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Dominant words rise to the top by positive frequency-dependent selection 

 

Abstract  
A puzzle of language is how speakers come to use the same words for particular meanings, given 35	
that there are often many competing alternatives (e.g., sofa, couch, settee), and there is seldom a 
necessary connection between a word and its meaning. The well-known process of random drift – 
roughly corresponding in this context to ‘say what you hear’ – can cause the frequencies of 
alternative words to fluctuate over time, and it is even possible for one of the words to replace all 
others, without any form of selection being involved. But is drift alone an adequate explanation of 40	
a shared vocabulary? Darwin thought not. Here we apply models of neutral drift, directional 
selection and positive-frequency-dependent selection to explain over 417,000 word-use choices for 
418 meanings in two natural populations of speakers. We find that neutral drift does not in general 
explain word-use. Instead, some form of selection governs word-choice in over 91% of meanings. In 
cases where one word dominates all others for a particular meaning – such as is typical of the 45	
words in the core lexicon of a language – word-choice is guided by positive-frequency-dependent 
selection – a bias that makes speakers disproportionately likely to use the words that most others 
use. This bias grants an increasing advantage to the common form as it becomes more popular and 
provides a mechanism to explain how a shared vocabulary can spontaneously self-organise, and 
then be maintained for centuries or even millennia, despite new words continually entering the 50	
lexicon. 
 

Significance  

Speakers of a language somehow come to use the same words to express particular meanings – like 
dog or table – even though there is seldom a necessary connection between a word and its 55	
meaning, and there are often many alternatives from which to choose (e.g., sofa, couch, settee). 
We show that word-choice is not just a matter of saying what others say. Rather, humans seem to 
be equipped with a bias that makes them disproportionately more likely to use the words that most 
others use. The force of this bias can drive competing words out, allowing a single word to 
dominate all others. It can also explain how languages spontaneously organise, and remain 60	
relatively stable for centuries or even millennia. 

 
Introduction 
In his review of August Schleicher’s 1869 pamphlet Darwinism Tested by the Science of 
Language (1), the 19th century philologist Max Müller wrote "a struggle for life is constantly 65	
going on amongst the words and grammatical forms in each language. The better, the 
shorter, the easier forms are constantly gaining the upper hand, and they owe their success 
to their own inherent virtue" (2). Evidently, so taken was Darwin with Müller’s views that 
just a year later he quoted Müller’s “struggle for life…” passage in his 1871 book the Descent 
of Man (3), adding “the survival or preservation of certain favoured words in the struggle for 70	
existence is natural selection” (p91). 
 
Linguists since Schleicher’s time have continued to identify regularities in the ways that 
languages change, including patterns in the replacement of sounds, morphology, syntax and 
words (4-6). For instance, frequently used words tend to be replaced less often than 75	
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infrequently used words (7) and irregular verbs have a greater tendency to become regular 
than do regular verbs to become irregular (8). Linguistic change such as in these two 
examples, involves some form of competition among alternative words, but were Müller and 
Darwin right to assume that the changes are driven by natural selection, that is to say, the 
changes are driven by the “inherent virtue” of the eventual winners?  80	
 
One of the more significant developments of twentieth century neo-Darwinism was the 
mathematical formulation of the theory of neutral or random drift (9, 10). This theory, 
commonly applied to genetic variants, shows that the frequencies of alternative forms 
change over time simply as a result of random or stochastic effects – no selection need be 85	
involved. Applied to language (11, 12) random drift can be used to study changes in the 
frequencies with which speakers use various words for a given meaning, such as sofa, versus 
couch or settee. Drift’s importance in population studies, then, is that its mathematical 
expression provides a precise null expectation against which stronger claims, such as those 
that Darwin and Müller made, can be assessed (11, 12). 90	
 
