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1. INTRODUCTION

A finite operator model is developed in this paper to study the
propagation of light in deformed, i.e. non-circular but longitu-
dinally invariant, optical fibers. The emergence of mid-infrared
(MIR) photonics using MIR-transparent chalcogenide glasses
[1] motivates the investigations reported in this paper. This
has included the fabrication of mid-infrared (MIR) fluorescence
sources based on rare-earth (RE) -ion-doped chalcogenide glass
optical fibers for MIR remote sensing applications [2, 3] and the
development of advanced purification processes to reduce prop-
agation losses in chalcogenide glass optical fibers [4, 5] . We note,
in particular, recent reports of luminescence from rare-earth-ion-
doped unstructured (i.e. single index) fibers whose diameters
were of the order of 350 µm [6, 7] and optical transmission mea-
surements on unstructured fibers of diameter ∼ 200µm across
the wavelength range from 2-10 µm [4, 8].

The drawing of a core-clad chalcogenide glass optical fiber
from an extruded preform was reported in [9] where the core
diameter is calculated as 148 ±4 µm in a 222 µm diameter cross
section of fiber. As noted in [10] compared to unclad and large-
core step-index RE-ion doped chalcogenide glass fiber, there is
much less work in the literature, on small-core step-index, RE-
ion doped chalcogenide-glass fiber. A subsequent rod-in-tube
step has been used in our group to fabricate small core small
core step index fiber [10, 11], but it is challenging to obtain a
step index fiber with a circular core using this method. The
contrast of the viscosities of the two core/cladding glasses and
the difficulties of aligning a core glass cane at the precise cen-
ter of the cladding tube prior to fiber drawing the rod-in-tube
preform are contributing factors [11]. Experimental analysis
done on erbium doped fiber amplifiers (EDFA) by Doya et al

[12–14] suggests that pump light is absorbed more effectively
in deformed optical fibers than in symmetric ones owing to the
chaotic rays uniformly distributing the pump power inside the
fiber. This motivated the study reported in the present paper of
propagation in unstructured and step-index chalcogenide glass
fibers possessing the noncircular but longitudinally uniform de-
formations observed in some experimental chalcogenide glass
fibers. Investigation of deformed optical waveguides invokes
the analysis of quantum and wave chaos systems [15? , 16], and
involves investigation of chaotic light in the geometrical limit
of ray-billiard systems. In asymmetric optical and microwave
waveguides, the interference of chaotic rays scattered due to
boundary deformations has been investigated extensively for
asymmetric dielectric resonant cavities for application in direc-
tional emitters [17–19], and in active optical fibers [20–22] for
selectively amplifying the modes in scars.

Light propagation in optical fibers is tracked using Poincaré
surfaces-of-section (SOS) [23] which are constructed for each of
the core and cladding boundaries of the SIF: individual rays are
tracked using coordinates that record the position and orienta-
tion with which the ray intersects one of these boundaries and
the corresponding phase planes then define the SOSs. Simple
ray-tracing in the SIF becomes intractable very quickly because
the power incident on the core-cladding dielectric boundary is
split between reflected and transmitted rays. As a result, the total
number of rays required to be traced over successive reflections
increases exponentially. In order to overcome this drawback, the
SOSs are coarse-grained, and a probabilistic approach is adopted
in the measurement of the dynamics.

The discretization of the SOSs allows propagation of initial
densities by a finite-dimensional matrix, formed by computing
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mapping probabilities for rays hopping from one region of a
SOS to another. This finite matrix is a discrete representation
of the Perron-Frobenius operator (PFO) for the problem [24].
Coarse-grained or discretized representations of PFOs have been
extensively investigated in the past (see, for example, [25–27]).
Of particular relevance to this paper is the simulation using
similarly pixelated PFOs of the fully-chaotic SOS of deformed
micro-resonant optical cavities in [28, 29]. The calculations in
this paper are distinct in allowing coupling between multiple
domains (core and cladding) and explicitly accounting for the
third dimension.

Owing to the discretization used, there is a finite resolution
with which the mixed SOS features can be resolved. The finite
operator approximates these features and creates non-physical
diffusive artefacts in the dynamics, which limits the number
of reflections that can be performed. However, we will show
that in spite of these limitations, the method proposed can be
effectively employed to measure the net power accumulation
in the core in deformed SIFs, from arbitrary input distributions.
The formal basis for this analysis is discussed in section 2. The
discretization procedure and the corresponding propagation of
pixelated densities is discussed in section 3, primarily in the
context of a 2D projections of the dynamics. In section 4 we
set out the core method proposed to simulate, in a fully 3D
setting, the net accumulation of power transfer to the core. The
method is first illustrated by application to simpler diffusion-
free dynamical systems, before applying it to a more general,
arbitrarily deformed, SIF. Finally, we describe how the method
is concretely applied to a range of input power distributions in
section 5.

2. PRELIMINARIES

In this section, we establish the underlying principles and no-
tation that will later be used to propagate light in deformed
optical fibers by the finite operator method. For most of the
discussion in this section, it suffices to consider ray dynamics on
the single boundary of an unstructured fiber (see also [28]), but
for the more detailed applications in later sections we will treat
step-index fibers (SIFs) and here define our notation accordingly.

A. Notation for momentum coordinates
In the case of a SIF it will be important to distinguish between
the unit vector p defining a ray’s direction, which suffices to
describe ray dynamics where the refractive index is always the
same, and the momentum vector, defined here as

P = np, (1)

where n is the local refractive index. We will treat ray dynamics
in a SOS setting, recording their position and direction when
they hit fiber or core boundaries. For this purpose in particular
we use

Pz = ẑ · P = n cos θ

to denote the momentum component along the fiber axis and

P = t̂ · P = n sin θ sin χ

to denote the momentum component along the cross-sectional
boundary (of the cladding or a core), where the angles (θ, χ) and
unit vectors ẑ and t̂ are defined in Fig. 1.

When a ray reflects specularly from a boundary or is trans-
mitted to another medium by Snell’s law, the dynamics can be
stated simply in this notation as

(Pz)in = (Pz)out and (P)in = (P)out.

(a)

z^ p

(b)

Fig. 1. (a) A ray with momentum vector P = np, traverses
a cross-sectional distance of l2D, and an axial distance of ∆z.
The vector p makes an angle of θ with the z-axis. (b) The ray is
tracked in the SOS by recording the arc-length s, and the mo-
mentum P. Unit vectors normal and tangential to the bound-
ary are given by n̂, and t̂ respectively.

