
Comparative study of state-of-the-art 

machine learning models for 

analytics-driven embedded systems 
 
 
 
 

 
 
 
 
 
 

Master of Science Thesis  
University of Turku 

Department of Future Technologies  
Faculty of Science and Technology 

2019 
Sushri Sunita Purohit  

 
Reviewers: 

Ph.D. (Tech.) Tomi Westerlund  
Prof. Tapio Pahikkala 

 
  
 
  
The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service.  



 i 

UNIVERSITY OF TURKU Department of Future Technologies   Sushri Sunita Purohit: Comparative study of state-of-the-art machine learning models for analytics-driven embedded systems  Master of Science Thesis, 63 p., 5 app. p. Faculty of Science and Technology March 2019   
Analytics-driven embedded systems are gaining foothold faster than ever in the current digital era. The innovation of Internet of Things(IoT) has generated an entire ecosystem of devices, communicating and exchanging data automatically in an interconnected global network. The ability to efficiently process and utilize the enormous amount of data being generated from an ensemble of embedded devices like RFID tags, sensors etc., enables engineers to build smart real-world systems. Analytics-driven embedded system explores and processes the data in-situ or remotely to identify a pattern in the behavior of the system and in turn can be used to automate actions and embark decision making capability to a device. Designing an intelligent data processing model is paramount for reaping the benefits of data analytics, because a poorly designed analytics infrastructure would degrade the 
system’s performance and effectiveness. There are many different aspects of this data that make it a more complex and challenging analytics task and hence a suitable candidate for big data. Big data is mainly characterized by its high volume, hugely varied data types and high speed of data receipt; all these properties mandate the choice of correct data mining techniques to be used for designing the analytics model. Datasets with images like face recognition, satellite images would perform better with deep learning algorithms, time-series datasets like sensor data from wearable devices would give better results with clustering and supervised learning models. A regression model would suit best for a multivariate dataset like appliances energy prediction data, forest fire data etc. Each machine learning task has a varied range of algorithms which can be used in combination to create an intelligent data analysis model.   In this study, a comprehensive comparative analysis was conducted using different datasets freely available on online machine learning repository, to analyze the performance of state-of-art machine learning algorithms. WEKA data mining toolkit was used to evaluate C4.5, Naïve Bayes, Random Forest, kNN, SVM and Multilayer Perceptron for classification models. Linear regression, Gradient Boosting Machine(GBM), Multilayer Perceptron, kNN, Random Forest and Support Vector Machines (SVM) were applied to dataset fit for regression machine learning. Datasets were trained and analyzed in different experimental setups and a qualitative comparative analysis was performed with k-fold Cross Validation(CV) and paired t-test in Weka experimenter.   Keywords: Embedded system analytics, IoT, Data mining, Machine learning, WEKA   
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Chapter 1  
1.1 Introduction 
 

“Information is the oil of the 21st century, and analytics is the combustion engine ” 
Peter Sondergaard, Gartner 

 
Integration of embedded systems into the field of electronics design has been increasingly 
ubiquitous, ranging from modern everyday appliances like mobile phones, Radio Frequency 
Identification (RFID) tags in home appliances, modems, remote controls, watches etc. to 
complex system development like automobiles, space researches, power plants etc. Internet of 
things (IoT)  has also emerged as an evolving technology which has found its place in 
embedded electronics domain. With the rapid growth and advancement in IoT and embedded 
electronics, a network of interconnected devices has been created, which has revolutionized 
the concept of networking and data communication but it comes with a price, the challenge of 
handling the massive amount of data these interconnected applications generate. With 
increasing demand for energy efficient, reliable, scalable and faster applications, the need for 
turning data into useful information and knowledge has attracted a great deal of attention in 
the research community, which has led to the emergence of analytics-driven system design.  
 
Designers combine the data mining techniques into the embedded system design to make the 
application context-aware and be able to predict the system's behavior. The implementation of 
analytics differ depending on the system usage, in some cases, the analytics is performed in 
the cloud to improve the embedded-systems performance while in some it runs directly in the 
embedded system. The initial step in the direction of analytics design is the selection of the 
appropriate data mining technique to ensure system robustness, reliability and efficient cost 
management in the architecture, design, and maintenance.  
 
In this thesis, a qualitative comparative analysis of state-of-art data mining algorithms using 
datasets generated by embedded devices is presented. The objective of this study is to identify 
the optimal data mining models specific to the dataset.  
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1.2 Organization of thesis 
 
The rest of the thesis has been organized as follows. Chapter 2 focuses on the theoretical 
foundations of analytics-driven embedded system design. The first part of the chapter covers 
the generalized workflow of the analytics design for embedded systems, here different steps 
and the tasks performed during the process is explained. The second part of the chapter covers 
the basic concept and principle of the state-of-art machine learning algorithms. In chapter 3,  
dataset chosen for the study and the toolkit used are described and an overview of the 
experimental setup is illustrated. Chapter 4 covers experimentation in detail and initial result 
of the analysis.  Finally, in chapter 5 the t-test analysis results are scrutinized and concluding 
remarks are presented.  
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Chapter 2  
 2.1. Workflow in analytics-driven system design  
 Typically, the process of data mining starts with problem definition which sets the path for 
data modeling. The key aspects of a problem definition are clarity of the business requirement 
and a cost/benefit estimate [9]. Knowledge of business requirement and the way data can be 
used to achieve the desired goal is the stepping stone in the process of analytics. The next 
significant step is the collection of data which determine the rest of the step to be followed in 
the data modeling. A pictorial representation of the sequence of steps designers follow to 
build an embedded system analytics model to accomplish the expected outcome is shown in 
Figure 2.1. 
 

 
Figure 2.1: Analytics-driven system design workflow 

 
2.1.1. Data collection 
 
Applying a systematic approach to collecting the raw data is foundation step in the workflow. 
In embedded computing domain, data is being collected from a varied range of sources and in 
distinct forms. For smart devices embedded with electronics, software, sensors, actuators, 
each event detection generate data and can be of various formats such as text, spreadsheet, 
image, audio, video, geospatial, web, Extensible Markup Language (XML) and Hierarchical 
Data Format (HDF) for scientific data, and Controller Area Network (CAN) for automotive 
data. Data from multiple sources must be integrated and stored so that it is accessible for 
training the model. In case the IoT devices, multiple devices are part of a Wireless Sensor 
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Networks (WSN) creating a massive volume of data. Data collection schemes in devices 
connected through WSN or any embedded devices that operate in-situ must fulfill following 
objectives: a) minimal energy consumption, b) minimized latency and c) 
optimized  CPU usage [3].  
 
Different data collection methodologies have been proposed keeping the mentioned goals in 
mind. Data aggregation is a basic operation in WSN since it is typically restricted in hardware 
infrastructure and communication recourses. Tree-based technique and cluster-based 
technique are the two most commonly used data collection methodologies adopted in 
embedded systems analytics workflow. As proposed in [4], Tree-Based Data Collection 
Scheme(TBDCS) is a distributed data collection method which establishes a tree structure 
with intermediate nodes termed as Forwarding Nodes Set(FNS). These intermediate nodes act 
like data aggregators to transmit data from sensor nodes back along the tree. Through 
different simulations and scrutiny, it has been inferred that TBDCS significantly reduces 
transmission latency and network congestion.  
 
Cluster-based data collection method has been claimed to be effective in systems which are 
limited in energy consumption and network bandwidth [5]. In this technique, a cluster head is 
designated among a group of sensor nodes and similarly multiple disjoints sets are formed 
with a group of sensor nodes.  Sensors in the cluster send information to the cluster head, The 
cluster head suppresses the local redundancies and communicates the compressed data to the 
main system. In this process, the cost of sending redundant data is reduced thereby preserving 
energy and minimizing the scalability constraint. 
 
Another challenge of data collection is the structure of data that determine various 
characteristics of the dataset such as multivariate, sequential, time-series, image signals etc. In 
addition to that, each dataset can contain a heterogeneous list of attributes. All these aspects 
of data steer the choice of machine learning technique to be used for analysis. 
 
 2.1.2. Data pre-processing 
 The bitter truth of data science is the data collected from real-world applications are not 
machine learning ready. Real data is low in quality in terms of completeness, accuracy, and 
consistency, hence unreliable to be used to design an intelligent analytics model. The data 
collected needs to be pre-processed before applying any machine learning algorithms. Pre-
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processing the data has become the most essential and expensive step in the data mining 
workflow. Due to growing demand for smart systems with multiple data generating nodes, 
designing a reliable and high performing predictive model has become paramount. Pre-
processing is part of the iterative data mining workflow and are optimized by multiple runs of 
the workflow and are greatly determined by the statistics generated by the algorithms used to 
train the data. One must undergo different phases of data pre-processing to achieve a 
predictive data model. 
 
The first stage of preparing the data is to understand the features of the raw data to identify 
outliers, noise etc. Descriptive data summarization reveals the raw data characteristics. 
Measurement of central tendency and dispersion of data are standard techniques used to 
describe the anomalies in data. Mean, median, mode, and midrange are properties that define 
the central tendency of a dataset and measures of quartiles, interquartile range and variance 
determine how disperse the data is [7]. During this process, the main features of the data can 
be identified which are essential for proceeding to the next stages [6] 
 
Another phase of preparing the data is feature selection. Raw data contain magnitude of 
attributes and it is crucial to filter out those attributes which do not have a relevant 
contribution to the machine learning process. Discretization is one way of transforming the 
data to suit some of the specific classification and clustering algorithms. In this process, a 
large number of data values (numeric attributes) are converted into a smaller number of 
discrete values. These methods are used for attribute reduction by grouping the continuous 
attributes into a range of values. Applying discretization to data enhances the predictive 
accuracy and boost the performance as well. Discretization algorithms can be categorized as 
boolean reasoning,  equal frequency binning, entropy-based discretization [7]. Depending on 
the complexity of the raw data, additional data transformation is needed to optimize the 
training process. Projection is one of the technique used to project training data such as spatial 
data in lower dimensional spaces, but still preserves the inherent relationships in the data. 
Principal component analysis another way of transforming data into a set of values of linearly 
uncorrelated variables called principal components. Section 2.2 covers the details of some of 
the popular  pre-processing algorithms. 
 2.1.3. Data modeling 
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After the data has passed the initial pre-processing stage, mining model is built using the 
transformed data and machine learning algorithms. This model forms the base to extract 
patterns. Discovery of patterns is mainly determined by the selection of training data, type of 
algorithms used and how the algorithm is configured[8]. Different dataset require specific 
machine learning tasks, for example, deep learning algorithms should be used in case of 
complicated dataset like face recognition, time-series datasets like sensor data from wearable 
devices need clustering and classification learning models, multivariate dataset like 
appliances energy prediction data, forest fire data etc. might work best with regression 
learning tasks.  
 
Classification 
Classification machine learning is used to predict discrete data points or class labels for the 
data instance based on the prediction model called classifier. A classifier is constructed by 
training on the dataset through a series of machine learning tasks. The simplest classification 
type is of a binary class labeled data model. In  binary classification the observed instance can 
only be categorized into two class labels. Classification algorithms find relationship between 
the value the attributes which are identified as predictors and a discrete output value  such as 
color, type or true/false, using the training set. The model is designed based on these 
relationships and then applied to the real time dataset to predict the class label.  
 