For example, in language a common observation is that when the number of speakers who 
use a word is plotted against that word’s rank order position in a list of words sorted by 
frequency, sharply down-sloping curves arise that can be described by the form𝑓(𝑘) =
𝛼𝑘'(, where 𝑓(𝑘) is the observed number of speakers who use a word, and k is its rank 95	
order position (1,2,….k) (13). Figures 1a-c plot this relationship for the number of people 
who use one of the k alternative words for a given meaning. Studies in linguistic settings 
have shown that drift can produce curves with these shapes (12, 14-16), even the extreme 
example in Figure 1c where, among competing alternatives, one word has risen to the top 
dominating all others. On the other hand, while drift can in principal produce any 100	
monotonically declining curve, some outcomes of drift are more probable than others (17), 
and in particular shapes such as Figures 1b and c are relatively unlikely under drift. So, the 
real question becomes not whether drift can produce outcomes such as those in Figures 1a-
c, but whether mechanisms other than drift provide more likely explanations. This is the 
challenge that claims of selection in language must meet. 105	
 
Here we investigate the contributions of random drift (D) along with three forms of selection 
– directional selection (DS), positive frequency-dependent selection (FDS) and a model that 
combines directional with positive frequency-dependent selection (DS+FDS; Methods). Drift 
asks what frequency distributions of speakers per word emerge over long periods of time if 110	
speakers use words randomly in proportion to the number of other speakers using them. 
Directional selection incorporates drift but allows some words to be inherently better or 
worse than others. An example of directional selection is that shorter words, or words that 
are easier to pronounce might have an advantage, especially when they are frequently used 
in speech (18). Alternatively, a word might acquire an advantage from being used by a high 115	
status person. Directional models including various social, phonetic or other biases have 
been proposed for linguistic change (19), or, for example, in cultural settings to understand 
the choice of colour terms, musical preferences or baby names (20). 
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Positive frequency dependent selection refers to a scenario in which the likelihood that a 120	
speaker will use a word increases disproportionately to the number of other speakers using 
it. Positive frequency dependence is observed in nature for aposematic or warning colours in 
insects, as the aposematic signal often becomes increasingly effective at deterring predators 
as it spreads through a population (21). Elements of the frequency-dependent process 
appear in early work in statistics (22), and in cultural settings, positive frequency-125	
dependence or ‘conformist bias’ (23) has been investigated to explain the evolution of 
cultural forms (24), and the diffusion of innovations (25).  
 
We implement these models in a computational framework that allows us to assess their 
relative contributions to explaining word choice in two regional American populations. 130	
 
Data and Results 
Our data come from over 417,000 responses obtained from over 2000 respondents in two 
regional surveys conducted as part of the Linguistic Atlas Project (LAP (26), SI): the Linguistic 
Atlas of the Mid-Atlantic States (n=1162 individuals, LAMSAS (27)) and the Linguistic Atlas of 135	
the Gulf-States (n=914 individuals, LAGS (28)). The LAP was designed to elicit local and 
regional variation in the words used for common vocabulary items. For example, the LAP 
does not investigate lexical variation in the number words, words for days of the week or 
months of the year, or pronouns for which typically a single word is used in each case. 
Trained linguist interviewers guided conversations toward pre-determined topics (such as 140	
weather, food, buildings, and furniture), recording the words their respondents used for 
concepts or meanings such as sofa, umbrella, chimney, canal, sit down, frost and what 
(Tables S1,S2).  
 
The LAGS and LAMSAS datasets yielded frequency distributions of the number of speakers 145	
per word for 325 and 93 meanings respectively, including meanings such as cobbler, sweet 
potato, and axle (Figures 1a-c, Tables S1 and S2). Most meanings are nouns (n=301, 72%), 
followed by verbs (n=53, 12.6%), expressions (n=34, 8.1%), adjectives (n=19, 4.5% and 
deictics (context-dependent expression, n=11, 2.6%). The number of words reported per 
meaning is skewed ranging from 2 to 240 with a mean of 30.4±25.3 (median = 25.3, Figure 150	
1d). Because LAP meanings were selected to elicit variation among speakers, this figure 
over-estimates the average degree of variation in the lexicon, and is probably not 
representative of what might be thought of as a language’s core vocabulary. However, this 
bias does not affect our study because our interest is in identifying which processes are 
responsible for different patterns of word-use, and especially cases where a single-word 155	
dominates, not the proportion of words explained by drift, directional selection and 
frequency-dependent selection. 
 
