorithms with models of agricultural systems and combinations of the 66 

above (Klapwijk et al., 2014). Multi-objective algorithms are appealing because they can make use of 67 

the current understanding of systems that is embedded in models. They may need to be combined 68 

with other methods where key processes and objectives are not adequately represented in models.  69 

Optimization algorithms strategically try different configurations of land management (the inputs to 70 

a model of an agricultural system) to identify an optimal value of a quantifiable objective or 71 

objectives (the outputs from the model). Multi-objective algorithms (e.g. Deb et al., 2002; Cao et al., 72 

2011; Huang et al., 2013) are particularly useful because they avoid the need to weight different 73 

objectives. Such approaches have been used to identify scenarios of land-use change between an 74 

agricultural use and a range of other uses (Polasky et al., 2008; Hu et al., 2015; Estes et al., 2016). In 75 

these, the spatial configuration of the relevant land-use categories is optimised using objectives such 76 

as agricultural production and environmental factors, including biodiversity and water retention. 77 

However, the different possible practices within each land-use category are not considered. Other 78 

studies, however, have also optimised the spatial configuration of agricultural land managed using 79 

different practices using a multi-objective approach (Groot et al., 2007; Zhang et al., 2012; Kennedy 80 

et al., 2016; Groot et al., 2018). Multi-objective algorithms therefore provide a useful way to explore 81 

the effect of both land use and management practices on different objectives simultaneously. 82 

Algorithms play a particularly interesting role in identifying possibilities because, whilst the 83 

objectives and search options are set by people, within this range the computer algorithm can 84 

search dispassionately and so consider options that might otherwise be discounted without due 85 

consideration due to preconceptions. For example, in a study focussed on land use possibilities in 86 

Iowa, Nassauer and Corry (2004) noted that whilst citizens might imagine future landscapes without 87 
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perceiving unintended consequences, experts might limit their creativity based on what behavioural 88 

change they deem possible. 89 

One challenge in using multi-objective algorithms is that the results are complex and can be difficult 90 

to interpret. If two objectives are considered and there is a trade-off between these two objectives, 91 

the multi-objective algorithm will identify a number of optimal points along a trade-off frontier. The 92 

points along this frontier have Pareto optimality, that is to say that at every point on the curve, an 93 

improvement in one objective would be associated with a negative effect on the other objective (see 94 

for example Lautenbach et al. 2013 for further explanation of pareto optimality). Such results can be 95 

plotted easily on a 2-D plot (e.g. Zhang et al., 2012; Kennedy et al., 2016). If the algorithm considered 96 

three objectives, the Pareto frontier could be shown as a 3-D surface. However. as more objectives 97 

are included, the multi-dimensional surface becomes harder to plot and visualise. A variety of 98 

approaches have been considered to visualise results, including the use of different colours and sizes 99 

of points to represent additional dimensions and using heat maps (Lautenbach et al, 2013; Tušar and 100 

Filipič, 2015; Ibrahim et al., 2016). For high dimensions, however, it is intuitive to project the surface 101 

onto a series of 2-D plots representing the different pairs of dimensions (Groot et al., 2012). This 102 

allows the frontiers between each pair of objectives to be visualised. Still, such plots do not show the 103 

link from the land management actions to the associated outcomes (i.e. the associated point on the 104 

trade-off frontier). This can be done to a limited extent by illustrating a few key points, for example 105 

with a map of the land use that leads to a particular result (Polasky et al., 2008; Lautenbach et al., 106 

2013). However, it is not possible to do this for a frontier with hundreds of points; thus, new 107 

approaches to enable this would aid interpretation of results. 108 

Challenges in determining trade-offs within agricultural landscapes lie in the complexity of these 109 

systems, both in terms of the need to consider multiple functions of the system from economic, 110 

social and environmental perspectives and the need to consider different spatial scales. The spatial 111 

component of these systems is important to consider both because of the connectivity of landscape 112 
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and landscape heterogeneity. The connectivity of the landscape means that altering a management 113 

practice in one location may directly affect contiguous locations due to physical flows (e.g. water, 114 

nutrients). Meanwhile the heterogeneity of landscapes means that actions taken to optimise 115 

objectives in one place may not be optimal in another (e.g. due to differences in soil types). 116 

However, this heterogeneity is also an opportunity, because different areas of land could be 117 

managed to take best advantage of their specific characteristics. This is the idea behind the concept 118 

of land sparing, the suggestion that environmental and food production might be best met by 119 

removing some land from agricultural production and using it to meet environmental objectives 120 

whilst increasing production on the land that remains in production (Phalan et al., 2011). Ultimately, 121 

to identify trade-offs in agricultural landscapes using multi-objective optimization, it would be 122 

desirable to use a single model that represents all relevant economic, social and environmental 123 

objectives as well as spatial variability and interactions. Such a model does not exist, but 124 

development of models and model frameworks that are able to represent multiple dimensions and 125 

spatial interactions in agricultural landscapes simultaneously is ongoing (van Ittersum et al, 2008; 126 

Schönhart et al., 2011; Groot et al., 2012; Schönhart et al., 2016). Meanwhile the Rothamsted 127 

