
Comparative study of state-of-the-art

machine learning models for

analytics-driven embedded systems

Master of Science Thesis
University of Turku

Department of Future Technologies
Faculty of Science and Technology

2019
Sushri Sunita Purohit

Reviewers:

Ph.D. (Tech.) Tomi Westerlund
Prof. Tapio Pahikkala

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service.

 i

UNIVERSITY OF TURKU Department of Future Technologies Sushri Sunita Purohit: Comparative study of state-of-the-art machine learning models for analytics-driven embedded systems Master of Science Thesis, 63 p., 5 app. p. Faculty of Science and Technology March 2019
Analytics-driven embedded systems are gaining foothold faster than ever in the current digital era. The innovation of Internet of Things(IoT) has generated an entire ecosystem of devices, communicating and exchanging data automatically in an interconnected global network. The ability to efficiently process and utilize the enormous amount of data being generated from an ensemble of embedded devices like RFID tags, sensors etc., enables engineers to build smart real-world systems. Analytics-driven embedded system explores and processes the data in-situ or remotely to identify a pattern in the behavior of the system and in turn can be used to automate actions and embark decision making capability to a device. Designing an intelligent data processing model is paramount for reaping the benefits of data analytics, because a poorly designed analytics infrastructure would degrade the
system’s performance and effectiveness. There are many different aspects of this data that make it a more complex and challenging analytics task and hence a suitable candidate for big data. Big data is mainly characterized by its high volume, hugely varied data types and high speed of data receipt; all these properties mandate the choice of correct data mining techniques to be used for designing the analytics model. Datasets with images like face recognition, satellite images would perform better with deep learning algorithms, time-series datasets like sensor data from wearable devices would give better results with clustering and supervised learning models. A regression model would suit best for a multivariate dataset like appliances energy prediction data, forest fire data etc. Each machine learning task has a varied range of algorithms which can be used in combination to create an intelligent data analysis model. In this study, a comprehensive comparative analysis was conducted using different datasets freely available on online machine learning repository, to analyze the performance of state-of-art machine learning algorithms. WEKA data mining toolkit was used to evaluate C4.5, Naïve Bayes, Random Forest, kNN, SVM and Multilayer Perceptron for classification models. Linear regression, Gradient Boosting Machine(GBM), Multilayer Perceptron, kNN, Random Forest and Support Vector Machines (SVM) were applied to dataset fit for regression machine learning. Datasets were trained and analyzed in different experimental setups and a qualitative comparative analysis was performed with k-fold Cross Validation(CV) and paired t-test in Weka experimenter. Keywords: Embedded system analytics, IoT, Data mining, Machine learning, WEKA

 ii

Acknowledgements
 I would like to thank my thesis advisors Prof. Tapio Pahikkala and Prof. Tomi Westerlund for the constant support , guidance and their valuable comments on this thesis. I would also like to thank my work colleagues for supporting me and being patient with me while I took days off from work to complete this thesis work. Finally I would like to thank my husband Bineet Panda and my family for being a constant source of motivation and encouragement. This accomplishment would not have been possible without them. Thank you. At Vantaa 20.3.2019 Sushri Sunita Purohit

 iii

Table of Contents

LIST OF FIGURES .. V

LIST OF TABLES ... VI

LIST OF ACRONYMS .. VII

CHAPTER 1 ... 1

1.1 INTRODUCTION .. 1
1.2 ORGANIZATION OF THESIS .. 2

CHAPTER 2 ... 3

2.1. WORKFLOW IN ANALYTICS-DRIVEN SYSTEM DESIGN .. 3
2.1.1. Data collection .. 3
2.1.2. Data pre-processing .. 4
2.1.3. Data modeling .. 5
2.1.4. Data evaluation .. 7
2.1.5. Model deployment .. 8

2.2. CONCEPTUAL OVERVIEW OF DATA MINING ALGORITHMS .. 8
2.2.1. Data transforming algorithms .. 8

2.2.1.1. Ranker ... 8
2.2.1.2. Correlation-based Feature Selection (CFS) ... 9
2.2.1.3. Greedy stepwise ... 9
2.2.1.4. Boolean reasoning .. 10
2.2.1.5. Entropy-based discretization .. 10
2.2.1.6. Principal Component Analysis ... 10
2.2.1.7. Random Projection ... 11

2.2.2. Data mining algorithms .. 12
2.2.2.1. C4.5 ... 12
2.2.2.2. Naïve Bayes ... 13
2.2.2.3. Random Forest .. 14
2.2.2.4. k-nearest neighbor(kNN) .. 14
2.2.2.5 Linear Regression ... 15
2.2.2.6 Gradient Boosting Machines (GBM) .. 15
2.2.2.7. Support Vector Machines (SVM) ... 16
2.2.2.8. Artificial Neural Networks ... 17
2.2.2.9. K-mean .. 21

2.2.3. Model Evaluation techniques .. 22
2.2.3.1. Cross-validation .. 22
2.2.3.2. T-test ... 22

2.2.4. Performance metrics ... 24
2.2.4.1. Confusion Matrix .. 24
2.2.4.2. Sensitivity, Specificity And Accuracy ... 24
2.2.4.3. Kappa statistic ... 25
2.2.4.4. Precision .. 25
2.2.4.5. F-Measure ... 26
2.2.4.6. ROC area ... 26
2.2.4.7. Correlation coefficient .. 27
2.2.4.8. Mean Absolute Error(MAE) ... 27
2.2.4.9. Root mean squared error(RMSE) .. 27

2.3 RELATED STUDIES .. 28

CHAPTER 3 ... 29

3.1 DATASETS SELECTED FOR THE ANALYSIS ... 29
3.2 WAIKATO ENVIRONMENT FOR KNOWLEDGE ANALYSIS(WEKA) ... 34
3.3 TEST ENVIRONMENT SETUP... 35

3.3.1 Hardware/software specifications ... 35
3.3.2 WEKA test bench .. 35

CHAPTER 4 ... 37

4.1 PERFORMANCE ANALYSIS METHOD ... 37

 iv

4.1.1 EVALUATION METHOD FOR RAW DATASET ... 37
4.1.2 EVALUATION METHOD FOR TRANSFORMED DATASET ... 37
4.2. PERFORMANCE ANALYSIS RESULTS OF CLASSIFICATION ALGORITHMS .. 38

4.2.1. Experiment 1- Human Activity Recognition(HAR) ... 38
4.2.2. Experiment 2-Vehicle sensing ... 43

4.3. PERFORMANCE ANALYSIS RESULTS OF REGRESSION ALGORITHMS ... 48
4.3.1. Experiment 3- Appliance energy prediction .. 48
4.3.2. Experiment 4-Puma 560 robot arm .. 50

CHAPTER 5 ... 54

5.1 T-TEST PERFORMANCE COMPARISON .. 54
5.1.1: T-test analysis of classification algorithms ... 55
5.1.2 T-test analysis of regression algorithms .. 57

CONCLUSION ... 59

REFERENCES ... 61

APPENDIX A ...A

 v

List of figures
FIGURE 2.1: ANALYTICS-DRIVEN SYSTEM DESIGN WORKFLOW .. 3
FIGURE 2.2: ARTIFICIAL NEURON COMPUTATIONAL MODEL ... 17
FIGURE 2.3: ANN ARCHITECTURE .. 18
FIGURE 2.4: SELF ORGANIZING MAPS ARCHITECTURE ... 20
FIGURE 2.5:ROC CURVE .. 27
FIGURE 3.1: CLASS DISTRIBUTION OF HAR DATASET .. 30
FIGURE 3.2: CLASS DISTRIBUTION OF VEHICLE DATASET ... 31
FIGURE 3.3: CLASS DISTRIBUTION OF APPLIANCES ENERGY PREDICTION DATASET ... 33
FIGURE 3.4: CLASS DISTRIBUTION OF PUMA 560 ROBOT ARM DATASET ... 34
FIGURE 3.5: SAMPLE ARFF FILE .. 35
FIGURE 3.6 WEKA CLASSIFICATION TESTBENCH ... 36
FIGURE 3.7 WEKA REGRESSION TESTBENCH .. 36
FIGURE 4.1: PERFORMANCE ANALYSIS REPORT ON HAR DATASET WITH NO DATA TRANSFORMATION 39
FIGURE 4.2 AUC SCORE 2D -LINE CHART FOR HAR DATASET WITH NO DATA TRANSFORMATION 39
FIGURE 4.3:1 PERFORMANCE ANALYSIS REPORT ON HAR DATASET TRANSFORMED WITH RANDOM PROJECTION 40
FIGURE 4.4 AUC SCORE 2D -LINE CHART FOR HAR DATASET TRANSFORMED WITH RANDOM PROJECTION 40
FIGURE 4.5: PERFORMANCE ANALYSIS REPORT ON HAR DATASET TRANSFORMED WITH CFS AND GREEDYSTEPWISE 41
FIGURE 4.6: AUC SCORE 2D -LINE CHART FOR HAR DATASET TRANSFORMED WITH CFS AND GREEDYSTEPWISE 42
FIGURE 4.7: PERFORMANCE ANALYSIS REPORT ON HAR DATASET TRANSFORMED WITH PCA AND RANKER 42
FIGURE 4.8: AUC SCORE 2D -LINE CHART FOR HAR DATASET TRANSFORMED WITH PCA AND RANKER 43
FIGURE 4.9: PERFORMANCE ANALYSIS REPORT ON VEHICLE DATASET WITH NO DATA TRANSFORMATION 44
FIGURE 4.10: AUC SCORE 2D -LINE CHART FOR VEHICLE DATASET WITH NO DATA TRANSFORMATION 44
FIGURE 4.11: PERFORMANCE ANALYSIS REPORT ON VEHICLE DATASET TRANSFORMED WITH RANDOM PROJECTION 45
FIGURE 4.12: AUC SCORE 2D -LINE CHART FOR VEHICLE DATA TRANSFORMED WITH RANDOM PROJECTION 45
FIGURE 4.13: PERFORMANCE ANALYSIS REPORT ON VEHICLE DATASET TRANSFORMED WITH CFS AND GREEDYSTEPWISE

 .. 46
FIGURE 4.14: AUC SCORE 2D -LINE CHART FOR VEHICLE DATA TRANSFORMED WITH CFS AND GREEDYSTEPWISE 46
FIGURE 4.15: PERFORMANCE ANALYSIS REPORT ON VEHICLE DATASET TRANSFORMED WITH PCA AND RANKER 47
FIGURE 4.16: AUC SCORE 2D -LINE CHART FOR VEHICLE DATA TRANSFORMED WITH PCA AND RANKER 47
FIGURE 4.17: PERFORMANCE ANALYSIS REPORT ON ENERGY DATASET WITH NO DATA TRANSFORMATION 48
FIGURE 4.18:PERFORMANCE ANALYSIS REPORT ON ENERGY DATASET TRANSFORMED WITH RANDOM PROJECTION 49
FIGURE 4.19: PERFORMANCE ANALYSIS REPORT ON ENERGY DATASET TRANSFORMED WITH CFS AND GREEDYSTEPWISE

 .. 49
FIGURE 4.20:PERFORMANCE ANALYSIS REPORT ON ENERGY DATASET TRANSFORMED WITH PCA AND RANKER 50
FIGURE 4.21: PERFORMANCE ANALYSIS REPORT ON PUMA 560 ROBOT ARM DATASET WITH NO TRANSFORMATION 51
FIGURE 4.22: : PERFORMANCE ANALYSIS REPORT ON PUMA 560 ROBOT ARM DATASET TRANSFORMED WITH RANDOM