In particular, Pz is a global constant of motion, but note that the
corresponding component pz of the unit vector p is not, in the
case of a SIF. Note also that the momentum component P used
by us to parameterize cross-sectional ray direction differs in two
respects from the typical parameterization of ray direction in
2D cavities by the simpler quantity sin χ [28]. It includes the
refractive index n, which of course changes between core and
cladding, but also the factor

sin θ =
√

1− p2
z ,

which also changes value on transmission from one medium to
another. Use of this more complicated definition will simplify
our comparison of phase-space densities of power at interfaces
between different media and in the 3D context.

B. Surface-of-section dynamics in 3D
We record ray trajectories at each intersection with a boundary
using SOS coordinates (s, P, z, Pz), where s denotes an arc-length
coordinate along a cross-sectional boundary. For a particular
trajectory, we use (sm, Pm, zm, Pz) with m = 0, 1, 2 · · · to record
successive intersections with fiber boundaries, where m = 0
labels the first such intersection following injection from the
cross-sectional face of the fiber (recall that Pz is constant). The
dynamics

(s, P)→ ϕ(s, P) (2)

of the cross-sectional components can be stated largely inde-
pendently of the longitudinal coordinates (z, Pz) (Although Pz
affects refraction angles in Snell’s law, it is conserved and will
therefore be suppressed in our notation later.) The longitudinal
dynamics are then trivially determined using

(z, Pz)→ (z + ∆z(s, P, Pz), Pz), (3)

where
∆z(s, P, Pz) =

pz√
1− p2

z

l2D(s, P) (4)

and l2D(s, p) denotes the chord-length between intersections of
the projection of the ray onto a 2D cross-section — as illustrated
in Fig. 1.

C. Ray densities on a 2D surface-of-section
The full 3D ray dynamics of the optical fiber can be reduced to
the analysis of light using 2D SOS, as will now be described. Let
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a power distribution of a beam of light arriving at the curved
boundary be denoted by

f (s, P, z, Pz) (5)

(where f = 0 for z < 0). Note that each point (s, P, z, Pz) on
a 4D SOS can be associated uniquely with a ray injected into
the fiber’s cross-sectional input face and arriving there after
m subsequent reflections/transmissions (or ”bounces”). This
allows us to partition the density along the entire extent of the
boundary according to

f (s, P, z, Pz) =
∞

∑
m=0

fm(s, P, z, Pz),

where fm(s, P, z, Pz) is the density restricted to rays with m
bounces. Note that we have defined canonical coordinates
(s, P, z, Pz) so that the corresponding net power flux is

Φm =
∫

SOS
fm(s, P, z, Pz)dsdzdPdPz,

which is conserved between bounces (Φm+1 = Φm) if the fiber
is lossless.

Successive m-bounce densities are related by

fm+1(s, P, z, Pz) = fm(ϕ−1(s, P), z− ∆z(s, P, Pz), Pz). (6)

Since the Pz coordinate is conserved between bounces, we will
henceforth suppress it in our notation. We can then write (6) in
the form

fm+1(s, P, z) = T3D fm(s, P, z), (7)

where T3D is the PFO, acting on an arbitrary function g(s, P, z)
by

T3Dg(s, P, z) = g(ϕ−1(s, P), z− ∆z(s, P)). (8)

Although conservation of Pz has allowed us to reduce the prob-
lem to iterating a function of the three variables (s, P, z) (and to
suppress Pz in our notation), the relative simplicity of (3) allows
us to reduce the dimension of the problem still further.

Denote the partial Laplace transform of fm(s, P, z) by

f̄m(s, P, α) = L{ fm(s, P, z)} =
∫ ∞

z=0
e−αz fm(s, P, z)dz (9)

and let
L{T3D fm(s, P, z)} = T̄3D f̄m(s, P, α) (10)

define T̄3D. We use a Laplace representation because this pro-
vides a natural setting in which to treat initial-value problems
(in which an input distribution is specified at z = 0) and because
it facilitates subsequent extension to problems with gain. Using
the shifting theorem and (3), we may write

T̄3D = e−α∆z(s,P)T̄2D, (11)

where
T̄2Dh(s, P) = h(ϕ−1(s, P)) (12)

defines T̄2D. Note that T̄2D is independent of the Laplace vari-
able α, and it operates only on a 2D projection of the full ray-
dynamical system.

The problem has therefore effectively been reduced to a 2D
one. There is still some dependence on the remaining coordi-
nates because, in a SIF, refraction angles, reflectances and trans-
mittances at material boundaries depend on the ignored constant
Pz, but this reduction nevertheless represents an enormous sav-
ings when discretization of the operator is to be implemented

in practice, as discussed in the next section. In principle, one
must repeat the resulting linear algebra problems for each α
to recover the full distributions in z, but note that the behav-
ior of f̄m for α → 0 suffices to characterize the solution in the
limit z→ ∞, which is the relevant regime in applications. The
resulting method is a more efficient alternative to brute force ray-
tracing because the formation of the discretized finite operator
only requires ray-tracing for one reflection. Once the mapping
of all possible trajectories is done in the SOS for one reflection,
T̄3D can be applied to a light distribution iteratively to obtain
the distribution for the subsequent reflections.

3. COARSE-GRAINING OF THE 2D PROJECTION

In this section we describe the procedure used to form finite
operators that approximate the transfer operators defined in
Sec. 2 on a coarse-grained SOS. This coarse-graining is achieved
by pixelating phase space and realizing the transfer operator
as matrix of transition probabilities between pixels. The basic
procedure is described in subsection 3A and 3B. We assume a
cladding with a 2D cross-sectional boundary described in polar
coordinates (r, φ) by

r = 1 + ε cos 2φ (13)

to exemplify the calculations, but emphasise that the method
applies to more general shapes. In the remaining subsections
we describe the extension of these calculations to SIFs and to the
calculation of power transfer between core and cladding.

A. Formation of a 2D finite operator
To illustrate the coarse-graining of transfer operators we first con-
sider the case of an unstructured fiber whose 2D cross-sectional
SOS consists of a single component with coordinates (s, p),
where 0 < s < smax and smax denotes the circumference of the
boundary. In a single 2D unstructured fiber, we may work with
the simple direction cosine p rather than the variable P = np,
and this lies in the range −1 < p < 1. This SOS is divided into
N × N pixels, the case with N = 5 being illustrated in Fig. 2(a).
One of the pixels in Fig. 2(a) is filled with an ensemble of ray co-
ordinates, whose mapping after one bounce is shown in Fig. 2(b).
This concrete example corresponds to a fiber with boundary
described by (13) with ε = 0.11. Counting the number of rays in
each pixel after reflection allows us to approximate the transition
probabilities between initial and final pixels, and thus to define
the discretized transfer matrix as formalized below.