Landscape model (Coleman et al., 2017) captures another part of this complexity. It focusses on 128 

agricultural production as well as the environmental component of agricultural landscapes, 129 

specifically simulating nitrous oxide emissions and leaching from the soil, allowing the spatial 130 

heterogeneity of the landscape to be considered.  131 

In this paper the Rothamsted Landscape model (Coleman et al., 2017) is used to investigate and 132 

visualise trade-offs, using wheat production in the south east of the United Kingdom (UK) as an 133 

example. A specific aim is to consider the importance of spatial heterogeneity within the landscape, 134 

which we do by comparing trade-offs in three soil types (clay, sandy clay and sandy loam) and then 135 

identifying how the trade-offs change when these three soils are managed collectively, representing 136 

a small heterogeneous landscape. This includes management approaches in which some soils are 137 
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managed for production objectives and others for environmental objectives within the search space 138 

for the multi-objective algorithm. The algorithm can then identify when objectives might be best 139 

achieved by sharing production and environmental objectives across sites and when they might be 140 

better achieved by reducing production at one site and maximising it at another to compensate thus 141 

making use of landscape heterogeneity. The intention is that such results would be used to inform 142 

and stimulate stakeholder discussion, although we do not report the results of such an interaction 143 

here, focusing instead on the development of this modelling approach. We consider this as an 144 

illustrative example, with a relatively simple set of possible management possibilities that could be 145 

expanded in future work to further understand the importance of spatial heterogeneity and even 146 

landscape connectivity in managing trade-offs across the landscape. Using this example of wheat 147 

production in the UK, we develop a clustering approach to identify distinct management strategies 148 

and how these relate to different outcomes for the multiple optimization objectives. This aims to 149 

facilitate the interpretation of the results by associating possible land management strategies (i.e. 150 

similar types of management actions) with different regions of the trade-off curves. This helps to 151 

address the issue that for complex sets of objectives and land use and management options multi-152 

objective algorithms can identify numerous possibilities which may become overwhelming.  153 

Methods 154 

Optimization algorithm 155 

We coupled the Rothamsted Landscape model with an optimization algorithm to determine Pareto 156 

optimal fronts between multiple objectives defined in terms of outputs from the model as has been 157 

done previously (Coleman et al., 2017). The optimised Pareto fronts describe the synergies and 158 

trade-offs between objective variables such as crop yield and nitrous oxide emissions. In order to use 159 

such algorithms the user must define the optimization objectives and the control variables (in this 160 

case a number of different farm management actions). The algorithm varies the control variables 161 
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and uses a simulation model  (in this case the Rothamsted Landscape model) to calculate the effect 162 

of these controls on the objectives. The algorithm must be able to identify which sets of control 163 

variables result in better outcomes of the objectives and strategically identify new sets of control 164 

variables to try to see if even better outcomes can be achieved. NSGA-II (Deb et al., 2002) is an 165 

established algorithm to do this. Here, we combined the non-dominated sorting routine from NSGA-166 

II with differential evolution (Storn and Price, 1997) to identify new sets of options to try. Differential 167 

evolution adds a directional component to the identification of new control variables which is useful 168 

for numerical control variables, as gradients can be used to inform the search direction. This 169 

approach is not relevant when the control variables are categorical and there is no ‘gradient’ 170 

between categories as they are distinctly different options. In this application, as the controls were 171 

numerical, the differential evolution approach was appropriate. 172 

To run, the algorithm requires an initial list of management options to try; this forms the initial 173 

population of management strategies. This initial population can be formed by randomly selecting 174 

values for each of the management variables within each strategy. To do this a range or set of all the 175 

values possible for each management variable is defined. Alternatively, the initial population could 176 

be based on management strategies that are of interest, perhaps because they represent current 177 

practice or an extreme management option. Here, the initial population was predominantly random 178 

but was also seeded with some strategies representing current practice and extremes. 179 

The algorithm then implements each of the management strategies from the initial population in the 180 

simulation model and records the effect on each of the multiple objectives. Non-dominated sorting 181 

then identifies the management options that result in the ‘best’ objectives, i.e. those that are non-182 

dominated. A point is said to be dominated by another if it is worse for every single objective. 183 

The process is iterated in directions that the differential evolution algorithm suggests will be an 184 

improvement, until the results converge and produce a similar Pareto front with each iteration. The 185 

algorithm was run for 1500 iterations and convergence was judged manually by visually comparing 186 
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the frontier over multiple iterations. Running the algorithm for this application took around 1-2 days 187 

for each soil, although the time depends on the control variables that are chosen as some 188 

combinations take longer to run than others.  189 

When considering the management of multiple units of land with different characteristics and 190 

management possibilities, there was also a second stage of optimization to combine the three 191 

frontiers across the land uses. This used the pareto fronts generated for each soil using the 192 

simulation model as an input to the NSGA-II multi-objective optimization algorithm algorithm (i.e. 193 

without differential evolution being implemented, as the control variables are categorical and a 194 

directional search is not helpful in this context). By using the pareto frontiers identified in the first 195 

step (i.e. the sets of points identified for each soil), we assumed that there were no interactions 196 

between the sites and that what was optimal at one site was not affected by actions at other sites. 197 

The algorithm was then used to consider how three sites with known individual trade-off curves 198 

could be managed together to produce the best average values of the objectives. There was one 199 

control variable for each unit of land, this control variable was an index value identifying the point 200 

on the trade-off curve for that site. As the optimal trade-off curves for each soil consisted of 100 201 

points, there are a million possible combinations of management practices.  The algorithm thus 202 

effectively searches for the best way in which the trade-off curves from different locations could be 203 

combined by taking into account the strengths of each location and where they can best contribute 204 

to specific objectives. A genetic population of 1000 points was used in this search, primarily to better 205 

represent the resulting trade-off frontier as the shape of the surface becomes more complex. 206 