PROJECTION ... 51
FIGURE 4.23:PERFORMANCE ANALYSIS REPORT ON PUMA 560 ROBOT ARM DATASET TRANSFORMED WITH CFS AND

GREEDYSTEPWISE .. 52
FIGURE 4.24: PERFORMANCE ANALYSIS REPORT ON PUMA 560 ROBOT ARM DATASET TRANSFORMED WITH PCA AND

RANKER ... 53
FIGURE 5.1 WEKA EXPERIMENTER .. 55
FIGURE 5.2: PAIRED T-TEST “PERCENT_CORRECT” ANALYSIS RESULTS OF CLASSIFIERS ON ORIGINAL HAR AND VEHICLE

DATASET .. 56
FIGURE 5.3: PAIRED T-TEST “PERCENT_CORRECT” ANALYSIS RESULTS OF ALGORITHMS ON HAR AND VEHICLE DATASET

TRANSFORMED WITH CFS AND GREEDYSTEPWISE. ... 56
FIGURE 5.4: PAIRED T-TEST “RMSE” ANALYSIS OF ALGORITHMS ENERGY DATASET .. 57
FIGURE 5.5: PAIRED T-TEST “CORRELATION COEFFICIENT” ANALYSIS OF ALGORITHMS ENERGY DATASET 57
FIGURE 5.6: PAIRED T-TEST “RMSE” ANALYSIS OF ALGORITHMS PUMA8NH DATASET ... 58
FIGURE 5.7: PAIRED T-TEST “CORRELATION COEFFICIENT” ANALYSIS OF ALGORITHMS PUMA8NH DATASET 58

 vi

List of tables
TABLE 3.1: HAR DATASET CHARACTERISTICS .. 30
TABLE 3.2: VEHICLE SENSING DATASET CHARACTERISTICS .. 31
TABLE 3.3: APPLIANCES ENERGY PREDICTION DATASET CHARACTERISTICS ... 32
TABLE 3.4: PUMA 560 ROBOT ARM DATASET CHARACTERISTICS ... 33
TABLE 3.5 HARDWARE/SOFTWARE CONFIGURATION .. 35

 vii

List of acronyms
RFID Radio Frequency Identification

IoT Internet of things

XML Extensible Markup Language

HDF Hierarchical Data Format

CAN Controller Area Network

WSN Wireless Sensor Networks

TBDCS Tree-Based Data Collection Scheme

FNS Forwarding Nodes Set

MDL Minimum Description Length

WEKA Waikato Environment for Knowledge Analysis

SVM Support Vector Machines

kNN k-Nearest Neighbor

CV Cross Validation

IG Information gain

ID3 Iterative Dichotomiser 3

RF Random Forest

GBM Gradient Boosting Machines

 viii

ANN Artificial Neural Networks

TP True Positive

TN True Negative

FN False Negative

FP

False Positive

ROC Receiver Operating Characteristic

AUC Area Under the Curve

WSDN Wireless Distributed Network

HAR Human Activity Recognition

RMSE Root Mean Square Error

MAE Mean Absolute Error

ARFF Attribute-Relation File Format

CLI Command Line Interface

RBF Radial Basis Function

DELVE Data for Evaluating Learning in Valid Experiments

CFS Correlation-based Feature Selection

 1

Chapter 1
1.1 Introduction

“Information is the oil of the 21st century, and analytics is the combustion engine ”
Peter Sondergaard, Gartner

Integration of embedded systems into the field of electronics design has been increasingly
ubiquitous, ranging from modern everyday appliances like mobile phones, Radio Frequency
Identification (RFID) tags in home appliances, modems, remote controls, watches etc. to
complex system development like automobiles, space researches, power plants etc. Internet of
things (IoT) has also emerged as an evolving technology which has found its place in
embedded electronics domain. With the rapid growth and advancement in IoT and embedded
electronics, a network of interconnected devices has been created, which has revolutionized
the concept of networking and data communication but it comes with a price, the challenge of
handling the massive amount of data these interconnected applications generate. With
increasing demand for energy efficient, reliable, scalable and faster applications, the need for
turning data into useful information and knowledge has attracted a great deal of attention in
the research community, which has led to the emergence of analytics-driven system design.

Designers combine the data mining techniques into the embedded system design to make the
application context-aware and be able to predict the system's behavior. The implementation of
analytics differ depending on the system usage, in some cases, the analytics is performed in
the cloud to improve the embedded-systems performance while in some it runs directly in the
embedded system. The initial step in the direction of analytics design is the selection of the
appropriate data mining technique to ensure system robustness, reliability and efficient cost
management in the architecture, design, and maintenance.

In this thesis, a qualitative comparative analysis of state-of-art data mining algorithms using
datasets generated by embedded devices is presented. The objective of this study is to identify
the optimal data mining models specific to the dataset.

 2

1.2 Organization of thesis

The rest of the thesis has been organized as follows. Chapter 2 focuses on the theoretical
foundations of analytics-driven embedded system design. The first part of the chapter covers
the generalized workflow of the analytics design for embedded systems, here different steps
and the tasks performed during the process is explained. The second part of the chapter covers
the basic concept and principle of the state-of-art machine learning algorithms. In chapter 3,
dataset chosen for the study and the toolkit used are described and an overview of the
experimental setup is illustrated. Chapter 4 covers experimentation in detail and initial result
of the analysis. Finally, in chapter 5 the t-test analysis results are scrutinized and concluding
remarks are presented.

 3

Chapter 2
 2.1. Workflow in analytics-driven system design
 Typically, the process of data mining starts with problem definition which sets the path for
data modeling. The key aspects of a problem definition are clarity of the business requirement
and a cost/benefit estimate [9]. Knowledge of business requirement and the way data can be
used to achieve the desired goal is the stepping stone in the process of analytics. The next
significant step is the collection of data which determine the rest of the step to be followed in
the data modeling. A pictorial representation of the sequence of steps designers follow to
build an embedded system analytics model to accomplish the expected outcome is shown in
Figure 2.1.

Figure 2.1: Analytics-driven system design workflow

2.1.1. Data collection

Applying a systematic approach to collecting the raw data is foundation step in the workflow.
In embedded computing domain, data is being collected from a varied range of sources and in
distinct forms. For smart devices embedded with electronics, software, sensors, actuators,
each event detection generate data and can be of various formats such as text, spreadsheet,
image, audio, video, geospatial, web, Extensible Markup Language (XML) and Hierarchical
Data Format (HDF) for scientific data, and Controller Area Network (CAN) for automotive
data. Data from multiple sources must be integrated and stored so that it is accessible for
training the model. In case the IoT devices, multiple devices are part of a Wireless Sensor

 4

Networks (WSN) creating a massive volume of data. Data collection schemes in devices
connected through WSN or any embedded devices that operate in-situ must fulfill following
objectives: a) minimal energy consumption, b) minimized latency and c)
optimized CPU usage [3].

Different data collection methodologies have been proposed keeping the mentioned goals in
mind. Data aggregation is a basic operation in WSN since it is typically restricted in hardware
infrastructure and communication recourses. Tree-based technique and cluster-based
technique are the two most commonly used data collection methodologies adopted in
embedded systems analytics workflow. As proposed in [4], Tree-Based Data Collection
Scheme(TBDCS) is a distributed data collection method which establishes a tree structure
with intermediate nodes termed as Forwarding Nodes Set(FNS). These intermediate nodes act
like data aggregators to transmit data from sensor nodes back along the tree. Through
different simulations and scrutiny, it has been inferred that TBDCS significantly reduces
transmission latency and network congestion.

Cluster-based data collection method has been claimed to be effective in systems which are
limited in energy consumption and network bandwidth [5]. In this technique, a cluster head is
designated among a group of sensor nodes and similarly multiple disjoints sets are formed
with a group of sensor nodes. Sensors in the cluster send information to the cluster head, The
cluster head suppresses the local redundancies and communicates the compressed data to the
main system. In this process, the cost of sending redundant data is reduced thereby preserving
energy and minimizing the scalability constraint.

Another challenge of data collection is the structure of data that determine various
characteristics of the dataset such as multivariate, sequential, time-series, image signals etc. In
addition to that, each dataset can contain a heterogeneous list of attributes. All these aspects
of data steer the choice of machine learning technique to be used for analysis.

 2.1.2. Data pre-processing
 The bitter truth of data science is the data collected from real-world applications are not
machine learning ready. Real data is low in quality in terms of completeness, accuracy, and
consistency, hence unreliable to be used to design an intelligent analytics model. The data
collected needs to be pre-processed before applying any machine learning algorithms. Pre-

 5

processing the data has become the most essential and expensive step in the data mining
workflow. Due to growing demand for smart systems with multiple data generating nodes,
designing a reliable and high performing predictive model has become paramount. Pre-
processing is part of the iterative data mining workflow and are optimized by multiple runs of
the workflow and are greatly determined by the statistics generated by the algorithms used to
train the data. One must undergo different phases of data pre-processing to achieve a
predictive data model.

The first stage of preparing the data is to understand the features of the raw data to identify
outliers, noise etc. Descriptive data summarization reveals the raw data characteristics.
Measurement of central tendency and dispersion of data are standard techniques used to
describe the anomalies in data. Mean, median, mode, and midrange are properties that define
the central tendency of a dataset and measures of quartiles, interquartile range and variance
determine how disperse the data is [7]. During this process, the main features of the data can
be identified which are essential for proceeding to the next stages [6]

Another phase of preparing the data is feature selection. Raw data contain magnitude of
attributes and it is crucial to filter out those attributes which do not have a relevant
contribution to the machine learning process. Discretization is one way of transforming the
data to suit some of the specific classification and clustering algorithms. In this process, a
large number of data values (numeric attributes) are converted into a smaller number of
discrete values. These methods are used for attribute reduction by grouping the continuous
attributes into a range of values. Applying discretization to data enhances the predictive
accuracy and boost the performance as well. Discretization algorithms can be categorized as
boolean reasoning, equal frequency binning, entropy-based discretization [7]. Depending on
the complexity of the raw data, additional data transformation is needed to optimize the
training process. Projection is one of the technique used to project training data such as spatial
data in lower dimensional spaces, but still preserves the inherent relationships in the data.
Principal component analysis another way of transforming data into a set of values of linearly
uncorrelated variables called principal components. Section 2.2 covers the details of some of
the popular pre-processing algorithms.
 2.1.3. Data modeling

 6

After the data has passed the initial pre-processing stage, mining model is built using the
transformed data and machine learning algorithms. This model forms the base to extract
patterns. Discovery of patterns is mainly determined by the selection of training data, type of
algorithms used and how the algorithm is configured[8]. Different dataset require specific
machine learning tasks, for example, deep learning algorithms should be used in case of
complicated dataset like face recognition, time-series datasets like sensor data from wearable
devices need clustering and classification learning models, multivariate dataset like
appliances energy prediction data, forest fire data etc. might work best with regression
learning tasks.

Classification
Classification machine learning is used to predict discrete data points or class labels for the
data instance based on the prediction model called classifier. A classifier is constructed by
training on the dataset through a series of machine learning tasks. The simplest classification
type is of a binary class labeled data model. In binary classification the observed instance can
only be categorized into two class labels. Classification algorithms find relationship between
the value the attributes which are identified as predictors and a discrete output value such as
color, type or true/false, using the training set. The model is designed based on these
relationships and then applied to the real time dataset to predict the class label.

