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26 ABSTRACT

27 Crocodilians are distributed widely through the tropics and sub-tropics, and many species 

28 pose a substantiated threat to human life. This has important implications for human safety 

29 and crocodilian conservation. Understanding the drivers of crocodilian attacks on people 

30 could help minimise future attacks and inform conflict management. Crocodilian attacks 

31 follow a seasonal pattern in many regions; however, there has been limited analysis of the 

32 relationship between fine-scale contemporaneous environmental conditions and attack 

33 occurrence. Here, we use methods from environmental niche modelling to explore the 

34 relationships between abiotic predictors and human attack occurrence at a daily temporal 

35 resolution for two species: the Nile crocodile (Crocodylus niloticus) in South Africa and 

36 Eswatini (formerly Swaziland), and the American alligator (Alligator mississippiensis) in 

37 Florida, USA. Our results indicate that ambient daily temperature is the most important 

38 abiotic temporal predictor of attack occurrence for both species, with attack likelihood 

39 increasing sharply when daily average temperatures exceed 18°C and peaking at 28°C. It is 

40 likely that this relationship is explained partially by human propensity to spend time in and 

41 around water in warmer weather, but also by the effect of temperature on crocodilian hunting 

42 behaviour and physiology, especially the ability to digest food. We discuss the potential of 

43 our findings to contribute to the management of crocodilians, with benefits for human safety 

44 and conservation, as well as the application of environmental niche modelling to 

45 understanding human-wildlife conflicts with both ectotherms and endotherms.

46

47 Key words: human-wildlife conflict; human-crocodilian conflict; spatiotemporal modelling; 

48 environmental niche modelling; crocodilian conservation; conservation management 

49

50
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51 INTRODUCTION

52 Managing conflicts involving wildlife is a serious challenge worldwide, especially when the 

53 target species poses a direct threat to human life (Woodroffe, Thirgood, & Rabinowitz, 

54 2005). Over large regions of the tropics and subtropics, crocodilians are responsible for more 

55 attacks on humans per year than any other large carnivore, with incidents reported for 65 

56 countries (CrocBITE 2018). They also attack domestic animals such as livestock and dogs, 

57 damage fishing nets, burrow through earthen dam walls, and cause general disruption to 

58 movement and livelihoods by restricting the use of waterways that are required for travel, 

59 fishing, and household chores (Aust et al. 2009, Lamarque et al. 2009). 

60

61 Successfully mitigating harmful human-crocodilian interactions has important implications 

62 not just for human safety but also conservation. Negative impacts on humans have resulted in 

63 retaliatory killings and exacerbated issues such as overharvesting and habitat destruction 

64 (Fukuda et al. 2015), which can have wider consequences for ecosystems. As the apex 

65 predator of the aquatic environments they inhabit, and as carnivores with very varied diets, 

66 crocodilians play a key role in local food webs, affecting abundance and behaviour of prey 

67 species in ways that can influence the function and community structure of ecosystems (Van 

68 der Ploeg et al. 2011). They also transport nutrients from land to water by preying on land 

69 animals, or across ecosystems, as in cases where they travel to feed in estuarine areas before 

70 returning to freshwater areas. Crocodilians are also ecosystems engineers, modifying their 

71 environment by digging dens, holes and tunnels, and creating nest sites. Alligator holes, for 

72 instance, retain water during dry seasons and serve as refuges for other aquatic species 

73 (Crocodilian Species List, 2009). 

74
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75 Understanding the drivers of crocodilian attacks can help minimise future incidents and 

76 inform conflict management. Previous analysis of crocodilian attack patterns has focused on 

77 identifying high-risk human demographics and behaviours; however, there has been limited 

78 analysis of abiotic environmental predictors of attack patterns, such as temperature and 

79 rainfall (Brien et al. 2017; Das & Jana, 2017; Fukuda et al. 2015). There are strong theoretical 

80 grounds for this, since temperature constrains crocodilian hunting behaviour via effects on 

81 ectotherm physiology, especially metabolic function (Lance 2003; Seebacher & Franklin 

82 2005; Hutton 1987). Similarly, people’s propensity to expose themselves to crocodilian-

83 inhabited waterways is likely correlated with environmental conditions. Accordingly, despite 