Simulation model scenario 207 

The optimization algorithm used outputs from the Rothamsted Landscape model (Coleman et al., 208 

2017) to simulate the effect of the management options described by the control variables on the 209 

objectives. This model has been calibrated and validated in South-East England, within the climatic 210 

zone of the study, (Coleman et al., 2017). It operates at a daily time step and simulates agricultural 211 
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yield as well as the effect of production on environmental processes including nutrient leaching and 212 

nitrous oxide emissions. The Landscape model is also able to simulate nutrient flows across the 213 

landscape, however this feature of the model was not used here. Instead, the model was used to 214 

simulate the trade-offs between multiple objectives at a single location at a time. 215 

The model was used to simulate wheat production using weather data that represents conditions in 216 

the climatic zones in the west and centre of England. To do this weather data from Chivenor, Devon, 217 

was used. The simulations were initialised with soil textural data representing Clay, Sand Clay and 218 

Sandy-Loam soils (Table 1). 219 

In the second stage of the paper, when combined managements of the soils were considered, equal 220 

areas of each of the three soil types were assumed. Thus the objectives were quantified by taking 221 

the arithmetic means of the values at each site. 222 

Table 1: Soil properties (0-23cm) of the three soil types used in simulations 223 

 Clay Sandy Clay Sandy Loam 

Clay (%) 76 36 14 

Silt (%) 14 15 18 

Sand (%) 10 49 68 

SOC (%) 2.49 1.83 0.96 

pH 7.63 7.14 6.03 

Bulk density 1.23 1.38 1.33 

 224 

Control variables 225 

The identification and implementation of appropriate control variables is critical as it sets the range 226 

of possibilities that the optimization algorithm can explore. Whilst it is therefore tempting to make 227 

the scope wide, this can slow down the optimization algorithm or prevent it from finding global 228 
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optima. Here, we used 11 control variables – the first 9 of these represented the amounts of 229 

ammonium nitrate fertiliser applications. Each application could vary between 0-100 kgN/ha. The 230 

first application can be made on 1st March with possible subsequent applications at 2 week intervals. 231 

If it rained on the day that any application was scheduled, that application was delayed until the next 232 

day. The expectation here, was that several of the possible 9 applications would be 0. If the initial 233 

values for these application rates were drawn from a uniform distribution it would be highly unlikely 234 

that the value zero would be selected repeatedly. Thus, to improve the convergence of the 235 

algorithm, up to half of the initial population was set to include members that had 6-8 zero values 236 

for N application control variables whilst the remaining members of the population had 9 randomly 237 

sampled application rates. The 10th control variable was a farm yard manure (FYM) application (0-3 238 

t/ha) and the 11th control variable determined the time at which this manure application was applied 239 

from 0-3 weeks before sowing. 240 

Objectives 241 

The optimization objectives were selected to represent indicators that are relevant to the 242 

contribution of agriculture to the SDGs, either directly by production or due to the effects of 243 

production on the surrounding environment. A number of possible SDG indicators for agriculture 244 

have been proposed (Gil et al., 2018), here however, we focused on those for which it was possible 245 

to quantify with the model. These were; crop yield, nitrogen use efficiency (NUE), nitrogen surplus, 246 

nitrous oxide emissions, and change in soil organic carbon (SOC). The yield and nitrous oxide 247 

emissions were simulated for each year and then calculated as the average over the nine seasons of 248 

the simulation. The change in SOC was calculated as the difference between the value at the start 249 

and the end of the simulation. These values are clearly sensitive to the initial SOC. The NUE and 250 

nitrogen surplus objectives were calculated by first summing the inputs and outputs in the crop grain 251 

and straw over the whole simulation. The NUE was then calculated as the ratio between the outputs 252 
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and inputs, and the surplus as the difference between inputs and outputs. All sources of nitrogen 253 

entering the soil were accounted for, so including atmospheric deposition (Coleman et al., 2017).  254 

In addition, a profit function is calculated, as the sum of the yield each year multiplied by the farm 255 

price of the crop, minus the total cost of the N fertiliser applied (both the mineral N and N in FYM), 256 

minus the total cost of the P fertiliser applied, minus the cost of applying the N fertiliser. This is 257 

divided by the number of years to give the average profit.   258 

Clustering 259 

To identify common management strategies, the sets of control variables found to be optimal were 260 

further analysed using a cluster analysis. Prior to clustering, the nine inorganic fertiliser application 261 

values were summarised into 3 values; the total amount of N applied, the number of N applications 262 