We competed the four models in a Bayesian setting to discover which of the 418 frequency 
distributions of number of speakers per word (such as Figures 1a-c) they best describe 160	
(Materials and Methods, SI). Our Bayesian approach yields a posterior probability for each 
model for each meaning. Because the posterior probabilities sum across models to 1.0 for 
each meaning, a model’s posterior provides a measure of its relative success for that 
meaning.  



	 Pagel, et al.        page  5 

 165	
Overall, we find little support for random drift (D) as a description of the process by which 
words propagate through a population of speakers (Table 1): some form of selection 
provides the more probable explanation of the word frequency distributions for over 91% of 
the meanings, and the results are nearly identical in the two datasets. Drift, or roughly ‘say 
what you hear’ or ‘copy others’ does not provide an adequate description of word-choice. A 170	
recent study of three historical grammatical changes also found mixed support for drift (11).  
 
The FDS+DS model performs best (Table 1), but appears principally to mimic or compete 
with DS rather than adding a new element to the description of the data: the sum of the 
FDS+DS and DS posterior probabilities obtained when all four models are considered (top 175	
row, Table 1) correlates across meanings r=0.97 (n=418) with the DS posterior probabilities 
obtained in the absence of FDS+DS (‘w/o FDS+DS’ row, Table 1). We therefore drop FDS+DS 
from further consideration on grounds of parsimony, and analyse the posterior probabilities 
obtained when we compete the drift, directional selection and frequency dependent 
selection models. 180	
 
Our primary interest is in which of the three evolutionary processes (D, DS, or FDS) is most 
likely to yield strong concordance among speakers as to which word or words to use for a 
given meaning. In this context, drift tends to provide the best explanation for meanings 
whose frequency distributions imply the least concordance. For these meanings a variety of 185	
words is used by speakers, all co-existing at relatively high frequencies, such as is true of 
cobbler (Figure 1a). Other meanings whose words were governed by drift include relatives 
and parlor (Tables S1,S2 and S4).  
 
Where directional selection prevails speakers typically report a smaller number of words, 190	
but it is often the case that two or three words are found at relatively high frequencies, with 
a number of other alternatives at much lower frequencies. Thus, DS is the best fitting model 
for sweet potato (Figure 1b) for which both ‘sweet potato’ and ‘yam’ were used at high 
frequencies. DS was also the best fitting model for sofa – sofa and lounge/couch used at high 
frequencies – and coffin – coffin and casket used at high frequencies (Tables S1,S2 and S4). 195	
Directional selection, then, yields less variety among speakers than drift but does not seem 
strong enough in the face of the continual influx of new words to raise one of them to a 
dominant position. 
 
Where speakers are highly likely to use the same word for a meaning, positive frequency-200	
dependent selection provides the most probable explanation of the word frequencies. This is 
observed for axle (Figure 1c) where one form (‘axle’) dominates a group of alternatives that 
only a negligible number of speakers used. Other meanings for which nearly all speakers use 
the same word and for which FDS also provided the best explanation include towel, syrup 
and biscuits (Tables S1,S2 and S4). 205	
 
Confirmation that the three different processes yield frequency distributions of word-use 
with the shapes characteristic of Figures 1a-c can be seen in Figure 2 where the models 
carve out largely non-overlapping portions of a two-dimensional parameter space defined by 
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two statistics: 2/1 ratio (the ratio of the 2nd most frequent to the most frequently occurring 210	
word) and heterozygosity or H, a statistic commonly used in genetics to measure the 
variation in the frequencies of genetic alternatives, here applied to word frequencies (SI). A 
low 2:1 ratio means that the drop-off in frequency from the most to the second most 
frequent form is great, and thus is indicative of one word dominating (e.g., axle has a low 2:1 
ratio). Equally, a low value of H also indicates that one word dominates: if one word 215	
dominates there is little variation among words in their frequencies – i.e., most respondents 
use the same word. Both of these features are true of axle. 
 
