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Predictive analysis gradually gains importance in industry. For instance, service engineers at Siemens diagnostic centres
unveil hidden knowledge in huge amounts of historical sensor data and use it to improve the predictive systems analysing
live data. Currently, the analysis is usually done using data-dependent rules that are specific to individual sensors and
equipment. This dependence poses significant challenges in rule authoring, reuse, and maintenance by engineers. One
solution to this problem is to employ ontology-based data access (OBDA), which provides a conceptual view of data via
an ontology. However, classical OBDA systems do not support access to temporal data and reasoning over it. To address
this issue, we propose a framework for temporal OBDA. In this framework, we use extended mapping languages to extract
information about temporal events in the RDF format, classical ontology and rule languages to reflect static information,
as well as a temporal rule language to describe events. We also propose a SPARQL-based query language for retrieving
temporal information and, finally, an architecture of system implementation extending the state-of-the-art OBDA platform
Ontop.

Keywords: metric temporal logic, ontology-based data access, SPARQL query, Ontop.

1. Introduction

Analysis of log sensor data is an important problem in
industry as it reveals crucial insights into the performance
and conditions of devices. The outcomes of this analysis,
known as retrospective diagnostics, enable IT experts to
improve the capabilities of real-time systems monitoring
abnormal or potentially dangerous events developing in
devices, in particular, the systems that perform predictive
diagnostics. For complex devices (including those
we consider in the use case below), such events do
not amount to simply measurable instances (say, the
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temperature above 100◦C). Instead, they involve a number
of measurements from sensors attached to a device, each
having a certain temporal duration and occurring in a
certain temporal sequence.

In this paper we focus on a use case by Siemens,
which maintains thousands of devices related to power
generation, including gas and steam turbines. It monitors
these devices and provides operational support for them
through a global network of more than 50 remote
diagnostic centres that are linked to a common database
centre. Siemens wants to employ retrospective and
predictive diagnostics in order to anticipate problems
with turbines and take appropriate countermeasures. A
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major challenge in this task comes from the combined
need of dealing with complex temporal information and
with heterogeneous data, considering that the various
turbine models have different schemas of the underlying
databases storing sensor measurements.

To deal with heterogeneity of data, we rely on
ontology-based data access (OBDA), which was first
suggested by Calvanese et al. (2007) and Poggi et al.
(2008) as a means to detach the conceptual layer of
classes and properties, to be exposed to end-users, from
the complex structure of the underlying data sources,
which thus can be hidden to users. In fact, those classes
and properties are mapped to the data source schemas
by means of a declarative specification. In addition,
an ontology is used to model the domain of interest by
asserting conceptual relations (for instance, isA) between
the classes and properties. In the solution we propose
here, OBDA allows us to detach the conceptual view
of an event located in time—such as ‘HighRotorSpeed
of turbine tb01 in the period from 2017-06-06 12:20:00
to 2017-06-06 12:20:03’—from concrete databases that
store the log of the sensors of that turbine.

There are several systems implementing the OBDA
approach, some of which (e.g., Ontop1 and Morph2) are
freely available, while others (e.g., Stardog3, Mastro4, and
Ultrawrap5) are distributed under commercial licences.
For a recent survey of OBDA, we refer to the work by
Xiao et al. (2018).

Unfortunately, none of the available OBDA systems
supports access to temporal data well enough to work
with the events relevant to our use case. On the one
hand, the common mapping languages are not tailored
towards extracting validity time intervals of conceptual
assertions. On the other hand—and this is a more
serious limitation—the supported ontology languages
do not allow one to construct classes and properties
whose temporal validity depends on the validity of other
classes and properties, which is essential for defining
complex temporal events. In fact, the OBDA systems
used industrially are based on lightweight (non-temporal)
ontology languages, such as the OWL 2 QL profile of the
Web Ontology Language OWL 2, in order to guarantee
maximally efficient query answering by a reduction to
standard database query evaluation. When limited to
a classical ontology language, one approach to enable
the extraction of temporal events is by extending the
end-user query language with various temporal operators
(see, e.g., Gutiérrez-Basulto and Klarman, 2012; Baader
et al., 2013; Borgwardt et al., 2013; Möller et al., 2013;
Klarman and Meyer, 2014; Özçep et al., 2014; Kharlamov

1http://ontop.inf.unibz.it.
2https://github.com/oeg-upm/morph-rdb.
3http://stardog.com.
4http://www.obdasystems.com/mastro.
5https://capsenta.com.

et al., 2016). However, this approach leaves the burden of
encoding the complex events in temporal queries to the
end-user. In the Siemens scenario, this is a prohibitive
limitation since the end-users are service engineers who
are not trained in temporal knowledge representation.

Therefore, we are interested in a more expressive
setting, where the ontology language is extended by
temporal operators that are capable of defining complex
temporal events. Extensions of lightweight ontology
languages with temporal operators of linear temporal
logic (LTL) such as ‘next time’, ‘always’, and ‘eventually’
have been suggested by Artale et al. (2013; 2015a)
and Gutiérrez-Basulto et al. (2016a). However, in our
use case and other similarly complex scenarios, sensors
tend to send data at irregular time intervals. Moreover,
even if sensor data arrives regularly, due to deadband
settings the data might be stored in a data collector only
when the last arrived sensor measurement is within a
certain value distance from the previously transmitted
one. To cope with this situation, one could replace
point-based LTL with interval-based temporal logics.
Thus, Artale et al. (2015b) and Kontchakov et al. (2016)
proposed extensions of ontology languages and datalog
programs with the Allen operators on temporal intervals
used in the Halpern–Shoham logic, HS (Halpern and
Shoham, 1991). Unfortunately, it is not possible to
express in HS numerical constraints such as ‘within
the next 10 minutes, main flame will continuously be
on for at least 10 seconds.’ A more suitable temporal
representation formalism for our use case is the metric
temporal logic, MTL, over a dense timeline, which was
originally introduced for modeling and reasoning about
real-time systems (Koymans, 1990; Alur and Henzinger,
1993). In fact, the extension datalogMTL of datalog with
MTL operators proposed by Brandt et al. (2017a) appears
to be both capable of capturing the events of interest
for the diagnostic tasks at Siemens and suitable for the
OBDA scenario. It is to be noted that MTL extensions of
the expressive ontology languageALC over discrete time
have been recently considered by Gutiérrez-Basulto et al.
(2016b) and Baader et al. (2017).