(i.e. number of non-zero values), and the timing of the first application. The cluster analysis was then 263 

performed on sets of variables representing the three values summarising nitrogen fertiliser and the 264 

amount of FYM applied. The cluster analysis used a minimum variance, hierarchical clustering 265 

approach following the Ward (1963) method. This was implemented in MATLAB (version R2018a) 266 

using the standardised Euclidean distance. To aid visualisation, the mean profitability factor for each 267 

cluster was calculated, and only the most profitable strategies were highlighted in the trade-off 268 

curves. 269 

Results 270 

The optimization approach identified trade-off frontiers between the different objectives. Scatter 271 

appears in the frontiers because the plots shown a multi-dimensional surface projected onto a 2-D 272 

plot. Trade-offs occur when an improvement in one objective has a detrimental effect on another 273 

objective. Meanwhile synergies occur when objectives improve concurrently. In the clay soil, this 274 

approach identified trade-offs between the yield and N2O emissions and the N2O emissions and the 275 

change in SOC (Fig 1a-f). As there were synergies between the N2O emissions, NUE and the N surplus 276 
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(Fig. 2), the trade-offs between NUE and N surplus indicators with other objectives were the same as 277 

those for the N2O objective (Supplementary information, Fig. S2). Meanwhile synergies were 278 

observed between the yield and profitability, yield and change in SOC, and the profitability and the 279 

change in SOC. It is instructive to focus on the N2O data because these results emphasise the non-280 

linearity of certain trade-offs (Fig 1d). Specifically, the line that would represent the 2-D frontier 281 

between N2O and each of the other objectives is non-linear. The frontier between the profitability 282 

and the N2O emissions suggests a synergy at high emission values and a trade-off at lower emission 283 

values (Fig. 1e), however there is also a lot of scatter behind the frontier corresponding to the other 284 

objectives. As such, to meet these other objectives it may not be desirable to optimise the N2O 285 

emissions per unit profit.  286 

The cluster analysis approach was applied to look for similarities in the control variables from within 287 

the optimal population identified by the optimization algorithm. We refer to these clusters as 288 

‘management strategies’ as they group together similar sets of management actions allowing them 289 

to be associated with their effect on the objectives. For the clay soil, hierarchical clustering was used 290 

to divide the sets of management actions into 9 clusters (Fig 3).  Looking at the mean of the 291 

profitability objective in the clusters, three profitable strategies were identified: 292 

1. Applying no FYM and relatively high fertiliser N over 3 applications 293 

2. Applying a little FYM and a slightly less N fertiliser over 2 applications 294 

3. Applying much FYM and rather less N fertiliser over 2 applications 295 

Notably, in these strategies, fertiliser applications tended to start later (from the 4th possible 296 

application date) than other less-profitable strategies (Supplementary Information, Fig S2). The first 297 

two strategies were associated with high yield, whilst for the third profitable strategy the yield was 298 

slightly less and the profitability arose from lower fertiliser costs. FYM application was, 299 

unsurprisingly, associated with increases in SOC. Most of the profitable strategies were associated 300 

with high N2O emissions, except for a subset of the first strategy (when no FYM and lower amounts 301 
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of N fertiliser were applied). Also, in the clay soil the maximum yield was higher than the sandy clay 302 

and sandy loam soils. 303 

 304 

Figure 1: Trade-off frontiers (a-f) and cluster characteristics (g-r) in clay soil. Units are: Yield (t/ha), 305 

Profitability (x103 £ / ha /year), N2O ( x103 CO2 equivalent yr-1), change in SOC - δSOC (%). Note that 306 

for N2O, increasing values are shown from right to left or top to bottom because this objective was 307 

minimised in the optimisation process. This means that, consistently across the plots, trade-offs 308 

show trends from the top left to the bottom right of the plots and synergies trends from the bottom 309 

left to the top right. Points within the most profitable clusters are highlighted; all other points are 310 

shown as small grey circles. Histograms of the cluster variates show the fraction of the points in each 311 

cluster with a particular management value, where n is the number of management strategies (i.e. 312 

points) in each cluster, N Fert is the total N applied in fertiliser, First N is the week of the first N 313 

application, # Apps is the number of fertiliser applications and FYM is the amount of farm yard 314 

manure applied.    315 
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 316 

Figure 2: Trade off frontiers between the objectives relating to nitrogen cycling for the clay soil. 317 

Units are: N2O ( x103 CO2 equivalent yr-1), N surplus (kg ha-1 yr-1), NUE (-).  Yellow diamonds, red 318 

triangle and blue squares indicate points in the frontier that correspond to the clusters detailed in 319 

Fig. 1, g-r grey dots show all other points in the frontier. Note that for N2O and N surplus, increasing 320 

values are shown from right to left or top to bottom because these objectives were minimised in the 321 

optimization process. This means that, consistently across the plots, trade-offs show trends from the 322 

top left to the bottom right of the plots and synergies trends from the bottom left to the top right. 323 

 324 
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 325 

Figure 3: Hierarchical cluster results for clay soil, with the profitable clusters highlighted. The dotted 326 

line indicates the division of the dataset into 9 clusters. 327 

 328 

In the sandy clay soil the same trade-offs and synergies between objectives were observed as in the 329 

clay soil (Fig 4a-f). Two profitable management strategies were identified (Fig 4g-n): 330 

1. High application of FYM, 1-3 applications of a small amount of N fertiliser 331 

2. Low or Medium application of FYM, 1-3 applications of a medium amount of N fertiliser  332 

In this soil, most of the points in the optimal set were high yielding (Fig 4f). Profitable strategies were 333 

also associated with high yields. The greatest possible profitability was less than in the clay soil. 334 
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 335 

Figure 4: Trade-off frontiers (1-f) and cluster characteristics (g-r) in sandy clay soil. Units are: Yield 336 