Consistent with these interpretations, frequency dependent selection governs word-choice 
for meanings that sit in the lower left portion of Figure 2, corresponding to low 2:1 ratio and 220	
low heterozygosity. At the other extreme, random drift (D) best explains those cases with 
the least concordance among speakers and consequently they have high 2/1 ratio and high 
heterozygosity (Figure 2, upper right). Meanings that directional selection explains best tend 
to fall in the middle. 
 225	
Where FDS is dominant the frequency-dependent selection parameter, s (Methods; Figure 3 
left panel), is more than three times higher than for the remaining meanings (FDS meanings: 
�̅�= 0.013±0.014, n=74; D and DS meanings: �̅�= 0.004±0.002, n=344). FDS’ posterior 
probability increases curvilinearly in s (Figure 3 right panel), such that when s ≥0.006, FDS 
always provides the best explanation of the data. FDS can still predominate even when 230	
concordance among speakers appears to be lower (Figure 2, upper right). But these tend to 
be meanings with two words competing at high frequencies plus an unusually large number 
of other words at much lower frequencies (F-test of log(no. words) by winning-model for 
meanings with 2/1 ratio > 0.5, F=5.12, df=2, p=0.007; all p-values throughout are two-tailed). 
As a consequence of the large number of words, high levels of s (F=4.84, df=2, p<0.007) are 235	
required to maintain the two dominant words above the others. For example, for the 
meaning a little way, two phrases – a little ways and a little piece – were the most 
commonly used and at nearly equal frequencies. 
 
Characteristics of words are only weakly related to word-use. 240	
We scored all of the words for a representative sample of n=232 meanings (totalling 
n=252,506 responses, SI, Word and Meaning Characteristics) on four attributes related to 
ease of pronunciation: complexity (no. of words in the reply: some replies consist of more 
than one word, such as help yourself), length (number of sounds or phones in the reply), 
number of obstruent sounds, corresponding to consonant sounds whose production 245	
requires that the airway is obstructed (such as g in ‘good’) and number of sonorant sounds 
or consonants that do not obstruct the airflow. We then correlated words’ pronunciation 
scores with the logarithm of the number of speakers who used them, separately for each 
meaning. This yielded 232 correlations, each one of which tests the question of whether 
speakers tend to use the ‘better’ words. We converted the correlations to z-scores so as to 250	
put them on comparable scales and combined them in histograms. 
 
If word characteristics are unrelated to word-choice, we expect the z-score distributions to 
be centred at zero (corresponding to correlations of zero). Instead, all four distributions are 
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shifted slightly to the left of zero meaning that the words that more of the speakers used 255	
have a weak tendency to be easier to pronounce: they are less complex, they require fewer 
sounds (shorter length), and they have fewer obstruents and sonorants (Figure 4 upper row). 
The effects in the latter three variables might be confounded by complexity: replies with 
more words will have more sounds. However, we find that even after controlling for 
complexity (Figure 4 lower row) the words that are used by more speakers have fewer 260	
sounds, including both fewer obstruents and fewer sonorants. Controlling further, for 
length, the effects of obstruents and sonorants disappears (not shown).  
 