84 crocodilian attacks occurring year-round in many tropical regions (e.g., India and 

85 Bangladesh), documented attack patterns are highly seasonal across Australia (Brien et al. 

86 2017) and are correlated with mean monthly rainfall and temperature in South Africa and 

87 Eswatini, as well as in the southern United States (Pooley 2015; Woodward et al 2014). To 

88 date, studies have only explored the contribution of abiotic factors at a coarse temporal and 

89 spatial resolution. In particular, they have exclusively used average monthly or seasonal data, 

90 which does not capture the impact of climatic changes across days. Furthermore, this data is 

91 used to represent regional environmental conditions, but it has typically been sourced from 

92 single weather stations, limiting the ability to capture variation across space.

93

94 Here, we use environmental niche modelling methods to examine the relationships between 

95 abiotic and biotic variables and human-crocodilian attack occurrence at a greater spatial and 

96 temporal resolution than in previous studies. Environmental niche modelling describes 

97 methods for inferring the occurrence of biological phenomena in environmentally-

98 heterogeneous areas and has previously been utilised to analyse human conflict with jaguars 

99 in Brazil and Mexico (Carvalho et al. 2015; Zarco-González et al. 2013), wolves in Iran 
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100 (Behdarvand et al. 2014), leopards in Pakistan (Kabir et al. 2014), and monkeys in India 

101 (Beisner et al. 2015). Crocodilian attacks can theoretically be thought of as an entity that can 

102 only occupy a specific environmental niche defined by particular biophysical limits; thus, it 

103 might be possible to use environmental niche modelling to illustrate the likelihood of attack 

104 occurrence over time in a heterogeneous environment. 

105

106 We focus on two species of crocodilian that come into regular conflict with humans: the east 

107 African Nile crocodile (Crocodylus niloticus) in South Africa and Eswatini, which is 

108 estimated to be responsible for more human fatalities per year than all other crocodilians 

109 combined (Dunham el al. 2010; Wallace et al. 2011), and the American alligator in Florida 

110 (Alligator mississippiensis), which is one of few indigenous predators that poses a 

111 substantiated threat to human life in the southernmost states of the USA (Woodward et al. 

112 2014). We discuss the potential of our findings to contribute to the management of 

113 crocodilians, especially in subtropical and temperate areas where climatic conditions are 

114 similar to those in our study regions. We also highlight the benefits for human safety and 

115 conservation arising from this study, as well as the potential application of environmental 

116 niche modelling to the analysis of human conflict with other species, including ectotherms 

117 and endotherms.

118

119 METHODS 

120 Attack and biophysical data

121 Information on attacks by Nile crocodiles in South Africa and Eswatini (1951-2016) was 

122 obtained from archival searches including the personal archive of Tony (A.C.) Pooley 

123 (conservation warden responsible for crocodile attacks in Natal Province, c.1966-84, who 

124 was active in investigations until c.2003), attack records kept at the St Lucia Crocodile 
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125 Centre, provincial and national newspapers (print and online) in KwaZulu-Natal and South 

126 Africa, and the Times of Swaziland archive in Mbabane, Eswatini. Online searches used the 

127 search term ‘crocodile’ paired with ‘attack’, ‘bite’ or ‘victim’, in English and Afrikaans. 

128 Information on American alligator attacks in Florida (1971-2014) was provided by the Fish 

129 and Wildlife Conservation Commission (FWC) (FWC 2016). Incidents involving a bite were 

130 reported to the FWC by telephone by victims or their families, medical caregivers, or law 

131 enforcement agencies. In most instances post 1970, FWC law enforcement officers conducted 

132 investigations and interviewed victims and witnesses. Attacks by crocodilians were excluded 

133 if they were not witnessed or lacked forensic support, if spatial or temporal data were lacking, 

134 or if they were classified as provoked.

135

136 The attack records had different spatial resolutions: geographical coordinates were available 

137 for the Nile crocodile attacks (Figure 1A). Whereas, for the American alligator attacks, the 

138 Florida county in which the attack occurred was recorded (Figure 1B). ArcGIS (version 10.4) 

139 was used to ensure Nile crocodile attack coordinates fell within the International Union for 

140 Conservation of Nature (IUCN) predicted distribution of Nile crocodiles in South Africa and 

141 Eswatini (IUCN 1996), and within 1km of a waterbody (Defence Mapping Agency 2003). 

142 Figure 1 shows the distribution of crocodile attacks in South Africa and Swaziland, and 

143 alligator attacks in Florida.