(t/ha), Profitability (x103 £ / ha / year), N2O ( x103 CO2 equivalent), Change in SOC - δSOC (%). Note 337 

that for N2O, increasing values are shown from right to left or top to bottom because this objective 338 

was minimised in the optimisation process. This means that, consistently across the plots, trade-offs 339 

show trends from the top left to the bottom right of the plots and synergies trends from the bottom 340 

left to the top right. Points within the most profitable clusters are highlighted; all other points are 341 

shown as small grey circles. Histograms of the cluster variates show the fraction of the points in each 342 

cluster with a particular management value, where n is the number of management strategies (i.e. 343 

points) in each cluster,  N Fert is the total N applied in fertiliser, First N is the week of the first N 344 

application, # Apps is the number of fertiliser applications and FYM is the amount of farm yard 345 

manure applied.    346 

For the sandy loam soil (Fig. 5), the highest possible profitability was £390 ha-1 yr-1, lower than the 347 

sandy clay and clay soils (£458 and £624 ha-1 yr-1 respectively). Meanwhile, the maximum possible 348 

yield 7.5 t ha-1 for the sandy loam soil, was higher than possible for the sand clay (7.0 t ha-1) but 349 

lower than for the clay soil (8.7 t ha-1). 350 

The 3 profitable strategies identified were: 351 
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1. High FYM, high N fertiliser in 2-3 applications, starting early 352 

2. High FYM, medium N fertiliser, typically 2-3 applications, starting slightly later 353 

3. No FYM, medium N fertiliser, typically 3-4 applications, starting even later 354 

  355 

 356 

Figure 5: Trade-off frontiers (1-f) and cluster characteristics (g-r) in sandy loam soil. Units are: Yield 357 

(t/ha), Profitability (x103 £ / ha / year), N2O ( x103 CO2 equivalent), Change in SOC - δSOC (%). Note 358 

that for N2O, increasing values are shown from right to left or top to bottom because this objective 359 

was minimised in the optimisation process. This means that, consistently across the plots, trade-offs 360 

show trends from the top left to the bottom right of the plots and synergies trends from the bottom 361 

left to the top right. Points within the most profitable clusters are highlighted; all other points are 362 

shown as small grey circles. Histograms of the cluster variates show the fraction of the points in each 363 

cluster with a particular management value, where n is the number of management strategies (i.e. 364 

points) in each cluster,  N Fert is the total N applied in fertiliser, First N is the week of the first N 365 

application, # Apps is the number of fertiliser applications and FYM is the amount of farm yard 366 

manure applied.    367 
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Combining the objectives across three fields of equal area but differing in soil texture (clay, sandy 368 

clay, sandy loam) led to a combined trade-off frontier (Fig. 6). Notably, for the combined 369 

management, it becomes more clear that the frontier is a multi-dimensional surface with the Pareto 370 

optimal points more spread out compared to the management for each of the soils individually (Figs. 371 

1, 4 and 5). The relationship between the profitability and N2O emissions was synergistic for high 372 

emissions, but becomes a trade-off at lower emissions. This change at the frontier, from synergy to 373 

trade-off, was clearer than in the individual soils and indicated that a reduction in nitrous oxide 374 

emissions beyond a certain point would be associated with a large reduction in profitability (Fig. 6e). 375 

Multiple profitable strategies perform similarly with respect to multiple objectives (e.g. green and 376 

yellow clusters in Fig. 6) meaning that there is freedom to make choices between these strategies 377 

based on additional objectives not captured by the model. The most profitable strategies (the blue 378 

cluster in Fig. 6) produced lower nitrous oxide emissions than the other profitable clusters, all of 379 

which resulted in an increase in SOC. 380 

Interestingly, all of the more profitable clusters in the combined management included the most 381 

profitable management strategies for the sandy clay soil, which had the lowest maximum yield (Fig. 382 

8). Furthermore, only one of the five management strategies on the sandy loam soil (which had the 383 

medium maximum yield) included less profitable management strategies on this soil. On the clay soil 384 

(which had the highest maximum yield), there were a wider range of management strategies that 385 

resulted in profitable overall management. Compared to the strategies identified for the clay soil 386 

alone (Fig 1.), the strategies that were profitable on clay in the case of combined management 387 

included more in which manure was applied to the clay soil, and more numerous fertiliser 388 

applications (Fig. 7). 389 

This shift to less profitable strategies occurs in the clay soil but not in the sandy clay when combined 390 

management is considered. The reasons for this are complex but occur because of the effect that a 391 

decrease in profitability has on the other objectives in each of the soils. For example, in the sandy 392 
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clay soil, most of the possible reduction in N2O emissions can be achieved whilst remaining 393 

profitable (i.e. the frontier has a fairly straight vertical edge in Fig. 4e). In the clay soil however, there 394 

is a discernible trade-off that emerges to reach the lowest possible emissions (i.e. the top edge of 395 

the frontier is more rounded in Fig. 1e). Additionally, in the clay soil the differences between 396 

profitability of the more profitable strategies was smaller than in the sandy clay soil (i.e. with respect 397 

to profitability, the points are grouped together predominantly in the high profitability region for the 398 

clay soil – Fig. 1, but are more spread out for the sandy clay soil – Fig. 4). This means that, to 399 

maintain overall profitability for a decrease in the profitability in the sandy clay soil, a relatively large 400 

increase in profitability on another soil would be necessary. Hence optimal combined strategies 401 

maintain profit in the sandy clay soil. 402 

 403 

Figure 6: Trade-off frontiers when managing three fields each of equal area but each of a different 404 

soil texture (clay, sandy clay, sandy loam). Units are: Yield (t/ha), Profitability (x103 £ / ha / year), N2O 405 