Regression
Regression data modeling determine relationships between the value the attributes which are
identified as predictors and a continuous output value. A continuous output variable is a real-
value, such as an integer or floating point value such as size, amount etc. There are several
machine learning algorithms which can be used for both regression and classification such as
decision trees, support vector machine and artificial neural networks but there some specific
algorithms which are only meant for regression like linear regression and addictive
regression.

Clustering
Clustering is used when the class label is unknown or not certain. The aim is to segregate
dataset instances with similar traits into groups and categorize them into clusters by dividing
the data instances in the dataset into a number of groups such that data points within a group
are more similar to other data points in the same group than those in other groups.

 7

A mining model is generated by performing a series of adjustments to the algorithms and data
creating different results which are then evaluated and compared to select the optimal
analytics setup. During this process, both the mining structure and mining model are updated
after each adjustment. Dataset structure mainly consists of data source definition, list of
instances and list of features. A mining model architecture consists of metadata, data mining
results in form of patterns and a data binding structure to the original data. The metadata gives
the specifics of the model such as the name of the model, mining structure used for the model,
machine learning algorithms used to analyze the data. Each model is characterized by two
properties. Algorithm property defines the algorithm that is used to create the model. It can be
set during the data analysis phase and can be changed later but the model must be reprocessed
to generate the accurate pattern. Another property is the usage which specifies how each
attribute is used by the model [8].

Each machine learning task has a varied range of algorithms which can be used in
combination to create an intelligent data analysis model. Section 2.2 covers the concepts of
some of the state-of-art algorithms.

 2.1.4. Data evaluation
 Data evaluation is the key step to ensure the credibility of a model and is a cumbersome
process. Data evaluation begins by setting up a systematic evaluation method to explore how
different models structure the data and do a comparative analysis. Selection of a discrete test
data set is pre-requisite for trustworthy evaluation since performance on the training set is not
a good indicator of future performance. The reason is that the model has been trained from the
very same training data and an estimate of performance based on that data will be optimistic
and not realistic.

Over the years, different evaluation methods have been proposed for different category of
data mining models. Cross-validation, hold out and random subsampling and bootstrap are the
most commonly used methods for classification and regression models. Evaluation schemes
assess the performance on multiple metrics such as sensitivity and specificity, precision,
kappa statistics, mean absolute error, root mean squared error, relative absolute error and root
relative squared error. Cross-validation is the preferred method of choice of data scientists.
For clustering schemes, Minimum Description Length(MDL) is considered for evaluation. To

 8

find the best data mining algorithm to design the data model, a comparative analysis is needed
to predict the true performance of different algorithms. The t-test is commonly used to
perform such experimentation. Details of the evaluation schemes used in this study have been
covered in section 2.2. However MDL is beyond the scope of this study and hence not
covered.

2.1.5. Model deployment
 The last step in the data mining process is to integrate the analytics model into a commercial
environment. The model can then be used to perform multiple tasks such as real-time object
detection, tracing patterns from new signals, making predictions to direct business decisions,
creating queries to retrieve new patterns, rules, and behavior.

2.2. Conceptual overview of data mining algorithms
 2.2.1. Data transforming algorithms
 Feature selection
Feature selection is a form of data reduction where irrelevant, or redundant attributes can be
detected and removed. Algorithms are categorized into a scheme-independent selection (filter
method) and scheme-specific selection (Wrapper method) [10]. In WEKA interface, the
process of attribute selection is split into two parts: (a) attribute evaluator- the process of
assessing the selected attribute subset (b) search method- the process of searching a possible
subset.

2.2.1.1. Ranker
 This algorithm works on the principle of information gain attribute ranking. It is one of the
simplest attribute selection method which ranks attributes by their individual evaluations and
mostly used in decision tree classifiers like C4.5 classifier. Information gain(IG) is based on
entropy metrics. The entropy measure is a measure impurity and can be calculated as H(X)
(Equation 2.1).

 9

 H(X) = − ∑ p(xi) log2(p(xi))

n

i=1

 (2.1)

where p(x) is the marginal probability density function of a discrete random variable X with
N outcomes. IG is measured by the amount of information gained by splitting the dataset
using the chosen attribute whereas entropy of the class reflects the attribute contribution in
gaining clear information about a class. Attributes are ranked based on IG value, where
attributes with high scores are selected since they can be used for better prediction [10] [11].
2.2.1.2. Correlation-based Feature Selection (CFS)
 Correlation-based Feature Selection method evaluates a subset of attributes instead of
assessing individual attributes. Efficacy of individual features is considered for predicting the
class along with the degree of inter-correlation among them. High scores are assigned to
subsets containing attributes that are highly correlated with the class and poorly inter-
correlated with each other. Scores are measured by heuristic merits formulated by the
Equation 2.2 (Ghiselli 1964) [12].

𝑟𝜃𝑆 =
𝑘𝑟𝜃𝑖

√𝑘 + 𝑘(𝑘 – 1)𝑟𝑖𝑗

(2.2)

where rθs is the score of the subset, rθi is the average correlation between the k variable and
θ, and rij is the average of attribute subset intra-correlation.

2.2.1.3. Greedy stepwise
 Greedy stepwise method selects the attributes by performing a forward or backward search
through the attribute subspace which can be random. During the process of search the greedy
stepwise method creates a ranked list of attributes and the search process stops when the
addition or deletion of any remaining attributes results in a decrease in evaluation. Greedy
stepwise feature search is used in conjunction with CFS in WEKA.

Discretization
As mentioned in section 2.1, discretization is mainly needed for datasets with continuous
numeric attributes and can be achieved by sorting all the continuous values of the attribute

 10

and splitting continuous values into a predetermined number of equal intervals (unsupervised
discretization) or using the number of classes as the discretization parameter (supervised
discretization). Unsupervised discretization methods are only suitable for clustering type of
training where the class is non-existent or uncertain [7].

 2.2.1.4. Boolean reasoning
 Boolean reasoning builds on the Boole-Schröder algebra of logic, which is based on Boolean
equations with predicates which are true or false. It is a straightforward implementation that
filters a small subset of attribute values that do not preserve the discernibility. The remaining
subset is a minimal set of cuts preserves the discernibility inherent in the dataset. The
algorithm operates by first creating a Boolean function from the set of candidate cuts, and
then computing a prime implicate of the Boolean function [7].

 2.2.1.5. Entropy-based discretization
 It is a form of supervised discretization which based on the MDL principle as described in
[11]. Several entropies-based algorithms have been proposed which work for multiple
domains. Some algorithms work on the principle of recursively partitioning the value set of
each attribute so that the local measure of entropy is optimized and some are based on
maximizing the entropy over discretization space [13].

Feature extraction
Also known as dimensionality reduction, feature extraction is a process of transforming the
high dimensional dataset to a reduced or compressed representation of the original data before
starting the modeling process. During the process of feature extraction, the original data can
be either be transformed without losing any information (lossless data reduction) or the
transformed data approximates the original data (lossy data reduction) [1]. In realistic data
mining process, lossy data reduction is the typical outcome of as dimensionality reduction.
Several algorithms have been invented for this purpose out which PCA and Random
Projections are the preferred ones.

2.2.1.6. Principal Component Analysis

 11

Principle Component Analysis(PCA) is a mathematical procedure which is based on
projection principles. In this method, an orthogonal restructuring of a high dimensional data
set to a set of values of linearly uncorrelated variables called principal components. PCA was
developed and named by Harold Hotelling in 1930 which was based on the algorithm derived
by Karl Pearson as an analog of the principal axis theorem in 1901[14]. PCA is done by
deriving a covariance matrix of a data set consists of covariance values between all the
different dimensions. Covariance indicates the relationship between two dimensions and can
be calculated as

𝐶(𝑋, 𝑌) =
∑ (𝑋𝑖 − 𝑋𝑛

𝑖=1)(𝑌𝑖 − 𝑌)

𝑛 − 1
 (2.3)

where C is the covariance and X and Y are the two dimensions of a dataset which has n
number of instances and 𝑋, 𝑌 are the mean of the dimension X and Y. For an N-dimensional
data set, covariance matrix will have 𝑁!

(𝑁−2)!∗2
 a number of covariance values. Then the

eigenvectors and eigenvalues of the covariance matrix are calculated and eigenvectors are
normalized so that the length is always 1 The eigenvectors are then ranked according to the
eigenvalues. The eigenvectors which have high scores are selected as principal components.
The transformed data is derived from the original dataset by using the set of selected principal
components called a feature vector, formulated in Equation 2.4.

 𝐷𝑓𝑖𝑛𝑎𝑙 = 𝐹𝑉𝑡𝑟𝑎𝑠𝑝𝑜𝑠𝑒𝑑 × 𝑀𝐷𝑜𝑟𝑔𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝑑

(2.4)

where FV is the feature vector matrix which row transposed and MDorgtransposed is the
transposed matrix of mean adjusted values of the original dataset i.e. the data items are in
each column, with each row holding a separate dimension [15].

2.2.1.7. Random Projection
 Another technique of feature extraction is Random Projection(RP) where the original data is
projected onto a predefined lower dimensional subspace using a random matrix whose
columns have unit lengths. In RP, the original d-dimensional data is projected to a k-
dimensional (k << d) subspace through the origin, using a random (k × n) matrix R whose
columns have unit lengths. RP can be formulated in the Equation 2.5.

 12

 𝐷𝑘×𝑁

𝑅𝑃 = 𝑅𝑘×𝑑 × 𝐷𝑑×𝑁

(2.5)

where 𝐷𝑑×𝑁 is the original set of N n-dimensional instances, 𝐷𝑘×𝑁
𝑅𝑃 is the projection of the

data onto a lower p-dimensional subspace. The key idea of random mapping arises from the
Johnson-Lindenstrauss lemma [16] which states that distance relationships are preserved quite
well on an average. Random projection implementation can be done in different ways. One is
based on Gaussian distribution [17] and other implements a sparse random matrix as proposed
by Achlioptas in [18].
2.2.2. Data mining algorithms
 Machine learning algorithms are typically categorized into supervised and unsupervised
algorithms based on the training dataset characteristics. A supervised method of learning can
be applied to the dataset where the output (the desired result) is one of the attributes in the
training dataset. Classification and regression algorithms are used for those cases.
Classification models are based on predicting discrete class attribute value or a probability for
a class attribute value whereas regression modeling is used to predict a continuous quantity
which can be a real value or discrete integer variable. There are few algorithms which can be
used for both classification and regressing modeling such as neural networks, decision trees
but algorithms like linear regression and additive regression can be used only for regression
type. Unsupervised algorithms are used in those cases where the output attribute is unknown
or non-existent in the training dataset. Clustering is the most common technique used in
unsupervised algorithms.

2.2.2.1. C4.5
 C4.5 is an algorithm used for classification by generating decision trees. It was developed by
Ross Quinlan as an extension to the Iterative Dichotomiser 3 (ID3) algorithm [2]. C4.5 is the
most popular algorithm used for classification type data modeling. The basic principle of C4.5
involves building decision trees on the training data using the information gain entropy
principle for attribute selection as explained in section 2.2.1.1.The attribute with the highest
normalized information gain is chosen to make the decision. The C4.5 algorithm then recurs
on the smaller partitioned data. Usually, a fully expanded decision tree reveals irrelevant
structure so pruning method is applied. Pruning can be either forward pruning which is done

 13

during the decision tree creation, or it can be backward pruning which is done after the
decision tree has been built. C4.5 uses a backward pruning method by default. In some cases
pruning causes a fall in the accuracy of the model prediction, thereby correct estimation of
error rates is significant. C4.5 uses a default confidence level of 25% to calculate the error
rate e in Equation 2.6 [2].