(a)
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Fig. 2. (a) A SOS is divided into N × N pixels (N = 5), and an
ensemble of rays uniformly distributed over a pixel is traced.
(b) The probability of mapping from one pixel to next is calcu-
lated by tracing the ray ensemble for one bounce.

The fraction of power from the jth pixel moving to the ith

pixel is denoted tij. These mapping fractions are then arranged
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to form the columns of a matrix T2D, such that

T2D =



. · · · t1j · · · .

... · · ·
... · · ·

...

ti1 · · · tij · · · tiN2

... · · ·
... · · ·

...

. · · · tN2 j · · · .


N2×N2

. (14)

After the formation of T2D, any arbitrary distribution in the
pixelated phase space can be propagated for any number of
reflections by applying the matrix, T2D, iteratively on the dis-
tribution. Raising T2D to the mth power and applying it to an
initial distribution yields the distribution in the phase space after
m reflections, and is represented as

f̄m = Tm
2D. f̄0. (15)

This provides the iterated ray distribution without explicitly
using ray-tracing beyond the first reflection.

We provide in Appendix I a concrete illustration of the ap-
plication of this discretization procedure in the context of a (2D
projection of) an unstructured fiber. In particular, that illustra-
tion shows the origin of numerical diffusion that is an inherent
part of pixelated propagation. A procedure is proposed in Sec. 4
to calculate transfer of power while mitigating such contamina-
tion but first, in the remainder of this section, we describe how
pixelation is implemented in the context of SIFs.

B. Extending the 2D finite operator for step index fibers
We now describe an extension of the transfer operator to the
case of a SIF with multiple boundaries between dielectric media
— in fact, we restrict our detailed discussion to the case of a
single core, but the basic discussion extends to multiple cores.
To achieve this we construct a total phase space consisting of
three separate phase planes (or SOS components): one denoted
SOS(i) for rays on the core side of the core-cladding boundary;
one denoted SOS(e) for rays on the cladding side of the core-
cladding boundary and one denoted SOS(c) for rays hitting the
cladding boundary (which we assume to be totally reflecting).
These are illustrated schematically in figure 3.

The cladding SOS (c), core exterior boundary SOS (e), and
the core interior SOS (i) are respectively divided into Nc × Nc,
Ne × Ne, and Ni × Ni pixels, and the resulting matrix, T2D, now
consists of 3× 3 sub-block matrices denoted as

T2D =


Tcc Tce Tci

Tec Tee Tei

Tic Tie Tii

 , (16)

where subscripts c, e, and i refer to the cladding, core exterior,
and core interior SOSs respectively. For simplicity, all three
dimensions are chosen to be equal in the explicit calculations
performed here, so that Nc = Ne = Ni = N.

Furthermore, the light distribution is also distinguished be-
tween intensity arriving at the boundary, and intensity leaving
the boundary. In this section we let distributions arriving at the
boundary be labelled with a ’-’ superscript and distributions
leaving the boundary be labelled with a ’+’ superscript. Let
T̄ref be a reflection and transmission function at the boundaries
that scatters a light distribution f̄−m , incident on the boundaries

Fig. 3. Formation of the separate SOSs for propagating
rays in the SIF are illustrated. The coordinate P lies in the
range −P1 < P < P1, where P1 =

√
(n2

cl − P2
z ), in the

cladding medium and in the range −P2 < P < P2, where
P2 =

√
(n2

c − P2
z ), in the core medium. The horizontal axes are

scaled in each case by the circumference smax of the cladding
boundary.

after m previous bounces, into a distribution f̄+m , leaving the
boundaries, such that

f̄+m = T̄ref f̄−m . (17)

The matrix T̄ref has block form

T̄ref =


I 0 0

0 Rext Tint

0 Text Rint

 , (18)

where I is an identity matrix,Rext and Text consist of reflectance
and transmittance functions for power incident on the core ex-
terior boundary and Rint and Tint consist of reflectance and
transmittance functions for power incident on the core interior
boundary.

The intensity distribution leaving each boundary is trans-
ported across the core or cladding interior until it is again inci-
dent on the boundaries, just before the next reflection or trans-
mission. Let a transport operator T̄int map the distribution just
after the mth bounce into the distribution just before the (m+ 1)th

bounce, so that
f̄−m+1 = T̄int f̄+m . (19)

The 2D finite operator used to iterate densities is then

T2D = T̄intT̄ref. (20)

In the rest of this paper, we will adopt the convention that, where
a superscript + or − is not used, the corresponding distribution
is for power arriving at a boundary component.

A scalar approximation is adopted in order to find the di-
vision of power between the transmitted ray and the reflected
ray at the core-cladding dielectric boundary. Fresnel’s equation
for TE polarization is used to find the reflectance and transmit-
tance of the rays traveling in and out of the core boundary. The
reflectance then

R =

∣∣∣∣A− B
A + B

∣∣∣∣2 , (21)
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where

A =
√

n2
inc − P2 − P2

z , (22)

B =
√

n2
trans − P2 − P2

z . (23)

The corresponding transmittance is

T = 1−R, (24)

where we uses lossless models of ray propagation and scattering.

C. Two examples of SIF geometry
We now illustrate the concrete application of the finite transfer
operator to SIFs, concentrating on two examples. The first is
that of a circular core inside a circular cladding. The phase
space of this configuration has significant chaotic components if
core and cladding are non-concentric, but the border between
chaotic and regular is a simple horizontal line in the phase plane,
which is aligned with the pixelation so that there is no diffusive
leakage between them. This allows us later to test calculations of
power transfer between core and cladding in a context in which
diffusion artefacts do not play a significant role. The second
example is of a deformed core and cladding, presenting a more
generic scenario in which numerical diffusion between chaotic
and regular regions dominates calculations of power transfer for
large numbers of iterations.

The configuration of the circular core-cladding example is il-
lustrated in Fig. 4(a). Here the outer cladding boundary is a unit
circle, and the core is circular with radius r = 0.2828, centered at
(0.1, 0.3). The area of the core is 8% of the cross-sectional area
of the cladding. The refractive index of the core is nc = 2.70
and that of the cladding medium is ncl = 2.55, typical of MIR-
transparent chalcogenide glasses. We propagate an initial light
distribution, with global constant Pz = 0.75ncl, which uniformly
illuminates the cladding SOS and vanishes on the core interior
and exterior SOSs: see the initial row of Fig. 4(b). We empha-
sise that this somewhat unphysical initial condition is chosen
primarily to simplify the preliminary description of phase space
evolution: more realistic initial conditions are treated in Sec. 5.