( x103 CO2 equivalent), Change in SOC - δSOC (%). Note that for N2O, increasing values are shown 406 

from right to left or top to bottom because this objective was minimised in the optimisation process. 407 

This means that, consistently across the plots, trade-offs show trends from the top left to the 408 
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bottom right of the plots and synergies trends from the bottom left to the top right. Points within 409 

the most profitable clusters are highlighted; all other points are shown as small grey circles.  410 

Histograms of the cluster characteristics for the most profitable clusters are shown in Fig. 7. 411 

 412 

Figure 7: Characteristics of the profitable clusters for the combined management of three soil types. 413 

Histograms of the cluster variates show the fraction of the points in each cluster with a particular 414 

management value, where n is the number of management strategies (i.e. points) in each cluster,  N 415 

Fert is the total N applied in fertiliser, First N is the week of the first N application, # Apps is the 416 

number of fertiliser applications and FYM is the amount of farm yard manure applied.   417 
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 418 

Figure 8: Proportion of the points within each cluster that correspond to profitable management of 419 

that soil type. On the x-axis, P corresponds to profitable and NP to not profitable. Profitable points 420 

are defined as the 30% of most profitable points for that soil type. 421 

Discussion 422 

Trade-offs between objectives 423 

One distinctive feature of the results is the non-linearity of the trade-off between yield and N2O 424 

emissions. This is not unexpected as high yields are associated with high N application, either in the 425 

form of fertiliser or manure, but is important to note because many national greenhouse gas 426 

inventories follow an emissions factor approach that effectively assumes this relationship is linear 427 

(Eggleston et al., 2006; Shcherbak et al., 2014).. Recent work has suggested that the increase in N2O 428 

emissions with increasing N application is non-linear (Shcherbak et al., 2014), and here, when the 429 

trade-off is considered with respect to yield, this non-linearity is exacerbated as at high N application 430 

further increases in N applied result in only a marginal increase in yield. Linquist et al. (2012) 431 

considered the trade-off between greenhouse gas and cereal crop production. They concluded that 432 

the lowest global warming potential per unit yield occurred at 91% of potential yield for wheat. This 433 
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is comparable to the point at which we observed the non-linear increase in GHG production (90% of 434 

the maximum yield in the clay soil, 85% in the sandy clay and 88% in the sandy loam soil). A similar 435 

finding was also reported by Nguyen et al., (2018) who suggested that 90% of potential production 436 

can be achieved with minimal impacts, including greenhouse gas emissions. It is interesting to note 437 

that this non-linear point is comparable to the 80% of potential yield that is often considered as the 438 

‘exploitable yield’ in yield gap analysis (Lobell et al., 2009; van Ittersum et al., 2013). Whilst this 439 

exploitable yield has been reached from a resource use and profitability perspective, in our analysis 440 

is corresponds more to the threshold that limits a negative environmental impact, as some of these 441 

high emission management strategies still appear to be profitable in our analysis.  442 

The results also highlight a trade-off between N2O emissions and increasing SOC in the soil. This is in 443 

part due to the control options by which the SOC can be increased in the simulations; either by 444 

manure addition or by increasing N application in such a way that yield increased and hence crop 445 

residues also. Both mechanisms are typically associated with an increase in N2O emissions. Bos et al. 446 

(2017) showed that net GHG emission reductions could not be obtained with manure application, 447 

and only the application of compost resulted in larger emission reductions because of SOC increase 448 

compared to N20 emission increase. There are also indications that N2O emissions may be inherently 449 

higher from soils with higher SOC (Palmer et al., 2017; Charles et al., 2017), as this would reduce the 450 

chance that N2O emissions are limited by C availability in soil (Charles et al., 2017). Other studies, 451 

however, have not found a significant effect of SOC (Buckingham et al., 2014). When considering 452 

carbon sequestration to mitigate GHG production, the net effect of sequestration and emissions 453 

must be considered. Other studies have also suggested that, in terms of global warming potential 454 

carbon sequestration may be offset by N2O emissions (Powlson et al. 2011; Zhou et al., 2017). A 455 

systems perspective is also clearly necessary as, if manure was not applied to the soil, it would still 456 

emit greenhouse gases elsewhere (Hou et al., 2015). However, increases in SOC are also desirable 457 
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for other reasons such as increasing future soil fertility (Garratt et al., 2018) and reducing erosion 458 

risk. 459 

The EU nitrogen panel has made recommendations for NUE and N surplus (EU Nitrogen Expert 460 

Panel., 2015), suggesting a range of NUE from 0.5 - 0.9 combined with an N surplus of less than 80 kg 461 

ha-1 yr-1. In our study these ranges were met by using strategies in which very little manure was 462 

applied, for example the blue square cluster (Fig. 2) in which no manure was applied or very few of 463 

the red triangle cluster in which a small amount of manure was applied. This corresponds to the fact 464 

that manure applications were associated with an increase in N2O emissions in the simulations, and 465 

also with increased N leaching. Some thought must be given to how NUE and N surplus is calculated 466 

when applying organic matter to the soil, as nitrogen applied in one year may benefit crops in future 467 

years. For this reason N inputs and outputs were calculated for the whole simulation, however, 468 

there was also likely a build up of soil nitrogen in this period. Indeed, an increase in SOC would 469 

require this (Van Groenigen et al., 2017); So if increasing SOC is an objective, the NUE and N surplus 470 

targets or calculation approaches may need to be reconsidered concurrently.     471 