𝑒 =
𝑓 +

𝑧2

2𝑁 + 𝑧√𝑓
𝑁 −

𝑓2

𝑁 +
𝑧2

4𝑁2

1 +
𝑧2

𝑁

(2.6)
where N is the number of samples and f is the observed error rate and z is the number of
standard deviation which is calculated using the confidence level.

2.2.2.2. Naïve Bayes
 Naïve Bayes machine learning algorithm is a type of statistical classifier and is based on
Bayes’ theorem which works on the principle of conditional probability. In a practical
scenario, datasets have many attributes therefore, use of simple Bayes' theorem would be
computationally expensive, so Naïve Bayes makes an assumption of class conditional
independence which means there are no dependency relationships among the attributes. Naïve
Bayes classifier predicts that the data instance X belongs to a class if and only if,

 𝑃(𝐶𝑖|𝑋) > 𝑃(𝐶𝑗|𝑋) 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑚, 𝑖 ≠ 𝑗 (2.7)

where 𝑃(𝐶𝑖|𝑋) is the probability of X belonging to class 𝐶𝑖 , assuming that the training
dataset has m classes. 𝑃(𝐶𝑖|𝑋) is calculated as

𝑃(𝐶𝑖|𝑋) =
𝑃(𝑋|𝐶𝑖)𝑃(𝐶𝑖)

𝑃(𝑋)

(2.8)

where 𝑃(𝑋) is the prior probability of X which is a constant value, 𝑃(𝐶𝑖) is the prior
probability of 𝐶𝑖 independent of its attribute values. 𝑃(𝑋|𝐶𝑖) is the posterior probability of X
conditioned on 𝐶𝑖 and is calculated as

 14

 𝑃(𝑋|𝐶𝑖) = ∏ 𝑃(𝑥𝑘|𝐶𝑖)

𝑛

𝑘=1

(2.9)

where 𝑥𝑘 refers to the value of attribute 𝐴𝑘 for instance X. In case of a continuous attribute
value, 𝑃(𝑋|𝐶𝑖) is calculated using the Gaussian distribution of the attribute value [1].

2.2.2.3. Random Forest
 Random Forest(RF) is an ensemble machine learning method best suited for classification and
regression tasks. An ensemble machine learning is a combination of multiple classifiers to get
a better predictive efficiency. There are different types of ensemble methods such as error-
correcting output coding, bagging, boosting and randomization[27]. RF algorithm was first
developed by Leo Breiman [26] by combining his concept of bagging [28] and random
subspace method introduced by Tin Kam Ho [29]. Leo Breiman defines RF as “A random

forest is a classifier consisting of a collection of tree-structured classifiers {ℎ(𝑥, Θ𝑘), 𝑘 =

1, … } where the { Θ𝑘} are independent identically distributed random vectors and each tree
cast a unit vote for the most popular class at input x” [26]. As described by Leo Breiman in
[26] the error rate of random forest classification is dependent on correlation between any two
trees in the forest. The error rate is directly proportional to correlation. RF is claimed to be an
efficient machine learning method when a dataset is large and there is a high risk of
overfitting due to missing data[26].

2.2.2.4. k-nearest neighbor(kNN)
 k-nearest neighbor classifier is one of the basic classification technique used when the
estimation of the parametric probabilities is not an easy process. It belongs to the family of
instance-based machine learning methods. kNN was first proposed by Fix & Hodges in 1951.
In kNN a lazy learning approach where the actual processing is done when a test instance is
applied to the classification model. Assuming that the training dataset is described by n
attributes, a k-nearest-neighbor classifier searches for patterns between the test data instance
and the k training data instances based on the closeness in distance metrics. The distance
metric, usually Euclidean distance between a test sample 𝑋1 = (𝑥11, 𝑥12, 𝑥13 … 𝑥1𝑛) and the
given training samples 𝑋2 = (𝑥21, 𝑥22, 𝑥23 … 𝑥1𝑛) is taken into consideration to determine the
closeness and can be calculated as Equation 2.10.

 15

 𝐷𝑖𝑠𝑡(𝑋1𝑋2) = √∑(

𝑛

𝑖=1

𝑥1𝑖 − 𝑥2𝑖)2

(2.10)

kNN in its original form perform poorly in terms of accuracy due to its inherent property of
assigning equal weight to the attributes, so the application of data transformation methods
prior to classification modeling is imperative. kNN classifier also lacks in speed since it
requires an iterative process to spot the K training instance. Transforming the training data
into sorted search trees and employing parallel execution reduces the comparison time[1].

2.2.2.5 Linear Regression
 Linear regression method is typically used for modeling dataset with numeric attributes and
numeric class prediction. Linear regression models assert response variable 𝑦𝑖 as a linear
function of 𝑥𝑖 is the weighted attribute value. 𝑦𝑖 for 𝑖𝑡ℎ instance can be calculated as

𝑦𝑖 = 𝑤0 + ∑ 𝑤𝑗𝑥𝑗

𝑘

𝑖=1

(2.11)

where 𝑤0 , 𝑤𝑗 are the weights which are used as regression coefficients and are computed by
the least square method to find the best fitting values which minimize the difference between
the actual class and the predicted class 𝑦𝑖. The overall minimization can be calculated by
taking the sum of squares of differences for all instances and the goal is to have a minimum
value for better prediction accuracy. Linear regression models are limited to datasets which
exhibit linear dependency and only support regression type problems [1][2].

2.2.2.6 Gradient Boosting Machines (GBM)
 Gradient boosting works on the notion of a week classifier can be enhanced to give better
results. Friedman introduced the Gradient Boosting Machines to conceptualize this idea[41].
Elements involved in gradient boosting are loss function such as least square that is optimized
during the learning process, a base learner such as decision tree ,which makes the predictions
and an addictive model to which the base learner is sequentially fitted in order to minimize

 16

the loss function. Friedman in [41] analyses that accuracy and the execution speed of gradient
boosting can be enhanced by adding randomization to the sampling procedure. For a given
training sample D {𝑦𝑖, 𝑥𝑖}

𝑁 where X is the set of attributes, the goal is to find a function 𝐹∗(𝑥)
that maps x to 𝑦 such that over the joint distribution of all values, the expected value of some
specified loss function ψ(𝑦, 𝑓(𝑥)) is minimized as shown in Equation 2.12.

 𝐹∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐹(𝑥)

𝐸𝑦,𝑥 𝜓(𝑦, 𝑓(𝑥))

(2.12)

Boosting constructs the addictive model by approximating 𝐹∗(𝑥) as shown in Equation 2.13.

𝐹(𝑥) = ∑ 𝛽𝑚

𝑀

𝑚=0

ℎ(𝑥; 𝑎𝑚)
(2.13)

where ℎ(𝑥; 𝑎𝑚) is the base learner with parameters 𝑎 = {𝑎1, 𝑎2, … 𝑎𝑚} and 𝛽𝑚 is the
expansion coefficient and M is the number of iterations.
The generic gradient boosting is greedy algorithm this prone to overfitting . To minimize the
overfitting some parametric modification such as tree depth, learning rate and number of
random samples can be done in the algorithm. It is a common practice to have the tree depth
between 4-8 levels and learning rate between 0.1 to 0.3.

2.2.2.7. Support Vector Machines (SVM)
 Support Vector Machines is one of the most popular machine learning algorithm which is
widely used for both classification and regression modeling tasks. The reason for SVM’s high

acclamation is its capability to provide a robust and efficient algorithm which can handle both
linear and nonlinear data. The standard algorithm that is widely used today was proposed by
Corinna Cortes and Vapnik in 1993 but its origin dates back to 1963 [32]. The basic principle
of SVM is to construct a set of hyperplanes called support vectors and then a linear model is
built on the nonlinear hyperplanes. In case of a two-class learning task, the goal is to identify
the best classification function to separate data instances in the training dataset. The
separation function corresponds to a hyperplane separating dataset into two classes. In SVM,
the best separating hyperplanes can be identified by maximizing the margins between the
classes. Margin can be deduced geometrically as the shortest distance between the nearest

 17

data points called support vectors, to the hyperplane. The maximum margin hyperplanes can
be defined by Equation 2.14[2]

 𝑥 = 𝑏 + ∑ 𝛼𝑖𝑦𝑖

𝑖 𝑖𝑠 𝑡ℎ𝑒
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟

(𝑎𝑖 ∙ 𝑎) (2.14)

where 𝑦𝑖 is the class label, 𝑎𝑖 ∙ 𝑎 is the dot product of training data vector 𝑎𝑖 and test data
vector 𝑎, 𝛼𝑖 and b are coefficients determined during the training process using constrained
quadratic optimization. In case of the nonlinear dataset, the hyperplane function can be
derived by extending the dot product 𝑎𝑖 ∙ 𝑎 to a kernel functional mapping Φ𝑎𝑖 ∙ Φ𝑎
where Φ is the function that projects the data into a transformed higher dimension [2].
Several kernel functions have been proposed in recent years which optimizes the SVM
classification. To handle multiclass classification, the coefficient 𝛼𝑖 is generalized. Many
variations of SVM have been proposed to handle different machine learning tasks. LIVSVM
is an open source library which was developed by Chang, Chih-Chung; Lin, Chih-Jen in
2000[33], which includes support vector classification, regression and one-class SVM.

2.2.2.8. Artificial Neural Networks
 Artificial Neural Networks (ANN) are complex data modeling systems which are inspired by
the core concept of biological neurons. An ANN is composed of connected input/output
processing unit each with an associated weight. The individual units are called nodes or
neurons and are based on the basic computation model proposed by McCulloch and Pitts as
shown in Figure 2.2.

Figure 2.2: Artificial neuron computational model

The output can be mathematically computed in Equation 2.15 as the weighted sum of its n
input signals, 𝑥𝑗={1,2,….𝑛} and it generated the output as 1 if the weighted sum is above a
certain threshold u, else output is 0 [32].

 18

 𝑓(𝑥) = 𝜃 (∑ 𝑤𝑗

𝑛

𝑗=1

𝑥𝑗 − 𝑢)
(2.15)

where 𝜃(.) is the activation or transfer function, 𝑤𝑗 is the weight of the input. The purpose of
activation function is to non-linearize the neural network and generalize the neurons. The
basic architecture of ANN consists of layers of interconnected neurons and connections with
associated weights as shown in Figure 2.3. Performance is improved over time by iteratively
updating the weights in the network.

Figure 2.3: ANN architecture

 Depending on the architecture, ANN can be categorized into feedforward or
feedback(recurrent) networks. The process of learning in ANN involves updating the
architecture and the connection weights. Feedforward networks are associated with
supervised learning and feedback networks are associated with unsupervised learning. In
feedforward network, there is an input layer, one or multiple hidden layers and an output layer
and lines connecting the neurons have an associated weight with it as shown in the figure. The
inputs to the network correspond to the attributes of training data instance.

