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Abstract. In this paper we give a short note showing convergence rates for mul-
tilevel periodic approximation of smooth functions by multilevel Gaussian convo-
lution. We will use the Gaussian scaling in the convolution at the finest level as a
proxy for degrees of freedom d in the model. We will show that, for functions in

the native space of the Gaussian, convergence is of the order d
− ln(d)

ln(2) . This paper
provides a baseline for what should be expected in discrete convolution, which will
be the subject of a follow up paper.

1 Introduction

Approximation by convolution involves selecting a suitable integrable func-
tion K(x) (the convolution kernel) satisfying

∫
RK(x)dx = 1. A parameter-

ized family of convolution kernels is generated from K by setting Kh(x) =
h−1K(x/h) where h > 0. Then, for a given target function f, its convolution
approximation f ∗Kh converges to f , as h→ 0. The rate of convergence de-
pends upon the smoothness of f and the polynomial reproduction properties
of the underlying convolution kernel. In this paper we consider the approxi-
mation of 1-periodic continuous functions by convolution with the Gaussian
kernel. In this case it is only possible to reproduce the constant function and
so, as we will see, convergence is limited to O(h2), regardless of additional
smoothness requirements. However, if we employ a multilevel iterative refine-
ment scheme we see that we get very rapid convergence. If the width of the
Gaussian is halved at each iteration, then at the nth level of refinement we
have essentially a d = 2n scaling in the Gaussian. For a discrete scheme we
would apply a quadrature at d = 2n equally spaced points, giving d degrees
of freedom. If the target function is taken from a certain periodic Sobolev
space, whose order prescribes the smoothness of the functions, then we see
improved but saturated convergence rates. If we consider functions in the na-
tive space of the Gaussian, a space of infinitely differentiable functions, then

the order of convergence is d−
ln(d)
ln(2) .

This work is motivated by the desire to prove convergence of the mul-
tilevel sparse grid quasi-interpolation introduced by Levesley and Usta [5].
Multilevel sparse grid algorithms using smooth functions were introduced by
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the author and collaborators [4].

Our focus is on the Gaussian kernel

ψ(x) =
1√
2π

exp(−x2/2)

and we define ψh(x) = h−1ψ(x/h). We note the Fourier transform of ψ is

ψ̂(x) =

∫ ∞
−∞

ψ(y) exp(−2πixy)dy = exp(−2π2x2).

We wish to approximate a continuous 1-periodic function

f =

∞∑
k∈Z

fkek, where ek(x) = exp(2πikx), (k ∈ Z),

by

f ∗ ψh(x) =

∫ ∞
−∞

f(t)ψh(x− t)dt =

∞∑
j=−∞

∫ j+1

j

f(t)ψh(x− t)dt

=

∞∑
j=−∞

∫ 1

0

f(t)ψh(x− t− j)dt =

∫ 1

0

f(t)φh(x− t)dt,

where

φh(x) =

∞∑
j=−∞

ψh(x− j).

We note that φh is 1-periodic and a straightforward computation shows that

φh(x) =

∞∑
k=−∞

ψ̂(hk)ek(x), (1)

In view of this and the well-known convolution formula for periodic func-
tions (see e.g. [3]) we have that

f ∗ ψh =

∞∑
k=−∞

fkψ̂(hk)ek,

so that the error in convolution approximation is

Ehf = f − f ∗ ψh =

∞∑
k=−∞

fk(1− ψ̂(hk))ek. (2)

This representation immediately shows that the convolution reproduces
the constant, but not any other trigonometric polynomial.
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In Section 2 we will examine the convergence of the convolution approx-
imation to target functions taken from certain periodic Sobolev spaces. We
will show that no non-constant periodic function can have an approximation
order smaller than O(h2). In view of this we explore a multilevel iterative
refinement, halving h in the convolution approximation at each level. In Sec-
tion 3 we examine the error for this scheme and show that we can improve
upon O(h2) for functions with additional but finite smoothness. Specifically,
we see that rapid improvements in the accuracy are exhibited in the early
iterations but once the number of iterations passes a certain level, relating
to the smoothness of the function, the algorithm settles to converge at a
polynomial rate. In Section 4 we introduce the native space for Gaussian
approximation. The native space is a subspace of infinitely smooth functions
and, for such functions, we show that the algorithm exhibits rapid improve-
ments in accuracy at every iteration.