Subsequent rows of Fig. 4(b) show the distribution after 30,
100 and 450 bounces labeled 1, 2 and 3 respectively. The core-
interior and cladding SOSs each have invariant whispering-
gallery regions of trapped light (by total internal reflection in
the core and by orbits missing the core between total reflections
in the cladding). Between them are chaotic regions, and the SOS
corresponding to the core exterior is also totally chaotic. Light
can neither enter nor leave these regions and the pixelation is
such that the finite operator respects this invariance: because
the pixels are aligned with the borders between chaotic and
whispering-gallery regions, there can be diffusion along the bor-
der but not across it. The whispering gallery regions of the core
interior, which satisfy |P| > ncl/nc = 2.55/2.70, then remain
un-illuminated indefinitely as the finite transfer operator is it-
erated. Likewise, the whispering-gallery bands of the cladding
SOS remain uniformly illuminated as in the initial distribution.
There is mixing, however, between these invariant regions and
between the core exterior. The distribution in this chaotic mixing
region is still quite complex in row 1 of Fig. 4(b) (30 iterations),
but is approaching a steady state in row 2 (100 iterations) and
has effectively reached steady state in row 3 (450 iterations),
where the coarse-grained density is uniform on the scales used.

We perform analogous calculations for a deformed SIF, illus-
trated in Fig. 5(a). In this second example the core is elliptical

SOS(c) SOS(e) SOS(i)

Circular 

Cladding

Circular

Core

P

SIF-I

P
P

P

P
P

P
P P

P
P

P

s/smaxs/smax s/smax

Initial

1

2

3

(a)

(b)

Fig. 4. (a) A SIF cross-section with circular core and cladding
boundaries. (b) An initially uniform light distribution is ex-
cited from the cladding SOS and allowed to propagate in the
fiber. SOS distributions are shown for the propagation after (1)
30th, (2) 100th, and (3) 450th reflections.

and centered at (0.1, 0.3), with major axis 0.4, minor axis 0.2 and
with the major axis oriented at an angle of 135◦ to the x axis.
The cladding boundary is also deformed, of the form (13) with
ε = 0.05. This core has the same cross-sectional area as in the
previous example and we also choose refractive indices to have
the same values as used there.

As in the first example, there are invariant, regular whisper-
ing gallery regions in the cladding and core-interior SOSs, with
mixing, and chaotic regions between them and through the core
exterior SOS. The borders between regular and chaotic regions
are no longer simple, however, and diffusion due to pixelation
allows ray density to leak between them. This is evident in the
evolution shown in Fig. 5(b). This follows iteration of the same
initial distribution as used in the previous, circular example (uni-
form in the cladding SOS and vanishing on the core SOSs). As
in Fig. 4(b), rows 1, 2 and 3 respectively show the distribution
after 30, 100 and 450 bounces, but an additional row 4 with 1000
bounces is also shown as convergence to an effective steady state
is slower in this case.

There are two significant differences to the previous exam-
ple. First, and most importantly for later calculations, there is
diffusion into and across whispering gallery regions. This is es-
pecially evident around the island chain in the region of the core
interior SOS between whispering gallery and chaotic regions.
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SOS(c) SOS(e) SOS(i)
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4

Fig. 5. (a) A deformed SIF cross-section. (b) the evolution in
the fiber of a uniform distribution launched from the cladding
SOS. The SOS distributions are shown after (1) 30th, (2) 100th,
(3) 450th, and (4) 1000th reflections.

One can see that the initially narrow separatrix band of chaos
around the islands widens progressively with increasing itera-
tion, which is unphysical. Such diffusive contamination of the
trapped regions will eventually dominate and make simulations
of flux transfer invalid unless we truncate iteration numbers.
This aspect is pursued in the following section.

A less important, but nevertheless interesting, difference be-
tween this and the previous example is that there is a decaying
island-like feature, prominent after 100 iterations in row 2, sig-
nificantly reduced but still visible after 450 iterations, in row 3,
and essentially gone after 1000 iterations, in row 4. We term
this a “leaky resonance” and its decay is physical, not a result
of diffusion artefacts. It is associated with rays which refract
through the core every time they hit it. The focusing effect of the
core leads to a stable island structure which would remain in-
variant if there was total transmission at every bounce. However,
although the transmittance is close to unity, there is some loss
to reflection at each core-bounce and the island slowly decays
with iteration number as a result. Numerical diffusion into the
corresponding island is a much slower process than this (physi-
cal) decay. Its effect on calculations to follow will be to lead to
longer, oscillating transients in the calculation of power transfer
between cladding and core.

D. Accumulation of power in the core in a 2D projection

The finite operator method allows us to monitor flux transfer
across the core boundary to capture the power carried by rays
moving into and coming out of the core. The detailed 3D cal-
culation is set out in Sec. 4A but we first set up a simplified
version of the power transfer problem applied to a 2D projection.
This in particular establishes the limitations placed by numerical
diffusion into and out of regions of phase space occupied by
totally-internally reflected ray orbits (see Sec. 3C).

Power enters the core when a distribution incident on the
core exterior boundary is transmitted through. Power leaves the
core when a distribution incident on the core interior boundary
is transmitted out. These combine to provide the net transfer of
power into the core. We illustrate the procedure in this subsec-
tion by directly setting α = 0 in (11) so that we are effectively 2D
setting in which

T̄3D → T2D.

The net transfer of power from the cladding to the core at the
mth bounce in this simplified 2D problem is then written as

∆Φm
2D = 〈w, f̄m〉, (25)

where

w(s, P) =


0 on SOS(c)
Tint on SOS(e)
−Text on SOS(i)

(26)

and f̄m(s, P) is the density of rays arriving at the corresponding
boundary.

The cumulative transfer of power, up to and including the
Mth reflection, is

ΦM
2D =

M

∑
m=0

∆Φm
2D

=
M

∑
m=0
〈w, Tm

2D f̄0〉. (27)

The quantity of interest in applications is the net transfer of
power over the entire length of the fiber. The limit

Φ2D = lim
M→∞

M

∑
m=0

ΦM
2D, (28)

is related to this quantity but is not the same, as will be discussed
more fully in Sec. 4A, because it orders power transfer by the
number of bounces rather than distance z along the fiber. It is
used in this section, however, to illustrate the limitations placed
on simulations by diffusive effects.

We emphasize the approach to Φ2D as a limit in (28) for two
reasons.