Multilayer Perceptron
 A multilayer perceptron is a class of feed-forward neural network and utilizes
backpropagation algorithm for learning. During the training phase, backpropagation learns by
iteratively processing the dataset instance and comparing the network output to the class

 19

attribute value and subsequently adjusting the weight to reduce the mean squared error
between the predicted value and actual value by using a gradient-descent method. The
algorithm is called backpropagation because the adjustment is made in backward direction i.e.
from the output layer down to hidden layers. The squared error in the 𝑗𝑡ℎ node of the output
layer for a can be determined as

 𝐸 =

1

2
∑(𝑦𝑗 − 𝑓(𝑥𝑗))2

𝑗

(2.16)

Here y is the class label of the instance and f(x) is value produced by the output layer. With
gradient descent, the connection weight of 𝑗𝑡ℎ and 𝑖𝑡ℎ neurons is adjusted by

 ∆𝑤𝑗𝑖 = −𝜂
𝑑𝐸

𝑑𝑔(𝑥𝑗)
(𝑓(𝑥𝑖))

(2.17)

where 𝑓(𝑥𝑖) is the output of the previous neuron, 𝜂 is the learning rate and. The derivative
can be calculated as

 −
𝑑𝐸

𝑑𝑔(𝑥𝑗)
= ∅′(𝑔(𝑥𝑗)) ∑ −

𝑘

𝑑𝐸

𝑑𝑔(𝑥𝑘)
𝑤𝑘𝑗

(2.18)

with ∅′ being the derivative of activation function and can be seen that the derivate depends
on the depends on the change in weights of the 𝑘𝑡ℎ node in output layer and thus the change
of weight in the hidden layer is the back propagated according to the derivative of the
activation function [34].

Due to its capability to handle non-linearity and versatile nature, multilayer perceptron has its
roots in varied machine learning tasks such as image recognition, speech recognition,
regression modeling etc.

Self-Organizing Maps(SOM)
 Self-Organizing Maps also known as Kohonen’s SOM, is a class of feedforward artificial

neural network which uses unsupervised mode of machine learning and is based on the
principle of topographic map formation. SOM was first introduced by Prof. Kohonen in

 20

1984[35]. The principal objective of SOM is to define a high dimensional dataset in one or
two-dimensional data space while preserving the topographic relationships of data. SOM has
a single computational layer consisting of a grid of neurons arranged in rows and columns and
an input layer consisting of an input vector. Each neuron in the computational layer is
connected to all the source nodes in the input layer as shown in below Figure 2.4.

Figure 2.4: Self Organizing maps architecture

The process of generating the self-organizing maps begins by initiation the connection
weights with a random value. A sample of the input vector is chosen from the training dataset.
If the input vector has d dimension then it is represented as 𝑥𝑖 : 𝑖 ∈ {1,2 … . 𝑑} and the
computational layer is constructed by N neurons mapped in (X, Y) dimension. Each input unit
is connected to the neurons by connection weight 𝑤𝑗𝑖: 𝑗 ∈ {1,2, … 𝑁}. Next step is to find the
winning neuron, the one which has the weight vector closest to the input vector i.e. minimum
value of discriminant function 𝑓(𝑥) . It is computed as

 𝑓𝑗(𝑥) = ∑(𝑥𝑖

𝑑

𝑖=1

− 𝑤𝑗𝑖)
2 (2.19)

where 𝑓(𝑥) calculated by taking the square Euclidean distance between the input unit and
neuron. Once the winning neuron has been identified, a topological neighborhood is defined
by considering the lateral distance between the neurons in the grid as formulated as Equation
2.20.

𝑇𝑗𝑊(𝑋) = 𝑒𝑥𝑝 (−
𝑆𝑗𝑊(𝑋)

2

2𝜎2
)

 21

(2.20)

where 𝑆𝑗𝑊(𝑋) is the lateral distance between the neuron j and winning neuron W(X), 𝜎 is the
epoch which denotes the width of the neighborhood and programmed to exponentially
decrease over time. Once the neighborhood is determined, the weight neurons in the
neighborhood are updated by ∆𝑤𝑗𝑖.

∆𝑤𝑗𝑖 = 𝜂(𝑡)𝑇𝑗𝑊(𝑋)(𝑡)(𝑥𝑖 − 𝑤𝑗𝑖) (2.21)

where t is the epoch dependent on learning rate 𝜂(𝑡) = 𝜂0exp (𝑡/𝜏𝜂). The update causes the
weight vectors of the winning neurons and the neighboring neurons to move towards the input
vectors and this process is iterated for all training data instances to achieve a topographical
convergence generating self-organizing feature maps which discretely represent the input data
in a lower dimensional output space [35].SOM is also considered as a non-linear
generalization of PCA due to its capability to cluster non-linear data instances.

2.2.2.9. K-mean
 K-mean is a classic clustering technique based on iterative partitioning method. The standard
algorithm was first proposed by Stuart Lloyd in 1957 as a technique of vector quantization in
signal processing [31].The k-mean algorithm creates an initial partition of k (𝑘 ≤ 𝑛) clusters
from a dataset of n instances where each cluster is represented by the mean value of the
instances in the cluster. In the second step, an iterative relocation technique is applied to the
data observed by comparing the least squared Euclidean distance between the objects and the
centroid and relocating the centroid. This process is repeated unit the squared error criterion
converses. It can be defined as

𝐸 = ∑ ∑ |𝑝 − 𝑚𝑖

𝑝∈𝑐𝑖

𝑘

𝑖=1

|2
(2.22)

where E is the sum of squared error of all instances in the dataset, p is a point in the
multidimensional space in the cluster 𝑐𝑖 , 𝑚𝑖 is the mean of the cluster 𝑐𝑖 [1]. K-mean
algorithm determines k partitions that minimize the square-error function and its efficiency is
limited only to datasets which are clearly divergent. Additional data transformation is needful
for fitting it to the real world dataset clustering.

 22

 2.2.3. Model Evaluation techniques
 Designing an analytic model for the embedded system requires a thorough evaluation of the
model in terms of cost and performance. As mentioned in section 2.1 , cross-validation and t-
test are commonly used evaluation techniques.
2.2.3.1. Cross-validation
 Cross-validation is the most commonly used method to evaluate predictive models by
partitioning the original sample dataset into a training set to train the model, and a test set to
evaluate it. It is mainly used to estimate the performance of the model through different
metrics. The basic form of cross-validation is the k-fold cross validation where the original
sample is randomly partitioned into k equal sized subsamples. k − 1 subsamples are used as
training dataset and 1 is used as test dataset to perform the prediction of the model trained
using the training dataset. Cross-validation process is repeated K times with of the data sub-
samples used exactly once for creating the test data and an average of K then k results from
the folds gives a single estimation [20]. The estimation is measured in terms of prediction
accuracy as proposed in Equation 2.23 [19].

 𝑎𝑐𝑐𝑐𝑣 =
1

𝑛
∑ 𝛿(𝐼(𝐷 ∖ 𝐷𝑖 , 𝑣𝑖), 𝑦𝑖)

𝑣𝑖𝑦𝑖∈𝐷

 (2.23)

where D is the sample dataset which is randomly split into K folds. The model is trained on
D ∖ Dt subsample where t ∈ {1,2 … k}. Di is the test data sample with instance xi = (viyi).
The overall cross-validation is average of (

m

m/k
) possibilities for m/k instances out of m

instances. To reduce the cost, folds are stratified before running the cross-validation, so that
each class in original dataset is consistently represented in both training and test dataset. A
10-fold cross validation is the preferred method in the data science community and hence
used in this study as well.

2.2.3.2. T-test
 Usually, in machine learning, the toughest is to decide which mining model would be optimal
for the system the analytics is designed for. Most of the embedded systems generate a huge

 23

amount of data from different devices but the dataset used for training is usually just a sample
of that big data space. Cross-validation technique evaluates individual models by predicting
the true performance from an error rate of a given test dataset but does not give any assertive
outcome that same result will be produced with another sample dataset. Typically, the t-test is
used to do a comparative analysis of different machine learning algorithms with different
samples of data. Statistically, the t-test is a method of comparing means of two different data
samples.

The concept of t-test and t-distribution was developed by William Sealy Gosset under the
name of Student’s t-test. The t distribution is a family of curves which is derived from the
degree of freedom. The degree of freedom is calculated as the number of distinct estimates on
individual samples minus one. The t-distribution curve approaches the bell shape of the
standard normal distribution with the increase in the degree of freedom[21][22]. A paired t-
test is commonly used for t-test analysis. In paired t-test , a pair of observation for each
sample is collected and a mean difference between the two sets of observation is computed.
Paired t-test uses null hypothesis and a two-tailed alternative hypothesis. The null hypothesis
assumes that the true mean difference between the paired samples is zero and the alternative
hypothesis assumes that the true mean difference between the paired samples is not equal to
zero. In a paired sample t-test, the observations are defined as the differences between two
sets of values, and each assumption refers to these differences, not the original data values.
The process of paired t- can be outlined in 4 steps as described below.

1. Compute sample mean
2. Compute sample Standard Deviation(SD)
3. Calculate t statistic (t) using the Equation 2.24.

𝑡 =
𝑑

√𝜎𝑑2 𝑘⁄
 (2.24)

where 𝑑 is the difference between means of two different sample, 𝜎𝑑2 is the variance
of two samples and k is the number of instances.

4. Calculate probability 𝑝 by observing the test statistic under the null hypothesis. This
value is obtained by comparing 𝑡 to a t-distribution with (n − 1) degrees of freedom as
formulated in Equation 2.25.

 24

 𝑝 = 2 ⋅ 𝑃𝑟(𝑇 > |𝑡|) (𝑡𝑤𝑜 − 𝑡𝑎𝑖𝑙𝑒𝑑) (2.25)

WEKA Experimenter provides the interface to perform paired t -test and is used for this study
in Chapter 5.

2.2.4. Performance metrics
 There are several performance measures that can determine the quality of a data-mining
model from different aspects. Most common measured aspects are accuracy and the squared
error of the predicting algorithm. Metrics used in this thesis are described in this section.

2.2.4.1. Confusion Matrix
 A confusion matrix also called as error matrix[42] is type of contingency table with actual
and predicted values. Terms used to describe a binary class confusion matrix are True
Positive (TP), True Negative (TN), False Negative (FN), and False Positive (FP). TP is the
number of correctly identified instances, TN is the correctly rejected instances and FP is the
incorrectly identified instances and FN is the incorrectly rejected instance. For a multiclass
dataset with 𝑁 = {𝐶1, 𝐶2 … 𝐶𝑁} classes the confusion matrix would be of N x N matrix with
left axis showing the predicted class and the top axis is the actual class. For instance class 𝐶1
has TP which is all 𝐶1 instances that are classified as 𝐶1, TN is calculated as all non-
𝐶1instances that are not classified as 𝐶1, FP is all non-𝐶1 instances that are classified as 𝐶1,
and FN is all 𝐶1 instances that are not classified as 𝐶1.

2.2.4.2. Sensitivity, Specificity And Accuracy
 Sensitivity is also known as the true positive rate or recall, which measures the rate of
positive instances that are correctly identified and can be calculated using the Equation 2.26.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(2.26)

Specificity is the measure of the proportion of true negatives that are correctly identified. It can
calculated using Equation 2.27.

 25

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑃 + 𝐹𝑁

(2.27)

Accuracy is a measure of all correct assessments which is calculated the percentage of
correctly classified instances as shown in Equation 2.28.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 100%

(2.28)

2.2.4.3. Kappa statistic
 Kappa statistic is a single value statistical metric which compares observed accuracy of the
classifier with the expected accuracy. The Kappa score is a normalized value and can be
calculated by using confusion matrix observations. Formulas in equation are used to calculate
the Kappa statistic. Observed accuracy is sum of true positive and true negatives, divided by
the total number of instances and the expected accuracy is can be defined as sum of product
of reference probability and the actual probability of each class. The Kappa score can be
calculated using the Equation 2.29.