2 Convergence of the convolution approximation

The functions we wish to approximate are continuous 1-periodic and taken
from a periodic Sobolev space

Nβ =

f =

∞∑
k=−∞

fkek : ‖f‖β =

(
|f0|2 +

∑
k∈Z

k2β |fk|2
)1/2

<∞

 .

The Sobolev embedding theorem [2] ensures that if β > 1
2 then all functions

in Nβ will be continuous. The following result gives error bounds for Gaussian
convolution approximation of such functions.

Proposition 1. Let f ∈ Nβ , where β > 1
2 . Then

‖Ehf‖∞ ≤


C1h

2 for β > 5
2 ;

h2(C2

√
ln
(
1
h

)
+ C3) for β = 5

2 ;

C4h
β− 1

2 for 1
2 < β < 5

2 ,

where Ci i = 1, 2, 3, 4, are positive constants independent of h.

Proof. Since ψ̂(0) = 1 and ψ̂(−k) = ψ̂(k), (k ∈ Z+), we have, from (2), that

‖Ehf‖ ≤
∞∑
k=1

(1− ψ̂(hk))(|fk|+ |f−k|). (3)

Suppose that β = 5
2 + α, where α > 0. Using the elementary bound

1− exp(−x) ≤ x for x > 0, (4)
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we have that 1− ψ̂(hk) ≤ 2π2h2k2. This yields

‖Ehf‖∞ ≤ 2π2h2

( ∞∑
k=1

k2|fk|+
∞∑
k=1

k2|f−k|

)

= 2π2h2

( ∞∑
k=1

k
5
2+α|fk|

1

kα+
1
2

+

∞∑
k=1

k
5
2+α|f−k|

1

kα+
1
2

)
.

Applying the Cauchy Schwarz inequality we have

‖Ehf‖∞ ≤

2π2h2

( ∞∑
k=1

1

k2α+1

) 1
2

( ∞∑
k=1

(
k2
) 5

2+α |fk|2
) 1

2

+

( ∞∑
k=1

(
k2
) 5

2+α |f−k|2
) 1

2


≤ 2π2h2C‖f‖ 5

2+α
.

Now assume that β = 5
2 − α where 0 ≤ α < 2. In the following development

we will partition the right hand side of (3) as follows

‖Ehf‖ ≤
mh∑
k=1

(1− ψ̂(hk))(|fk|+ |f−k|) +

∞∑
k=mh+1

(1− ψ̂(hk))(|fk|+ |f−k|),

where mh denotes the integer satisfying mh ≤ 1
h ≤ mh + 1. For k ≤ mh we

will, as before, use 1 − ψ̂(hk) ≤ 2π2h2k2 whereas for k ≥ mh + 1 we use

1− ψ̂(hk) ≤ 1. This leads to

‖Ehf‖ ≤ 2π2h2
mh∑
k=1

k2|fk|+
∞∑

k=mh+1

|fk|︸ ︷︷ ︸
E+

+ 2π2h2
mh∑
k=1

k2|f−k|+
∞∑

k=mh+1

|f−k|︸ ︷︷ ︸
E−

.

Focusing on E+ we can write:

E+ = 2π2h2
mh∑
k=1

k
5
2−α|fk|kα−

1
2 +

∞∑
k=mh+1

k
5
2−α|fk|

1

k
5
2−α

.

Applying the Cauchy-Schwarz inequality to the first sum, in the case where
0 < α < 2, we have

2π2h2
mh∑
k=1

k
5
2−α|fk|kα−

1
2 ≤ 2π2h2

(
mh∑
k=1

(
k2
) 5

2−α |fk|2
) 1

2
(
mh∑
k=1

k2α−1

) 1
2

≤ 2π2h2C‖f‖ 5
2−α

mα
h ≤ 2π2Ch2−α‖f‖ 5

2−α
.
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For α = 0 we have

2π2h2
mh∑
k=1

k
5
2 |fk|k−

1
2 ≤ 2π2h2

(
mh∑
k=1

(
k2
) 5

2 |fk|2
) 1

2
(
mh∑
k=1

1

k

) 1
2

≤ 2π2h2‖f‖ 5
2
(2 ln(mh))

1
2 ≤
√

2π2h2
(

ln

(
1

h

)) 1
2

‖f‖ 5
2
.