144

145 We compiled a dataset of biotic and abiotic environmental predictors that could be spatially 

146 and temporally linked to attacks. These included the climatic variables: daily average 

147 temperature, daily rainfall, and monthly average rainfall (20-year averages). Historic data 

148 were not available for crocodile and alligator population densities across the study regions, 

149 but human population density was included as a biotic predictor because the majority of 
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150 attacks in our study areas were on local residents (Woodward et al. 2014, Pooley 2015). Year 

151 and month were also included to account for temporal trends.

152

153 Formatting of abiotic covariates was achieved in R version 3.4.2 (R Core Team 2017) and 

154 ArcGIS version 10.4. Daily rainfall and minimum and maximum temperature data were 

155 obtained from the National Oceanic and Atmospheric Administration (NOAA 2017). We 

156 gathered data from all weather stations within a 300 km perimeter of the distribution (IUCN 

157 1996) of Nile crocodiles in South Africa and Eswatini (n = 514), and all stations within 

158 Florida (n = 1131). To account for collinearity, average temperature was calculated from 

159 minimum and maximum values. For the Nile crocodile dataset, missing temperature data 

160 were linearly interpolated when the gap between records did not exceed three days, 

161 increasing coverage by 9.99%. Average monthly rainfall was calculated as means from all 

162 dates within each month. Climatic variables were linked to each Nile crocodile attack record 

163 from the closest NOAA station. Temperature measurements were adjusted based on the 

164 difference between the attack elevation and station elevation (Fick & Hijmans 2017), 

165 according to the temperature lapse rate defined by the International Civil Aviation 

166 Organization (ICAO 2017). Mean climatic values were calculated for each county in Florida 

167 from all encompassed stations and were linked to attack records according to date and 

168 county.

169

170 Human population density in South Africa was estimated for the magisterial district 

171 encompassing each attack from the closest of seven historical censuses (1951, 1960, 1970, 

172 1980, 1991, 1996, 2001; digitised and geo-referenced by Giraut & Vacchiani-Marcuzzo, 

173 2009). The annual human population density of Eswatini was estimated by the United 

174 Nations Population Division (UN 2017). Florida county human population densities were 
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175 estimated using contemporaneous data from the year of the attack provided by the Office of 

176 Economic and Demographic Research (OEDR 2017). In addition, the total wetland area in 

177 each county, taken to be a measure of potential alligator habitat (and used when selecting 

178 background points, see below), was estimated from the National Wetlands Inventory, US 

179 Fish & Wildlife Service (U.S. Fish and Wildlife Service, 2017). 

180

181 The final crocodile dataset comprised 188 attacks recorded in South Africa and Eswatini

182 between September 1951 and December 2016. The final alligator dataset comprised 335

183 attacks recorded from Florida between September 1971 and December 2014. Both datasets

184 included daily average temperature, daily rainfall, monthly average rainfall, human 

185 population density, month, and year as variables for modelling.

186

187 Background points

188 Attack records constitute ‘presence only’ data, and there is no reliable measure of human-

189 crocodilian exposure to quantify when attacks did not occur. However, when absence data

190 are not available, models can be used with ‘background’ points that are randomly sampled to 

191 characterise the null distribution of each variable in the model (Elith & Leathwick 2009; 

192 Barbet-Massin et al. 2012). 

193

194 Background point sampling influences the results of environmental niche models (Barbet-

195 Massin et al 2012; Phillips et al 2009). Therefore, we used two background sampling 

196 methods for each species to compare and assess the influence of background point sampling 

197 on the results (background sampling method A, and background sampling method B). Each 

198 method was used to create datasets of 10,000 background points for Nile crocodiles and 

199 American alligators that could be sampled for model fitting. For background sampling 
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200 method A, we stratified background point sampling according to where attacks have been 

201 reported. 10,000 Nile crocodile attack coordinates were randomly sampled and randomly 

202 assigned dates between 1951 and 2016, and 10,000 American alligator background points 

203 were randomly sampled from Florida counties proportionate to their number of reported 