In this paper, through a running example from the
Siemens use case, we present a framework for temporal
OBDA that employs as an ontology language to describe
temporal events datalognrMTL the non-recursive version
of datalogMTL. This framework also supports the
standard OWL 2 QL language to model static knowledge
(such as a configuration of modules of a turbine), and
extends it with non-recursive datalog rules to describe
static knowledge of a more complex structure. We outline
extensions of the standard mapping language R2RML
(Das et al., 2012) and the query language SPARQL to
extract information on the validity intervals of temporal
predicates. Finally, we discuss an implementation of the
proposed framework in the OBDA system Ontop.

http://ontop.inf.unibz.it
https://github.com/oeg-upm/morph-rdb
http://stardog.com
http://www.obdasystems.com/mastro
https://capsenta.com
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2. Framework for temporal OBDA

Recall that, in classical (non-temporal) OBDA, an OBDA
specification is a triple P = 〈O,M,S〉, where O is
an OWL 2 QL ontology, S a database schema, and M
a set of R2RML mapping assertions, each associating
to a class or property in O an SQL query over S. An
OBDA instance is a pair 〈P , D〉, where D is a database
instance satisfying schema S. Intuitively, by applying
the mapping M to the data instance D, which consists
in executing the SQL queries in the mapping assertions
over D and populating the corresponding classes and
properties using the returned values, we would obtain an
RDF graph M(D) that reflects the content of D at the
ontology level. The ontology O complements the data
with background knowledge and provides a convenient
vocabulary for user queries, which are formulated in the
W3C standard language SPARQL. A certain answer to
such a SPARQL query q(�x) over 〈P , D〉 is any tuple �a
from D for which q(�a) holds in all models of O and
M(D). To find the certain answers, the OBDA system
rewrites the ontology-mediated query (OMQ for short)
(O, q) into an SQL query q′(�x) over S that satisfies the
following condition: for every data instance D complying
with S and every tuple �a in it, we have that O,M(D) |=
q(�a) if and only if �a is an answer to q′(�x) over D.
Thus, answering ontology-mediated queries is reduced to
standard database query evaluation. Consequently, it is
in AC0 for data complexity. For more details and further
references, we refer to the survey by Xiao et al. (2018).

In the remainder of this section, we present our
framework for temporal OBDA by introducing temporal
OBDA specifications and instances, as well as a query
language for those instances based on a variant of
τ -SPARQL (Tappolet and Bernstein, 2009).

2.1. Temporal OBDA specification. Since we
want to develop temporal OBDA by extending the
standard non-temporal OBDA paradigm, we now call the
OWL 2 QL ontology O above a static ontology andM a
set of static mapping assertions. In what follows, we will
extend the static vocabulary Σs of classes and properties
occurring in O andM by a disjoint temporal vocabulary
Σt. We now describe static ontologies in greater detail
using an example from the Siemens use case.

2.1.1. Static ontology. At Siemens, the devices used
for power generation are monitored by various types of
sensors that report the temperature, pressure, vibration,
rotor speed, and other relevant measurements. In order
to model the static knowledge regarding the machines
and their deployment profiles, sensor configurations,
component hierarchies, and functional profiles, Siemens
designed an OWL 2 QL ontology (Kharlamov et al.,
2017), a snippet of which is given in Example 1 below

using the syntax of description logics (Baader et al.,
2007).

Example 1. The signature Σs of the Siemens static
ontology O contains the following classes (in the first
three lines) and properties (in the fourth line)6:

Train, Turbine, GasTurbine, SteamTurbine,
TurbinePart, PowerTurbine, Burner, Sensor,
RotationSpeedSensor, TemperatureSensor,
isMonitoredBy, isPartOf, isDeployedIn.

Some of the axioms (inclusions and equivalences between
classes) fromO are shown below:

GasTurbine � Turbine,
SteamTurbine � Turbine,

RotationSpeedSensor � Sensor,
TemperatureSensor � Sensor,

PowerTurbine � TurbinePart,
Burner � TurbinePart,

∃isMonitoredBy � TurbinePart,
∃isMonitoredBy− � Sensor,

∃isPartOf ≡ TurbinePart,
∃isPartOf− � Turbine,

∃isDeployedIn � Turbine,
∃isDeployedIn− � Train.

For a property P , the expression ∃P denotes the domain
of P , while ∃P− denotes the range of P . Thus, the
last two axioms say that the domain of the property
isDeployedIn is Turbine and the range is Train. �

Unfortunately, OWL 2 QL has a limited expressive
power and is not able to capture all the static knowledge
that is relevant to the Siemens use case. In particular,
it does not allow predicates of arity greater than 2
and intersection on the left-hand side of inclusions. A
well-known language with these missing constructs is
standard datalog (Abiteboul et al., 1995). Note, however,
that answering datalog queries is P-complete for data
complexity, and so it cannot be reduced to database query
evaluation in general. A typical example of a datalog rule
from our ontology is given in the next section.

2.1.2. Static rules. In the Siemens use case, some
turbine parts are monitored by a number of different
sensors, say, a temperature sensor and a rotation speed
sensor. This situation can be readily described by a
datalog rule with a ternary predicate in the head and a
complex body, such as the one in the example below, but
not by OWL 2 QL axioms.