The correlations (z-scores) in Figure 4 are small and frequently reversed (any z-score > 0 is 
opposite to expectation). The weak correlations might reflect the effects of selection itself: 265	
by removing ‘bad’ words the variance among the remaining words in the characteristics 
related to ease-of-pronunciation is reduced, as is the covariation of these characteristics 
with the number of speakers who use them. As a consequence, the correlations are unduly 
influenced by other, background, random factors that affect how many speakers use a word, 
but which are unrelated to ease-of-pronunciation – an effect consistent with Robertson’s 270	
secondary theorem(29) from population genetics. Nevertheless, even though small, the 
correlations in Figure 4 align with the observation from the general lexicon that frequently 
used words, such as you, me, he she, I and the number words tend to be short and easy to 
pronounce (30), and that languages spontaneously adjust to improve their transmissibility 
(31). However, we find that the highest frequency words for the meanings the FDS, D and DS 275	
models best explain do not differ in their mean scores on the four pronunciation attributes 
(all p-values >0.18). This suggests that ease of pronunciation of words does not play a strong 
role in determining the eventual shape of the frequency distributions of numbers of 
speakers per word. 
 280	
Characteristics of meanings do not differ among models. 
We additionally examined characteristics of the meanings (as opposed to the words). 
Meanings that drift (D) best explained are no more or less likely to be a particular part of 
speech than expected from the overall data (p=0.56), and the same is true of DS and FDS 
meanings (p=0.87 and p>0.82, respectively). We identified for each meaning the word used 285	
by the greatest number of speakers, and then obtained the frequency-of-use of that word 
from the Corpus of Contemporary America Usage, COCA (32). A word’s COCA frequency is 
thus not the same as the number of speakers in our study who used a particular word. 
Rather, a word’s COCA frequency measures how often it appears (relative to words for 
thousands of other meanings) in a very large sample of word-use (Figure S1). Our interest is 290	
to discover whether the top words for the meanings the three models best explained differ 
in their average COCA frequencies. We find that they do not (geometric mean frequencies in 
COCA, p=0.45): thus it is not the case that, say, words that drift best explained are used less 
or more often in general, and so on for the other two models. Meanings’ mean 
‘concreteness’ scores (33) are also similar among models (p=0.73) as are their average ages 295	
of acquisition(34) (p>0.10). However, among FDS meanings the strength of posterior support 
positively correlates with its concreteness rating (r=0.38, p=0.0004, n=55), while this 
relationship is not true of DS (r=0.10, p=0.10, n=262) or D meanings (r=-0.16, p=0.42, n=26).  
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Discussion 300	
Our results support Darwin’s (3) contention that the words that have survived long enough 
to become commonplace in everyday speech have got to their positions of favour via a 
process of natural selection, even if not always by what Müller (2) called their ‘inherent 
virtue’. Thus, the non-selective process of random drift, or roughly ‘say what others say’, 
although capable of producing distributions such as those seen in Figures 1a-c, does not 305	
provide a general description of word-choice. When new lexical variants are continually 
being introduced into the vocabulary, as is generally true of language, drift is not strong 
enough on its own to elevate one or a small number of words to high levels. The answer to 
the question of how speakers come to use the same words, then, is not that they merely 
copy each other. 310	
 
Directional selection can to some degree move people towards using the same words. This is 
seen in the lower H scores for words that directional selection explained, and more generally 
in the weak tendency we observed for speakers to prefer shorter and easier to pronounce 
words. But this latter effect held across all of the meanings and so does not help to 315	
discriminate the meanings that drift and directional best explain from those that frequency-
dependent selection explains. Once again, speakers’ continual inventiveness with language 
perhaps removes any simple link between features of words and how often they are 
currently used: linguistically ‘good’ words might only have arisen recently and therefore not 
yet achieved a high frequency, or some otherwise good words might be on their way out of 320	
use, having been replaced by others. 
 
By comparison, positive frequency dependence provides an account capable of explaining 
how speakers come to use the same word for a meaning, such as is typical of what we might 
think of as the core vocabulary. And this is where we depart from Müller, and we suspect 325	
from Darwin, in that under positive FDS a word’s ‘inherent virtue’ seems to play a relatively 
small role; instead words that, even if from random fluctuations get used at higher 
frequencies, convert listeners’ minds to adopt them as their favoured word, and do so more 
than would be expected from their frequency alone. This ‘conversion’ might arise from mere 
exposure (35) or from active copying of common forms – so-called ‘conformist bias’(23).  330	
 