204 attacks and randomly assigned dates between 1971 and 2014. For background sampling 

205 method B, we sampled background points across the species predicted ranges. 10,000 Nile 

206 crocodile background points were randomly selected as coordinates that fall on water bodies 

207 within the IUCN distribution of Nile crocodiles in South Africa and Swaziland, and 10,000 

208 American alligator background points were sampled from all counties in Florida (Woodward 

209 et al 2014). To make this method comparable between the species, the probability of a 

210 Florida county being sampled was proportionate to its total wetland area (i.e., counties with 

211 more wetland area had a proportionally higher probability of selection). Covariates were 

212 linked to background points following the same process as for attack records.

213

214 Model fitting

215 Spearman’s Rank correlation was calculated between all variables prior to model fitting 

216 (Supplementary table 1). We first assessed attack seasonality for both species by calculating 

217 Spearman’s Rank correlations between the total number of attacks per month, and average 

218 monthly temperature and average monthly rainfall, calculated using the background datasets. 

219 We analysed attack patterns at a finer spatial and temporal resolution using boosted 

220 regression trees (BRT). BRTs were fit to express nonlinearities in the data (Elith et al. 2006).

221  

222 We sampled background points from the background datasets following guidelines set out by 

223 Barbet-Massin et al. (2012). BRTs had an equal ratio (1:1) of background points to attacks. 

224 BRTs were fit with 10-fold cross validation, as recommended by Miller (2015), and model fit 
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225 was evaluated as the mean area under curve (AUC) of the receiver operating characteristics 

226 (ROC) plot. BRT model parameters that maximised ROC were selected. Each BRT had a 

227 learning rate of 0.005, a tree complexity of 5, and a bag fraction of 0.5. The number of 

228 boosted trees varied for each model but were selected to minimise holdout deviance. BRT 

229 model contribution was assessed based on the number of times the variable is selected for 

230 splitting, weighted by the squared improvement to the model as a result of each split, and 

231 averaged over all trees (Friedman & Meulman 2003). Background point sampling affects 

232 ROC and variable importance; therefore, we used a bootstrapping technique where each 

233 model was fit 100 times with independently sampled background points, and variable 

234 importance and ROC were measured across each iteration. All analyses were conducted in R 

235 v.3.4.2 (R Core Team 2017) and BRTs were fit using the ‘gbm’ package v.2.1.3 (Ridgeway 

236 2017).

237

238 RESULTS

239 Attack frequency shows a seasonal pattern for both species (Figure 2). There is a significant 

240 correlation between number of attacks and mean monthly temperature over the study period

241 for both alligators (rho(10) = 0.95, p < 0.001) in Florida, and crocodiles (rho(10) = 0.98, p < 

242 0.001) in South Africa and Swaziland. There is also a significant correlation between number 

243 of attacks and mean monthly rainfall for alligators (rho(10) = 0.82, p < 0.001) and crocodiles 

244 (rho(10) = 0.95, p < 0.001).

245

246 We fit BRTs to predict attack occurrence as a function of daily average temperature, daily 

247 rainfall, monthly average rainfall, human population density, year, and month for both 

248 species. BRTs were fit over 100 iterations with background points sampled from two datasets 

249 for each species: one stratified by attack locations (background dataset A), and the other 
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250 sampled from across the species predicted ranges (background dataset B). The crocodile 

251 BRTs had a mean cross-validation ROC value (± 1 s.d) of 0.83 ± 0.02 using background 

252 dataset A, and 0.85 ± 0.01 using background dataset B. The alligator BRTs had a mean cross-

253 validation ROC value (± 1 s.d) of 0.69 ± 0.02 using background dataset A, and 0.77 ± 0.02 

254 using background dataset B.

255

256 With background point sampling stratified by attack locations (background dataset A), daily 

257 average temperature is the most important predictor of attack occurrence based on model 

258 contribution for both Nile crocodiles (41.16 ± 3.73) and American alligators (42.97 ± 4.16), 

259 and this was consistent for each model fitting iteration (Figure 3). The distributions of model 

260 contribution overlap for daily rainfall, monthly average rainfall, human population density, 

261 year, and month for both species, highlighting the variability introduced by background 

262 sampling (Figure 3). However, on average, the second and third most important predictors of 

263 Nile crocodile attack occurrence are human population density (17.86 ± 2.58), and monthly 

264 average rainfall (14.80 ± 2.71), and of American alligator attack occurrence are year (14.87 ± 

265 1.98), and human population density (11.90 ± 1.95). 