6In description logic parlance, classes are called concepts and corre-
spond to unary predicates, while properties are called roles and corre-
spond to binary predicates.
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Example 2. The datalog rule

ColocTempRotSensors(tb, ts, rs) ←
Turbine(tb), isPartOf(br , tb), Burner(br ),
isMonitoredBy(br , ts), TemperatureSensor(ts),
isPartOf(pt , tb), PowerTurbine(pt),
isMonitoredBy(pt , rs), RotationSpeedSensor(rs)

is supposed to say that a temperature sensor ts and a
rotation speed sensor rs are co-located in the same turbine
tb if tb has a part br , which is a burner, monitored by
ts, and has another part pt , which is a power turbine,
monitored by rs . �

We denote by R a set of static datalog rules and by
Σs the static signature that contains the symbols from both
O andR. Note that the rules inRmay contain classes and
properties from O. In order to make sure that answering
queries mediated byO∪R is reducible to database query
evaluation, we impose two restrictions on R: (i) it has to
be non-recursive and (ii) the predicates in the head of rules
inR cannot occur in O.

The static ontology language considered so far is
supposed to represent time-independent knowledge and
falls short of capturing temporal events that are required
in the Siemens use case.

2.1.3. Temporal rules. Siemens is interested in
detecting abnormal situations in the working equipment as
well as in monitoring running tasks in order to see whether
they proceed ordinarily. A typical event that is crucial
to monitor is a normal start of a turbine. This event is
rather complex and composed of various subevents that
are distributed over time and characterized by a temporal
duration. One of these subevents, Purging Is Over, is
described in the example below.

Example 3. Purging Is Over is a complex temporal
event for a given turbine tb, which is characterized by the
following:

(i) there is a pair of sensors co-located in the turbine tb,
one of which is a rotor speed sensor rs and the other
one a temperature sensor ts ;

(ii) the temperature sensor ts detects that the main flame
was burning for at least 10 seconds;

(iii) at the same time, the following happened within the
preceding 10 minutes:

– the rotor speed sensor rs measured a speed of
at most 1000 rpm for at least 30 seconds, and

– within the following 2 minutes, the rotor speed
sensor rs measured a speed of at least 1260
rpm for at least 30 seconds.

We illustrate the described event in Fig. 10.
Here, we assume that the horizontal axis represents

time and PurgingIsOver(tb) holds at a moment of
time if prior to that moment MainFlameOn(ts),

PurgingIsOver

ts

tb

rs

MainFlameOn

10s10m

2m

HighRotorSpeed

30s

LowRotorSpeed

1m

Fig. 1. Event of Example 3.

LowRotorSpeed(rs), and HighRotorSpeed(rs) had
occurred following the depicted pattern.

In our examples, we shall also use the temporal
event Main Flame Is On, which happens for a given
temperature sensor ts when the main flame had been
above the threshold (of 1.0) for 10 seconds continuously
in the past. �

Temporal diagnostic patterns of this sort can be
described by means of a datalognrMTL program (Brandt
et al., 2017a), which is a set of non-recursive datalog rules
extended with temporal operators of the metric temporal
logic MTL under the continuous semantics over the real
numbers (R, <) (Alur and Henzinger, 1993). In such
programs, we require a (countably infinite) list of tem-
poral predicates (with the corresponding arities) that is
disjoint from the list of static predicates. Intuitively, each
temporal predicate may be true on some domain objects at
certain moments of time and false on other domain objects
and time instants. Under this semantics, static predicates
are assumed to be time-independent, that is, to hold true or
false on a given tuple of domain objects at all times. The
event Purging Is Over can be formalized by the following
datalognrMTL program T .

Example 4. The program T consists of five rules:

PurgingIsOver(tb) ← MainFlameOn(ts),

(0,10m](�(0,30s]HighRotorSpeed(rs),

(0,2m]�(0,1m]LowRotorSpeed(rs)),
ColocTempRotSensors(tb, ts , rs),

MainFlameOn(ts) ← �[0s,10s]MainFlameUpTH(ts),

MainFlameUpTH(ts) ← mainFlame(ts, v), v ≥ 1.0,

HighRotorSpeed(rs) ← rotorSpeed(rs , v), v > 1260,

LowRotorSpeed(rs) ← rotorSpeed(rs , v), v < 1000.

Here, ColocTempRotSensors is the static (time
independent) predicate from Example 2. The unary
numerical built-in predicates v ≥ 1.0, v > 1260,
and v < 1000 are also static. The predicates
rotorSpeed, HighRotorSpeed, LowRotorSpeed, and
MainFlameUpTH are temporal; rotorSpeed(rs , v) holds
true at a time instant t if and only if v is the rotor speed
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measured by the sensor rs at t; HighRotorSpeed(rs)
holds true exactly at those time instants t where
rotorSpeed(rs , v) holds for some value v > 1260; and
similarly for LowRotorSpeed and MainFlameUpTH.
The temporal predicate MainFlameOn is defined using
the MTL operator �[0s,10s]: namely, MainFlameOn(ts)
holds true at time instant t if MainFlameUpTH(ts) holds
at all time instants t′ ∈ [t−10s, t]. Finally, PurgingIsOver
is a temporal predicate that, in addition to the � operator,
uses the MTL operator . For example, (0,10m] is
interpreted as follows: (0,10m] ϕ holds true at t if and
only if ϕ holds true at some time instant t′ ∈ [t−10m, t).

�

We denote by Σt the set of temporal predicates from
T and note that, in datalognrMTL programs like T , only
predicates from Σt can occur in the head of the rules,
whereas their bodies can contain predicates from both Σt

and Σs. (Thus, intuitively, the temporal rules in T define
temporal predicates in terms of both temporal and static
ones.) In the example above, Σt comprises the predicates

mainFlame, rotorSpeed,
PurgingIsOver, MainFlameOn, MainFlameUpTH,
HighRotorSpeed, LowRotorSpeed.

We emphasise once again that datalognrMTL
programs are required to be non-recursive. Without
such a restriction, the data complexity of answering
ontology-mediated queries in our framework becomes
P-hard, which makes a reduction to database query
evaluation impossible. For non-recursive datalognrMTL
rules, the AC0 data complexity follows from the work
by Brandt et al. (2017a), if we restrict the OWL 2 QL
ontologies to the DL-Literdfs fragment (Calvanese
et al., 2007). Currently, we are working on extending
this result to full OWL 2 QL in a way similar to the
extension of OWL 2 QL with the temporal operators of
linear temporal logic LTL (Artale et al., 2015a).