The value of a conformist bias is perhaps most pronounced in precisely the sort of 
circumstances that language poses. Communication is important, and so speakers will want 
to use the right words, but how should they decide which word to use from a number of 
competing alternatives? In such a situation, an ‘agent’ that positively ‘locked on’ to the 335	
words that most other people used, or more generally had a motivation to do what most 
others do, would more quickly achieve a higher or more efficient degree of communication 
than an agent that merely copied what it heard others saying. Conformity bias such as this 
has been widely studied in species from fish to humans acting in social and learning milieu 
where the right course of action is difficult to know (36-38). 340	
 
Positive frequency dependence also goes some way toward explaining a key puzzle of 
language, which is how a shared vocabulary can spontaneously self-organise among a group 
of undirected speakers even when there are potentially many competing alternative words 
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for each meaning. The implicit agreement among speakers that a shared vocabulary requires 345	
is made all the more noteworthy by the realisation that, unlike in genetic systems in which 
there is normally a close connection between a gene’s primary sequence and its function 
(the protein or other product it produces), in language there is seldom a necessary 
connection between groups of sounds (words) and their meanings, even if some sounds 
occur more frequently for certain kinds of meanings (39). 350	
 
But, under positive FDS, a word’s fitness (likelihood that a speaker will use it as opposed to 
some other word) continues to increase disproportionately as it becomes more common, 
and this force eventually propels the word to fixation, that is, it becomes the sole word used 
for that meaning. Unlike with drift or directional selection, this increasing strength of 355	
selection continues in spite of the constant influx of new words, which by virtue of being at 
low frequencies will have low fitnesses. Indeed, at fixation the force of positive FDS is 
greatest and so positive frequency dependence could also help to explain how some words 
can remain paired with a meaning for hundreds or even thousands of years (7, 40), far 
exceeding the time-span of the possibly three to four generations that might separate the 360	
oldest and youngest speakers in a group (frequently used forms are also less buffeted by the 
effects of drift (11, 12)).  
 
Meanings for which respondents collectively reported a large number of alternative words  
(e.g., Figure 1a,b), could still be cases of frequency-dependent selection acting 365	
independently within sub-contexts of that meaning, each of which has its own favoured 
word or set of words. This might be true of meanings that admit a wider coverage or 
breadth of contexts than others. The meaning ‘cobbler’ for example, best explained by drift, 
might include a wider range of contexts than the meaning ‘axle’, best explained by FDS. If 
the words corresponding to the various sub-contexts of meanings with greater breadth are 370	
combined into a single distribution, something like that of Figure 1a (cobbler) could emerge, 
but be hiding sub-contexts in which a single word or small number of words dominates. We 
have no evidence that this is the case, but if true some of our drift or directional selection 
meanings might actually be FDS meanings. 
 375	
Our modelling assumes that the number of different word forms for a meaning is in a 
stochastic equilibrium fluctuating around some average maintained by the loss of existing 
words and the gain of new ones. This is, of course, an approximation, but consistent with 
this assumption, the number of different words per meaning correlates 0.87 for the sixty-six 
meanings that occur in both the LAMSAS and LAGS datasets, and the top two words for 380	
many of the meanings are the same (SI). Nevertheless, it is possible that some of our word 
distributions in which two or a variety of words is commonly used could eventually resolve 
to a single dominant word, or in other cases a contender to a dominant word might arise. 
Our modelling also treats each respondent as having just a single word for each meaning, 
when in fact most respondents would probably recognise all or nearly all of the various 385	
words that other respondents reported. Our assumption is that respondents are telling us 
the word they would be most likely to use. 
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It does not escape our attention that the mechanism of frequency-dependent selection is 
also the mechanism that would govern most fads or the rapid spread of novel cultural forms 390	
and ideas. In this sense, language is laid bare as a cultural phenomenon, subject at least in 
part to fluctuations in usage that could often be little more than whimsy in origin. And, 
indeed, such linguistic-fads are seen, as in the rapid spread of slang and other vernacular 
elements. Why the core lexicon is relatively shielded from the ephemeral existence of most 
fads is an intriguing subject for lexicographers, linguists, sociologists and others interested in 395	
cultural change. One possibility is that most language-use is designed to convey factual 
information while fads are at least partly driven by status and identity signalling that derives 
it force from novelty and thereby loses momentum as a phenomenon becomes common; 
and this might give insight into what constitutes a mere fad versus something that will 
become more lasting. 400	
 