266

267 With background points sampled across the species predicted ranges (background dataset B), 

268 daily average temperature and human population density are the strongest predictors of attack 

269 occurrence. For American alligators, mean BRT contribution was 32.34 ± 3.42 and 34.85 ± 

270 3.44 for daily average temperature and human population density respectively. For Nile 

271 crocodiles, mean BRT contribution was 49.42 ± 3.83 and 16.93 ± 2.67 for daily average 

272 temperature and human population density respectively. The relative increase in the strength 

273 of human population density as a predictor when background points are sampled across the 

274 species predicted ranges (background dataset B) compared with when sampling is stratified 
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275 by attack location (background dataset A) is likely due to an increase in attack likelihood 

276 variance across space. This would increase the relative importance of the covariate that is the 

277 strongest spatial predictor. In our case, this is human population density, which varies greatly 

278 across state country and magisterial district. Notably, human population density has a non-

279 linear relationship with attack occurrence across the predicted ranges of both species. This is 

280 likely due to the patchy distribution of crocodilians and humans, since attacks are heavily 

281 dependent on the relative local abundance of both species and can only occur when there is 

282 exposure between the two. The lack of historical fine-scale human and crocodilian population 

283 density data, or other proxies for human-crocodilian exposure rates, likely limits the accuracy 

284 of our models, and it is possible that the inclusion of further covariates would affect the 

285 relative importance of predictors.

286

287 BRTs indicate that the probability of attack occurrence increases for Nile crocodiles and 

288 American alligators as temperature increases. BRT partial dependence plots highlight the 

289 relationship between daily average temperature and attack likelihood after accounting for the 

290 average effects of all other variables in the model. These indicate that attack likelihood 

291 sharply increases when daily average temperature exceeds 18°C for both species, and that it 

292 plateaus after approximately 28°C (Figure 4). It is important to note here that this does not 

293 mean attacks could not occur at temperatures below 18°C. For example, the minimum daily 

294 average temperature linked to Nile crocodile and American alligator attacks in our dataset 

295 were 10.63°C and 12.5°C respectively. 

296

297 DISCUSSION 

298 Using environmental niche modelling, we explored the influence of abiotic and biotic 

299 environmental variables on crocodilian attack occurrence at a finer spatial and temporal 
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300 resolution than in previous studies. Three key findings emerged for both Nile crocodiles and 

301 American alligators. First, temperature was the most important abiotic temporal predictor of 

302 attack occurrence. Second, attack likelihood increased sharply when daily average 

303 temperature exceeded 18°C. Third, the probability of attacks was highest above 28°C, where 

304 it plateaued. Below, we discuss three non-mutually exclusive hypotheses that may explain 

305 these findings. 

306

307 From the perspective of crocodilian behaviour, attack likelihood may increase with ambient 

308 temperature for physiological reasons. As ectotherms, the ability of crocodilians to digest 

309 food and to hunt is dependent on ambient temperatures (Emshwiller & Gleeson, 1997; 

310 Seebacher & Franklin 2005; Hutton 1987). For instance, in alligators, digestive efficiency 

311 increases significantly as body temperature rises from 25°C to 31°C (Coulson & Coulson, 

312 1986), and they stop eating when ambient temperatures drop below 16°C (Lance, 2003). 

313 Hossain et al. (2013) found comparable patterns for captive saltwater crocodiles. In our study, 

314 a remarkably similar relationship was evident, including comparable minimum and maximum 

315 temperature thresholds, which offers strong support for the hypothesis that ambient 

316 temperature influences attack patterns via its effect on crocodilian physiology (Mazzotti et 

317 al., 2016; Seebacher & Franklin, 2005). 