2.1.4. Databases and mappings. In our approach, we
assume that databases have generic schemas. However,
since in temporal OBDA, we have to deal with temporal
data, we are particularly interested in databases with
tables containing timestamp columns.

Example 5. An example data schema S for the Siemens
data, including sensor measurements and deployment
details, can look as follows (the primary keys of the tables
are underlined):

tb measurement
(
tstmp, s id, value

)
,

tb sensors
(
s id, s type,mnted part,mnted tb

)
,

tb deployment
(
turbine id, turbine type, deployed in

)
,

tb components
(
turbine id, comp id, comp type

)
.

Table 1. Example Siemens use case tables.
tb measurement

tstmp s id value

17-06-06 12:20:00 rs01 570
17-06-06 12:21:00 rs01 680
17-06-06 12:21:30 rs01 920
17-06-06 12:22:50 rs01 1278
17-06-06 12:23:40 rs01 1310

. . .
17-06-06 12:32:30 mf01 2.3
17-06-06 12:32:37 mf01 1.8
17-06-06 12:32:45 mf01 0.9

· · ·

tb sensors
s id s type mnted part mnted tb

rs01 0 pt01 tb01
mf01 1 b01 tb01

· · · · · ·

tb components
turbine id comp id comp type

tb01 pt01 0
tb01 b01 1

· · ·

Three snippets of data from the Siemens use case tables
tb measurement, tb sensor, and tb components, are
given in Table 1. �

In classical OBDA, mapping assertions take the form
ϕ(�x) � ψ(�x), where ϕ(�x) is a query over the schema
S and ψ(�x) is an atom with a predicate from Σs and
variables �x (Xiao et al., 2018).

Example 6. Given the static ontology O and the
signature Σs from Example 1, as well as the schema S
from Example 5, the following are examples of mapping
assertions:

SELECT s id AS X FROM tb sensors

WHERE s type = 1 � TemperatureSensor(X),

SELECT component id AS X FROM tb components

WHERE component type = 1 � Burner(X),

SELECT mnted part AS X, s id AS Y

FROM tb sensors � isMonitoredBy(X, Y).

To explain how the mapping assertions work, consider
the database from Example 5 and the SQL query on the
left-hand side of the first assertion. The result of executing
this query over the database is a table with a single column
named X and containing a tuple mf01. The right-hand side
of the mapping indicates that, according to the database,
the fact TemperatureSensor(mf01) holds true (as well as
other such facts if the query returns more answers). �
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By applying these mapping assertions to the database
from Example 5, we extract the following facts (ground
atoms):

Burner(b01), TemperatureSensor(mf01),
isMonitoredBy(pt01, rs01),
isMonitoredBy(b01, mf01).

We call the mapping assertions that extract ground atoms
for predicates from Σs static, and useMs to denote their
sets.

On the other hand, to deal with temporal predicates
from Σt, we also require temporal mapping assertions of
the form

ϕ(�x, begin, end) � ψ(�x)@〈tbegin, tend〉,

where ϕ(�x, begin, end) is a query over S such that the
variables begin and end are mapped to values of the
date/time format, ψ is a predicate from Σt, tbegin is
either the variable begin or a constant temporal value
(timestamp) including∞,−∞ (and similarly for tend), ‘〈’
is either ‘(’ or [’, and ‘〉’ is either ‘)’ or ]’. For example,
ψ(�x)@[begin,∞) means that ψ(�x) holds at every time
instant in the interval [begin,∞), and the variables �x and
begin are instantiated by the query on the left-hand side
of the mapping assertion. Temporal mapping assertions
are required to define predicates from Σt only. We denote
byMt sets of such mapping assertions.

Example 7. Given Σt and T from Example 4 and the
schema S from Example 5, the following is an example of
a temporal mapping assertion:

SELECT s id, value,
tstmp AS begin,
LEAD(tstmp, 1) OVER W AS end

FROM tb measurement, tb sensors

WHERE tb measurement.s id = tb sensors.s id

AND s type = 1

WINDOW W AS (PARTITION BY s id ORDER BY tstmp)
� mainFlame(s id, value)@[begin, end).

This mapping assertion extracts from the database in
Example 5 the following temporal facts:

mainFlame(mf01, 2.3)@[12:32:30, 12:32:37),
mainFlame(mf01, 1.8)@[12:32:37, 12:32:45).

For instance, the first of them states that the main
flame sensor mf01 was registering the value 2.3 in the
interval [12:32:30, 12:32:37). Note that the interval is
left-closed and right-open, which reflects the logic of
how turbine sensor outputs are produced: namely, a
sensor outputs a value when the result of a measurement
differs from the previously returned value by a fixed
threshold. Similarly, by means of an appropriate mapping,
we shall extract the temporal fact stating that the rotation
sensor rs01 was registering the speed 570 in the interval
[12:20:00, 12:21:00). �

Table 2. Languages of the components in temporal OBDA.

component
defines in terms of language

predicates in predicates in

Ms Σs S R2RML
Mt Σt S R2RML
O Σs Σs OWL 2 QL
R Σs Σs non-recursive

datalog
T Σt Σs ∪ Σt datalognrMTL

2.1.5. Temporal OBDA specification and instance.
An OBDA specification in the temporal OBDA framework
is the tuple

S = 〈Σs,Σt,Ms,Mt,O,R, T ,S〉,

where Σs is a static signature, Σt a temporal signature,
Ms a set of static and Mt a set of temporal mapping
assertions,O is a standard OBDA ontology in Σs,R a set
of static rules in Σs, T a set of temporal rules in Σt, and
S a database schema. In Table 2, we clarify the intuition
behind the different components of S and the associated
specification languages. A temporal OBDA instance I is
a pair 〈S, D〉, where S is a temporal OBDA specification
and D a database instance compliant with the database
schema S in S. We next discuss languages for querying
temporal OBDA instances.