Regression 
Regression data modeling determine relationships between the value the attributes which are 
identified as predictors and a continuous output value. A continuous output variable is a real-
value, such as an integer or floating point value such as size, amount etc. There are several 
machine learning algorithms which can be used for both regression and classification such as 
decision trees, support vector machine and artificial neural networks but there some specific 
algorithms which are only meant for regression like linear regression and  addictive 
regression.  
 
Clustering 
Clustering is used when the class label is unknown or not certain. The aim is to segregate 
dataset instances with similar traits into groups and categorize them into clusters by dividing 
the data instances in the dataset into a number of groups such that data points within a group 
are more similar to other data points in the same group than those in other groups.  
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A mining model is generated by performing a series of adjustments to the algorithms and data 
creating different results which are then evaluated and compared to select the optimal 
analytics setup. During this process, both the mining structure and mining model are updated 
after each adjustment. Dataset structure mainly consists of data source definition, list of 
instances and list of features. A mining model architecture consists of metadata, data mining 
results in form of patterns and a data binding structure to the original data. The metadata gives 
the specifics of the model such as the name of the model, mining structure used for the model, 
machine learning algorithms used to analyze the data. Each model is characterized by two 
properties. Algorithm property defines the algorithm that is used to create the model. It can be 
set during the data analysis phase and can be changed later but the model must be reprocessed 
to generate the accurate pattern. Another property is the usage which specifies how each 
attribute is used by the model [8].  
 
Each machine learning task has a varied range of algorithms which can be used in 
combination to create an intelligent data analysis model. Section 2.2 covers the concepts of 
some of the  state-of-art algorithms.  
 
 2.1.4. Data evaluation 
 Data evaluation is the key step to ensure the credibility of a model and is a cumbersome 
process. Data evaluation begins by setting up a systematic evaluation method to explore how 
different models structure the data and do a comparative analysis. Selection of a discrete test 
data set is pre-requisite for trustworthy evaluation since performance on the training set is not 
a good indicator of future performance. The reason is that the model has been trained from the 
very same training data and an estimate of performance based on that data will be optimistic 
and not realistic.  
 
Over the years, different evaluation methods have been proposed for different category of 
data mining models. Cross-validation, hold out and random subsampling and bootstrap are the 
most commonly used methods for classification and regression models. Evaluation schemes 
assess the performance on multiple metrics such as sensitivity and specificity, precision, 
kappa statistics, mean absolute error, root mean squared error, relative absolute error and root 
relative squared error. Cross-validation is the preferred method of choice of data scientists. 
For clustering schemes, Minimum Description Length(MDL) is considered for evaluation. To 
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find the best data mining algorithm to design the data model, a comparative analysis is needed 
to predict the true performance of different algorithms. The t-test is commonly used to 
perform such experimentation. Details of the evaluation schemes used in this study have been 
covered in section 2.2. However MDL is beyond the scope of this study and hence not 
covered. 
 
2.1.5. Model deployment 
 The last step in the data mining process is to integrate the analytics model into a commercial 
environment. The model can then be used to perform multiple tasks such as real-time object 
detection, tracing patterns from new signals, making predictions to direct business decisions, 
creating queries to retrieve new patterns, rules, and behavior.  
 
2.2. Conceptual overview of data mining algorithms  
 2.2.1. Data transforming algorithms 
 Feature selection 
Feature selection is a form of data reduction where irrelevant, or redundant attributes can be 
detected and removed. Algorithms are categorized into a scheme-independent selection (filter 
method) and scheme-specific selection (Wrapper method) [10]. In WEKA interface, the 
process of attribute selection is split into two parts: (a) attribute evaluator- the process of 
assessing the selected attribute subset (b) search method- the process of searching a possible 
subset. 
 
2.2.1.1. Ranker 
 This algorithm works on the principle of information gain attribute ranking. It is one of the 
simplest attribute selection method which ranks attributes by their individual evaluations and 
mostly used in decision tree classifiers like C4.5 classifier. Information gain(IG) is based on 
entropy metrics. The entropy measure is a measure impurity and can be calculated as H(X) 
(Equation 2.1). 
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    H(X) = − ∑ p(xi) log2( p(xi))

n

i=1

                    ( 2.1) 
     

where p(x) is the marginal probability density function of a discrete random variable X with 
N outcomes. IG is measured by the amount of information gained by splitting the dataset 
using the chosen attribute whereas entropy of the class reflects the attribute contribution in 
gaining clear information about a class. Attributes are ranked based on IG value, where 
attributes with high scores are selected since they can be used for better prediction [10] [11].  
2.2.1.2. Correlation-based Feature Selection (CFS) 
 Correlation-based Feature Selection method evaluates a subset of attributes instead of 
assessing individual attributes. Efficacy of individual features is considered for predicting the 
class along with the degree of inter-correlation among them. High scores are assigned to 
subsets containing attributes that are highly correlated with the class and poorly inter-
correlated with each other. Scores are measured by heuristic merits formulated by the 
Equation 2.2 (Ghiselli 1964) [12]. 
 

𝑟𝜃𝑆 =
𝑘𝑟𝜃𝑖

√𝑘 +  𝑘(𝑘 –  1)𝑟𝑖𝑗

  
( 2.2 ) 

 
where rθs is the score of the subset, rθi is the average correlation between the k variable and 
θ, and rij is the average of attribute subset intra-correlation. 
 
2.2.1.3. Greedy stepwise  
 Greedy stepwise method selects the attributes by performing a forward or backward search 
through the attribute subspace which can be random. During the process of search the greedy 
stepwise method creates a ranked list of attributes and the search process stops when the 
addition or deletion of any remaining attributes results in a decrease in evaluation. Greedy 
stepwise feature search is used in conjunction with CFS in WEKA. 
 
Discretization 
As mentioned in section 2.1, discretization is mainly needed for datasets with continuous 
numeric attributes and can be achieved by sorting all the continuous values of the attribute 
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and splitting continuous values into a predetermined number of equal intervals (unsupervised 
discretization) or using the number of classes as the discretization parameter (supervised 
discretization). Unsupervised discretization methods are only suitable for clustering type of 
training where the class is non-existent or uncertain [7]. 
 
 2.2.1.4. Boolean reasoning  
 Boolean reasoning builds on the Boole-Schröder algebra of logic, which is based on Boolean 
equations with predicates which are true or false. It is a straightforward implementation that 
filters a small subset of attribute values that do not preserve the discernibility. The remaining 
subset is a minimal set of cuts preserves the discernibility inherent in the dataset. The 
algorithm operates by first creating a Boolean function from the set of candidate cuts, and 
then computing a prime implicate of  the Boolean function [7]. 
 
 2.2.1.5. Entropy-based discretization 
 It is a form of supervised discretization which based on the MDL principle as described in 
[11]. Several entropies-based algorithms have been proposed which work for multiple 
domains. Some algorithms work on the principle of recursively partitioning the value set of 
each attribute so that the local measure of entropy is optimized and some are based on 
maximizing the entropy over discretization space [13]. 
 
Feature extraction 
Also known as dimensionality reduction, feature extraction is a process of transforming the 
high dimensional dataset to a reduced or compressed representation of the original data before 
starting the modeling process. During the process of feature extraction, the original data can 
be either be transformed without losing any information (lossless data reduction) or the 
transformed data approximates the original data (lossy data reduction) [1]. In realistic data 
mining process, lossy data reduction is the typical outcome of as dimensionality reduction. 
Several algorithms have been invented for this purpose out which PCA and Random 
Projections are the preferred ones. 
 
2.2.1.6. Principal Component Analysis 
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Principle Component Analysis(PCA) is a mathematical procedure which is based on 
projection principles. In this method, an orthogonal restructuring of a high dimensional data 
set to a set of values of linearly uncorrelated variables called principal components. PCA was 
developed and named by Harold Hotelling in 1930 which was based on the algorithm derived 
by  Karl Pearson as an analog of the principal axis theorem in 1901[14]. PCA is done by 
deriving a covariance matrix of a data set consists of covariance values between all the 
different dimensions. Covariance indicates the relationship between two dimensions and can 
be calculated as  
 

𝐶(𝑋, 𝑌) =
∑ (𝑋𝑖 − 𝑋𝑛

𝑖=1 )(𝑌𝑖 − 𝑌) 

𝑛 − 1
 ( 2.3 ) 

 
where C is the covariance and X and Y are the two dimensions of a dataset which has n 
number of instances and 𝑋, 𝑌 are the mean of the dimension X and Y.  For an N-dimensional 
data set, covariance matrix will have   𝑁!

(𝑁−2)!∗2
  a number of covariance values.  Then the 

eigenvectors and eigenvalues of the covariance matrix are calculated and eigenvectors are 
normalized so that the length is always 1 The eigenvectors are then ranked according to the 
eigenvalues. The eigenvectors which have high scores are selected as principal components. 
The transformed data is derived from the original dataset by using the set of selected principal 
components called a feature vector, formulated in Equation 2.4. 
 

  𝐷𝑓𝑖𝑛𝑎𝑙 = 𝐹𝑉𝑡𝑟𝑎𝑠𝑝𝑜𝑠𝑒𝑑 × 𝑀𝐷𝑜𝑟𝑔𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝑑        
 

( 2.4 ) 

where FV is the feature vector matrix which row transposed and MDorgtransposed is the 
transposed matrix of mean adjusted values of the original dataset i.e. the data items are in 
each column, with each row holding a separate dimension [15]. 
 
2.2.1.7. Random Projection 
 Another technique of feature extraction is Random Projection(RP) where the original data is 
projected onto a predefined lower dimensional subspace using a random matrix whose 
columns have unit lengths. In RP, the original d-dimensional data is projected to a k-
dimensional (k << d) subspace through the origin, using a random (k × n) matrix R whose 
columns have unit lengths. RP can be formulated in the Equation 2.5. 
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           𝐷𝑘×𝑁

𝑅𝑃 = 𝑅𝑘×𝑑 ×  𝐷𝑑×𝑁            

 
( 2.5 ) 

where  𝐷𝑑×𝑁 is the original set of N n-dimensional instances, 𝐷𝑘×𝑁
𝑅𝑃  is the projection of the 

data onto a lower p-dimensional subspace. The key idea of random mapping arises from the 
Johnson-Lindenstrauss lemma [16] which states that distance relationships are preserved quite 
well on an average. Random projection implementation can be done in different ways. One is 
based on Gaussian distribution [17] and other implements a sparse random matrix as proposed 
by Achlioptas in [18]. 
2.2.2. Data mining algorithms 
 Machine learning algorithms are typically categorized into supervised and unsupervised 
algorithms based on the training dataset characteristics. A supervised method of learning can 
be applied to the dataset where the output (the desired result) is one of the attributes in the  
training dataset. Classification and regression algorithms are used for those cases. 
Classification models are based on predicting discrete class attribute value or a probability for 
a class attribute value whereas regression modeling is used to predict a continuous quantity 
which can be a real value or discrete integer variable. There are few algorithms which can be 
used for both classification and regressing modeling such as neural networks, decision trees 
but algorithms like linear regression and additive regression can be used only for regression 
type. Unsupervised algorithms are used in those cases where the output attribute is unknown 
or non-existent in the training dataset. Clustering is the most common technique used in 
unsupervised algorithms. 
 