Applying the Cauchy-Schwarz inequality to the second sum we have

∞∑
k=mh+1

k
5
2−α|fk|

1

k
5
2−α

≤

( ∞∑
k=mh+1

(
k2
) 5

2−α |fk|2
) 1

2
( ∞∑
k=mh+1

1

k5−2α

) 1
2

≤ ‖f‖ 5
2−α
C
(

1

(mh + 1)4−2α

) 1
2

≤ C‖f‖ 5
2−α

h2−α.

These two bounds allow us to deduce that E+ ≤ Ch2−α for 0 < α < 2 and
E+ ≤ h2(A

√
ln(1/h) + B). The equivalent bound for E−, the contribution

involving Fourier coefficients of negative index, follows in the same fashion.
Hence we conclude that

‖Ehf‖ ≤ Ch2−α‖f‖ 5
2−α

= Chβ−
1
2 ‖f‖β where

1

2
< β <

5

2
,

and
‖Ehf‖ ≤ ‖f‖ 5

2
h2((A

√
ln(1/h) +B).

3 Iterative refinement

The result from the previous section suggests that we cannot improve con-
vergence by imposing additional smoothness conditions, beyond f ∈ N 5

2
. In

view of this we now consider using a multilevel iterative refinement where, at
each level, we halve h in the convolution approximation. In this setting the
multilevel error in convolution is defined by

M1f = f − f ∗ψh, and Mjf := Mj−1f −Mj−1f ∗ψ h

2j−1
, (j ≥ 2). (5)

Our analysis here will follow in the same fashion as in the previous section.
We begin by noting that if f =

∑
k∈Z fkek is a continuous 1-periodic function

then the Fourier series representation of the multilevel error is given by

Mjf =

∞∑
k=−∞

bj(k)f̂(k)ek, j = 1, 2, · · · , (6)

where, for k ∈ Z and

bj(k) =

j∏
`=1

(
1− ψ̂

(
hk

2`−1

))
j = 1, 2, . . . . (7)
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For a given f ∈ Nβ , the following result quantifies the accuracy of the
multilevel convolution approximation after j steps of iterative refinement.

Proposition 2. Let f ∈ Nβ , β > 1
2 and 0 < h < 1

2π . Then the multilevel
error after the jth iterative refinement satisfies:

‖Mjf‖∞ ≤


C1

(
2πh

2
j
2

)2j
if j < 2β−1

4 ;(
2πh

2
j
2

)2j (
C2

√
ln

(
2
j
2

2πh

)
+ C3

)
if j = 2β−1

4 ;

C4 (2πh)
β− 1

2
(

1
2j

) 2β−1
4 if j > 2β−1

4 ,

where Ci i = 1, 2, 3, 4, are positive constants independent of h.

Proof. The proof follows the same pattern as that of Proposition 1 and so
rather than repeat the details we briefly outline the steps. We begin by noting
that, since ψ̂(0) = 1 and ψ̂(−k) = ψ̂(k), (k ∈ Z+), we have

‖Mjf‖∞ ≤
∞∑
k=1

bj(k)(|fk|+ |f−k|). (8)

To reach the bound for the case where j < 2β−1
4 (or equivalently β >

2j + 1) we note that (4) allows us to deduce that

bj(k) ≤
j∏
`=1

2π2(2k)2h2

22`
=

j∏
`=1

23π2k2h2

22`
=

(
2πh

2
j
2

)2j

k2j . (9)

Using this we replicate the steps from Proposition 1 (associated to the
β > 5

2 case) to reach the required bound. For the remaining cases captured

by j ≥ 2β−1
4 (or equivalently β ≤ 2j + 1

2 ) we follow Proposition 1 again and
define mj to be the integer satisfying

mj ≤
2
j
2

2πh
≤ mj + 1.

and, using this, the error expression is split into a finite sum (including the
first mj terms) and the remaining infinite sum. For bounding purposes we
employ (9) for the finite sum and bj(k) ≤ 1 for the infinite sum. Once again
by mimicking the steps from Proposition 1 (associated to the β ≤ 5

2 case)
one can establish the stated bounds.