318

319 A related hypothesis proposes that increased attacks at higher temperatures reflect heightened 

320 crocodilian aggression during the breeding season, mediated either by the effect of 

321 testosterone on male behaviour or female nest-guarding (Pooley et al 1992). However, studies 

322 on alligators indicated that testosterone was not correlated with attack frequency (Woodward 

323 et al. 2014), and the limited research on hormones and breeding undertaken on captive Nile 

324 crocodiles suggests that heightened hormone levels and breeding occur during the late winter 
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325 months, when attack occurrence is low (Kofron 1990; pers. comm. Myburgh 2018.) 

326 Similarly, in the USA, limited data suggest elevated testosterone levels in the early breeding 

327 season (February-March) that decline sharply over summer (Hamlin et al. 2011). Moreover, 

328 for Nile crocodiles, nest-guarding in most regions occurs in the hottest months, meaning 

329 many of the larger adult females are not hunting and remain on or near their nests, reducing 

330 the likelihood of attacks by these animals (Pooley 1982; Kofron, 1990; Combrink et al. 

331 2017). 

332  

333 From a human behavioural perspective, attack likelihood may increase with ambient 

334 temperature as a result of people spending more time in and around water in hot weather, 

335 increasing encounters with crocodilians. In South Africa and Eswatini, nearly half of all 

336 attacks occurred on weekends and holidays, suggesting that human activity patterns are 

337 important. In further support of this, data collected from our study area in southern Africa 

338 suggest that Nile crocodile attacks occur most often during activities such as crossing rivers, 

339 domestic chores, fishing, and swimming (Pooley et al, in press), and similar observations 

340 have been made in Australia (Wallace, Leslie, & Coulson 2011). This hypothesis is clearly 

341 applicable to temperature-dependent activities, such as swimming, but is less so for river 

342 crossing and domestic chores, which occur year-round (although they may differ in duration 

343 and method at different temperatures). Unfortunately, due to the lack of direct data on human 

344 activity levels for the full duration of the study periods, we are currently unable to quantify 

345 how changes in human behaviour contribute to attack patterns. However, this highlights an 

346 interesting area for future work.

347

348 Variable importance and predictive accuracy (measured as ROC) of the models was 

349 influenced by how background points were sampled. Predictive accuracy and the relative 
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350 importance of human population density as a predictor were increased for the American 

351 alligator attack model when background points were sampled from across all counties in 

352 Florida (stratified by total wetland area), as opposed to stratified by counties in which attacks 

353 have occured. This is likely due to spatial variation in attack likelihood between counties, 

354 which is captured by human population density due to the close association between human 

355 population density and county. This is supported by the non-linear relationship observed 

356 between attack likelihood and human population density across Florida. Spatial variation in 

357 attack likelihood is likely a result of the patchy distribution of American alligators across 

358 their predicted range and resulting variation in human-crocodilian exposure rates. 

359 Our findings have implications for crocodilian conservation. In particular, improving our 

360 understanding of the climatic conditions under which negative interactions between people 

361 and crocodilians are more common could inform future strategies for conflict management, 

362 including educating local communities in high-risk areas about the relationship between 

363 temperature and attack occurrence. They might also discourage antagonistic approaches that 

364 threaten crocodilian welfare, such as removal, extermination, and nest destruction 

365 (Woodward et al. 2014). Behavioural modification strategies are likely to be more practical 

366 for irregular activities that can be scheduled during the winter, such as dam repair (see 

367 CrocBITE, 2018 for reports of attacks on divers). However, the use of crocodilian-inhabited 

368 waterways for domestic chores and livelihoods could also be modified by organising essential 

369 activities during cooler periods. As with all conflict-mitigation strategies, this comes with the 

370 caveat that attacks may still possible at colder temperatures due to individual variation in 

371 crocodilian behaviour and physiology or the risk of accidental encounters (e.g., stumbling 

372 upon a nest or treading on a crocodilian). This is especially true when temperatures fall at 

373 dawn, dusk, or during the night, as crocodilian activity often increases during these periods 

374 and humans or other prey are more vulnerable to attack because of poor lighting conditions 
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375 (CrocBITE, 2018). More generally, in regions with less seasonal temperature variation, 

376 crocodilian behavioural modification of the kind described above will be less pronounced. 

377 For example, in India and Bangladesh, daily average temperature rarely drops below 23°C, 

378 which is well within the comfortable physiological range for crocodilian hunting (Das & 

379 Jana, 2017). 

380 Seasonal limitations on crocodilian attacks linked to temperature may be affected markedly 

381 by predicted trends in global warming. For instance, average temperatures in Africa are 

382 predicted to increase by as much as 5-8% by 2050-2100 (Munzhedzi, 2018; Ziervogel et al. 