2.2. Ontology-mediated query answering. A popular
query language in standard (atemporal) OBDA is the
language of conjunctive queries (Calvanese et al., 2007).
In our temporal setting, a conjunctive query is a first-order
formula of the form

q(�x,�ι) = ∃�y, �τ Φ(�x, �y,�ι, �τ ),

where Φ is a conjunction of atoms of the form P (�z)
with P from Σs, atoms of the form Q(�z)@� with Q
from Σt, �z ⊆ �x ∪ �y and � ∈ �ι ∪ �τ , and possibly
built-in numerical predicates over the timeline. Here, �
is a variable over temporal intervals (and �ι, �τ are lists
of such variables). A certain answer to q(�x,�ι) over a
temporal OBDA instance I is a tuple �a of constants from
D and a tuple �α of temporal intervals (of the form defined
above, say, [12:20:00, 15:00:00) or [12:20:00, ∞)) such
that q(�a, �α) holds true in every temporal model of the
ontology O ∪ R ∪ T and the sets of ground atoms
extracted from D by Ms and Mt. One could also
require that the intervals in �α only use those time instants
that are explicitly mentioned in D. A more expressive
query language can be obtained by extending conjunctive
queries with Allen’s interval relations such as ‘ι is after τ ’
(Allen, 1983).
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Example 8. The conjunctive query

q1(�) = MainFlameOn(x)@�

can be used to find the periods of time when the main
flame was on for some sensor, and the conjunctive query

q2(x, �) = GasTurbine(x) ∧ isDeployedIn(x, tr05) ∧
PurgingIsOver(x)@�

can be used to find the gas turbines that were deployed in
the train with the ID tr05 and the time periods of their
accomplished purgings. Observe that, for the temporal
facts shown in Example 7, the program T from Example 4
and R, O as above, the certain answer to the query
q1 will be the interval [12:32:40, 12:32:45). This is
because MainFlameUpTH(mf01)@[12:32:30, 12:32:37)
and MainFlameUpTH(mf01)@[12:32:37, 12:32:45) (and
so also MainFlameUpTH(mf01)@[12:32:30, 12:32:45))
hold true in every temporal model of the ontology
O ∪ R ∪ T and the sets of ground atoms extracted
from the data instance D by means of the mappings
Ms and Mt, and so the same holds also for
MainFlameOn(mf01)@[12:32:40, 12:32:45). �

Answering conjunctive queries in temporal OBDA
turns out to be a difficult problem, in both theory and
practice; see, e.g., the work by Artale et al. (2013;
2015a), who considered extensions of OWL 2 QL and
conjunctive queries with the operators of linear temporal
logic LTL. When datalog (instead of OWL 2 QL) is
used as a static ontology language, answering temporal
conjunctive queries becomes easier (in terms of query
rewriting algorithms); we refer to Section 5 for practical
applications and further discussion.

2.2.1. Temporal SPARQL. In the temporal OBDA
framework we suggest in this paper, our aim is to employ
as the query answering engine the OBDA platform Ontop
that was designed for classical OBDA with OWL 2 QL
(Rodriguez-Muro et al., 2013; Calvanese et al., 2017).
In the non-temporal setting, Ontop essentially supports
answering SPARQL queries under the OWL 2 QL direct
semantics entailment regime over virtual RDF graphs
populated by R2RML mappings and data instances stored
in relational databases (Kontchakov et al., 2014).

In the temporal setting, to be compatible with
the available functionalities of Ontop, we suggest
a query language that is an extension of SPARQL
similar to τ -SPARQL proposed by Tappolet and
Bernstein (2009). We remind the reader that variables
in SPARQL are prefixed by ‘?’ and that atoms
take the form ?x a : GasTurbine (which stands for
GasTurbine(x)) and ?x : isDeployedIn ?y (which stands
for isDeployedIn(x, y)). (Relations of arity higher than 2,
such as ColocTempRotSensors mentioned above, are not

supported directly in our language and have to be handled
via reification; see, e.g., the work by Calvanese and
De Giacomo (2003) and the references therein. Atoms
like these are used for the static predicates from Σs

(such as GasTurbine, isDeployedIn). Temporal predicates
from Σt (such as PurgingIsOver) have to be followed
by a suffix @〈?e1, ?v1, ?v2, ?e2〉, where ?e1 is a Boolean
variable evaluating to either ‘true’ or ‘false’, depending
on whether the interval where the predicate holds is
left-closed or left-open (and similarly for ?e2 indicating
right-closedness or right-openness), while ?v1 and ?v2
are variables over date/time whose values respectively
indicate from when and until when the predicate holds.

Example 9. The conjunctive query q1 from Example 8
can be represented as the following temporal SPARQL
query:

SELECT ?l ?begin ?end ?r
WHERE {
{?ts a :MainFlameOn}@〈?l, ?begin, ?end, ?r〉
}

whereas the conjunctive query q2 is represented as

SELECT ?tb ?l ?begin ?end ?r
WHERE {
?tb a :GasTurbine.
?tb :isDeployedIn ss:train tr05.
{?tb a :PurgingIsOver}@〈?l, ?begin, ?end, ?r〉
}

As explained above, the certain answer to the query
q1 with ontology O ∪ R ∪ T , data instance D, as
well as mappings Ms and Mt, contains the tuple
(true, 12:32:40, 12:32:45, false). �

2.2.2. On temporal RDF graphs. There does not
seem to exist a standardized way of representing temporal
data as RDF graphs; we refer to a few relevant proposals
by Gutiérrez et al. (2005), Tappolet and Bernstein (2009),
and Grandi (2010). Although our temporal OBDA
framework does not presuppose any materialization of
relational data in the form of an RDF graph (which
will be discussed in Section 3), we advocate the use of
RDF datasets7 comprising a distinguished graph and a
set of named RDF graphs, following the model of RDF
stream proposed by the W3C RDF Stream Processing
Community Group.8

More specifically, to model temporal facts, for each
relevant temporal interval we introduce a graph identifier
and collect the triples that hold within this interval into
the respective graph. The details of the interval (namely,

7https://www.w3.org/TR/rdf11-datasets/.
8http://streamreasoning.github.io/RSP-QL/

RSP_Requirements_Design_Document/.

https://www.w3.org/TR/rdf11-datasets/
http://streamreasoning.github.io/RSP-QL/RSP_Requirements_Design_Document/
http://streamreasoning.github.io/RSP-QL/RSP_Requirements_Design_Document/
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the beginning and the end) of the graph identifier are
described in the distinguished graph using the vocabulary
from the W3C TIME ontology (Cox and Little, 2017).
The static triples also reside in the distinguished graph.