2.2.2.1. C4.5 
 C4.5 is an algorithm used for classification by generating decision trees. It was developed by 
Ross Quinlan as an extension to the Iterative Dichotomiser 3 (ID3) algorithm [2]. C4.5 is the 
most popular algorithm used for classification type data modeling. The basic principle of C4.5 
involves building decision trees on the training data using the information gain entropy 
principle for attribute selection as explained in section 2.2.1.1.The attribute with the highest 
normalized information gain is chosen to make the decision. The C4.5 algorithm then recurs 
on the smaller partitioned data. Usually, a fully expanded decision tree reveals irrelevant 
structure so pruning method is applied. Pruning can be either forward pruning which is done 
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during the decision tree creation, or it can be backward pruning which is done after the 
decision tree has been built. C4.5 uses a backward pruning method by default. In some cases 
pruning causes a fall in the accuracy of the model prediction, thereby correct estimation of 
error rates is significant. C4.5 uses a default confidence level of 25% to calculate the error 
rate e in Equation 2.6 [2]. 
 

𝑒 =  
𝑓 +

𝑧2

2𝑁 + 𝑧√𝑓
𝑁 −

𝑓2

𝑁 +
𝑧2

4𝑁2

1 +
𝑧2

𝑁

 
 
 

( 2.6 ) 
where N is the number of samples and f is the observed error rate and z is the number of 
standard deviation which is calculated using the confidence level. 
 
2.2.2.2. Naïve Bayes 
 Naïve Bayes machine learning algorithm is a type of  statistical classifier and is based on 
Bayes’ theorem which works on the principle of conditional probability. In a practical 
scenario, datasets have many attributes therefore, use of simple Bayes' theorem would be 
computationally expensive, so Naïve Bayes makes an assumption of class conditional 
independence which means there are no dependency relationships among the attributes. Naïve 
Bayes classifier predicts that the data instance X belongs to a class if and only if, 
 

                  𝑃(𝐶𝑖|𝑋) > 𝑃(𝐶𝑗|𝑋)  𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑚, 𝑖 ≠ 𝑗    ( 2.7 ) 
 
where 𝑃(𝐶𝑖|𝑋) is the probability of X belonging to class 𝐶𝑖 , assuming that the training 
dataset has m classes. 𝑃(𝐶𝑖|𝑋) is calculated as 
 

𝑃(𝐶𝑖|𝑋) =  
𝑃(𝑋|𝐶𝑖)𝑃(𝐶𝑖)

𝑃(𝑋)
  

( 2.8 ) 
 
where  𝑃(𝑋) is the prior probability of X which is a constant value, 𝑃(𝐶𝑖) is the prior 
probability of 𝐶𝑖 independent of its attribute values. 𝑃(𝑋|𝐶𝑖) is the  posterior probability of X  
conditioned on 𝐶𝑖 and is calculated as  
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                                    𝑃(𝑋|𝐶𝑖) =  ∏ 𝑃(𝑥𝑘|𝐶𝑖)

𝑛

𝑘=1

                                
( 2.9 ) 

 
where 𝑥𝑘 refers to the value of attribute  𝐴𝑘  for instance X. In case of a continuous attribute 
value, 𝑃(𝑋|𝐶𝑖) is calculated using the Gaussian distribution of the attribute value [1].  
 
2.2.2.3. Random Forest 
 Random Forest(RF) is an ensemble machine learning method best suited for classification and 
regression tasks. An ensemble machine learning is a combination of multiple classifiers to get 
a better predictive efficiency. There are different types of ensemble methods such as error-
correcting output coding, bagging, boosting and randomization[27]. RF algorithm was first 
developed by Leo Breiman [26] by combining his concept of bagging [28] and random 
subspace method introduced by Tin Kam Ho [29]. Leo Breiman defines RF as “A random 

forest is a classifier consisting of a collection of tree-structured classifiers {ℎ(𝑥,  Θ𝑘), 𝑘 =

1, … } where the { Θ𝑘} are independent identically distributed random vectors and each tree 
cast a unit vote for the most popular class at input x” [26]. As described by Leo Breiman in 
[26] the error rate of random forest classification is dependent on correlation between any two 
trees in the forest. The error rate is directly proportional to correlation. RF is claimed to be an 
efficient machine learning method when a dataset is large and there is a high risk of 
overfitting due to missing data[26].  
 
2.2.2.4. k-nearest neighbor(kNN) 
 k-nearest neighbor classifier is one of the basic classification technique used when the 
estimation of the parametric probabilities is not an easy process. It belongs to the family of 
instance-based machine learning methods. kNN was first proposed by Fix & Hodges in 1951. 
In kNN a lazy learning approach where the actual processing is done when a test instance is 
applied to the classification model. Assuming that the training dataset is described by n 
attributes, a k-nearest-neighbor classifier searches for patterns between the test data instance 
and the k training data instances based on the closeness in distance metrics. The distance 
metric, usually Euclidean distance between a test sample 𝑋1 = (𝑥11, 𝑥12, 𝑥13 … 𝑥1𝑛 ) and the 
given training samples 𝑋2 = (𝑥21, 𝑥22, 𝑥23 … 𝑥1𝑛) is taken into consideration to determine the 
closeness and can be calculated as  Equation 2.10. 
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  𝐷𝑖𝑠𝑡(𝑋1𝑋2) = √∑(

𝑛

𝑖=1

𝑥1𝑖 − 𝑥2𝑖)2   
 
( 2.10 ) 

 
kNN in its original form perform poorly in terms of accuracy due to its inherent property of 
assigning equal weight to the attributes, so the application of data transformation methods 
prior to classification modeling is imperative. kNN classifier also lacks in speed since it 
requires an iterative process to spot the K training instance. Transforming the training data 
into sorted search trees and employing parallel execution reduces the comparison time[1]. 
 
2.2.2.5 Linear Regression 
 Linear regression method is typically used for modeling dataset with numeric attributes and 
numeric class prediction. Linear regression models assert response variable 𝑦𝑖 as a linear 
function of 𝑥𝑖 is the weighted attribute value. 𝑦𝑖 for 𝑖𝑡ℎ instance can be calculated as  
 

𝑦𝑖 = 𝑤0 + ∑ 𝑤𝑗𝑥𝑗

𝑘

𝑖=1

   
( 2.11 ) 

 
where 𝑤0 , 𝑤𝑗  are the weights which are used as regression coefficients and are computed by 
the least square method to find the best fitting values which minimize the difference between 
the actual class and the predicted class 𝑦𝑖. The overall minimization can be calculated by 
taking the sum of squares of differences for all instances and the goal is to have a minimum 
value for better prediction accuracy. Linear regression models are limited to datasets which 
exhibit linear dependency and only support regression type problems [1][2]. 
 
2.2.2.6 Gradient Boosting Machines (GBM) 
 Gradient boosting works on the notion of a week classifier can be enhanced to give better 
results. Friedman introduced the Gradient Boosting Machines to conceptualize this idea[41]. 
Elements involved in gradient boosting are loss function such as least square that is optimized 
during the learning process, a base learner  such as decision tree ,which makes the predictions 
and  an addictive model to which the base learner  is sequentially fitted in order to minimize 
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the loss function. Friedman  in [41] analyses that accuracy and the execution speed of gradient 
boosting can be enhanced by adding randomization to the sampling procedure. For a given 
training sample D {𝑦𝑖, 𝑥𝑖}

𝑁 where X is the set of attributes, the goal is to find a function 𝐹∗(𝑥) 
that maps x to 𝑦 such that over the joint distribution of all values, the expected value of some 
specified loss function  ψ(𝑦, 𝑓(𝑥)) is minimized as shown in Equation 2.12. 
 

                                  𝐹∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐹(𝑥)

𝐸𝑦,𝑥  𝜓(𝑦, 𝑓(𝑥))      
 

( 2.12) 

Boosting constructs the addictive model by approximating 𝐹∗(𝑥) as shown in Equation 2.13. 
 

𝐹(𝑥) = ∑ 𝛽𝑚

𝑀

𝑚=0

ℎ(𝑥; 𝑎𝑚)  
( 2.13) 

 
where ℎ(𝑥; 𝑎𝑚) is the base learner  with parameters 𝑎 = {𝑎1, 𝑎2, … 𝑎𝑚}  and 𝛽𝑚 is the 
expansion coefficient  and M is the number of iterations. 
The generic gradient boosting is greedy algorithm this prone to overfitting . To minimize the 
overfitting some parametric modification such as tree depth, learning rate and number of 
random samples can be done  in the algorithm. It is a common practice to have the tree depth 
between 4-8 levels and learning rate between 0.1 to 0.3. 
 
2.2.2.7. Support Vector Machines (SVM) 
 Support Vector Machines is one of the most popular machine learning algorithm which is 
widely used for both classification and regression modeling tasks. The reason for SVM’s high 

acclamation is its capability to provide a robust and efficient algorithm which can handle both 
linear and nonlinear data. The standard algorithm that is widely used today was proposed by 
Corinna Cortes and Vapnik in 1993 but its origin dates back to 1963 [32]. The basic principle 
of SVM is to construct a set of hyperplanes called support vectors and then a linear model is 
built on the nonlinear hyperplanes. In case of a two-class learning task, the goal is to identify 
the best classification function to separate data instances in the training dataset. The 
separation function corresponds to a hyperplane separating dataset into two classes. In SVM, 
the best separating hyperplanes can be identified by maximizing the margins between the 
classes. Margin can be deduced geometrically as the shortest distance between the nearest 
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data points called support vectors, to the hyperplane. The maximum margin hyperplanes can 
be defined by Equation 2.14[2] 

                𝑥 = 𝑏 + ∑ 𝛼𝑖𝑦𝑖

𝑖 𝑖𝑠 𝑡ℎ𝑒 
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟

(𝑎𝑖 ∙ 𝑎)  (2.14) 

 
where 𝑦𝑖 is the class label, 𝑎𝑖 ∙ 𝑎 is the dot product of training data vector 𝑎𝑖  and test data 
vector 𝑎, 𝛼𝑖 and b are coefficients determined during the training process using constrained 
quadratic optimization. In case of the nonlinear dataset, the hyperplane function can be 
derived by extending the dot product 𝑎𝑖 ∙ 𝑎 to a kernel functional mapping Φ𝑎𝑖 ∙ Φ𝑎  
where Φ   is the function that projects the data into a transformed higher dimension [2]. 
Several kernel functions have been proposed in recent years which optimizes the SVM 
classification. To handle multiclass classification, the coefficient 𝛼𝑖 is generalized. Many 
variations of SVM have been proposed to handle different machine learning tasks. LIVSVM 
is an open source library which was developed by Chang, Chih-Chung; Lin, Chih-Jen in 
2000[33], which includes support vector classification, regression and one-class SVM. 
 
2.2.2.8. Artificial Neural Networks  
 Artificial Neural Networks (ANN) are complex data modeling systems which are inspired by 
the core concept of biological neurons. An ANN is composed of connected input/output 
processing unit each with an associated weight. The individual units are called nodes or 
neurons and are based on the basic computation model proposed by McCulloch and Pitts as 
shown in Figure 2.2. 