Management across soil types 472 

As expected, the model simulated differences between the soils in terms of the yield and N2O 473 

emissions. The N2O emissions from the sandy loam soil were notably less than from the other two 474 

soils, particularly at greater N application rates. This corresponds to the findings from other studies 475 

which suggest that emissions from fine textured soils are greater than from coarse textures (Charles 476 

et al., 2017) and that water filled pore space is a key factor affecting emissions (García‐Marco et al., 477 

2014). Thus soils which retained more water, emitted more N2O. The lower NUE values and higher N 478 

surplus values in this soil also suggest that more N is lost from the soil profile by leaching, as would 479 

be expected.  480 
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Interestingly, the maximum possible increase in SOC was comparable for all three soils. The 481 

simulated potential is of course related to the initial SOC in the simulations. In this case, the 482 

simulations were based on soils under long-term arable management with low initial SOC and in this 483 

situation it seems that, for the soil textures we considered,  the soil texture had little effect on the 484 

possible increase in SOC. 485 

In general, profitable strategies were associated with large yields. At the highest yields, we might 486 

have expected to see a trade-off between these two objectives; indeed, in yield gap analysis, 80% of 487 

the potential yield is considered as the ‘exploitable yield’ (Lobell et al., 2009; van Ittersum et al., 488 

2013), representing a point at which there starts to be a trade-off between the two objectives 489 

because the cost of inputs outweighs the increase in sale price due to the increase in yield. Here, 490 

however, as in other studies (Silva et al., 2017), we did not observe this trade-off. Nevertheless, in 491 

the clay soil, a reduction of yield to around 70% of the maximum could be achieved with very little 492 

impact on the profitability (Fig. 1). In the sandy clay, reductions in yield resulted in a linear reduction 493 

in profitability (Fig. 4). In both case, strategies that reduced yield but maintained profitability were 494 

associated with large manure application rates and small amounts of N fertiliser.  This strategy was 495 

not identified as a possibility in the sandy clay soil, which also had the lowest yield potential. In this 496 

soil, all the profitable strategies were associated with high yields. This suggests that there is less 497 

opportunity to adapt management strategies whilst remaining profitable. 498 

On many farms, such as those in the UK, different soil types are present and these soils must be 499 

managed simultaneously. Considering the combined options across these different soils means that 500 

additional strategies can be identified to deliver the same objectives overall. Here, for example, the 501 

clay soil could be managed in a way that was not necessarily the most profitable for that soil, but 502 

contributed to improving the other objectives. The loss in the likely profit from this soil could then 503 

be compensated for on another soil in which the other objectives were less desirable.  504 
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One ongoing debate regarding sustainable agriculture relates to the notion of sharing or sparing land 505 

in agricultural production (Phalan et al., 2011; Fischer et al., 2014). This relates to considering 506 

whether environmental objectives might be best achieved by reducing production (and thus 507 

negative environmental impacts) across all agricultural land (sharing) or whether it would be 508 

preferable to remove some agricultural land from production entirely and use remaining agricultural 509 

land even more intensively (sparing). Most research in this area has focussed on the trade-off 510 

between biodiversity and production.  However, recent studies suggest that land-sparing might help 511 

mitigate leaching and GHG emissions as well (Lamb et al., 2016; Balmford et al., 2018).  512 

Generally, for land sparing it might be expected that the least productive agricultural land be 513 

removed from production because the focus is on yield and profit. Contrary to this, however, the 514 

results here suggest that it is management of the most productive soil that should be targeted to 515 

improve the multi-objective performance. Biodiversity is not a part of this analysis, nor is carbon 516 

sequestration in spared land. In this study, land cannot be entirely removed from production in the 517 

way the control variables in this study have been implemented, and the environmental objectives 518 

focus mainly on nitrogen. However, given the typical nitrogen response curve of crops, it is 519 

unsurprising that spreading nitrogen thinly over a larger area will be preferable to putting the same 520 

amount on a smaller area. This takes advantage of the larger yield increase per unit nitrogen that 521 

occurs at low application rates compared to those that occur at higher application rates. This means, 522 

however, that in a land sparing scenario, the agricultural land that is managed more intensively is 523 

likely to result in higher nitrous oxide emissions per unit yield. A natural extension of this work 524 

would therefore be to include biodiversity objectives within the optimization. Any trade-off between 525 

these objectives and nitrogen cycling objectives should then become apparent. 526 

Envisioning future landscapes 527 

One core aim of this paper is to illustrate the potential of of this approach to identify possibilities for 528 

possible strategies for managing agricultural landscapes. Notably the approach identifies many 529 
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possibilities, the intention being that these can be presented to and discussed with stakeholders. 530 

Specifically, this approach could be used as a tool within a visioning and backcasting exercise (i.e. 531 

envisioning the future and then working backwards from this vision until the current state is 532 

reached). Visioning and backcasting is an approach that was developed in the energy sector as a tool 533 

to identify transformation pathways (Robinson, 1982) and has subsequently been used in other 534 

sectors as a tool for considering transformative change within complex systems (Dreborg, 1996; 535 