Example 10. The temporal fact

mainFlame(mf01, 2.3)@[12:32:30, 12:32:37)

from Example 7 can be represented as the named graph

GRAPH g0 {(mf01,mainFlame, 2.3)}

and the distinguished graph containing the following
triples 9:

(g0, time:hasTime, i0),
(i0, a, time:Interval),
(i0, time:isBeginningInclusive, true),
(i0, time:isEndInclusive, false),
(i0, time:hasBeginning, b0),
(b0, time:inXSDDateTimeStamp, ‘2017-06-06 12:32:30’),
(i0, time:hasEnd, e0),
(e0, time:inXSDDateTimeStamp, ‘2017-06-06 12:32:37’).

In the same way, the temporal fact

mainFlame(mf01, 2.3)@[12:32:37, 12:32:45)

can be modelled by a named graph g1 and an interval i1.
Using the third rule of the program T from Example 4, we
obtain the fact represented by the named graph

GRAPH g2 {(mf01, a,MainFlameUpTH)}

and the distinguished graph

(g2, time:hasTime, i2),
(i2, a, time:Interval),
(i2, time:isBeginningInclusive, true),
(i2, time:isEndInclusive, false),
(i2, time:hasBeginning, b2),
(b2, time:inXSDDateTimeStamp, ‘2017-06-06 12:32:30’),
(i2, time:hasEnd, e2),
(e2, time:inXSDDateTimeStamp, ‘2017-06-06 12:32:45’).

Further, the second rule in T gives us the named graph

GRAPH g3 {(mf01, a,MainFlameOn)}

and the distinguished graph

(g3, time:hasTime, i3),
(i3, a, time:Interval),
(i3, time:isBeginningInclusive, true),
(i3, time:isEndInclusive, false),
(i3, time:hasBeginning, b3),
(b3, time:inXSDDateTimeStamp, ‘2017-06-06 12:32:40’),
(i2, time:hasEnd, e3),
(e3, time:inXSDDateTimeStamp, ‘2017-06-06 12:32:45’).

9Note that we extended the Time ontology with the isBeginInclusive
and isEndInclusive data properties, which are not currently supported.

In order to match this data, our query q1 from
Example 9 has to be rewritten into the following SPARQL
query with named graph variables:

SELECT ?l ?begin ?end ?r
WHERE {
GRAPH ?g {?tb a :MainFlameOn.}
?g time:hasTime ?i.
?i a time:Interval;
time:isBeginningInclusive ?l;
time:hasBeginning
[time:inXSDDateTimeStamp ?begin];

time:hasEnd [time:inXSDDateTimeStamp ?end];
time:isEndInclusive ?r.

}

This query returns the certain answer

(true, 12:32:40, 12:32:45, false).

In fact, this rewriting is similar to the one proposed by
Tappolet and Bernstein (2009). �

3. System architecture and implementation
in Ontop

In this section, we propose a system architecture of
temporal OBDA by extending the OBDA platform Ontop.
We first briefly describe the workflow of Ontop in the case
of classical OBDA, and then discuss how to extend it to
temporal OBDA.

3.1. Classical OBDA with Ontop. Ontop is a
state-of-the-art OBDA system developed at the Free
University of Bozen-Bolzano (Calvanese et al., 2017).
Ontop supports the standard W3C recommendations
related to OBDA (such as OWL 2 QL, R2RML,
SPARQL, and the OWL 2 QL entailment regime in
SPARQL). The system is available as a Protégé plugin,
and an extensible open-source Java library supporting
OWL API and RDF4J.

The core of an OBDA system is the query answering
algorithm. Ontop uses an optimized query rewriting
algorithm (Rodriguez-Muro et al., 2013) whose workflow
is outlined as Algorithm 1. The algorithm takes as inputs
an OBDA instance 〈P , D〉 with P = 〈O,Ms,S〉 and a
SPARQL query q, and returns the certain answers to q
over 〈P , D〉. The workflow can be divided into the offline
and online stages. During start-up (the offline stage),
Ontop (a) classifies the static ontologyO and (b) compiles
the classified ontology into the input mappingMs, thus
obtaining the saturated mapping MO

s known as the
T-mapping (Rodriguez-Muro et al., 2013).

During query execution (the online stage), Ontop
transforms an input SPARQL query q into an optimized
SQL query qM,O

opt exploiting the T-mapping MO
s and
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the database integrity constraints S, and evaluates the
generated SQL query over the database instance D.

Algorithm 1. Ontop workflow.

function ontop(〈P , D〉, q)
let 〈O,Ms,S〉 = P
// offline
O′ = classify(O)

MO
s = saturate(Ms,O′)

// online
qM,O = unfold(q,MO

s )

qM,O
opt = optimize(qM,O , S)

return eval(qM,O
opt , D)

3.2. Ontop-temporal. Now we present our proposal
for the temporal extension of Ontop, which we call Ontop-
temporal. Specifically, we discuss the choice of concrete
languages for the additional input components and how to
adapt the query rewriting algorithm.

3.2.1. Concrete languages. Our principle when
choosing concrete languages for the inputs is to be
compliant with the relevant existing standards whenever
possible; we only extend and create new syntax/languages
when it is absolutely necessary.

In Ontop-temporal, we continue to use OWL 2 QL
for static ontologies and also allow the use of
non-recursive datalog rules satisfying (i) and (ii) in
Section 2.1.2. For temporal rules, there are no
standard languages. The proposed concrete syntax
for datalognrMTL is inspired by datalog, SWRL, and
SPARQL.

We continue to use R2RML as a mapping language.
Intuitively, an R2RML mapping produces named graphs
(see Section 10) to represent temporal information.
Named graphs are supported through the R2RML
construct rr:GraphMap. Alternatively, considering that
it is rather verbose to map all the temporal information
in R2RML, we also extend the Ontop mapping language
(Calvanese et al., 2017) to provide an alternative compact
syntax close to the one used in Example 7.