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

= (
(𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑃) × (𝐹𝑃 + 𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑎𝑛𝑐𝑒𝑠 × 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑎𝑛𝑐𝑒𝑠
)

𝐾𝑎𝑝𝑝𝑎 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

1 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

(2.29)

2.2.4.4. Precision
 Precision is the positive predicated measure and is calculated ratio of true positives to the
number of all relevant observations including true positives and false positives(Equation
2.30).

 26

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.30)

2.2.4.5. F-Measure
 F- measure is a weighted harmonic mean of the precision and sensitivity (also known as
recall). It is metric used to measure the accuracy of the test. F-score can be calculated using
Equation 2.31.

𝐹 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (2.31)

2.2.4.6. ROC area
 Receiver Operating Characteristic(ROC) curve is formed by plotting true positive rate in a
function of false positive rate for different threshold points. True positive rate is the
sensitivity represented in y-axis and the false positive rate is calculated as 1-specificity and
plotted in x-axis. Each point on the ROC curve represents a sensitivity/specificity pair
corresponding to a particular threshold as shown in Figure . In a test when ROC curve passes
through the upper left corner then it indicates 100% sensitivity, 100% specificity. Hence a
classifier with a ROC curve closer to upper left corner has a higher overall accuracy [43].
WEKA cross validation test measures the classifier’s accuracy by the area under the ROC
curve, also called AUC.
AUC is measured by using Equation 2.32.

𝐴𝑈𝐶 = ∫ 𝑅𝑂𝐶(𝑡)𝑑𝑡
1

0

 (2.32)

where 𝑅𝑂𝐶(𝑡) is the sensitivity and t = 1-specificity. A value of 1 is considered optimal and a
value of 0.5 or less is considered worthless. A sample ROC curve can be seen in Figure 2.5

 27

Figure 2.5:ROC Curve

2.2.4.7. Correlation coefficient
 In case of predicting continuous values , correlation coefficient measures how well the
predictions are correlated or change with the actual output value. It gives values between -1
and 1.A value of 0 means there is no relation and a value of 1 is a perfectly correlated set of
predictions. A negative value indicates an inverse linear relation.

2.2.4.8. Mean Absolute Error(MAE)
 Mean absolute error is the measure of difference between the continuous prediction and the
actual data point in the data instances. The MAE is calculated as the average of absolute error
per instance for all the instances in the dataset. Absolute error is the difference between the
measured value and actual value(Equation 2.33).

 𝑀𝐴𝐸 =
∑ |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖|𝑁

𝑖=1

𝑁
 (2.33)

 2.2.4.9. Root mean squared error(RMSE)

 28

Root Mean Square Error (RMSE) is the standard deviation of the prediction errors which are
a measure of how far from the regression line data points are. In other words, RMSE indicate
the distribution of data around the line of best fit. RMSE metric can be calculated by Equation
2.34.

 𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2𝑁

𝑖=1

𝑁

(2.34)

2.3 Related studies
 Considering the fact that data mining domain is flooded with algorithms and procedures, the
quest for finding the perfect method has been perpetual. Several research works and case
studies have led to a selection of many state-of-art algorithms which are common in use
across multiple domains.
Karen Zita Haigh et al. presented a case study on the use of machine learning techniques in
embedded electronics and argued the challenges faced with the usage of traditional
approaches [24]. They also proposed an optimization of Super vector machine algorithm
which was implemented on general purpose processors of two communications networks.
Qing Chen Zhang et al. argues about the data mining challenges in IoT systems and propose
two enhancement to high-order c-means algorithms for clustering big dataset and exhibit the
performance improvement in terms of high compression rate without compromising with the
accuracy[25]. Mark A. Hall and Geoffrey Holmes [10] benchmarked some of the attribute
selection methods for supervised machine learning algorithms C4.5 and naive Bayes. They
concluded that attribute selection is an effective pre-processing method to improve the mining
model, along with that they also opinionated that a single method cannot be claimed as the
best approach but the outcome is dependent on the model and dataset characteristics. Rafet
Duriqi et al. analyses classification algorithms on three different datasets using WEKA. They
picked Naive Bayes, Random Forest, and K * algorithm to perform the study and concluded
that the feature count and data characteristics are influential in the performance of classifier
[23].

 29

Chapter 3

3.1 Datasets selected for the analysis
 Datasets have been selected based on the type of data mining tasks required to solve the
objective of data analytics. Different type of datasets are selected to perform a comprehensive
comparison of the algorithms. Due to growing interest in data analysis research , many public
domain dataset repositories have been created with active contribution from various research
disciplines. For this study as well datasets have been gathered from different public domain
libraries [36][38].

Dataset 1: Human Activity Recognition(HAR)

The first dataset is multiclass Human Activity Recognition(HAR) dataset. With the explosive
growth of smartphone technologies , the use of embedded sensors to monitor human activity
is not a far-fetched notion and the data generated has it relevance in healthcare , security
surveillances and human-machine interaction but due to its complex nature , building an
analytics model is challenging and therefore is one of the most sought after research subject in
data mining community. The dataset used in this study was created by Davide Anguita et. al
using waist mounted android smartphone[37]. Data was acquired from smartphone
embedded accelerometers and gyroscopes, targeting the recognition of six different human
activities: standing, sitting, laying, down, walking, walking downstairs and upstairs.
Experiments were conducted with a group of 30 volunteers within the age boundary of 19-48
years. The embedded sensors captured the 3-axial linear and acceleration and 3-axial angular
velocity at a constant rate of 50Hz and the data was cleaned by noise filter application. The
resulting dataset was a 561 feature vector with time and frequency domain variables. Table
3.1 gives an overview of the dataset characteristics. The class distribution can be seen in
Figure 3.1.

Characteristics Description
Dataset Name HAR
Dataset Type Multivariate ,Time-series
Number of Attributes 561
Attribute Type Numeric

 30

Number of Instances 10299
Data mining tasks Classification , Clustering
Class labels 1. Walking

2. Walking upstairs
3. Walking downstairs
4. Sitting
5. Standing
6. Laying, down

Table 3.1: HAR dataset characteristics

Figure 3.1: Class distribution of HAR Dataset

Dataset 2: Vehicle sensing

The second dataset is 2- class vehicle sensing dataset generated from multiple micro sensing
devices integrated in to a Wireless Distributed Network (WSDN). The dataset was created by
Marco F. Duarte et. al as part of SensIT situational experimentation organized by
DARPA/IXOs SensIT (Sensor Information Technology) program at Marine Corps Air
GroundCom bat Center in Twenty-nine Palms, CA, USA with an objective of detecting
location of vehicle and its type[39]. Seventy-five WINS NG 2.0 nodes were deployed in the

 31

region with each sensor node equipped with acoustic seismic infrared sensors. The dataset
consist of time series data represented as feature vectors and with 2 class attribute (1 ,-1) . The
detailed data characteristics is specified in Table 3.2. The class distribution can be seen in
Figure 3.2.

Characteristics Description
Dataset Name vehicle
Dataset Type Multivariate ,Time-series
Number of Attributes 101
Attribute Type Numeric
Number of Instances 14561
Data mining tasks Classification
Class labels 1, -1

Table 3.2: Vehicle sensing dataset characteristics

Figure 3.2: Class distribution of Vehicle Dataset

Dataset 3: Appliances energy prediction

Appliances energy prediction dataset was chosen to perform regression analysis. This dataset
was contributed by Luis M et al. during their study for designing data driven predictive

 32

models for energy usage of home appliances[40]. The main purpose of their study was to
identify the relationships between the different predictive attributes such as weather, room
temperature, humidity, date and time etc. and the household energy consumption. ZigBee
wireless network was used to monitor the house temperature and humidity and . Energy
metering was done using M-BUS energy counters. Energy counters measured the
consumption every 10 min. Then the information was stored and transmitted every 12h over
an internet-connected energy monitoring system. The data was logged every 10 min for the
appliances. Weather data was collected from nearest airport weather station and merged
together with the experimental data sets using the date and time column. The dataset was also
injected with two random attributes for regression models testing. Table 3.3 provides the
characteristics of the dataset and class distribution plot can be seen in Figure 3.3.

Characteristics Description
Dataset Name energydata_complete
Dataset Type Multivariate
Number of Attributes 29
Attribute Type Real
Number of Instances 19518
Data mining tasks Regression

Table 3.3: Appliances energy prediction dataset characteristics

 33

Figure 3.3: Class distribution of Appliances energy prediction dataset

 Dataset 4: Puma 560 robot arm
The next dataset is part of the family of dataset which were synthetically generated from a
realistic simulation of the dynamics of a Unimation Puma 560 robot arm and has been
acquired from DELVE repository[46]. Data mining tasks involve regression analysis of
angular acceleration of one of the robot arm's links. The dataset is defined by attributes like
angular positions, velocities and torques of the robot arm. The attributes are nonlinear and the
output also contains moderate amount of noise. Data characteristics are tabularized in Table
3.3 and class distribution plot is depicted in Figure 3.4.
Characteristics Description
Dataset Name puma8NH
Dataset Type Multivariate
Number of Attributes 9
Attribute Type Real
Number of Instances 8192
Data mining tasks Regression

Table 3.4: Puma 560 robot arm dataset characteristics

 34

Figure 3.4: Class distribution of Puma 560 robot arm dataset

3.2 Waikato Environment for Knowledge Analysis(WEKA)
 The framework used for data analysis is Waikato Environment for Knowledge
Analysis(WEKA) , version 3.8.2. WEKA is an open source , easy to use machine learning
and predictive modeling tool licensed under the GNU General Public License, that was
developed by the University of Waikato in New Zealand and is written in JAVA [2]. Later in
2006 WEKA was bought by Pentaho and integrated as part of its Business Intelligence(BI)
suite[45]. WEKA contains a collection of visualization tools and algorithms for all category
of machine learning tasks such as classification, regression, clustering , evaluation and data
transformation. It also provides a set of graphical user interfaces for easy data analytics model
generation. The new WEKA suite include a Workbench which is a combined GUI for all the
interfaces(Explorer, Experimenter, simple CLI). The Experimenter GUI is useful for
performance evaluation of different algorithms for a given dataset which gives an in-depth
statistics for a better decision making process. Analysis and evaluation of the models are
done on WEKA Workbench and WEKA Knowledge flow. WEKA Experimenter is used to
perform comparative analysis.

WEKA stores the dataset in Attribute-Relation File Format (ARFF) file. An ARFF file has
header section which includes the relation name annotated by @RELATION and the attribute

 35

names and type description annotated by @ATTRIBUTE . Weka supports types datatypes for
attributes- numeric, nominal, string and date. The next section consist of the data annotated by
@DATA. Each instance is represented in a single line and filled with “?” for missing values.
A sample arff file is shown in Figure 3.5.