Materials and Methods 
Models. We suppose that the number of speakers who use each of the i= 1….k different 
words for a particular meaning (e.g., Figures 1a-c) represents the long-term outcome of a 
mutation-selection balance process in which new words or expressions continually arise at 405	
some rate q and are continually affected by selection.  
 
Let  
 

            (1) 410	

 
where, xi is the frequency of speakers in a population who use alternative form i (i=1…k), s 
represents the strength of frequency-dependent selection acting on i (s ≥ 0), wi is a 
coefficient denoting the intrinsic fitness of word i independently of how many speakers use 
it, and the summation in the denominator is over all forms i. Defined this way, Wi is the 415	
expected frequency in the next generation of word i relative to the other words for a 
particular meaning. 
 
When s=0 and all wi = 1, all words are equivalent and equation 1 describes random drift (D). 
Drift (D) supposes that a number of neutral alternative words exist for a given meaning, that 420	
new forms are continually introduced and that speakers use words in proportion to the 
number of other speakers who use them.  
 
Setting s=0 but allowing wi to vary among words, yields a model of directional selection (DS) 
that incorporates drift but allows some words to be better or worse than others by an 425	
amount that depends upon the magnitude of wi. The wi are not optimised or fit to the 
observed frequencies as this would assume that ‘better’ words have higher frequencies. 
Rather, they are assigned to words at random as they enter the lexicon (see Model 
estimation, below). 
 430	

€ 

Wi =
xi
(1+s)wi

(xi
(1+s)wi)i∑
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If s > 0, but all wi = 1, equation 1 describes positive frequency-dependent selection (FDS). 
Under positive FDS the likelihood that a speaker will use a word increases disproportionately 
to the number of other speakers using it. The strength of frequency dependence is 
characterised by the parameter s (equation 1), where positive frequency dependence 
corresponds to s > 0. Finally, we created a model that combines positive-frequency 435	
dependent selection with directional selection (FDS+DS). 
 
Model estimation. We used Approximate Bayesian Computation (ABC, (41, 42), SI) to 
estimate models’ abilities to predict each meaning’s frequency distribution of speakers. ABC 
is widely-used in population studies because it can incorporate the effects of drift and 440	
selection acting within populations. ABC simulates models a large number of times with 
parameters drawn randomly from prior distributions, retaining the simulations closest to the 
observations. These retained runs sample from the posterior distribution of model 
parameters most likely to have given rise to an observed set of data, y.  
 445	
The ABC design is (41): 
 
i) Draw Qi ∼ π(Q), 
ii) Simulate xi ∼ p(x| Qi ). 
iii) Reject Qi if xi ¹ y, where y are the observed data. The subset of draws from Q that 450	
produce xi similar to y define the posterior distribution of Q, p(Q | y). 
 
Here, Q is a vector corresponding to the parameters of the evolutionary model, π(Q) is the 
prior distribution of Q (see SI), and the xi are simulated from this prior. Alternative forms of 
the vector Q define the drift, directional selection and frequency-dependent selection 455	
models, according to Equation 1. The acceptance/rejection at step iii is achieved by use of a 
set of summary statistics defined on the data (SI).  
 
Simulations (step ii) of the directional selection model randomly associate the wi terms with 
a word when it enters the lexicon reflecting the possibility that, for example, a word newly 460	
entering the lexicon, and thus at low frequency, might nevertheless have wi > 1. The prior 
distribution of these weights is centred at 1.0 and then falls away in both directions in a 
manner roughly corresponding to exponential decline following Ohta (43). The weights then 
influence, along with the effects of drift, how the word spreads through the population of 
speakers over generations of word transmission. For description of the priors on the other 465	
parameters see the SI. 
 