As for the query language, we support both
a τ -SPARQL-based language and plain SPARQL as
discussed in Examples 9 and 10. Internally, the
τ -SPARQL-based language is treated as syntactic sugar
and handled by compiling it into the corresponding plain
SPARQL query language.

3.2.2. Query answering algorithm. The algorithm of
Ontop-temporal, outlined as Algorithm 2, takes as inputs
a temporal OBDA instance 〈S, D〉 and a τ -SPARQL or
SPARQL query q, and returns the answers of q over
〈S, D〉.

Similarly to Ontop, the workflow of Ontop-temporal
also consists of an offline stage, compiling S into a set of
mapping assertionsMS, and an online stage, evaluating
q over D by query rewriting. The offline stage has two
more steps to process the temporal components in S:

(a) it saturates MO
s with static rules R as proposed by

Xiao et al. (2014) and obtains the mappingMO,R
s ;

(b) it saturates Mt and MO,R
s with T using the

algorithm by Brandt et al. (2017a; 2018), and obtains
the final saturated mapping MS. In a nutshell, the
algorithm computes a view for each predicate in a
bottom-up fashion. The view definitions exploit SQL
functions simulating the temporal operators in MTL
and often result in complex SQL queries.

The online stage first converts the input query into
SPARQL when it is expressed in τ -SPARQL. The
optimization step also needs to be extended to handle
temporal-specific constructs in SQL queries. We now
present the SQL queries that we expect to be generated
for the running example.

Algorithm 2. Proposed workflow for Ontop-temporal.

function ontop temporal(〈S, D〉, q)
let 〈Σs,Σt,Ms,Mt,O,R, T ,S〉 = S
// offline
O′ = classify(O)
MO

s = saturate(Ms,O′)
MO,R

s = saturate(MO
s ,R)

MS = saturate(Mt ∪MO,R
s , T )

// online
if q is a τ−\SPARQL−like query

then q = sparql(q)
qS = unfold(q,MS)
qS
opt = optimize(qS,S)

return eval(qS
opt, D)

Example 11. The expected SQL translation of the
temporal SPARQL query q1 from Example 9 is as
follows:

CREATE TEMPORARY main_flame_up_th AS
(SELECT tb_measurement.s_id, begin, end
FROM
(SELECT s_id, value, tstmp AS begin,

LEAD(tstmp, 1) OVER
(PARTITION BY s_id ORDER BY tstmp) AS end

FROM tb_measurement, tb_sensors
WHERE tb_measurement.s_id = tb_sensors.s_id

AND s_type = 1) SUBQ
WHERE value >= 1.0 AND end IS NOT NULL);

SELECT s_id,
(begin + interval ’10 seconds’) AS begin,
end

FROM CoalesceIntervals(’main_flame_up_th’,
’s_id’, ’begin’, ’end’)

WHERE end - begin > interval ’10 seconds’;
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The utility function/query CoalesceIntervals

is defined in Appendix. This query takes a table
(main flame up th in this example) with a main column
(s id) and two columns (begin and end) representing
the ends of the validity interval of an object in the
main column. The returned table only contains the
maximal validity intervals merging (coalescing) the
overlapping intervals (see how the query answer is
computed in Example 8). Note that the implementation
of CoalesceIntervals in this example assumes that all
intervals are of the form [x, y).

In more complex queries (such as q2 from
Example 9), we use an SQL query/function
TemporalJoin that, given two tables T1 and T2
with tuples of the form (object id, begin, end), returns
a table with the intersection of the validity intervals for
each object id (see Appendix).

�

4. Experimental evaluation

In order to show the feasibility of our approach, in this
section, we present an experiment based on the running
example of this paper. In the experiment, we manually
computed the SQL queries produced by applying the
datalognrMTL rewriting algorithm (Brandt et al., 2017a)
and we evaluate these queries over Siemens turbine data.

The initial data provided by Siemens is a sample
for one running turbine over 4 days. We replicated
this sample to imitate the data for one turbine over 10
different periods ranging from 32 to 319 months. We
ran the experiments on an HP Proliant server with 2 Intel
Xeon X5690 processors (each with 12 logical cores at
3.47 GHz), 106 GB of RAM and five 1 TB 15 K RPM hard
disks. The data are stored on a PostgreSQL 9.6 database
server.

We evaluated four queries LowRotorSpeed(x)@t,
HighRotorSpeed(x)@t, MainFlameOn(x)@t and
PurgingIsOverFor1Tb(x)@t. The first three queries
are based on the definitions in Section 2. Regarding the
query: PurgingIsOverFor1Tb(tb0)@x, since the available
data contains measurements only for one turbine, we
define it by simplifying PurgingIsOver as follows:

PurgingIsOverFor1Tb(tb) ← MainFlameOn(tb),

(0,10m](�(0,30s]HighRotorSpeed(tb),

(0,2m]�(0,1m]LowRotorSpeed(tb)).

The running times of these queries are shown in
Fig. 2. As can be seen, they scale linearly. In particular the
running times of PurgingIsOverFor1Tb(tb0)@x, which
contains all the other queries as subcomponents, provide
an indication that our algorithm respects modularity.
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Fig. 2. Experiments with Siemens data over 32–319 months.

5. Related work

In this paper, our ontology language uses the operators
of the metric temporal logic MTL that was originally
introduced for modeling and reasoning about real-time
systems (Koymans, 1990; Alur and Henzinger, 1993).
Initial experimental results obtained by Brandt et al.
(2018) demonstrated reasonably good performance and
scalability on data from weather stations in the USA (of
a size up to 8 GB) and turbine sensor data (of a size up
to 6 GB). Another application of a similar formalism has
been provided by El Raheb et al. (2017) in the context of
querying user annotated ballet movement videos.