 
Figure 2.2: Artificial neuron computational model 

The output can be mathematically computed in Equation 2.15  as the weighted sum of its n 
input signals, 𝑥𝑗={1,2,….𝑛} and it generated the output as 1 if the weighted sum is above a 
certain threshold u, else output is 0 [32]. 
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           𝑓(𝑥) = 𝜃 (∑ 𝑤𝑗

𝑛

𝑗=1

𝑥𝑗 − 𝑢)  
(2.15) 

 
where 𝜃(. ) is the activation or transfer function, 𝑤𝑗 is the weight of the input. The purpose of 
activation function is to non-linearize the neural network and generalize the neurons. The 
basic architecture of ANN consists of layers of interconnected neurons and connections with 
associated weights as shown in Figure 2.3. Performance is improved over time by iteratively 
updating the weights in the network. 
 

 
Figure 2.3: ANN architecture 

 Depending on the architecture, ANN can be categorized into feedforward or 
feedback(recurrent) networks. The process of learning in ANN involves updating the 
architecture and the connection weights. Feedforward networks are associated with 
supervised learning and feedback networks are associated with unsupervised learning. In 
feedforward network, there is an input layer, one or multiple hidden layers and an output layer 
and lines connecting the neurons have an associated weight with it as shown in the figure. The 
inputs to the network correspond to the attributes of training data instance. 
 
 
Multilayer Perceptron 
 A multilayer perceptron is a class of feed-forward neural network and utilizes 
backpropagation algorithm for learning. During the training phase, backpropagation learns by 
iteratively processing the dataset instance and comparing the network output to the class 
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attribute value and subsequently adjusting the weight to reduce the mean squared error 
between the predicted value and actual value by using a gradient-descent method. The 
algorithm is called backpropagation because the adjustment is made in backward direction i.e. 
from the output layer down to hidden layers. The squared error in the 𝑗𝑡ℎ node of the output 
layer for a can be determined as  

 
            𝐸 =

1

2
∑(𝑦𝑗 − 𝑓(𝑥𝑗))2

𝑗

  
( 2.16) 

 
Here y is the class label of the instance and f(x) is value produced by the output layer. With 
gradient descent, the  connection weight of 𝑗𝑡ℎ  and 𝑖𝑡ℎ   neurons is adjusted by 
 

             ∆𝑤𝑗𝑖 = −𝜂
𝑑𝐸

𝑑𝑔(𝑥𝑗)
(𝑓(𝑥𝑖))  

(2.17) 
 

where 𝑓(𝑥𝑖)  is the output of the previous neuron, 𝜂 is the learning rate and. The derivative 
can be calculated as  
 

                −
𝑑𝐸

𝑑𝑔(𝑥𝑗)
=  ∅′(𝑔(𝑥𝑗)) ∑ −

𝑘

𝑑𝐸

𝑑𝑔(𝑥𝑘)
𝑤𝑘𝑗  

( 2.18 ) 
 

with ∅′ being the derivative of activation function and can be seen that the derivate depends 
on the depends on the change in weights of the 𝑘𝑡ℎ node in output layer and thus the change 
of weight in the hidden layer is the back propagated according to the derivative of the 
activation function [34]. 
 
Due to its capability to handle non-linearity and versatile nature, multilayer perceptron has its 
roots in varied machine learning tasks such as image recognition, speech recognition, 
regression modeling etc. 
 
Self-Organizing Maps(SOM) 
 Self-Organizing Maps also known as Kohonen’s SOM, is a class of feedforward artificial 

neural network which uses unsupervised mode of machine learning and is based on the 
principle of topographic map formation. SOM was first introduced by Prof. Kohonen in 
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1984[35]. The principal objective of  SOM is to define a high dimensional dataset in one or 
two-dimensional data space while preserving the topographic relationships of data. SOM has 
a single computational layer consisting of a grid of neurons arranged in rows and columns and 
an input layer consisting of an input vector.  Each neuron in the computational layer is 
connected to all the source nodes in the input layer as shown in below Figure 2.4. 
 

 
 

Figure 2.4: Self Organizing maps architecture 
 
The process of generating the self-organizing maps begins by initiation the connection 
weights with a random value. A sample of the input vector is chosen from the training dataset. 
If the input vector has d dimension then it is represented as 𝑥𝑖 : 𝑖 ∈ {1,2 … . 𝑑} and the 
computational layer is constructed by N neurons mapped in (X, Y) dimension. Each input unit 
is connected to the neurons by connection weight 𝑤𝑗𝑖: 𝑗 ∈ {1,2, … 𝑁}. Next step is to find the 
winning neuron, the one which has the weight vector closest to the input vector i.e. minimum 
value of discriminant function 𝑓(𝑥) . It is computed as  
 

         𝑓𝑗(𝑥) = ∑(𝑥𝑖

𝑑

𝑖=1

− 𝑤𝑗𝑖)
2 ( 2.19 ) 

 
where 𝑓(𝑥) calculated by taking the square Euclidean distance between the input unit and 
neuron. Once the winning neuron has been identified, a topological neighborhood is defined 
by considering the lateral distance between the neurons in the grid as formulated as Equation 
2.20.  
  

𝑇𝑗𝑊(𝑋) = 𝑒𝑥𝑝 (−
𝑆𝑗𝑊(𝑋)

2

2𝜎2
)  



 21 

(2.20 ) 
 

where 𝑆𝑗𝑊(𝑋) is the lateral distance between the neuron j and winning neuron W(X), 𝜎 is the 
epoch which denotes the width of the neighborhood and programmed to exponentially 
decrease over time. Once the neighborhood is determined, the weight neurons in the 
neighborhood are updated by ∆𝑤𝑗𝑖. 
 

∆𝑤𝑗𝑖 = 𝜂(𝑡)𝑇𝑗𝑊(𝑋)(𝑡)(𝑥𝑖 − 𝑤𝑗𝑖) (2.21 ) 
 

where t is the epoch dependent on learning rate 𝜂(𝑡) =  𝜂0exp (𝑡/𝜏𝜂). The update causes the 
weight vectors of the winning neurons and the neighboring neurons to move towards the input 
vectors and this process is iterated for all training data instances to achieve a topographical 
convergence generating self-organizing feature maps which discretely represent the input data 
in a lower dimensional output space [35].SOM is also considered as a non-linear 
generalization of PCA due to its capability to cluster non-linear data instances. 
 
2.2.2.9. K-mean  
 K-mean is a  classic clustering technique based on iterative partitioning method. The standard 
algorithm was first proposed by Stuart Lloyd in 1957 as a technique of vector quantization in 
signal processing [31].The k-mean algorithm creates an initial partition of k (𝑘 ≤ 𝑛) clusters 
from a dataset of n instances where each cluster is represented by the mean value of the 
instances in the cluster. In the second step, an iterative relocation technique is applied to the 
data observed by comparing the least squared Euclidean distance between the objects and the 
centroid and relocating the centroid. This process is repeated unit the squared error criterion 
converses. It can be defined as  
 

𝐸 = ∑ ∑ |𝑝 − 𝑚𝑖

𝑝∈𝑐𝑖

𝑘

𝑖=1

|2  
( 2.22 ) 

where E is the sum of squared error of all instances in the dataset, p is a point in the 
multidimensional space in the cluster 𝑐𝑖 , 𝑚𝑖  is the mean of the cluster 𝑐𝑖 [1].  K-mean 
algorithm determines k partitions that minimize the square-error function and its efficiency is 
limited only to datasets which are clearly divergent. Additional data transformation is needful 
for fitting it to the real world dataset clustering. 
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 2.2.3. Model Evaluation techniques 
 Designing an analytic model for the embedded system requires a thorough evaluation of the 
model in terms of cost and performance. As mentioned in section 2.1 , cross-validation and t-
test are commonly used evaluation techniques. 
2.2.3.1. Cross-validation 
 Cross-validation is the most commonly used method to evaluate predictive models by 
partitioning the original sample dataset into a training set to train the model, and a test set to 
evaluate it. It is mainly used to estimate the performance of the model through different 
metrics. The basic form of cross-validation is the k-fold cross validation where the original 
sample is randomly partitioned into k equal sized subsamples. k − 1 subsamples are used as 
training dataset and 1 is used as test dataset to perform the prediction of the model trained 
using the training dataset. Cross-validation process is repeated K times with of the data sub-
samples used exactly once for creating the test data and an average of K then k results from 
the folds gives a single estimation [20]. The estimation is measured in terms of prediction 
accuracy as proposed in Equation 2.23 [19].  
 

                 𝑎𝑐𝑐𝑐𝑣 =
1

𝑛
∑ 𝛿(𝐼(𝐷 ∖ 𝐷𝑖 , 𝑣𝑖), 𝑦𝑖)

𝑣𝑖𝑦𝑖∈𝐷

 ( 2.23 ) 
 

 
where D is the sample dataset which is randomly split into K folds. The model is trained on   
D ∖ Dt subsample where t ∈ {1,2 … k}. Di is the test data sample with instance xi = (viyi). 
The overall cross-validation is average of (

m

m/k
)  possibilities for m/k instances out of m 

instances. To reduce the cost, folds are stratified before running the cross-validation, so that 
each class in original dataset is consistently represented in both training and test dataset. A 
10-fold cross validation is the preferred method in the data science community and hence 
used in this study as well. 
 
2.2.3.2. T-test 
 Usually, in machine learning, the toughest is to decide which mining model would be optimal 
for the system the analytics is designed for. Most of the embedded systems generate a huge 
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amount of data from different devices but the dataset used for training is usually just a sample 
of that big data space. Cross-validation technique evaluates individual models by predicting 
the true performance from an error rate of a given test dataset but does not give any assertive 
outcome that same result will be produced with another sample dataset. Typically, the t-test is 
used to do a comparative analysis of different machine learning algorithms with different 
samples of data. Statistically, the t-test is a method of comparing means of two different data 
samples. 
 
The concept of t-test and t-distribution was developed by William Sealy Gosset under the 
name of Student’s t-test. The t distribution is a family of curves which is derived from the 
degree of freedom. The degree of freedom is calculated as the number of distinct estimates on 
individual samples minus one. The t-distribution curve approaches the bell shape of the 
standard normal distribution with the increase in the degree of freedom[21][22].  A paired t-
test is commonly used for t-test analysis. In paired t-test , a pair of observation for each 
sample is collected and a mean difference between the two sets of observation is computed. 
Paired t-test uses null hypothesis and a two-tailed alternative hypothesis. The null hypothesis 
assumes that the true mean difference between the paired samples is zero and the alternative 
hypothesis assumes that the true mean difference between the paired samples is not equal to 
zero. In a paired sample t-test, the observations are defined as the differences between two 
sets of values, and each assumption refers to these differences, not the original data values. 
The process of paired t- can be outlined in 4 steps as described below. 
 

1. Compute sample mean 
2. Compute sample Standard Deviation(SD)  
3. Calculate t statistic (t) using the Equation 2.24. 

𝑡 =
𝑑

√𝜎𝑑2 𝑘⁄
 ( 2.24) 

where 𝑑 is the difference between means of two different sample, 𝜎𝑑2  is the variance 
of two samples and k is the number of  instances.  
 