1 The limit exists even though its formal geometric sum

Φ2D = 〈w, (I − T2D)
−1 f̄0〉 (29)

is ill-defined because the largest eigenvalue of T2D is equal
to 1. The geometric sum can be regularized, as w is nec-
essarily orthogonal to the subspace corresponding to unit
eigenvalues, but this procedure requires further discussion,
as provided in the next section.
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2 More importantly from a practical point of view, unphysical
diffusion artefacts may dominate the formal limit M→ ∞
when the core or cladding is deformed. We must in such
applications therefore restrict M to values for which numer-
ical diffusion has a sufficiently small impact. Estimation of
appropriate bounds for M is the subject of the rest of this
subsection.

(a)

(b)

Fig. 6. (a) ΦM
2D calculated for SIF with circular core and

cladding boundaries in figure 4. (b) ΦM
2D calculated for the

deformed SIF in figure 5

We illustrate the effects of numerical diffusion using the two
concrete examples described in Sec. 3C. The first example, with
circular core and cladding (see Fig. 4) has insignificant diffu-
sion and serves as a benchmark. The second example is the
case of deformed core and cladding illustrated in Fig. 5 and is
intended to be representative of generic problems where nu-
merical diffusion plays a more prominent role. The evolution
of ΦM

2D with M is shown in figure 6(a) for the benchmark, cir-
cular core-cladding problem. We see that ΦM

2D has effectively
converged to its asymptotic value Φ2D ≈ 0.146 after the order
of 100 reflections. Increasing pixel dimensions from N = 200
to N = 1000 leads to some convergence of this value towards a
limit, but does not qualitatively change the picture.

In figure 6(b) we show an equivalent calculation for the more
generic example with deformed core and cladding. Here the
border between regular whispering gallery regions and chaotic
regions is no longer horizontal in phase space (see Fig. 5) so there
is diffusive transport between the two. Unlike for the benchmark
problem, ΦM

2D does not reach a simple plateau here, but contin-
ues to drift upwards even after the initial transients have died
out for M between about 30 and about 100. Furthermore, there is
a marked difference between the calculations with N = 200 and
with N = 1000, with the former showing significantly more drift.

This is because diffusion due to pixelation allows power to enter
the invariant and totally internally reflected whispering gallery
regions. This is an unphysical effect which can be postponed
to higher reflection numbers, but not eliminated, by using finer
pixelation. In practice therefore we must restrict our calculations
to values of M where these diffusion artefacts are not dominant.
For the simulations illustrated in figure 6, calculations of flux
become inaccurate once M is larger than a few hundred, for
example.

4. EVOLUTION OF DENSITIES IN 3D GEOMETRIES

In this section, we extend the discussion to treat the fully 3D
evolution of power densities in SIFs, concentrating particularly
on the calculation of asymptotic power in the core. We illustrate
the calculation first with a toy model in Sec. 4B and then for
the special case of non-concentric circular core and cladding
geometries in Sec. 4C — both of these problems are not signifi-
cantly limited by numerical diffusion, allowing us to illustrate
underlying procedure in a simpler setting before application to
more general problems in Sec. 4D.

A. Power transfer in a 3D structure
The net transfer of flux to the core over the fiber’s entire length
in a fully 3D representation of ray dynamics can be written in
terms of the function w defined in (26) as

Φ3D =
∫ ∞

0
〈w, f (z)〉dz, (30)

using the notation of Sec. 3C and where we suppress arguments
(s, P) in densities such as f (s, P, z) in this section. We have
proposed in Sec. 3D using a Laplace representation in which we
replace

f (z)→ f̄ (α).

In this context we may formally write

Φ3D = lim
α→0
〈w, f̄ (α)〉. (31)

We have seen in Sec. 3D, however, that numerical diffusion
arising from pixelation may require us in deformed geometries
to constrain iterated densities to a finite number of bounces. In
this context we must approach the limit α → 0 in the Laplace
domain with care, as we now outline.

Let us define

Φ̄M
3D(α) =

M

∑
m=0
〈w, f̄m(α)〉, (32)

which calculates the net transfer of flux to the core, up to and
including a fixed number M of bounces. In problems without
numerical diffusion, we evaluate (31) by letting both M → ∞
and α → 0, however this must be done with care as the limits
do not commute, as established in the next subsections. The
required quantity (as defined by (31)) is

Φ3D = lim
α→0

lim
M→∞

Φ̄M
3D(α).

This is to be distinguished from the limit

Φ2D = lim
M→∞

lim
α→0

Φ̄M
3D(α),

obtained by setting α to zero before iterating in bounce num-
ber, which is in fact the quantity previously calculated for a 2D
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projection of dynamics (and similarly denoted) in Sec. D (see
(27)).

The relevance of
Φ3D 6= Φ2D (33)

in practical terms is that, if we truncate M to make allowance for
diffusion artefacts, we must ensure that α remains sufficiently
large that the truncation does not matter, but at the same time
small enough to approximate (30) sufficiently well. Such a pro-
cedure is first applied to a toy model in Sec. 4B and then in
Sec. 4C to a SIF with circular core and cladding boundaries. Both
of these problems serve as benchmarks in which diffusion is
not significant and in which we may compare our M-truncated
calculation with the true limit M → ∞. Finally, in Sec. 4D, the
calculation is applied to the deformed SIF where diffusion is
present and truncation in M is required.

B. Power transfer in a toy model
We first illustrate the relevance of the order of limits in (33), and
the corresponding impact of truncating M, using a toy model
for which the transfer operator is by definition a finite matrix
and there is no diffusion mechanism.

Fig. 7. A toy model consisting of a 2D waveguide for z-
propagation along the fiber.

The model consists of a 2D waveguide, illustrated in Fig. 7.
The SOSs here are zero-dimensional, so there are no (s, P) coor-
dinates and the entire boundary of core or cladding is described
by canonical coordinates (z, Pz). As usual, Pz is a global constant
of motion, and is suppressed in our notation. In fact, we restrict
our attention to densities that are symmetric about the middle
axis of the waveguide so that the cross-sectional SOSs each con-
sist of a single point. The transfer matrix reduces to the 3× 3
matrix

T̄3D(α)→ T̄toy(α) =


0 Re−αb T e−αb

e−αb 0 0

0 T e−αa Re−αa

 . (34)

Here, T and R are respectively the reflectance and transmit-
tance of a ray hitting the core-cladding boundary and ∆z = a
and ∆z = b are the vertical displacements experienced of a ray
traversing the core or the region between core and cladding.
All of these would depend on Pz, but we reiterate that Pz is a
constant of motion and so they are effectively fixed for the rest
of this discussion.