3.3 Test Environment setup
 3.3.1 Hardware/software specifications
 The hardware/software specifications of the test environment are specified in the Table 3.5
Processor Intel Core i5
Processor Speed 2,7 GHz
Number of Processors 1
Total Number of Cores 2
Memory 8 GB
OS macOS High Sierra

Table 3.5 Hardware/software configuration
3.3.2 WEKA test bench
 The testbench constructed in WEKA's knowledge flow can be seen in Figure 3.2 and 3.3.
Figure 3.2 is the test model for classification analysis and Figure 3.3 is for regression
algorithm validation. The test model is run for each dataset by loading the arff file in the
ArffLoader, the class attribute is assigned in the classAssigner process and in case of

@relation weather.symbolic @attribute outlook {sunny, overcast, rainy} @attribute temperature {hot, mild, cool} @attribute humidity {high, normal} @attribute windy {TRUE, FALSE} @attribute play {yes, no} @data sunny,hot,high,FALSE,no
Figure 3.5: Sample Arff file

 36

classification problem , the ClassValuePicker is used to select a specific class value to
evaluate the classification and generate the ROC curve. CrossValidationFoldMaker is used to
test the model with a 10-fold cross validation.

Figure 3.6 WEKA Classification testbench

The ModelPerformanceChart and TextViewer is used to visualize the evaluation results.
TextViewer gives the details report of cross validation analysis and ModelPerformanceChart
generate the ROC curve for class label selected in the ClassValuePicker process.

Figure 3.7 WEKA regression testbench

 37

Chapter 4

In this chapter machine learning algorithms are validated and results are analyzed
comprehensively for each dataset selected for this study. A dataset specific comparative
analysis of machine learning algorithms are projected in 2D column charts for different
experimental setup.
4.1 Performance analysis method
 For each dataset, analysis is done in two different setups. The first set of validation was
performed using the raw dataset with no data transformation. The process of experimentation
for raw dataset is explained in section 4.1.1. The second set of validation is performed using
dataset that has been transformed using Random Projection, CFS with greedy stepwise and
PCA with Ranker method , the process of which is described in section 4.1.2.

4.1.1 Evaluation method for raw dataset
 For raw dataset , a 10 fold cross validation is selected as “Test options” during the execution
of the classifier in WEKA workbench. The complete dataset is used for the evaluation
process during which the dataset is subsampled into 10 subsets of which a single sub sample
is retained as the validation data for testing and the remaining 9 subsamples are used for
training the classifier. The evaluation is repeated 10 times with each subsample used exactly
once for validation. The overall performance is calculated by averaging the individual results
generated by the 10 folds, to produce an overall estimation of the efficiency of the classifiers
,as illustrated in section 4.2 and section 4.3.

 4.1.2 Evaluation method for transformed dataset
 A slightly different approach is applied when performing evaluation with transformed dataset.
Three different preprocessing methods are applied to the raw dataset to generate three
transformed datasets with reduced set of attributes. Data transformation is performed using
WEKA workbench “Select Attribute” feature. Inputs to the select attribute process are,
attribute evaluator, search method, and attribute selection mode. The attribute evaluator is
used for evaluating each attribute in the original dataset in context of the class attribute . The
search method algorithm navigate through the dataset to form different combination of
attributes which performs best with attribute evaluator. With Greedy stepwise search method

 38

,CFS is used as an attribute evaluator and with Ranker search method, PCA is used as an
attribute evaluator. 10 fold cross validation with seed 1 is chosen as the attribute selection
mode. Cross validation is used to indicate the stability of the attribute selection by giving a
statistic analysis of how many folds a given attribute appeared in the best subset found by the
search method. The seed is a component of the randomness. Random projection is performed
in a different method using WEKA workbench preprocessing feature which uses
unsupervised attribute filtering technique for transforming the attributes.

For the performance analysis of the classifiers, each transformed dataset is used as the
training dataset and original dataset is used as the test dataset by choosing the Test options in
WEKA. The performance of different classifiers are illustrated in section 4.2 and section 4.3.

4.2. Performance analysis results of classification algorithms
 For classification problems class label specific accuracy is depicted in a 2D AUC score chart
which maps each class AUC scores calculated by 10 fold cross validation of machine learning
algorithms. All the metrics results for classification analysis are depicted in percentage to
conveniently project in comparative analysis charts. Regression schemes were evaluated with
correlation coefficient, RMSE and MEA.

 4.2.1. Experiment 1- Human Activity Recognition(HAR) Classification specific evaluation metrics results were compared by running the WEKA test
bench shown in Figure 3.2 for HAR dataset with different test setup. In the first test run with
the original data, it was discovered that due to high dimensional nature of the dataset (562
attributes), the most expensive and inefficient algorithm was multilayer perceptron in terms of
time taken as it look longer that 90 minutes to produce the results , hence excluded in the
reports. Satisfactory results were seen C4.5, SVM, kNN and Random Forest with a accuracy
and sensitivity(Recall) of more than 90% and low FP rate. Naïve Bayes had the least
accuracy and a high FP rate. Detailed results can be seen in Figure 4.1.

 39

Figure 4.1: Performance analysis report on HAR dataset with no data transformation

The AUC Scores for each class were mapped in a 2D line chart for different models in figure
4.2. It is observed that Random forest AUC scores are the most consistent and optimal ones.

Figure 4.2 AUC score 2D -line chart for HAR dataset with no data transformation

C4.5 Naive Bayes SVM kNN
Random
Forest

Correctly Classified Instances 94.49% 74.97% 97.93% 97.23% 98.00%

Kappa statistic 93.38% 69.97% 97.51% 96.67% 97.59%

Precision (Weighted Avg) 94.50% 79.00% 97.90% 97.20% 98.00%

Recall (Weighted Avg) 94.50% 75.00% 97.90% 97.20% 98.00%

FP rate 1.10% 4.90% 0.40% 0.60% 0.40%

F-Measure(Weighted Avg) 94.50% 74.00% 97.90% 97.20% 98.00%

AUC (Weighted Avg) 97.30% 96.10% 99.40% 98.30% 99.90%

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%

Test options: "10-fold Cross validation" with no Data
transformation

Correctly Classified Instances Kappa statistic Precision (Weighted Avg)

Recall (Weighted Avg) FP rate F-Measure(Weighted Avg)

AUC (Weighted Avg)

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Walking Walking upstairs Walking
downstairs

Sitting Standing Laying, down

AUC Scores(No data transformation)

C4.5 Naive Bayes SVM kNN Random Forest

 40

With the application of random projection which reduced the dataset to 11 attributes to the
original dataset , a significant degradation in the performance can be seen in all the evaluation
metrics for all the models but results were obtained for multilayer perceptron with an
accuracy of 73.88% (Figure 4.3). The AUC scores can be seen in Figure 4.4

Figure 4.3:1 Performance analysis report on HAR dataset transformed with Random

Projection

Figure 4.4 AUC score 2D -line chart for HAR dataset transformed with Random Projection

C4.5
Naive
Bayes

SVM kNN
Multilayer
Perceptron

Random
Forest

Correctly Classified Instances 66.24% 67.99% 77.24% 69.14% 73.88% 74.68%

Kappa statistic 59.37% 61.47% 72.61% 62.86% 68.57% 69.52%

Precision (Weighted Avg) 66.30% 67.60% 77.20% 69.40% 73.80% 74.50%

Recall (Weighted Avg) 66.20% 68.00% 77.20% 69.10% 73.90% 74.70%

FP rate 6.80% 6.40% 4.60% 6.20% 5.20% 5.40%

F-Measure(Weighted Avg) 66.20% 67.50% 77.10% 69.20% 73.80% 74.50%

AUC (Weighted Avg) 86.50% 93.80% 94.20% 81.50% 95.20% 95.90%

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%

Test options:"Supplied test set"with data transformed using
random projection

Correctly Classified Instances Kappa statistic Precision (Weighted Avg)

Recall (Weighted Avg) FP rate F-Measure(Weighted Avg)

AUC (Weighted Avg)

0

0.2

0.4

0.6

0.8

1

1.2

Walking Walking upstairs Walking
downstairs

Sitting Standing Laying, down

AUC Scores (With Random Projection)

C4.5 Naive Bayes SVM kNN Multilayer perceptron Random Forest

 41

In the next experimentation the original data set was transformed using CFS and
GreedyStepwise attribute selection method. The data dimension was reduced to 58 attributes.
Satisfactory performance results were seen when transformed data was used as training set
and original dataset is supplied as test set. Contrary to the evaluation results seen in original
data models , all data models generated using CFS and GreedyStepwise transformed data
displayed similar results compared to models generated with original dataset as seen in Figure
4.1. Naive Bayes and Multilayer Perceptron’s performance had a significant improvement
with an accuracy of more than 85%. Detail evaluation results can been seen in Figure 4.5.

Figure 4.5: Performance analysis report on HAR dataset transformed with CFS and

GreedyStepwise

The AUC score chart in Figure 4.6 projects the AUC scores for classes when models were
built on CFS and greedy stepwise transformed data and it can be seen that class Laying down
and walking have a high AUC score across all machine learning algorithm which a better
likelihood of correct prediction.

C4.5
Naive
Bayes

SVM kNN
Multilayer
Perceptron

Random
Forest

Correctly Classified Instances 94.20% 89.13% 93.69% 93.76% 96.53% 97.78%

Kappa statistic 93.03% 86.91% 92.41% 92.49% 95.83% 97.33%

Precision (Weighted Avg) 94.20% 89.70% 93.70% 93.80% 96.50% 97.80%

Recall (Weighted Avg) 94.20% 89.10% 93.70% 93.80% 96.50% 97.80%

FP rate 1.20% 2.20% 1.30% 1.30% 0.70% 0.50%

F-Measure(Weighted Avg) 94.20% 89.00% 93.70% 93.80% 96.50% 97.80%

AUC (Weighted Avg) 97.40% 98.70% 98.40% 96.30% 99.80% 99.90%

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%

Test options: "Supplied test set" with data transformed
using CFS and GreedyStepwise

Correctly Classified Instances Kappa statistic Precision (Weighted Avg)

Recall (Weighted Avg) FP rate F-Measure(Weighted Avg)

AUC (Weighted Avg)

 42

Figure 4.6: AUC score 2D -line chart for HAR dataset transformed with CFS and

GreedyStepwise
In next test setup the data models were generated with a PCA and ranker method
preprocessed dataset. The dataset was transformed to 105 attribute . Evaluation results did not
show any overall improvement in performance compared to test setup with original dataset
and with CFS and GreedyStepwise transformed data. Model build for Multilayer perceptron
was faster and validation results were satisfactory(Accuracy of 83.28%) compared to original
dataset. Details of the analysis can be seen in Figure 4.7.

Figure 4.7: Performance analysis report on HAR dataset transformed with PCA and Ranker

0.88
0.9

0.92
0.94
0.96
0.98

1
1.02

Walking Walking upstairs Walking
downstairs

Sitting Standing Laying, down

AUC Scores (with CFS and GreedyStepwise)

C4.5 Naive Bayes SVM kNN Multilayer perceptron Random Forest

C4.5 Naive Bayes SVM kNN
Multilayer
Perceptron

Random
Forest

Correctly Classified Instances 84.23% 81.72% 95.30% 92.47% 83.28% 94.14%

Kappa statistic 81.03% 78.04% 94.35% 90.93% 66.56% 92.94%

Precision (Weighted Avg) 84.20% 82.60% 95.80% 92.60% 83.50% 94.10%

Recall (Weighted Avg) 84.20% 81.70% 95.30% 92.50% 83.30% 94.10%

FP rate 3.20% 3.40% 0.80% 1.60% 1.67% 1.20%

F-Measure(Weighted Avg) 84.20% 81.90% 95.40% 92.50% 83.30% 94.10%

AUC (Weighted Avg) 92.20% 96.00% 98.50% 95.40% 88.70% 99.60%

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%

Test options:"Supplied test set" with data trasformed using
PCA and ranker

Correctly Classified Instances Kappa statistic Precision (Weighted Avg)

Recall (Weighted Avg) FP rate F-Measure(Weighted Avg)

AUC (Weighted Avg)

 43

The AUC scores also does not indicate any improvement and projects an inconsistent pattern
in prediction of classes as can be seen in Figure 4.8.