4. Calculate probability 𝑝 by observing the test statistic under the null hypothesis. This 
value is obtained by comparing 𝑡 to a t-distribution with (n − 1) degrees of freedom as 
formulated in Equation 2.25. 
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                𝑝 =  2 ⋅  𝑃𝑟(𝑇 >  |𝑡|)    (𝑡𝑤𝑜 − 𝑡𝑎𝑖𝑙𝑒𝑑) ( 2.25) 
 
WEKA Experimenter provides the interface to perform paired t -test and is used for this study 
in Chapter 5. 
 
2.2.4. Performance metrics 
 There are  several performance measures that can determine the quality of a data-mining 
model from different aspects. Most common measured aspects are accuracy and the  squared 
error of the predicting algorithm. Metrics used in this thesis are described in this section. 
 
2.2.4.1. Confusion Matrix 
 A confusion matrix also called as error matrix[42] is type of  contingency table with actual 
and predicted values. Terms used to describe a binary class  confusion matrix are True 
Positive (TP), True Negative (TN), False Negative (FN), and False Positive (FP). TP is the 
number of correctly identified instances, TN is the correctly rejected instances and FP is the 
incorrectly identified  instances and FN is the incorrectly rejected instance. For a multiclass 
dataset with 𝑁 =  {𝐶1, 𝐶2  … 𝐶𝑁} classes the confusion matrix would be of N x N matrix with 
left axis showing the predicted class and the top axis is the actual class.  For instance class 𝐶1 
has TP which is all 𝐶1 instances that are classified as 𝐶1, TN is calculated as  all non-
𝐶1instances that are not classified as 𝐶1, FP is all non-𝐶1 instances that are classified as 𝐶1, 
and  FN is all 𝐶1 instances that are not classified as 𝐶1.  
 
2.2.4.2. Sensitivity, Specificity And Accuracy 
 Sensitivity is also known as the true positive rate or recall,  which measures the rate of 
positive instances that are correctly identified and can be calculated using the Equation 2.26. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
  

( 2.26) 
 
Specificity  is the measure of  the proportion of true negatives that are correctly identified. It can 
calculated using Equation 2.27. 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑃 +  𝐹𝑁
  

( 2.27) 
 
Accuracy is a measure of all correct assessments which is calculated  the percentage of 
correctly classified instances as shown in Equation 2.28. 
 

                𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 +  𝑇𝑃 

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
  100% 

 
 

(2.28) 
 
2.2.4.3. Kappa statistic 
 Kappa statistic is a single value statistical  metric which compares  observed accuracy of the 
classifier  with the expected accuracy.  The Kappa score is a normalized value and  can be 
calculated by using confusion matrix observations. Formulas in equation are used to calculate 
the Kappa statistic. Observed accuracy is sum of true positive and true negatives, divided by 
the total number of instances and the expected accuracy is can be defined as sum of product 
of reference probability and the  actual probability of each class. The Kappa score can be 
calculated using the Equation 2.29. 
 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 +  𝑇𝑃 

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
   

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

= (
(𝑇𝑁 +  𝐹𝑃 ) × (𝑇𝑁 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑃) × (𝐹𝑃 + 𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑎𝑛𝑐𝑒𝑠 ×  𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑎𝑛𝑐𝑒𝑠
)  

𝐾𝑎𝑝𝑝𝑎 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐  =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 −  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

1 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
 

 
 
 

(2.29) 

 
 
2.2.4.4. Precision  
 Precision is the positive predicated measure and is calculated ratio of true positives to the 
number of all relevant observations including true positives and false positives(Equation 
2.30). 
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 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 (2.30) 

 
2.2.4.5. F-Measure 
 F- measure is a  weighted harmonic mean of the precision and sensitivity (also known as 
recall). It is metric used to measure the accuracy of the test. F-score can be calculated using 
Equation 2.31. 

𝐹 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (2.31) 

 
2.2.4.6. ROC area 
 Receiver Operating Characteristic(ROC) curve is formed by plotting true positive rate in a 
function of false positive rate for different threshold points. True positive rate is the 
sensitivity represented in y-axis and the false positive rate is  calculated as 1-specificity and 
plotted in x-axis. Each point on the ROC curve represents a sensitivity/specificity pair 
corresponding to a particular threshold as shown in Figure . In a test when ROC curve  passes 
through the upper left corner then it indicates 100% sensitivity, 100% specificity. Hence a 
classifier with a ROC curve closer to upper left corner has a higher overall accuracy [43]. 
WEKA cross validation test measures the  classifier’s accuracy by the area under the ROC 
curve, also called AUC.  
AUC is measured by using Equation 2.32. 
 

𝐴𝑈𝐶 =  ∫ 𝑅𝑂𝐶(𝑡)𝑑𝑡
1

0

 (2.32) 
 
where 𝑅𝑂𝐶(𝑡) is the sensitivity and t = 1-specificity. A value of 1 is considered optimal and a 
value of 0.5 or less is considered worthless. A sample ROC curve can be seen in Figure 2.5 
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Figure 2.5:ROC Curve 

2.2.4.7. Correlation coefficient 
  In case of predicting continuous values , correlation coefficient measures how well the 
predictions are correlated or change with the actual output value. It gives values between -1 
and 1.A value of 0 means there is no relation and a value of 1 is a perfectly correlated set of 
predictions. A negative value indicates an inverse linear  relation. 
 
2.2.4.8. Mean Absolute Error(MAE) 
 Mean absolute error is the  measure of difference between the continuous prediction and the 
actual data point in the data instances. The MAE is calculated as the average of absolute error 
per instance for all the instances in the dataset.  Absolute error  is the difference between the 
measured value and actual value(Equation 2.33). 
 

      𝑀𝐴𝐸 =  
∑ |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖|𝑁

𝑖=1

𝑁
 ( 2.33) 

  2.2.4.9. Root mean squared error(RMSE) 
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Root Mean Square Error (RMSE) is the standard deviation of the prediction errors which are 
a measure of how far from the regression line data points are. In other words, RMSE indicate  
the distribution of data around the line of best fit. RMSE metric can be calculated by Equation 
2.34. 
 

         𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2𝑁

𝑖=1

𝑁
 

( 2.34) 

 
2.3 Related studies 
 Considering the fact that data mining domain is flooded with algorithms and procedures, the 
quest for finding the perfect method has been perpetual. Several research works and case 
studies have led to a selection of many state-of-art algorithms which are common in use 
across multiple domains.  
Karen Zita Haigh et al. presented a case study on the use of machine learning techniques in 
embedded electronics and argued the challenges faced with the usage of traditional 
approaches [24]. They also proposed an optimization of Super vector machine algorithm 
which was implemented on general purpose processors of two communications networks. 
Qing Chen Zhang et al. argues about the data mining challenges in  IoT systems and propose 
two enhancement to high-order c-means algorithms for clustering big dataset and exhibit the 
performance improvement in terms of high compression rate without compromising with the 
accuracy[25]. Mark A. Hall and Geoffrey Holmes [10] benchmarked some of the attribute 
selection methods for supervised machine learning algorithms C4.5 and naive Bayes. They 
concluded that attribute selection is an effective pre-processing method to improve the mining 
model, along with that they also opinionated that a single method cannot be claimed as the 
best approach but the outcome is dependent on the model and dataset characteristics. Rafet 
Duriqi et al. analyses classification algorithms on three different datasets using WEKA. They 
picked Naive Bayes, Random Forest, and K * algorithm to perform the study and concluded 
that the feature count and data characteristics are influential in the performance of classifier 
[23]. 
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Chapter 3  
 
3.1 Datasets selected for the analysis 
 Datasets have been selected based on the type of data mining tasks required to solve the 
objective of data analytics. Different type of datasets are selected to perform a comprehensive 
comparison of the algorithms.  Due to growing interest in data analysis research , many public 
domain dataset repositories have been created with active contribution from various research 
disciplines. For this study as well datasets have been gathered from different public domain 
libraries [36][38]. 
 
Dataset 1: Human Activity Recognition(HAR) 
 
The first dataset is  multiclass Human Activity Recognition(HAR) dataset. With the explosive 
growth of smartphone technologies , the use of embedded sensors to monitor human activity 
is not a far-fetched notion and the data generated has it relevance in healthcare , security 
surveillances and human-machine interaction but due to its complex nature , building an 
analytics model is challenging and therefore is one of the most sought after research subject in 
data mining community. The dataset used in this study was created by Davide Anguita et. al  
using waist mounted  android smartphone[37]. Data was acquired from smartphone 
embedded accelerometers and gyroscopes, targeting the recognition of six different human 
activities: standing, sitting, laying, down, walking, walking downstairs and upstairs. 
Experiments were conducted with a group of 30 volunteers within the age boundary of 19-48 
years.  The embedded sensors captured the 3-axial linear and acceleration and 3-axial angular 
velocity at a constant rate of 50Hz and the data was cleaned by noise filter application. The 
resulting dataset was a 561 feature vector with time and frequency domain variables. Table 
3.1 gives an overview of the dataset characteristics. The class distribution can be seen in 
Figure 3.1. 
 
Characteristics Description 
Dataset Name HAR 
Dataset Type Multivariate ,Time-series 
Number of Attributes 561 
Attribute Type Numeric 
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Number of Instances 10299 
Data mining tasks Classification , Clustering 
Class labels 1. Walking 

2. Walking  upstairs 
3. Walking downstairs 
4. Sitting 
5. Standing 
6. Laying, down 

Table 3.1: HAR dataset characteristics 

 
Figure 3.1: Class distribution of HAR Dataset 

 
Dataset 2: Vehicle sensing 
 
The second dataset is  2- class vehicle sensing dataset generated from multiple micro sensing 
devices integrated in to a Wireless Distributed Network (WSDN). The dataset was created by 
Marco F. Duarte et. al as part of  SensIT situational experimentation organized by 
DARPA/IXOs SensIT (Sensor Information Technology) program at Marine Corps Air 
GroundCom bat Center in Twenty-nine Palms, CA, USA  with an objective of detecting 
location of vehicle and its type[39]. Seventy-five WINS NG 2.0 nodes were deployed in the 



 31 

region  with each sensor node equipped with acoustic seismic infrared sensors. The dataset 
consist of time series data represented as feature vectors and with 2 class attribute (1 ,-1) . The 
detailed data characteristics is specified in Table 3.2. The class distribution can be seen in 
Figure 3.2. 
 
Characteristics Description 
Dataset Name vehicle 
Dataset Type Multivariate ,Time-series 
Number of Attributes 101 
Attribute Type Numeric 
Number of Instances 14561 
Data mining tasks Classification 
Class labels 1, -1 

Table 3.2: Vehicle sensing dataset characteristics 

 
Figure 3.2: Class distribution of Vehicle Dataset 

 
Dataset 3: Appliances energy prediction 
 
Appliances energy prediction dataset was chosen to perform regression analysis. This dataset 
was contributed by Luis M et al. during their study for designing data driven predictive 
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models for energy usage of home appliances[40]. The main purpose of their  study was to 
identify the relationships between the different predictive attributes such as weather,  room 
temperature, humidity, date and time  etc.  and  the household energy consumption. ZigBee 
wireless network was used to monitor the house temperature and humidity and . Energy 
metering was done using M-BUS energy counters. Energy counters measured the 
consumption every 10 min. Then the information was stored and transmitted every 12h over 
an internet-connected energy monitoring system. The data was logged every 10 min for the 
appliances. Weather data was collected from nearest airport weather station and merged 
together with the experimental data sets using the date and time column. The dataset was also 
injected with two random attributes for regression models testing. Table 3.3 provides the 
characteristics of the dataset and class distribution plot can be seen in Figure 3.3. 
 