The net transfer of flux to the core is once again represented
by (30) except that w is now the finite vector

w =
[
0 T −T

]
. (35)

(We reuse symbols such as Φ3D and Φ2D here even though the
underlying geometries are now respectively two-dimensional
and one-dimensional.) Since there are no diffusion artefacts in
this model, we may pass directly to the limit M→ ∞, allowing
us to write, for example

Φ3D = lim
α→0
〈w,

1
1− T̄toy(α)

f̄0〉. (36)

The gap between Φ3D and Φ2D in (33) is directly explained in this
context by representing the right-hand side of (36) using a basis
of eigenvectors of T̄toy(α). The gap is in particular determined
by the leading eigenvalue λ0(α) which has the limit

lim
α→0

λ0(α) = 1. (37)

We note that w is necessarily orthogonal to the corresponding
eigenvector, which we denote as u0(α), in this limit:

lim
α→0
〈w, u0(α)〉 = 0. (38)

Using l’Hôpital’s rule, we therefore find that the contribution of
this leading eigenvector to (36) is of the form

δΦ = const.×
〈w, u′0(0)〉

λ′0(0)
,

where the primes denote a derivative with respect to α, evalu-
ated at α = 0. An analogous evaluation of the truncated sum
Φ̄M

3D(α) has no contribution from this leading eigenvector in the
limit α → 0, because of (38), while all other eigenvectors con-
tribute identically in the limit M → ∞. Therefore this leading-
eigenvalue contribution is the origin of the gap

Φ3D −Φ2D = δΦ

in (33) that arises from the exchange of limits α→ 0 and M→ ∞.

α=10
-1

α=10
-2

α=10
-3

α=10
-4

α=1

Fig. 8. The relevance of the order of limits α → 0 and M → ∞
in Φ̄M

3D(α) is illustrated for the toy model. For each α, Φ̄M
3D(α)

approaches a plateau as M → ∞, whose level in turn ap-
proaches Φ3D as α → 0. However, for smaller values of α,
Φ̄M

3D(α) first approaches a higher-value plateau for intermedi-
ate M, followed by a transition to the final plateau that occurs
for larger values of M as α decreases. As α → 0, the level of
this intermediate plateau approaches Φ2D.

We now set out the ramifications of this gap for calculations
of the net transfer of flux when M is truncated. We perform
concrete calculations for the special case f̄0 = [1, 0, 0], so that the
initial distribution illuminates the cladding boundary only, and
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for a = 0.2, b = 0.5, R = 0.7 and T = 0.3. Figure 8 plots the
resulting Φ̄M

3D as a function of M for several values of α. For each
fixed α, Φ̄M

3D approaches a plateau as M → ∞. As α decreases
these plateau values approach

Φ3D =
a

a + 2b
=

1
6

,

which can be obtained directly from (36). On the other hand, if
M is capped at some possibly large but fixed value, as it must
be in problems with diffusion, a different limit

Φ2D =
1
3

,

indicated by a dashed line in Fig. 8, is obtained as α → 0. The
physical result Φ3D takes account of the extent of the core relative
to the cladding, whereas Φ2D provides a topological weighting
by number of bounces of each of the SOSs and is independent
of geometrical dimensions a and b.

In this toy model it is unproblematic to take the limit M→ ∞,
or indeed to pass directly the limiting value in (36), in order to
find the geometrical result Φ3D. In problems limited by numeri-
cal diffusion, however, we must estimate Φ3D while keeping M
capped. This requires us in turn to constrain α to small but finite
values: a more systematic discussion of the procedure used to
achieve this is given in Appendix II.

C. Power transfer in a SIF with circular core and cladding
We now outline how the power transport calculation works in
the case of a SIF with circular core and cladding, using the spe-
cific geometry and initial conditions illustrated in Fig. 4 as a con-
crete example. Recall that there is no diffusion into whispering-
gallery regions in this scenario, so we are free to take the limit
M → ∞ straightforwardly. However, because T2D has many
eigenvalues equal to unity (with eigenvectors supported in the
whispering gallery regions of phase space and increasing in
number as the pixelation is made finer), direct evaluation by (36)
is not as simple as it was in the previous toy model.

We therefore evaluate Φ3D by investigating the behavior of
Φ̄3D(α) for large M and small α, which is in any case is the
approach we are compelled to use later for deformed SIFs. This
behavior is presented in Fig. 9, providing an analogue of the
calculations that were presented in Fig. 8 for the toy model. The
greater computational complexity of this SIF example prevents
us from pushing the calculations to iteration numbers as large as
used in the previous toy model, but nevertheless the qualitative
behavior is very similar. As α decreases, Φ̄3D(α) saturates in
Fig. 9 with increasing M at limiting values that get ever closer
to Φ3D. However, for the smallest values of α illustrated in
Fig. 9, the maximum bounce number M must be much larger
than should be allowed for deformed SIFs if diffusion is not to
dominate. We should therefore estimate Φ3D using calculations
confined to moderately small α, the detailed procedure for which
is set out in Appendix II.

D. Power transfer in a SIF with deformed core and cladding
Having established a procedure that enables us in problems
without significant diffusion to estimate Φ3D, using moderate
truncations in M, we now apply it to deformed SIFs, where
diffusion is present. Plots of Φ̄3D(α), as a function of M are
shown in Fig. 10 for several values of α. This is the analogue
of Figs. 8 and 9 for the fiber geometry and initial condition
illustrated in Fig. 5.

α=10
-1

α=10
-2

α=10
-3

α=10
-4

α=1

Fig. 9. The development of Φ̄M
3D(α) with increasing M is

shown for a number of values of α, similar to Fig. 8 but here
for the SIF example with circular core-cladding boundaries. A
corresponding plot with α = 0 here reproduces Fig. 6(a).

The main difference from previous calculations is that, be-
cause there is numerical diffusion, there is no clear intermediate
plateau at a fixed value Φ2D as α decreases. Instead, Φ̄3D(α)
continues to drift upwards as power diffuses out of the whisper-
ing gallery region of the cladding SOS and into the whispering
gallery region of the core interior SOS. Nevertheless, the extrap-
olation procedure outlined in Appendix II allows us to obtain a
physically meaningful estimate for Φ3D. We fix M at values large
enough that there is convergence to an effective steady state (as
determined from Fig. 6, for example), but small enough that
diffusion does not dominate. We then extrapolate to α = 0 from
values of α to that are moderately small, but not so small that
Φ̄3D(α) becomes sensitive to M. In the figure, the result is shown
as an estimate Φ3D = 0.0672 for the power flux transferred to
the core from the initial cladding excitation.