Practical ontology-mediated query answering with
temporal ontologies based on the Halpern–Shoham
interval temporal logic, HS (Halpern and Shoham, 1991)
was investigated by Kontchakov et al. (2016). We
remind the reader that HS is a classical propositional
logic enriched with modal diamond operators of the form
〈R〉, where R is one of the twelve interval relations
by Allen (1983): After, Begins, Ends, During, Later,
Overlaps, and their inverses. One of the use-cases
reported by Kontchakov et al. (2016) deals with historical
data about the Italian public administration, and the other
one with the weather data mentioned above. The proposed
implementation, based on a reduction to standard datalog
reasoning (with arithmetic constraints), showed feasibility
of the approach with several state-of-the-art datalog
engines. We note that, in the papers discussed above,
datalog is used as a static ontology language and
conjunctive queries are used as a query language.

Temporal relational databases have been studied
intensively since the 1990s. Notably, the TSQL2
query language was proposed by Snodgrass (1995) as
a temporal extension of SQL92. Zimányi (2006)
investigated temporal aggregations in temporal databases.
Dignös et al. (2016) proposed a framework to implement
temporal operators in a DBMS engine by extending
its kernel. In this work, we do not assume that the
underlying database supports additional temporal query
language features (as those provided by TSQL2), and
instead maintain compatibility with standard relational
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data sources. How to exploit in temporal OBDA
additional features provided by temporal database query
languages, when the underlying database supports them,
is an interesting subject for future work.

6. Conclusions

In this paper, we have proposed a framework for practical
temporal OBDA, defined its main components, and given
a high level view of the system architecture.

As future work, we plan to formally present
the working mechanism of the framework in detail,
implement it as an extension of Ontop, and evaluate
the implementation over the large scale heterogeneous
Siemens use case data. Another future direction is to
extend the framework in order to support semantic query
answering over streaming data. There is an extensive body
of work on semantic query answering over RDF streaming
data (Barbieri et al., 2010; Calbimonte et al., 2012; Phuoc
et al., 2011; Anicic et al., 2011; Beck et al., 2015;
Özçep et al., 2014). However, none of these works
follows the OBDA approach, apart from STARQL (Özçep
et al., 2014), where one can define complex temporal
patterns only at the query level rather than the ontology
level as in our proposal. We plan to investigate how to
incorporate the streaming data setting into our temporal
OBDA framework.
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Ö. L., Roshchin, M., Solomakhina, N., Soylu, A., Svingos,
C., Brandt, S., Giese, M., Ioannidis, Y.E., Lamparter, S.,
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Appendix
SQL functions (in plpgsql syntax) for temporal

join and temporal interval coalesce

-- a temporal interval consists of an object identifier SID and two timestamps dFrom and dTo
CREATE TYPE TEMP_INTERVAL AS (SID VARCHAR(20), dFrom TIMESTAMP, dTo TIMESTAMP);

CREATE OR REPLACE FUNCTION TemporalJoin(t1 TEXT, t2 TEXT)
RETURNS SETOF TEMP_INTERVAL AS

$BODY$
BEGIN

SELECT
t1.SID AS SID,
CASE
WHEN t1.dFrom > t2.dFrom AND t2.dTo > t1.dFrom THEN t1.dFrom
WHEN t2.dFrom > t1.dFrom AND t1.dTo > t2.dFrom THEN t2.dFrom
WHEN t1.dFrom = t2.dFrom THEN t1.dFrom

END AS dFrom,
CASE
WHEN t1.dTo < t2.dTo AND t1.dTo > t2.dFrom THEN t1.dTo
WHEN t2.dTo < t1.dTo AND t2.dTo > t1.dFrom THEN t2.dTo
WHEN t1.dTo = t2.dTo THEN t1.dTo

END AS dTo
FROM t1, t2
WHERE
t1.SID = t2.SID AND

((t1.dFrom > t2.dFrom AND t2.dTo > t1.dFrom) OR
(t2.dFrom > t1.dFrom AND t1.dTo > t2.dFrom) OR
(t1.dFrom = t2.dFrom))

AND ((t1.dTo < t2.dTo AND t1.dTo > t2.dFrom) OR
(t2.dTo < t1.dTo AND t2.dTo > t1.dFrom) OR (t1.dTo = t2.dTo));

RETURN;
END
$BODY$ LANGUAGE ’plpgsql’;

-- we assume that the table is already ordered by SID, and then begin and end columns
CREATE OR REPLACE FUNCTION CoalesceInterval(

tableName TEXT, objectColumn TEXT, beginColumn TEXT, endColumn TEXT)
RETURNS SETOF TEMP_INTERVAL AS $BODY$

DECLARE
r TEMP_INTERVAL%ROWTYPE;
SID VARCHAR(20) :=’’;
dFrom TIMESTAMP := NULL;
dTo TIMESTAMP := NULL;

BEGIN
FOR r IN EXECUTE ’SELECT ’ || objectColumn || ’ AS SID, ’ || beginColumn || ’ AS dFrom, ’

|| endColumn || ’ AS dTo’ || ’ FROM ’ || tableName
LOOP
IF (SID = ’’ AND dFrom IS NULL AND dTo IS NULL) THEN -- initialization
SID := r.SID; dFrom := r.dFrom; dTo := r.dTo;

ELSIF (r.SID <> SID AND SID <> ’’ AND dFrom IS NOT NULL AND dTo IS NOT NULL) THEN
RETURN NEXT (SID, dFrom, dTo);
SID := r.SID; dFrom := r.dFrom; dTo := r.dTo;

ELSIF r.SID = SID THEN
IF r.dFrom >= dFrom AND r.dFrom <= dTo THEN
IF r.dTo >= dTo THEN dTo := r.dTo; END IF;

ELSIF r.dFrom > dTo THEN
RETURN NEXT (SID, dFrom, dTo);
SID = r.SID; dFrom = r.dFrom; dTo = r.dTo;

END IF;
END IF;

END LOOP;
IF (SID <> ’’ AND dFrom IS NOT NULL AND dTo IS NOT NULL) THEN
RETURN NEXT (SID, dFrom, dTo);

END IF;
RETURN;

END
$BODY$ LANGUAGE ’plpgsql’;
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