Characteristics Description 
Dataset Name energydata_complete 
Dataset Type Multivariate 
Number of Attributes 29 
Attribute Type Real 
Number of Instances 19518 
Data mining tasks Regression 

Table 3.3: Appliances energy prediction dataset characteristics 
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Figure 3.3: Class distribution of Appliances energy prediction dataset 

  Dataset 4: Puma 560 robot arm 
The next dataset is part of the family of dataset which were synthetically generated from a 
realistic simulation of the dynamics of a Unimation Puma 560 robot arm and has been 
acquired from DELVE repository[46]. Data mining tasks involve regression analysis of 
angular acceleration of one of the robot arm's links. The dataset is defined by attributes  like 
angular positions, velocities and torques of the robot arm. The attributes are nonlinear and the 
output also contains moderate amount of noise. Data characteristics are tabularized in Table 
3.3 and class distribution plot is depicted in Figure 3.4. 
Characteristics Description 
Dataset Name puma8NH 
Dataset Type Multivariate 
Number of Attributes 9 
Attribute Type Real 
Number of Instances 8192 
Data mining tasks Regression 

Table 3.4: Puma 560 robot arm dataset characteristics 
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Figure 3.4: Class distribution of Puma 560 robot arm dataset 

3.2 Waikato Environment for Knowledge Analysis(WEKA) 
 The framework used for data analysis is Waikato Environment for Knowledge 
Analysis(WEKA) , version 3.8.2. WEKA is an open source , easy to use machine learning 
and predictive modeling tool licensed under the GNU General Public License, that was 
developed by the University of Waikato in New Zealand and is written in  JAVA [2]. Later in 
2006  WEKA was bought by Pentaho and integrated as part of its Business Intelligence(BI) 
suite[45]. WEKA contains a collection of visualization tools and algorithms for all category  
of machine learning tasks such as classification, regression, clustering , evaluation and data 
transformation. It also provides a set of graphical user interfaces for easy data analytics model 
generation. The new WEKA suite include a Workbench which is a combined GUI for all the 
interfaces(Explorer, Experimenter, simple CLI). The Experimenter GUI is useful for 
performance evaluation of different algorithms for a given dataset which gives an in-depth 
statistics for a better decision making process.  Analysis and evaluation of the models are 
done on WEKA Workbench and WEKA Knowledge flow. WEKA Experimenter is used to 
perform comparative analysis.  
 
WEKA stores the dataset in Attribute-Relation File Format (ARFF)  file. An ARFF file has 
header section which includes the relation name annotated by @RELATION and the attribute 
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names and type description annotated by @ATTRIBUTE . Weka supports types datatypes for 
attributes- numeric, nominal, string and date. The next section consist of the data annotated by 
@DATA. Each instance is represented in a single line and filled with “?” for missing values. 
A sample arff file is shown in Figure 3.5. 
 
 
 
 
 
 
 
 
 
 
 
3.3 Test Environment setup 
 3.3.1 Hardware/software specifications 
 The hardware/software specifications of the test environment are specified in the Table 3.5 
Processor Intel Core i5 
Processor Speed 2,7 GHz 
Number of Processors 1 
Total Number of Cores 2 
Memory 8 GB 
OS macOS High Sierra 

Table 3.5 Hardware/software configuration 
3.3.2 WEKA test bench 
 The testbench constructed in WEKA's knowledge flow can be seen in Figure 3.2 and 3.3. 
Figure 3.2 is the test model for classification analysis and Figure 3.3 is for regression 
algorithm validation. The test model is run for each dataset by loading the arff file in the 
ArffLoader, the class attribute is assigned in the classAssigner process and in case of 

@relation weather.symbolic  @attribute outlook {sunny, overcast, rainy} @attribute temperature {hot, mild, cool} @attribute humidity {high, normal} @attribute windy {TRUE, FALSE} @attribute play {yes, no}  @data sunny,hot,high,FALSE,no 
Figure 3.5: Sample Arff file 
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classification problem , the ClassValuePicker is used to select a specific class value to 
evaluate the classification and generate the ROC curve. CrossValidationFoldMaker is used to 
test the model with a 10-fold cross validation. 
 

 
Figure 3.6 WEKA Classification testbench 

The ModelPerformanceChart  and TextViewer is used to visualize the evaluation results. 
TextViewer gives the details report of cross validation analysis and ModelPerformanceChart 
generate the ROC curve for class label selected in the ClassValuePicker process. 
 

 
Figure 3.7 WEKA regression testbench  
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Chapter 4  
 
In this chapter machine learning algorithms are validated and results are analyzed 
comprehensively for each dataset selected for this study. A dataset specific comparative 
analysis of machine learning algorithms are projected in 2D column charts for different 
experimental setup. 
4.1 Performance analysis method 
 For each dataset, analysis is done in two different setups. The first set of validation was 
performed using the raw dataset with no data transformation. The process of experimentation 
for raw dataset is explained in section 4.1.1. The second set of validation is performed using 
dataset that has been transformed using Random Projection, CFS with greedy stepwise and  
PCA with Ranker method , the process of which is described in section 4.1.2. 
 
4.1.1 Evaluation method for raw dataset 
 For raw dataset , a 10 fold cross validation is selected as “Test options” during the  execution 
of the classifier  in WEKA workbench. The complete dataset is used for the evaluation 
process  during which  the dataset is subsampled into 10 subsets of which a single sub sample 
is retained as the validation data for testing and the remaining 9 subsamples are used for 
training the classifier. The evaluation is repeated 10 times with each subsample used exactly 
once for validation. The overall performance is calculated by averaging the individual results 
generated by the 10 folds, to produce an overall estimation of the efficiency of the classifiers 
,as illustrated in section 4.2 and section 4.3. 
 
 4.1.2 Evaluation method for transformed dataset 
 A slightly different approach is applied when performing evaluation with transformed dataset.  
Three different preprocessing methods are applied to the raw dataset to generate three 
transformed datasets with reduced set of attributes. Data transformation is performed using 
WEKA workbench “Select Attribute” feature.  Inputs to the select attribute process are, 
attribute evaluator, search method, and attribute selection mode. The attribute evaluator is 
used for evaluating each attribute in the original dataset in context of the class attribute . The 
search method algorithm navigate through the dataset to form different combination of 
attributes which performs best with attribute evaluator. With Greedy stepwise search method 
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,CFS is used as an attribute evaluator and with Ranker search method, PCA is used as an 
attribute evaluator. 10 fold cross validation with seed 1 is chosen as the attribute selection 
mode. Cross validation is used to indicate the stability of the attribute selection by giving a 
statistic analysis of how many folds a given attribute appeared in the best subset found by the 
search method. The seed is a component of the randomness. Random projection is performed 
in a different method using WEKA workbench preprocessing feature which uses  
unsupervised attribute filtering technique for transforming the attributes. 
 
For the performance analysis of the classifiers,  each transformed dataset is used as the 
training dataset and original dataset is used as the test dataset by choosing the Test options in 
WEKA. The performance of different classifiers are illustrated in section 4.2 and section  4.3. 
 
4.2. Performance analysis results of  classification algorithms 
 For  classification problems class label specific accuracy is depicted in a 2D AUC score chart 
which maps each class AUC scores calculated by 10 fold cross validation of machine learning 
algorithms. All the metrics results for classification analysis are depicted in percentage to 
conveniently project in comparative analysis charts. Regression schemes were evaluated with 
correlation coefficient, RMSE and MEA. 
 
 4.2.1. Experiment 1- Human Activity Recognition(HAR)  Classification specific evaluation metrics results were compared by running the WEKA test 
bench shown in Figure 3.2 for HAR dataset with different test setup. In the first test run with 
the original data, it was discovered that due to high dimensional nature of the dataset (562 
attributes), the most expensive and inefficient algorithm was multilayer perceptron in terms of 
time taken as it look longer that 90 minutes to produce the results , hence excluded in the 
reports. Satisfactory results were seen C4.5, SVM, kNN and Random Forest with a accuracy 
and sensitivity(Recall) of more than 90% and  low FP rate. Naïve Bayes had the least 
accuracy and a high FP rate. Detailed results can be seen in Figure 4.1.  
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Figure 4.1: Performance analysis report on HAR dataset with no data transformation 

 
The AUC Scores for each class were mapped in a 2D line chart for different models in figure 
4.2. It is observed that Random forest AUC scores are the most consistent and optimal ones. 
 

 
Figure 4.2  AUC score 2D -line chart for HAR dataset with no data transformation 

 

C4.5 Naive Bayes SVM kNN
Random
Forest

Correctly Classified Instances 94.49% 74.97% 97.93% 97.23% 98.00%

Kappa statistic 93.38% 69.97% 97.51% 96.67% 97.59%

Precision (Weighted Avg) 94.50% 79.00% 97.90% 97.20% 98.00%

Recall (Weighted Avg) 94.50% 75.00% 97.90% 97.20% 98.00%

FP rate 1.10% 4.90% 0.40% 0.60% 0.40%

F-Measure(Weighted Avg) 94.50% 74.00% 97.90% 97.20% 98.00%

AUC (Weighted Avg) 97.30% 96.10% 99.40% 98.30% 99.90%
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With the application of random projection which reduced the dataset to 11 attributes to the 
original dataset , a significant degradation in the performance can be seen in all the evaluation 
metrics for all the models but results were obtained for multilayer perceptron with an 
accuracy of 73.88%  (Figure 4.3). The AUC scores can be seen in Figure 4.4 
 

 
Figure 4.3:1 Performance analysis report on HAR dataset transformed with Random 

Projection 
 

 
Figure 4.4 AUC score 2D -line chart for HAR dataset transformed with Random Projection 

C4.5
Naive
Bayes

SVM kNN
Multilayer
Perceptron

Random
Forest
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In the next experimentation the original data set was transformed using CFS and 
GreedyStepwise attribute selection method. The data dimension was reduced to 58 attributes. 
Satisfactory performance results were seen when transformed data was used as training set 
and original dataset is supplied as test set. Contrary to the evaluation results seen in original 
data models , all data models generated using  CFS and GreedyStepwise transformed data 
displayed similar results compared to models generated with original dataset as seen in Figure 
4.1. Naive Bayes and Multilayer Perceptron’s performance had a significant improvement  
with an accuracy of more than 85%. Detail evaluation results can been seen in Figure 4.5. 
 

 
Figure 4.5: Performance analysis report on HAR dataset transformed with CFS and 

GreedyStepwise 
 
The AUC score chart in Figure 4.6 projects the AUC scores for classes when models were 
built on CFS and greedy stepwise transformed data and it can be seen that class Laying down 
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likelihood of correct prediction. 
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Figure 4.6: AUC score 2D -line chart for HAR dataset transformed with CFS and 

GreedyStepwise 
In next test setup the data models were generated with a PCA and ranker method 
preprocessed dataset. The dataset was transformed to 105 attribute . Evaluation results did not 
show any overall improvement in performance compared to  test setup with original dataset 
and with CFS and GreedyStepwise transformed data. Model build for Multilayer perceptron 
was faster and validation results were satisfactory(Accuracy of 83.28%) compared to original 
dataset. Details of the analysis can be seen in Figure 4.7. 
 