383 2014). This is likely to facilitate more regular crocodilian hunting, potentially to the point that 

384 it becomes commonplace throughout the year, as it is in contemporary equatorial Africa, 

385 India and Bangladesh. Ongoing monitoring of the influence of temperature changes on 

386 crocodile behaviour in the coming years and their effect on attack patterns will be important.

387 Our findings also have implications beyond crocodilian conflict management. The finding 

388 that crocodilian attack patterns appear to be influenced by inherent physiological constraints 

389 that are common to all ectotherms suggests that similar methods could be applied to 

390 understanding conflict with other species. For example, snakes commonly bite humans, their 

391 pets, and livestock, and The World Health Organization (2018) estimates that around 5 

392 million snakebites occur annually, resulting in between 81,000 and 138,000 deaths. This issue 

393 has been neglected in the literature, resulting in the slow development of mitigation strategies 

394 (Mohapatra et al. 2011). However, like crocodilians, there is both theoretical and 

395 observational evidence that behaviour in snakes is influenced by climatic factors, including 

396 temperature constraints on metabolism (Saint Girons 1980; Wang et al. 2002). Accordingly, 

397 it has been reported that seasonal snakebite patterns peak in the summer months in countries 

398 such as Bangladesh (Rahman et al. 2010) and Nepal (Longkumer et al. 2017). Our methods 
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399 could also be applied to local issues that affect small communities, such as attacks by 

400 Komodo dragons on people, pets, and livestock in Indonesia. These attacks are reported to 

401 have affected 33.3% of people in a study of affected areas (Ardiantiono et al. 2015). 

402 In addition, the current approach of linking attacks by endothermic predators to spatial 

403 variables such as topography and urban land use (Carvalho et al. 2015; Zarco-González et al. 

404 2013; Behdarvand et al. 2014; Kabir et al. 2014) could be expanded to include abiotic 

405 predictors. The heat dissipation hypothesis suggests that activity in large species, including 

406 dangerous predators such as tigers, lions, hunting dogs, and bears, will be limited during 

407 hotter periods due to the difficulty of thermoregulating (Creel et al. 2016; Smith & Kok, 

408 2006; Ghoddousi et al. 2016). A recent study exploring injuries and fatalities caused by large 

409 mammals in Nepal found that attacks on humans by elephants, rhinoceros, and tigers were all 

410 significantly higher in the winter, potentially indicating increased aggression among both 

411 predators and large herbivores at colder temperatures when vigorous activity becomes less 

412 problematic (Acharya et al. 2016). As with previous work on crocodilians, Acharya et al. 

413 used monthly climatic data that only offered a coarse temporal resolution. Our methods, 

414 therefore, could provide a template for the future study of human-endotherm conflict. 

415 In conclusion, our findings offer strong support for the hypothesis that crocodilian attack 

416 seasonality is determined predominantly by temperature in regions where fluctuations are 

417 large enough to have significant impacts on crocodilian behaviour. We provide the first 

418 evidence of this at a high spatial and temporal resolution. Our analysis demonstrates that 

419 attacks increase predictably across a given temperature range and appear to be constrained by 

420 a biologically-relevant threshold. This has the potential to inform conflict management and 

421 conservation. The strong theoretical grounding for the temperature-physiology relationship 
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422 suggests that our approach could be promising in casting light on the dynamics of human 

423 conflict with other species, including both ectotherms and endotherms. 
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598
599 Table and Figures
600
601
602
603