α=10
-1

α=10
-2 α=10

-3

α=10
-4

α=1

Fig. 10. An analog of Figs. 8 and 9 is shown here for the SIF
example with deformed cladding and core. Numerical diffu-
sion results in sustained drift that requires Φ3D to be estimated
while limiting M to a few hundreds of reflections. A corre-
sponding plot with α = 0 here reproduces Fig. 6(b).

5. EXAMPLES WITH INPUT DISTRIBUTIONS

We have established in Sec. 4 the proposed method for estimat-
ing power transfer to the core of a SIF, using simplified initial
conditions. In this section we illustrate the application to a wider
range of problems, describing in particular the influence of input
distribution on the result.
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(a)

f0(s,P,z,Pz)

(b)

z

Fig. 11. In (a), the relation between first-arrival density
f0(s, P, z, Pz) and input density ρ(x, y, Px, Py) is illustrated. In
(b), we illustrate the transformation from integration over z to
integration over a chord in the 2D projection, which is used in
forming an initial condition in the Laplace domain.

A. Initial conditions from input distributions
The input for the calculation of power transfer to the core, as set
out in Sec. 4, is the density f0(s, P, z, Pz) of rays first arriving at
the vertical boundary, before further reflection takes place. To
complete the model we should relate this to the physically more
accessible distribution of power injected at the input face z =
0: we denote this by ρ(x, y, Px, Py), where Cartesian canonical
coordinates (x, y, Px, Py) are used to parameterize rays on the
SOS defined by z = 0. Using Liouville conservation of volume,
these densities are simply related by

f0(s, P, z, Pz) = ρ(x, y, Px, Py),

where coordinates (x, y, Px, Py) provide the initial conditions on
the input face for the ray arriving at the vertical boundary with
coordinates (s, P, z, Pz) (see Fig. 11(a)).

In fact, the calculation in Sec. 4 takes as input the partially
integrated density

f̄0(s, P, α, Pz)
∣∣
α=0 =

∫ ∞

0
f0(s, P, z, Pz)dz.

In practice the integration over z here is over a finite interval
for given (s, P, Pz), which can in turn be transformed to an in-
tegral over a chord in a 2D projection arriving at the projected
coordinates, and using

dz =
Pz√

n2 − P2
z

dl,

where dl denotes a length element over the projected chord (see
Fig. 11(b).

B. Variation of input distribution
We now illustrate the effect of input distribution on the asymp-
totic power in the core using the examples of Gaussian distri-
butions localized in different parts of the input face shown in
Fig. 12. There are three cases, labelled G1, G2 and G3 respec-
tively: G1 is localized in the core, G2 is localised in the cladding
and G3 is also localised in the cladding, but further from the
core and nearer the cladding boundary. These examples use the
SIF-II geometry whose phase space is illustrated in Fig. 5, and
the corresponding initial conditions f̄0(s, P, α = 0, Pz) defined
by them are shown to the right of Fig. 12, in each case for the
value Pz = 0.75ncl.

The three examples are chosen to be localised initially in
distinct parts of phase space. G1 defines an initial condition
f̄0(s, P, α = 0, Pz) that is concentrated in SOS(i). G2 and G3 both

(a)

(b)

(c)

Fig. 12. Transfer of Gaussian distributions in the input face of
the fiber G1, G2, and G3 to the curved boundary SOSs of SIF-II
with Pz = 0.75ncl.

lead to f̄0(s, P, α = 0, Pz) concentrated in SOS(e) and SOS(c), but
with the case G3 showing greater overlap with the whispering
gallery region of orbits trapped in the cladding phase space (red
regions in the SOS(c) components of Fig. 5, whereas case G2 is
initially localised primarily in the chaotic region (green regions
in the SOS(c) components of Fig. 5).

For each of these examples we calculate the asymptotic power
in the core following the method set out in Sec. 4, once for
Pz = 0.75ncl and then repeating the calculation for Pz = 0.98ncl,
which is nearer the critical angle at which the core becomes
completely guiding. The resulting plots of Φ̄M

3D against M are
shown in Fig. 13, for a value of α = 0.01 that is small enough
to show qualitatively the correct physical result (although the
more detailed limiting procedure of Appendix II is used to find
optimally accurate estimates).

We consider first the case Pz = 0.75ncl, shown by solid
curves in Fig. 13. This is the value of Pz previously used to
illustrate phase space propagation in Fig. 5 and initial conditions
f̄0(s, P, α = 0, Pz) in Fig. 12. A striking aspect of these results is
that the final outcomes of G1 and G2 are relatively close, while
G3 shows an asymptotic power in the core that is somewhat
lower than both. This is because even though G1 and G2 are
respectively almost completely localized in the core and almost
completely localized in the cladding, the core interior phase
space is dominated by chaos and strongly coupled to the chaotic
region of the cladding phase space. The asymptotic distribution
for both initial conditions is then uniformly spread over this
joint chaotic region. On the other hand G3 has a significant
component that is initially localized in the whispering gallery
region of the cladding, remaining forever inaccessible to the core
and leading therefore to an asymptotic power in the core that is
lower. Overall, because the core interior phase space is largely
chaotic (see SOS(i) components of Fig. 5) it is strongly coupled
to the cladding phase space and largely unguided as a result.

We also calculate net accumulation of power in the core for
the case Pz = 0.98ncl, shown by dashed curves in Fig. 13. We
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have not shown explicit phase space plots for this value of Pz
but point out that the main differences to the previous case
are that the whispering gallery region of the core is larger (the
core is closer to being guiding) and the cladding phase space
has an area that is a smaller fraction of the combined core and
cladding phase space areas (P1 in Fig. 3 is relatively smaller
than P2). Compared to the previous calculations there is now
a much greater difference between G1 and G2: the whispering
gallery region of the core is relatively larger so the core is closer
to being guiding and a significant fraction of the light starting
in the core remains decoupled from the cladding. On the other
hand, G2 and G3 show relatively closer asymptotic powers in
the core: since the cladding phase space has a smaller overall
weighting, the difference in the extent to which the whispering
gallery region of the cladding is excited becomes less significant.

Fig. 13. The calculation of asymptotic power in the core is
illustrated for input distributions G1, G2, and G3, for Pz =
0.75ncl (solid curves) and Pz = 0.98ncl (dashed curves). These
plots are analogs of Fig. 10 but for a fixed value of α = 0.01,
chosen to be small enough that the asymptotic limit of the
plots conveys qualitatively the required physical result.

6. CONCLUSION

A finite operator model has been used to model transport of
power between core and cladding in optical SIFs. The model is
based on a ray-tracing description of power transport and uses
a coarse graining of phase space obtained by pixelating SOSs to
reduce the problem to finite matrix calculations. By monitoring
the transport of power flux across boundaries between core and
cladding, the formalism can naturally be adapted to provide the
net transfer of power between core and cladding following an
initial excitation, which is of prime interest in applications.