 
Figure 4.7: Performance analysis report on HAR dataset transformed with PCA and Ranker 
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The AUC scores also does not indicate any improvement and projects an inconsistent pattern 
in prediction of classes as can be seen in Figure 4.8. 
 

 
Figure 4.8: AUC score 2D -line chart for HAR dataset transformed with PCA and Ranker 

 From the above experimentation it can be observed that Random Forest and SVM models 
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prediction of these class labels were not efficient . On the other hand Random Forest had a 
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Random forest also has a low FP of 13,80% which give the rate of  incorrectly sensing a 
vehicle. SVM also got good results with a accuracy of 85.43% and FP rate of 14.50 %. 
 

 
 

Figure 4.9: Performance analysis report on Vehicle dataset with no data transformation 
 

 
Figure 4.10: AUC score 2D -line chart for Vehicle dataset with no data transformation 
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With the application of random projection which reduced the dataset to 50 attributes. The 
overall performance of all the algorithms dropped slightly indicating towards an inefficient 
model design as seen in Figure  4.11. A drop in the AUC score for both the class labels can be 
seen in figure 4.12. 
 

 
Figure 4.11: Performance analysis report on Vehicle dataset transformed with Random 

Projection 
 

 
Figure 4.12: AUC score 2D -line chart for Vehicle data transformed with Random Projection 
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Application of CFS and GreedyStepwise data transformation which reduced the dataset to 34 
attributes didn’t show better results in performance except for multilayer perceptron which 

has an minor improvement in accuracy (84,48%)  compared to model built with original 
dataset as seen in Figure 4.13. 
 

 
Figure 4.13: Performance analysis  report on Vehicle dataset transformed with CFS and 

GreedyStepwise 

 
Figure 4.14: AUC score 2D -line chart for Vehicle data transformed with CFS and 

GreedyStepwise 
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As seen in figure 4.15 , 10-fold Cross validation performed on data transformed with PCA 
and ranker preprocessing techniques also did not give better results compared to output from 
models created on data with no transformation. The AUC score chart can be seen in Figure 
4.16. 
 

 
Figure 4.15: Performance analysis report on Vehicle dataset transformed with PCA and 

Ranker 
 

 
Figure 4.16: AUC score 2D -line chart for Vehicle data transformed with PCA and Ranker 
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From the above experimentation it can be observed that Random Forest and multilayer 
models for vehicle dataset stand out in terms of  high accuracy in all the test runs. Further 
analysis in section 5.1 will consolidate this initial findings. 
 
4.3. Performance analysis results of regression algorithms 
  For regression problems schemes were cross-validated in terms of correlation coefficient, 
RMSE and MEA. 
 
4.3.1. Experiment 3- Appliance energy prediction  
In experiment 3 ,regression models were built on appliance energy prediction dataset 
algorithms and evaluated with 10 fold cross validation. Correlation coefficient, RMSE and 
MAE metrics were measured and compared by running the WEKA test bench shown in 
Figure 3.3. Tests were performed first with the original data and then data was transformed 
with different preprocessing techniques. Figure 4.17 gives an overview of  algorithms’ 

performance when no data transformation was applied. As seen in Figure 4.17 , GBM and 
Random Forest have high correlation coefficient  with value closer to 1 and have 
comparatively lower RMSE and MAE.  While Random Forest had the lowest RMSE and 
highest correlation coefficient, SVM was the least efficient algorithm. 
 

 
Figure 4.17: Performance analysis report on energy dataset with no data transformation 
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Application of random projection to the original dataset, which reduced the dataset to 11 
attributes generated poorer results as seen in Figure 4.18.  
 

 
Figure 4.18:Performance analysis report on energy dataset transformed with Random 

Projection 
 
In the next experiment the data was transformed on WEKA workbench using CfsSubsetEval 
as attribute evaluator and GreedyStepwise for searching the attributes. The dataset was 
reduced to 6 attributes. It was observed that the data transformation improved the 
performance of kNN but degraded the performance of other algorithms as seen in figure 4.19. 
 

 
Figure 4.19: Performance analysis report on Energy dataset transformed with CFS and 

GreedyStepwise 
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Data was then transformed using attribute evaluator PCA and ranker as search method. This 
process transformed the dataset to 12 attribute dataset. The  efficiency reduced for all 
algorithms as compared to original dataset as can be seen in Figure 4.20. 
 

 
Figure 4.20:Performance analysis report on Energy dataset transformed with PCA and 

Ranker 
 
It can be deduced from the experimentation performed on appliances energy prediction 
dataset that data transformation deteriorate the overall performance and was not worth the 
application.  Random forest and GBM had the best evaluation metric statistics as compared to 
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Figure 4.21: Performance analysis report on Puma 560 robot arm dataset with no 

transformation 
As seen in Figure 4.21 models build with Random Forest and Multilayer perceptron were 
satisfactory with a low RMSE and high correlation coefficient. In this dataset as well random 
forest had the best results with a RMSE value of 3.2429 and correlation coefficient of 0.817. 
Models generated from data transformed with random projection generated a significantly 
poor validation results as seen from the number in Figure 4.22.   

 
Figure 4.22: : Performance analysis report on Puma 560 robot arm dataset transformed with 

Random Projection 
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As seen in Figure 4.23 , poor results were reported for all models generated for data 
transformed with  CFS and GreedyStepwise except kNN compared to model created with the 
original data(Figure 4.21). A RMSE value less than 5 and correlation coefficient of 0.6846 
was observed. 

 
Figure 4.23:Performance analysis report on Puma 560 robot arm dataset transformed with 

CFS and GreedyStepwise 
Classifiers’ evaluation with data transformed using with PCA and ranker method with 
original dataset being used as test data and transformed data being used as training data, also 
showed negligible improvement in the performance of the models and results we similar to 
the models generated with the original data. (Figure 4.24). 
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Figure 4.24: Performance analysis report on Puma 560 robot arm dataset transformed with 

PCA and Ranker  
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Chapter 5  
 
This chapter covers the an empirical comparative analysis of machine learning algorithms 
studied in chapter 4.  In the first section , paired t-test is performed on  the selected datasets 
and algorithms are validated in terms of chosen evaluation metrics. The next section provides 
a conclusive scrutiny of the analysis results from chapter 4 and section 5.1. This study is 
finalized with an overall summary in section 5.3. 
 
5.1 T-Test performance comparison 
 In many big data problems, a basic 10 fold cross validation on individual dataset is not a 
satisfactory decisive process for finalizing the optimal machine learning scheme for analytics 
design. A further extensive test is commonly carried out when conducting a performance 
comparative analysis. A repeated cross validation is performed for each algorithm for 
multiple datasets and a mean of (error estimates)/accuracy is computed to determine whether 
the mean of one data sample  is significantly greater or less than other.. WEKA Experimenter 
interface  uses paired t-test to compare the mean of two different data samples where the 
observation of one sample is paired with other observation. The conceptual background of 
paired t test has been presented in section 2. 
 
WEKA Experimenter paired t-test is conducted in a three step using three panels in the GUI 
shown in Figure 5.1 . In Setup panel datasets are and algorithms are selected. The Run panel 
is used to process 10-fold cross validation multiplied by 10 repeats per algorithm for each 
dataset. Paired t test is performed in the Analyse panel. The confidence level is  by default set 
to 0.05 and the comparison metric is “percent correct” by default. The base algorithm is 
selected in the test configuration settings. Section 5.1.1 discusses the test results for 
classification data samples and section 5.1.2  covers the regression data samples test results. 
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Figure 5.1 WEKA Experimenter 

 5.1.1: T-test analysis of classification algorithms  
The Experimenter was configured to perform paired t-test on the original HAR and vehicle 
dataset to analyze the classifiers Random Forest, C4,5, Naïve Bayes, SVM  and kNN. 
Random forest was configured as the baseline scheme. Accuracy(“percent_correct”) 
evaluation metric is used to compare the  performance. The symbol “v” and “*” beside the 
result indicates that the method is statistically high value(v) or low value(*) than the base 
method which is Random Forest in this case at a significance level of 5%. At the bottom of 
each column are counts (𝑥/𝑦/𝑧) which indicate the number of times the scheme is better or 
worse than the base scheme( 𝑥 being high , 𝑦  being the same , 𝑧 is low value ) as shown in 
Figure 5.3. It was observed from the test outcome that SVM with an accuracy of 98.49% was 
rated the best algorithm with highest “percent correct” value for HAR dataset. The number of 
times it is better than Random forest is 1. For vehicle dataset , none of the scheme’s 

performance was better than the baseline scheme i.e. Random Forest with accuracy of 86.26%  
. The bottom row statistics shows that C4.5 , Naive Bayes, kNN are worse than Random 
forest with a factor of 2 while SVM was worse with factor of 1.  Multilayer perceptron was 
excluded from the paired t-test analysis of the original dataset because it was extremely slow 
during the initial analysis as observed in section 4.1. 
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Figure 5.2: Paired T-test “Percent_Correct” analysis results of classifiers on original HAR 

and Vehicle dataset 
 
Since satisfactory results were seen with datasets transformed with CFS and GreedyStepwise 
method, paired t-test was run on both the  transformed datasets as well. Results indicated 
Random Forest as the most efficient scheme for both the datasets as illustrated in Figure 5.4. 
Multilayer perceptron was also included in the test run since promising results were visible in 
the initial analysis in section 4.1 and also good results were seen in paired t-test with a 
96.49% “percent correct”. The (𝑥/𝑦/𝑧) statistics in the bottom row shows that all schemes 
are worse than the base scheme by factor of 2 which indicate Random forest as a clear winner 
for both type of analytics design. 
 

 
  Figure 5.3: Paired T-test “Percent_Correct”  analysis results of algorithms on HAR and 

Vehicle dataset transformed with CFS and GreedyStepwise. 
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 5.1.2 T-test analysis of regression algorithms  
The Experimenter was configured to perform paired t-test on the original Energy and 
puma8NH dataset to analyze the regression models built with  Linear regression, Random 
Forest, GBM, multilayer perceptron, SVM and kNN. Random Forest is configured as the 
baseline scheme. Correlation coefficient and RMSE evaluation metrics are used to measure 
perform a comparative analysis. Due to limited computation capability, paired t-test was run 
on each datasets once at a time.  It was observed that Random Forest  outperformed all other 
schemes in terms of RMSE as it had significantly lower value than other schemes. Figure 5.5 
illustrate the test results for energy dataset.  Random Forest also had an optimal correlation 
coefficient compared to other schemes as illustrated in Figure 5.6. 
 

 
Figure 5.4: Paired T-test “RMSE” analysis of algorithms energy dataset 

 

 
Figure 5.5: Paired T-test “Correlation coefficient” analysis of algorithms energy dataset 
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The next  paired t-test was run on puma dataset with same configuration as energy dataset. In 
puma dataset Random Forest was observed as the optimal scheme based on the best values of 
RMSE and correlation coefficient compared to other schemes as illustrated  in Figure 5.7 and 
5.8. 
 