604
605 Figure 1 – Map of A) American alligator attacks in Florida, USA, between 1971 and 2014 (n 
606 = 335). The size of the blue circle is proportionate to the number of recorded attacks in each 
607 county (which are outlined in black). There are 67 counties in Florida. Map of B) Nile 
608 crocodile attack coordinates in South Africa and Swaziland between 1951 and 2016 (n = 
609 188). The blue line outlines the distribution of Nile crocodiles (IUCN 1996). 
610
611
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613 Figure 2 – Seasonal variations in the incidence of attacks by A) American alligators in 
614 Florida between 1971 and 2014, and B) Nile crocodiles in South Africa between 1951 and 
615 2016. Average monthly rainfall and temperature of background points (n = 10,000) are 
616 shown in blue and red respectively.
617
618
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620
621 Figure 3 – Boxplots of variable contribution for boosted regression trees (BRTs) for Nile 
622 crocodile (blue) and American alligator (red) attack occurrence. BRTs were fit 100 times 
623 with a ratio of 1:1 presence to background points sampled from two background datasets: 
624 background dataset A (A), and background dataset B (B). Background dataset A contains 
625 background points sampled from attack locations over the study periods. Background dataset 
626 B contains background points sampled across the species predicted ranges over the study 
627 periods. 
628
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630 Figure 4 – Boosted regression tree (BRT) partial dependence plots showing the marginal 
631 impact of daily average temperature (x-axis) on attack likelihood (y-axis) for American 
632 alligators (A) and Nile crocodiles (B) after accounting for the average effects of all other 
633 variables in the model. The mean (solid lines) and standard errors (dashed lines) were 
634 calculated across all 100 model fitting iterations. Y-axes are on the logit scale and are centred 
635 to have zero mean over the data distribution.
636
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647

648
649 Supplementary table 1A -- Spearman’s Rank correlation between background covariates 
650 used to model Nile crocodile attacks. 10,000 background points were sampled, stratified 
651 according to where attacks have been reported. 
652
653 Supplementary table 1B -- Spearman’s Rank correlation between background covariates (n 
654 = 10,000) used to model American alligator attacks. 10,000 background points were sampled, 
655 stratified according to where attacks have been reported. 
656

Variable Daily average 
temperature

Daily 
rainfall 

Monthly 
average 
rainfall

Human 
population 
density

Year Month

Daily average 
temperature

1 0.172 0.386 0.131 0.224 -0.200

Daily rainfall 1 0.360 0.167 0.254 0.004

Monthly 
average 
rainfall

1 0.168 0.215 -0.041

Human 
population 
density

1 0.647 -0.004

Year 1 -0.008

Variable Daily average 
temperature

Daily 
rainfall 

Monthly 
average 
rainfall

Human 
population 
density

Year Month

Daily average 
temperature

1 0.282 0.507 0.08 0.03 0.236

Daily rainfall 1 0.361 0.045 0.039 0.07

Monthly 
average 
rainfall

1 0.002 -
0.006

0.073

Human 
population 
density

1 0.342 -0.001

Year 1 0.001

Month 1
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657

658 Supplementary table 2 -- Model contribution of BRT predictors with different methods for 
659 background point sampling. Method A: background points were sampled stratified by attack 
660 locations. Method B: background points were sampled across the species predicted ranges. 
661

Nile Crocodile American alligatorCovariate

Method A
BRT 
contribution 
(mean, sd)

Method B
BRT 
contribution 
(mean, sd)

Method A
BRT 
contribution 
(mean, sd)

Method B
BRT 
contribution 
(mean, sd)

Daily average 
temperature

41.16 ±3.73 49.43 ±3.83 42.97 ±4.16 32.34 ±3.42

Human 
population 
density

17.86 ±2.58 16.93 ±2.67 11.90 ±1.95 34.85 ±3.44

Year 7.72 ±1.70 7.96 ±1.70 14.87 ±1.98 10.07 ±1.85

Monthly 
average 
rainfall

14.80 ±2.71 12.62 ±2.08 11.60 ±2.09 9.41 ±1.59

Daily rainfall 9.79 ±2.89 7.48 ±1.85 10.36 ±1.91 7.07 ±1.37

Month 8.67 ±2.25 5.58 ±1.65 8.30 ±2.24 6.26 ±1.69

662
663
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665
666 Supplementary figure 1 – Boosted Regression Tree (BRT) partial dependence plots 
667 showing the marginal impact of human population density (x-axis) on attack likelihood (y-
668 axis) for American alligators (A) and Nile crocodiles (B) after accounting for the average 
669 effects of all other variables in the model. The mean (filled line) and standard errors (dashed 
670 lines) were calculated across all 100 model fitting iterations. Y axes are on the logit scale and 
671 are centred to have zero mean over the data distribution.
672
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