Our simulations presume a genealogical process (from the perspective of the word) in which 
words move from speaker to speaker with one of three outcomes: the word might remain 
unchanged, it can mutate to a new form, or an existing word can replace the word another 470	
speaker uses. Over the long term this leads to an equilibrium distribution of word 
frequencies that is governed by the forces of drift and selection as represented in each 
model. Word frequencies vary from one generation to the next because fitter forms are 
more likely to be copied, or because a speaker’s word might be replaced by another ‘fitter’ 
word, or by mutation creating a new word 475	
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Model Comparisons. A model’s performance relative to the other models is assessed by its 
Bayesian posterior probability, given by  
 

𝑃(𝑀-|𝐷) =
01𝐷2𝑀-34(56)
∑ 01𝐷2𝑀-34(56)6

 where  𝑃(𝑀-|𝐷)	is the probability of the data under  480	

model i, and 𝑝(𝑀-) is the prior probability of model i. 𝑃(𝐷|𝑀-) is calculated as the 
proportion of simulations in which model i best describes the summary statistics. A model’s 
posterior probability is proportional to the number of simulations (out of a large number) for 
which the model best matched the S(y). We then record the ‘winner’ for each meaning as 
the model with the highest posterior probability. 485	
 
Availability of code. Code to implement the models is available from A.M. and M.B.  
 
Linguistic Atlas Project Data.  All raw data are available via the Linguistic Atlas Project 
websites and handbooks. See SI, Materials and Methods.  In addition, we make available all 490	
of our files and filtering criteria available at the Open Science Framework (https://osf.io), 
public project MotherTongue. 
 
Meaning characteristics 
COCA word frequencies. We identified the most commonly reported word given for each of 495	
the meanings in our sample. We then consulted the Corpus of Contemporary American 
English (COCA(32)), and recorded that word’s frequency-of-appearance (written and spoken 
use), noting its rank-order position in the list.  
 
Concreteness scores. We obtained ‘concreteness’ rankings for 40,000 commonly used 500	
English words and two-word expressions(33), where concreteness was defined as the extent 
to which the meaning refers to something that can be experienced directly through the 
senses (1-5 scale where 5 is concrete and 1 is abstract). We found matches or near-matches 
in this list to the highest frequency word for n=292 of the meanings in our sample of n=418. 
The concreteness scores correlate r=0.94 with concreteness ratings obtained from an earlier 505	
study of 4291 words(44).  
 
Age of Acquisition. We recorded the mean age of acquisition(34) for each of our meanings. 
We found, as above, matches or near matches to n=312 of our meanings. 
 510	
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Table 1. Percentage of ‘winners’ by model, and their summary statistics  645	
 

Dataset D FDS DS FDS+DS 
Full dataset (n=418 meanings) 

LAGS, n=325 
LAMSAS, n=93 

 
Full dataset (w/o FDS+DS) 

8.6 
8.6 
8.6 

 
8.8 

16.3 
16.9 
14.0 

 
17.7 

35.6 
35.7 
35.5 

 
73.4 

39.5 
38.8 
41.9 

 

Statistic (mean±s.e.m)  
2/1 ratio 0.70±0.03 0.18±0.03 0.45±0.02  

Heterozygosity, H 0.82±0.01 0.42±0.04 0.58±0.01  
Example meanings  

(Tables S1, S2 and S4) 
cobbler, 

parlor, hay 
shed, relatives 

axle, towel, 
biscuits, syrup 

sweet 
potatoes, 

sofa, coffin, 
skunk 

 

Upper section: Percentage of n=418 meanings where the model shown has the highest posterior probability 
(Methods): D=drift, FDS=frequency-dependent selection, DS=directional selection, FDS+DS=combined FDS and DS 
model (text); Lower section: means of two key summary statistics (text) for cases where the model shown above 
has highest posterior probability.  650	
 
 