Vergragt and Quist, 2011). The first step is to envisage a desirable future and this is often done using 536 

a participatory that brings together multiple stakeholders with different perspectives. The idea in the 537 

visioning step is to focus on the key factors that are important to the different stakeholders for the 538 

future, rather than discussing the current problems and barriers to change (as can easily happen in a 539 

forecasting approach, or when the current situation is the focus of discussion). Gil et al. (2018) 540 

represent an example, where priorities for SDG-2 (‘End Hunger’) were set by comparing SDG-2 541 

indicator target values for 2030 with current values. With the end vision in sight, the backcasting 542 

process then allows stakeholders to be more creative in considering how any barriers might be 543 

overcome. Thus, in theory, the approach should allow more room for a truly transformative pathway 544 

to be identified. 545 

Such approaches encourage idealism, the philosophy being that our visions provide the motivation 546 

to develop new approaches and therefore reshape what is possible (Wright, 2010). Yet this idealism 547 

must be balanced with realism in order to generate visions that are also plausible and tangible so 548 

that action can be taken (Wiek and Iwaniec, 2014). Without this, there is a risk that an idealistic 549 

future vision may include multiple objectives that are not physically possible to achieve concurrently. 550 

Trade-off frontiers identified by multi-objective algorithms could therefore be used as a tool to 551 

encourage stakeholders to discuss trade-offs whilst they are developing this future vision. This would 552 

allow challenging discussions about trade-offs to occur during the visioning process, rather than 553 

during the backcasting process, thus with less focus on challenges that occur within the current 554 
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system and more focus on what would be desirable in future. For instance, the example presented in 555 

this study could be used to inform stakeholder discussion about the relative importance of 556 

minimising nitrous oxide emissions from soil compared to maximising yield, without the idealistic 557 

assumption that both can be achieved simultaneously and without apportioning blame with regards 558 

to the current state of the system. 559 

In this example the focus was on wheat production in a small landscape and with a defined set of 560 

control variables relating to fertiliser and manure application. Thus, there is clearly scope to expand 561 

the method to consider more diverse agricultural practices in more complex landscapes as the scale 562 

and context will affect the trade-offs that can be achieved. These could include practices that are of 563 

interest to stakeholders within a particular context and things that are technically possible and the 564 

scales (field, farm, region) at which different options could be implemented.  Even so, the approach 565 

highlighted the range of possibilities that might be achievable with simple changes and the 566 

opportunities in considering the heterogeneity of the landscape.  567 

There are various technical challenges in the optimization approach, including the risk of the 568 

algorithm becoming stuck in local minima and the inconvenience of the algorithm converging slowly 569 

because extreme control variables are selected and are difficult to simulate. These risks would be 570 

even more present in more complex modelling scenarios considering more complex landscapes and 571 

management possibilities. However, we found that seeding some of the initial population with a 572 

number of likely scenarios was effective at reducing the number of steps needed for convergence, 573 

an approach that has been useful elsewhere (Milne et al., in review). Within the initial population, 574 

several possible fertiliser applications were set to a rate of zero. When using more complex sets of 575 

control variables, subgroups of these control could be optimised initially in order to be able to seed 576 

optimization of the complete set.   577 

The cluster analysis was used as a tool to relate the control variables to the resulting sets of 578 

objectives. This allowed the management strategies to be associated with different regions of the 579 



29 
 
 

Pareto front. It is particularly interesting that for some pairs of objectives similar trade-offs can be 580 

achieved by alternative strategies (e.g. those from different clusters). For example, similar yields and 581 

GHG emissions occur for strategies identified by the clusters of red squares and green crosses in Fig. 582 

6. In this case, more points occur in the red square cluster and fewer in green cross cluster. In 583 

general, the points in the green cross cluster dominate those in the red square cluster with respect 584 

to the indicators of SOC. Without this dominance in another factor, it is likely that this management 585 

strategy would occur less frequently in the population. Indeed, if the algorithm were optimised 586 

based on yield and GHG objectives alone it may even be overlooked entirely, if a strategy from the 587 

red square cluster marginally outperforms the strategy of the green cross cluster. Thus inclusion of 588 

another objective enabled the identification of an alternative management approach with similar 589 

performance for another objective. 590 

To capture the complexity and the multiple stakeholder objectives and to identify a diverse range of 591 

strategies, it may seem desirable to include more objectives. However, with more objectives it 592 

becomes increasingly difficult to visualise the results and communicate them clearly. Additionally, 593 

models are unlikely to be able to simulate all of stakeholders’ priorities. We suggest, therefore, that 594 

the objectives simulated and optimised by the model are viewed as a subset of the stakeholders’ 595 

priorities. In this case the objectives used in the model were a subset of those identified by Gil et al. 596 

(2018) which included NUE, N surplus and greenhouse gas emissions intensity as priorities for 597 

agriculture in the Netherlands as well as pesticide use and genetic diversity which cannot currently 598 

be represented in the model. In most situations there will also exist additional objectives that have 599 

not been quantified by the model which stakeholders will be considering when they interpret the 600 

results. For each management strategy, another analysis exercise (e.g. a participatory method with 601 

the stakeholders or empirical evidence) could then be used to identify how the management 602 

strategies would likely affect unmodelled objectives. However, there may also be distinct 603 

management strategies that are appealing to stakeholders that exist close to the frontier but are 604 
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neglected by the optimization algorithm. Although it is likely to increase convergence time, future 605 

algorithms should retain solutions that are ‘almost’ optimal within a chosen tolerance, particularly if 606 

they are associated with distinctly different management strategies. Given complex control 607 

variables, this should increase the number of distinct management strategies that might be of 608 

interest for stakeholder discussion and might meet other, untested objectives such as those relating 609 

to biodiversity. 610 
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