We comment here that for functions of finite smoothness the speed at
which the multilevel iterative refinement converges is restricted by the smooth-
ness of the function. The error is reduced significantly in the early iterations,
when j < 2β−1

4 but beyond this point the error decays asymptotically at a
polynomial rate.
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4 Native space for Gaussian approximation

It is more natural to approximate functions from the so called native space
for Gaussians:

Nψ =

f : ‖f‖ψ =

( ∞∑
k=−∞

ψ̂(k)−1|fk|2
)1/2

<∞

 .

If we approximate such very smooth functions we have the following result.

Theorem 3. Let f ∈ Nψ and 0 < h < 1. Then

‖Mjf‖∞ ≤ C
(

4h2j

e

)j (
1

2j

)j
‖f‖ψ.

Proof. As in Proposition 2 we can use (9) to develop the multilevel error as
follows

‖Mjf‖∞ ≤
∞∑
k=1

bj(k)(|fk|+ |f−k|)

≤
(

4π2h2

2j

)j ∞∑
k=1

k2j (|fk|+ |f−k|)

=

(
4π2h2

2j

)j ∞∑
k=1

√
ψ̂(k)k2j

 |fk|√
ψ̂(k)

+
|f−k|√
ψ̂(k)


≤
(

4π2h2

2j

)j√√√√ ∞∑
k=1

ψ̂(k)k4j

√√√√ ∞∑
k=1

|fk|2

ψ̂(k)
+

√√√√ ∞∑
k=1

|fk|2

ψ̂(k)


≤ 2

(
4π2h2

)j ( 1

2j

)j√√√√ ∞∑
k=1

ψ̂(k)k4j‖f‖ψ.

(10)

Concerning the infinite sum appearing in the bound above, we observe
that for each j = 1, 2, . . . the non-negative function x 7→ ψ̂(x)x4j is increasing

for 0 ≤ x ≤
√
j
π and decreasing for x ≥

√
j
π . Let mj denote the integer

satisfying mj ≤
√
j
π ≤ mj + 1, then we can write

∞∑
k=1

ψ̂(k)k4j =

mj∑
k=1

ψ̂(k)k4j +

∞∑
k=mj+1

ψ̂(k)k4j

≤
∫ mj

1

ψ̂(x)x4jdx+ ψ̂(mj)(mj)
4j + ψ̂(mj + 1)(mj + 1)4j +

∫ ∞
mj+1

ψ̂(x)x4jdx

≤ 2ψ̂

(√
j

π

)(√
j

π

)4j

+

∫ ∞
0

ψ̂(x)x4jdx = 2

(
j

π2e

)2j

+

∫ ∞
0

e−2π
2x2

x4jdx.
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Examining the integral we have∫ ∞
0

e−2π
2x2

x4jdx =

∫ ∞
0

e−s
( s

2π

)2j ds

2
√

2s

=
1√

2(2π)(2π2)2j

∫ ∞
0

e−ss2j−
1
2 ds =

Γ
(
2j + 1

2

)
√

2(2π)(2π2)2j
.

Using Stirling’s formula for the Gamma function [1] Formula 6.1.39 we have

Γ

(
2j +

1

2

)
≤ C
√

2π

(
2j

e

)2j

.

Substituting this into the bound above we see that

∞∑
k=1

ψ̂(k)k4j ≤ C
(

j

eπ2

)2j

.

Taking the square root and substituting into (10) we conclude that

‖Mjf‖∞ ≤ 2
(
4π2h2

)j ( 1

2j

)j (
j

eπ2

)2j

‖f‖ψ

≤ C
(

4h2j

e

)j (
1

2j

)j
‖f‖ψ.

We remark that, setting d = 2j , we get a convergence rate ofO
(

4h2α ln d
ed

)α ln d

,

where α = 1/ ln(2) which is faster than any polynomial.
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