 
Figure 5.6: Paired T-test “RMSE” analysis of algorithms puma8NH dataset 

 

 
Figure 5.7: Paired T-test “Correlation Coefficient” analysis of algorithms puma8NH dataset 
 T-test comparative analysis results indicated Random Forest as the best scheme with optimal 
accuracy and RMSE.  SVM proved to be the optimal in terms of accuracy in case of HAR 
dataset when performed with no data transformation whereas overall analysis results indicated 
that Random Forest generate optimal results in different test scenarios.   
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Conclusion 
 
The intent of this thesis is to exhibit an analogical perspective of different machine learning 
algorithms to aid in the data analytics design process.  In this study, diverse datasets were 
subjected to selected machine learning algorithms and models’ performance was cross-
validated using WEKA and validation results were scrutinized.  A separate test was conducted 
for regression and classification problems using two datasets in each data mining category. 
Most of the algorithms chosen are capable of handling both regression and classification 
predictive tasks, hence aided in the algorithm analogy. The initial test was performed with 10- 
fold cross-validation to measure the efficiency of each algorithm with respect to the specific 
dataset. Evaluation metrics such as accuracy, Kappa statistic, Precision, recall,  FP rate, f-
measure and AUC formed the basis of evaluation for classification problems and RMSE and 
correlation coefficient for regression type data problems. Datasets were also transformed 
using preprocessing techniques and then used as test set to access the impact of preprocessing 
on the performance of the algorithms.  In the initial evaluation with 10-fold  cross validation, 
it was found that linearity and structure of the dataset has a visible impact on accuracy 
percentage and the error rate. As seen in case of HAR dataset where the dataset is more 
structured and linear, the error rate is low and accuracy is high compared to results from 
another dataset.  It was also seen that with the chosen dataset, preprocessing had no 
significant impact on the performance of the algorithms except for a couple of specific cases 
such as kNN had better efficiency when applied to datasets transformed with CFS and 
GreedyStepwise techniques. Multilayer perceptron also showed improvement in case of HAR 
dataset transformed with CFS and GreedyStepwise techniques. It was also seen that in case of 
HAR dataset, with the transformed data which reduced the dataset to 58 attributes from 561 
attributes, the overall efficiency of algorithms did not degrade significantly, hence can be 
stated as an optimal preprocessing method for classification datasets with respect to data 
storage cost. But in case of regression dataset, the difference in performance was evident and 
hence data transformation cannot be applied to datasets to achieve an efficient data model. 
Random Forest is seen as optimal modeling scheme for all the datasets selected for this study 
.The better performance of Random Forest schemes can be justified from its basic principle 
which combines multiple tree predictors at training time where the final prediction is made 
from the average of each prediction of the individual trees using the bootstrap averaging( 
bagging) techniques. This process leads to significant reduction in variance and overfitting 
caused by single tree predictors. Another important factor that makes Random Forest one of 
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the most preferred model schemes is that Random Forest requires minimal parameter tuning 
and is simple to implement to generate a decent model which outputs faster and efficient 
prediction. Finally, it can be stated that the efficiency of a model is greatly dependent on the 
dataset characteristics and a rigorous scrutiny of the predictive capability of algorithms with 
respect to the data problem in question and a comprehensive cost/benefit estimate are the two 
key aspects to designing an intelligent data analytics system. 
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Appendix A 
 WEKA algorithm configuration setting:  
CfsSubsetEval : weka.attributeSelection.CfsSubsetEval -P 1 -E 1 
 
missingSeparate:- if set then treat missing as a separate value. Otherwise, counts for missing 
values are distributed across other values in proportion to their frequency. 
preComputeCorrelationMatrix :- Precompute the full correlation matrix at the outset, rather 
than compute correlations lazily (as needed) during the search.  
locallyPredictive :- Identify locally predictive attributes.  
 
GreedyStepwise: weka.attributeSelection.GreedyStepwise -T -1.7976931348623157E308 -N 
-1 -num-slots 1 
 
generateRanking :- if true generate a ranked list. Default value is false. 
numToSelect:- Specify the number of attributes to retain. The default value (-1) indicates that 
all attributes are to be retained. 
searchBackwards:- Search backwards rather than forwards. Default is false. 
threshold:- Set threshold for filtering the attributes. Default value results in no attributes being 
discarded. 
startSet:- Set the start point for the search. This property is not set by default. 
 
Principal Components: weka.attributeSelection.PrincipalComponents -R 0.95 -A 5 
 
centerData:- Center (rather than standardize) the data. PCA will be computed from the 
covariance (rather than correlation) matrix 
transformBackToOriginal:- Transform through the PC space and back to the original space. 
By default set to false. 
varianceCovered:- Retain enough PC attributes to account for this proportion of variance. 
Default value is 0.95. 
maximumAttributeNames:- The maximum number of attributes to include in transformed 
attribute names. Default is 5. 
 



 

Ranker: weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1 
 
numToSelect:- Specify the number of attributes to retain. The default value (-1) indicates that 
all attributes are to be retained.  
threshold:- Set threshold by which attributes can be discarded. 
startSet:- Specify a set of attributes to ignore and is empty by default. 
 
Linear Regression: weka.classifiers.functions.LinearRegression -S 1 -R 1.0E-8 -additional-
stats -num-decimal-places 4 
 
minimal:- Discards the dataset header, means and standard deviation to conserve memory. 
Default value is FALSE. 
ridge:- WEKA uses a ridge regularization method to minimize the square of the absolute sum 
of the learned coefficients, which restricts  any specific coefficient from getting too high. 
Default value is 1.0E-8 
attributeSelectionMethod:- Set the method used to select attributes for use in the linear 
regression. For this study this parameter is set to” no attribute selection” 
eliminateColinearAttributes:- removed highly correlated attributes to improve the 
performance. Default value is TRUE. 
 
Multilayer Perceptron: weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 
500 -V 0 -S 0 -E 20 -H a -R 
 
seed:- Value used to initialize the weights of the connections between nodes, and also for 
shuffling the training data 
momentum:- Momentum applied to the weights during updating. Default is 0.2 
hiddenLayers:- This defines the hidden layers of the neural network. It is represented as 
numbers. it also has option for wild card values such as a which is the average of attributes 
count and number of classes . Default is “a”. 
validationThreshold :- Used to terminate validation testing. The value here dictates how many 
times in a row the validation set error can get worse before training is terminated. Default 
value is 20. 
decay:- This indicate the decay in  learning rate.  
normalizeAttributes:- this property is set to normalize the numeric attributes. 
normalizeNumericClass :-  set to  normalize the class if it's numeric 



 

trainingTime:-The number of epochs to train through. 
learningRate:- The amount the weights are updated. Default is 0.3. 
 
Random Forest : weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 
1.0 -V 0.001 -S 1 
 
seed:- The random number seed to be used. 
numExecutionSlots:- The number of  threads to use for constructing the ensemble. Default is 
1. 
bagSizePercent:- Size of each bag, as a percentage of the training set size. Default is 100. 
numIterations:- The number of iterations to be performed. Default is 100. 
maxDepth:-  The maximum depth of the tree, 0 for unlimited. 
numFeatures:- Sets the number of randomly chosen attributes. 
 
k-nearest neighbor(kNN): weka.classifiers.lazy.IBk -K 1 -W 0 -A 
"weka.core.neighboursearch.LinearNNSearch -A \"weka.core.EuclideanDistance -R first-
last\"" 
 
KNN:- The number of neighbours to use. 
distanceWeighting:- Gets the distance weighting method used. 
nearestNeighbourSearchAlgorithm -- The nearest neighbor search algorithm to use. Default is 
weka.core.neighboursearch.LinearNNSearch. 
windowSize:- Gets the maximum number of instances allowed in the training pool. A value of 
0 signifies no limit to the number of training instances. 
meanSquared:- Whether the mean squared error is used rather than mean absolute error when 
doing cross-validation for regression problems. 
 
Gradient Boosting Machines (GBM): weka.classifiers.meta.AdditiveRegression -S 0.2 -A -I 
10 -W weka.classifiers.trees.RandomTree -- -K 0 -M 1.0 -V 0.001 -S 1 
 
classifier -- The base classifier to be used. Default is DecisionStump. 
shrinkage:-  Shrinkage rate. Smaller values help prevent overfitting and have a smoothing 
effect but  causes an increase in learning time. Default is 1 which means no shrinkage. In this 
study a shrinkage of 0.3 is used. 
minimizeAbsoluteError :- Minimize absolute error instead of squared error. 



 

Support Vector Machines (SVM) for regression: weka.classifiers.functions.SMOreg-C 1.0 
-N 0 -I "weka.classifiers.functions.supportVector.RegSMOImproved -T 0.001 -V -P 1.0E-12 -
L 0.001 -W 1" -K "weka.classifiers.functions.supportVector.RBFKernel -C 250007 -G 0.01" 
 
SMOreg implements the support vector machine for regression. The algorithm is selected by 
setting the RegOptimizer.  
c:- The complexity parameter C. A value of 0 allows no violations of the margin, Default 
value is 1.0 
kernel:- The kernel to use. This is the  key parameter  for SVM and default is Polynomial 
Kernel. In this study Radial Basis Function(RBF)  kernel  is used and RBF is capable of 
learning closed polygons and complex shapes to fit the training data. 
filterType:- selects the  data transformation if needed. 
RegOptimizer:- The learning algorithm. 
 
C4.5: weka.classifiers.trees.J48 -U -M 2 
 

seed:- seed is the random number generator when  pruning is used. 
unpruned:- used to specify if pruning is done. 
confidenceFactor:- The confidence factor used for pruning. confidenceFactor  value is directly 
proportional to pruning strength. 
numFolds:- Determines the amount of data used for reduced-error pruning.  One fold is used 
for pruning, the rest for growing the tree. 
reducedErrorPruning :- Whether reduced-error pruning is used instead of C.4.5 pruning. 
doNotMakeSplitPointActualValue:- If true, the split point is not relocated to an actual data 
value.  
subtreeRaising:- used to select if  subtree raising operation to be performed when pruning. 
binarySplits:- Whether to use binary splits on nominal attributes when building the trees. 
 
Support Vector Machines (SVM) for classification:  weka.classifiers.functions.SMO -C 1.0 
-L 0.001 -P 1.0E-12 -N 2 -V -1 -W 1 -K "weka.classifiers.functions.supportVector.RBFKernel 
-C 250007 -G 0.01" -calibrator "weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-
decimal-places 4" 
 
RBF Kernel: K(x,y) = exp(-0.01*(x-y)^2) 
 



 

Implements John Platt's sequential minimal optimization algorithm for training a support 
vector classifier. 
c:- The complexity parameter C. A value of 0 allows no violations of the margin, Default 
value is 1.0 
kernel:- The kernel to use. This is the  key parameter  for SVM and default is Polynomial 
Kernel. In this study Radial Basis Function(RBF)  kernel  is used and RBF is capable of 
learning closed polygons and complex shapes to fit the training data. 
filterType:- selects the data transformation if needed. 
calibrator :- The calibration method to use. By default data is normalized but in this thesis no 
filter type is selected. 
 
Naive Bayes: weka.classifiers.bayes.NaiveBayes 
 
useKernelEstimator:- Use a kernel estimator for numeric attributes rather than a normal 
distribution. 
displayModelInOldFormat:- Use old format for model output. The old format is better when 
there are many class values. The new format is better when there are fewer classes and many 
attributes. 
useSupervisedDiscretization:- Use supervised discretization to convert numeric attributes to 
nominal ones. By default is set to false. 