The method can in particular be applied to deformed ge-
ometries with chaotic ray dynamics and complex borders be-
tween trapped and mixing regions of phase space. In the general
case, however, diffusion artefacts brought about by the coarse-
graining of phase space limit the accuracy of the simulation for
a given pixel size. We have established a procedure to extract
physically realistic estimates of power transfer in the face of
these limitations and this has been benchmarked using simpler
geometries that are not diffusion dominated.

We note that, although applied to lossless, gainless models
in this paper, the underlying formalism can be adapted to treat
light propagation in fibers with gain and/or losses, and it offers

a numerically robust basis on which to design optical fibers for
amplifier and fiber sensing applications.
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APPENDIX I: PROPAGATION IN THE COARSE-GRAINED
PHASE SPACE

In this appendix we describe the basic mechanism that creates
numerical diffusion in pixelated propagation of power densi-
ties. In concrete calculations we use the same example of an
unstructured fiber as used in Sec. 3A

The SOS distribution created by iterating the finite operator
and that obtained directly from ray-tracing are different after
more than one bounce. Figure 14 illustrates the difference be-
tween them by showing the power arriving in target pixels from
a single initial pixel after one (Figs. 14(a) and 14(b)) and two
(Figs. 14(c) and 14(d)) reflections. As opposed to Fig. 2 this is for
a (still rather coarse) 50× 50 pixelation and for a 2D cross-section
of an unstructured fiber described by (13). The ray-tracing ver-
sion is obtained by multiply iterating the individual rays in the
initial pixel and counting the fraction that ends up in each target
pixel. For one iteration this simply repeats the calculation used
to form the finite transfer operator and gives an identical result
(Fig. 14(b)). The distributions obtained after two iterations, how-
ever, are different. In particular, the distribution obtained by
iterating the finite transfer operator (Fig. 14(d)) reaches pixels
that the directly ray-traced distribution (Fig. 14(c)) does not. This
is a manifestation of diffusion brought about by coarse-graining
the dynamics.

(a)

p

s/smax (b) s/smax

p

(c)

p

s/smax (d) s/smax

p

Fig. 14. (a) A set of rays from a pixel traced for the first bounce.
(b) The corresponding intensity map of the ray distribution
in a pixelated SOS with N = 50. (c) Intensity map after ray-
tracing twice (d) Intensity map after iterating with T̄2D on the
same initialization twice.

The directly ray-traced density is a more faithful represen-
tation of the true density but rapidly becomes infeasible as the
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number of iterations increases in problems with ray-splitting,
such as a SIF, because of exponential proliferation of rays. The
finite transfer matrix can easily be iterated, however, and pro-
vides a practical means of finding densities as long as we can
mitigate the effects of diffusion artefacts.

To illustrate the significance of these artefacts we show in
Fig. 15 a comparison between ray-traced and transfer-operator-
iterated densities for a more realistic 300 × 300 pixelation of
the same unstructured-fiber phase space. The deformed bound-
ary in this example produces a mixed SOS, and an initial pixel
is placed in the chaotic region of the SOS. The rays from the
same pixel are traced for 150 reflections and the distribution
obtained is compared with that obtained from the 2D finite op-
erator. (Note that the ray tracing calculation is feasible here
because there is no ray-splitting, but the corresponding calcula-
tion in a SIF would not be.) In the ray-traced version shown in
Fig. 15(a), the separation between the chaotic sea and the regular
islands has been maintained. By contrast, the density produced
by the finite operator method. shown in Fig. 15(b), leaks into
the regions occupied by regular islands of the true dynamics, as
highlighted by the circles. These diffusion artefacts can be de-
creased by using finer pixelations but can never be eliminated in
practice so we must in our final calculations constrain iteration
numbers so that such artefacts are not dominant.

(a) s/smax

p

(b) s/smax

p

Fig. 15. Comparison between (a) a ray-traced and (b) a T̄2D
iterated intensity map in a pixelated (N = 300), and mixed
SOS. A single pixel in the chaotic region was initialized and
propagated for 150 bounces around the deformed boundary.
The separation between the regular regions and the chaotic sea
is maintained in the ray-traced SOS but in the T̄2D iterated SOS
the intensities in the two regions can overlap, as highlighted
by the circles.

APPENDIX II: ESTIMATES OF POWER TRANSFER US-
ING FINITE NUMBERS OF BOUNCES

In each of the three example structures used in Sec. 4 to illustrate
the calculation of flux transfer to the core (the toy model, the SIF
with circular core and cladding and the SIF with deformed core
and cladding), we provided estimates of Φ3D obtained while
restricting the maximum number of bounces M to moderately
large values, constrained so that numerical diffusion should not
dominate. In this appendix we provide details of the quantitative
procedure used to achieve such estimates.

We begin with the toy model, for which complete, effectively
analytical results are available for all quantities of interest and
there are no diffusion artefacts. In Fig. 16(a) we plot Φ̄3D(α)for
this toy model as a function of α for selected values of M. As α
decreases, Φ̄M

3D(α) appears to converge to a fixed value approxi-
mating Φ3D until a layer of very small values of α is reached in
which Φ̄M

3D(α) increases sharply towards Φ2D. Before this layer

(a)

(b)

(c)

Fig. 16. For each of the three example structures discussed
in Sec. 4, we show the variation of Φ̄3D(α) with α for selected
values of M. In the last two examples these values of M are
chosen in the range where numerical diffusion would not yet
dominate the flux transfer calculation.

is reached (as α decreases), the value of M is large enough that
the geometric sum implicit in (32) has converged to its limiting
value and the result is insensitive to M — extrapolating from
this exterior region allows us to approximate Φ3D effectively
(see insert).

In the toy model, this extrapolation procedure simply repro-
duces the result that can be obtained by passing directly to the
limit M→ ∞ as in (36). For 3D SIFs, however, direct evaluation
is harder, or not appropriate, so we are restricted to the extapola-
tion procedure. The corresponding plots are shown in Figs. 16(b)
and 16(c), respectively for the examples with circular and de-
formed core and cladding. In these examples we restrict M to
values in the hundreds so that diffusion artefacts are not impor-
tant and Φ̄3D is similarly estimated by extrapolating to α = 0
from small values of α but excluding the layer of extremely small
values in which the geometric sum implicit in (32) is sensitive to
the finite value of M. Note that the plots and extrapolation are
similar in both of these cases, despite the qualitative differences
between Figs. 9 and 10 arising from diffusive drift (or lack of it).
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