Figure 4.8: AUC score 2D -line chart for HAR dataset transformed with PCA and Ranker

 From the above experimentation it can be observed that Random Forest and SVM models
stand out in terms of high accuracy with original dataset but SVM shows inconsistency with
the AUC scores as it has a low score for class labels sitting and standing , which means
prediction of these class labels were not efficient . On the other hand Random Forest had a
consistent line of AUC scores as projected in Figure 4.2. Considering the fact that storage of
the data is one of the biggest challenges of data analytics in recent times, model constructed
using a preprocessed data (with CFS and GreedyStepwise) with Random Forest and SVM
algorithms seem to be good candidates for HAR analytics design. Further analysis in section
5.1 will consolidate this initial findings.

4.2.2. Experiment 2-Vehicle sensing The next experiment was conducted on dataset 2 which is a 2 class vehicle sensing dataset
sing test bench shown in figure 3.3. The test setup is similar to the first experiment discussed
in section 4.1. The experiment was conduction with four test setup , first one with the original
dataset and the next ones with transformed data using different preprocessing techniques. The
models are evaluated with 10-fold cross validation. Figure 4.9 gives the details statistics of
the analysis done on the original dataset with no data transformation. Random Forest has the
best accuracy of 86.20% and weighted average AUC of 91.70% relative to other algorithms.

0.8

0.85

0.9

0.95

1

1.05

Walking Walking upstairs Walking
downstairs

Sitting Standing Laying, down

AUC Scores (with PCA and ranker)

C4.5 Naive Bayes SVM kNN Multilayer perceptron Random Forest

 44

Random forest also has a low FP of 13,80% which give the rate of incorrectly sensing a
vehicle. SVM also got good results with a accuracy of 85.43% and FP rate of 14.50 %.

Figure 4.9: Performance analysis report on Vehicle dataset with no data transformation

Figure 4.10: AUC score 2D -line chart for Vehicle dataset with no data transformation

C4.5
Naive
Bayes

SVM kNN
Multilayer
Perceptron

Random
Forest

Correctly Classified Instances 82.63% 80.48% 85.43% 72.58% 82.95% 86.20%

Kappa statistic 65.27% 60.99% 70.88% 45.19% 65.91% 72.40%

Precision (Weighted Avg) 83.00% 83.10% 86.00% 73.00% 83.00% 86.60%

Recall (Weighted Avg) 82.60% 80.50% 85.40% 72.60% 83.00% 86.20%

FP rate 17.30% 19.50% 14.50% 27.40% 17.00% 13.80%

F-Measure(Weighted Avg) 82.60% 80.10% 85.40% 72.50% 83.00% 86.20%

AUC (Weighted Avg) 81.20% 85.20% 85.40% 72.80% 89.60% 91.70%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Test options: "10-fold Cross validation" with no Data
transformation

Correctly Classified Instances Kappa statistic Precision (Weighted Avg)

Recall (Weighted Avg) FP rate F-Measure(Weighted Avg)

AUC (Weighted Avg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 -1

AUC Scores(No data transformation)

C4.5 Naive Bayes SVM kNN Random Forest Multilayer Perceptron

 45

With the application of random projection which reduced the dataset to 50 attributes. The
overall performance of all the algorithms dropped slightly indicating towards an inefficient
model design as seen in Figure 4.11. A drop in the AUC score for both the class labels can be
seen in figure 4.12.

Figure 4.11: Performance analysis report on Vehicle dataset transformed with Random

Projection

Figure 4.12: AUC score 2D -line chart for Vehicle data transformed with Random Projection

C4.5 Naive Bayes SVM kNN
Multilayer
Perceptron

Random
Forest

Correctly Classified Instances 77.28% 72.12% 82.61% 73.46% 83.76% 83.96%

Kappa statistic 54.57% 44.27% 65.23% 46.94% 67.54% 67.92%

Precision (Weighted Avg) 77.50% 74.20% 83.30% 73.70% 83.90% 84.30%

Recall (Weighted Avg) 77.33% 72.10% 82.60% 73.50% 83.80% 84.00%

FP rate 22.70% 27.80% 17.40% 26.50% 16.20% 16.00%

F-Measure(Weighted Avg) 77.20% 71.50% 82.50% 73.40% 83.70% 83.90%

AUC (Weighted Avg) 76.30% 79.30% 82.60% 73.50% 89.20% 89.60%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Test option: "Supplied test set" with data transformed using
random projection

Correctly Classified Instances Kappa statistic Precision (Weighted Avg)

Recall (Weighted Avg) FP rate F-Measure(Weighted Avg)

AUC (Weighted Avg)

0

0.2

0.4

0.6

0.8

1

1 -1

AUC Scores (With Random Projection)

C4.5 Naive Bayes SVM kNN Multilayer perceptron Random Forest

 46

Application of CFS and GreedyStepwise data transformation which reduced the dataset to 34
attributes didn’t show better results in performance except for multilayer perceptron which

has an minor improvement in accuracy (84,48%) compared to model built with original
dataset as seen in Figure 4.13.

Figure 4.13: Performance analysis report on Vehicle dataset transformed with CFS and

GreedyStepwise

Figure 4.14: AUC score 2D -line chart for Vehicle data transformed with CFS and

GreedyStepwise

C4.5 Naive Bayes SVM kNN
Multilayer
Perceptron

Random
Forest

Correctly Classified Instances 82.87% 80.61% 84.74% 76.29% 84.48% 85.85%

Kappa statistic 65.75% 61.24% 69.49% 52.58% 68.96% 71.71%

Precision (Weighted Avg) 83.40% 83.80% 85.60% 76.50% 84.80% 86.20%

Recall (Weighted Avg) 82.90% 80.60% 84.70% 76.30% 84.50% 85.90%

FP rate 17.10% 19.30% 15.20% 23.70% 15.50% 14.10%

F-Measure(Weighted Avg) 82.80% 80.20% 84.60% 76.20% 84.40% 85.80%

AUC (Weighted Avg) 83.20% 88.70% 84.80% 76.50% 90.30% 91.50%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Test options: "Supplied test set" with data transformed using
CFS and GreedyStepwise

Correctly Classified Instances Kappa statistic Precision (Weighted Avg)

Recall (Weighted Avg) FP rate F-Measure(Weighted Avg)

AUC (Weighted Avg)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 -1

AUC Scores (with CFS and GreedyStepwise)

C4.5 Naive Bayes SVM kNN Multilayer perceptron Random Forest

 47

As seen in figure 4.15 , 10-fold Cross validation performed on data transformed with PCA
and ranker preprocessing techniques also did not give better results compared to output from
models created on data with no transformation. The AUC score chart can be seen in Figure
4.16.

Figure 4.15: Performance analysis report on Vehicle dataset transformed with PCA and

Ranker

Figure 4.16: AUC score 2D -line chart for Vehicle data transformed with PCA and Ranker

C4.5
Naive
Bayes

SVM kNN
Multilayer
Perceptron

Random
Forest

Correctly Classified Instances 81.11% 77.56% 81.86% 74.56% 83.28% 85.28%

Kappa statistic 62.22% 55.16% 63.74% 49.12% 66.56% 70.57%

Precision (Weighted Avg) 81.40% 81.20% 83.40% 74.80% 83.50% 85.80%

Recall (Weighted Avg) 81.10% 77.60% 81.90% 74.60% 83.30% 85.30%

FP rate 18.90% 22.40% 18.10% 25.40% 16.70% 14.90%

F-Measure(Weighted Avg) 81.10% 76.90% 81.70% 74.50% 83.30% 85.20%

AUC (Weighted Avg) 79.50% 83.60% 81.90% 74.60% 88.70% 90.50%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Test options: "Supplied test set" with data transformed
using PCA and ranker

Correctly Classified Instances Kappa statistic Precision (Weighted Avg)

Recall (Weighted Avg) FP rate F-Measure(Weighted Avg)

AUC (Weighted Avg)

0.5

0.6

0.7

0.8

0.9

1

1 -1

AUC Scores (with PCA and ranker)

C4.5 Naive Bayes SVM kNN Multilayer perceptron Random Forest

 48

From the above experimentation it can be observed that Random Forest and multilayer
models for vehicle dataset stand out in terms of high accuracy in all the test runs. Further
analysis in section 5.1 will consolidate this initial findings.

4.3. Performance analysis results of regression algorithms
 For regression problems schemes were cross-validated in terms of correlation coefficient,
RMSE and MEA.

4.3.1. Experiment 3- Appliance energy prediction
In experiment 3 ,regression models were built on appliance energy prediction dataset
algorithms and evaluated with 10 fold cross validation. Correlation coefficient, RMSE and
MAE metrics were measured and compared by running the WEKA test bench shown in
Figure 3.3. Tests were performed first with the original data and then data was transformed
with different preprocessing techniques. Figure 4.17 gives an overview of algorithms’

performance when no data transformation was applied. As seen in Figure 4.17 , GBM and
Random Forest have high correlation coefficient with value closer to 1 and have
comparatively lower RMSE and MAE. While Random Forest had the lowest RMSE and
highest correlation coefficient, SVM was the least efficient algorithm.

Figure 4.17: Performance analysis report on energy dataset with no data transformation

Linear
Regession

Multilayer
Perceptron

GBM SVM
Random
Forest

kNN

Correlation coefficient 0.4056 0.3927 0.7625 0.3379 0.7757 0.5392

Root mean squared error 94.1521 104.5868 66.9632 108.9814 65.6749 97.1358

Mean absolute error 53.1399 65.8232 29.9964 48.4919 30.7437 42.5838

0
20
40
60
80

100
120

Test options: "10-fold Cross validation" with no data
transformation

Correlation coefficient Root mean squared error Mean absolute error

 49

Application of random projection to the original dataset, which reduced the dataset to 11
attributes generated poorer results as seen in Figure 4.18.

Figure 4.18:Performance analysis report on energy dataset transformed with Random

Projection

In the next experiment the data was transformed on WEKA workbench using CfsSubsetEval
as attribute evaluator and GreedyStepwise for searching the attributes. The dataset was
reduced to 6 attributes. It was observed that the data transformation improved the
performance of kNN but degraded the performance of other algorithms as seen in figure 4.19.

Figure 4.19: Performance analysis report on Energy dataset transformed with CFS and

GreedyStepwise

Linear
Regession

Multilayer
Perceptron

GBM SVM
Random
Forest

kNN

Correlation coefficient 0.2749 0.1789 0.6659 0.06 0.6801 0.4349

Root mean squared error 98.9305 112.0603 76.8534 109.4748 75.7682 107.3748

Mean absolute error 56.9913 71.3949 36.4704 50.122 37.9471 48.6807

0
20
40
60
80

100
120

Test options: "Supplied data set"with data transformed
using random projection

Correlation coefficient Root mean squared error Mean absolute error

Linear
Regession

Multilayer
Perceptron

GBM SVM
Random
Forest

kNN

Correlation coefficient 0.2734 0.1756 0.635 0.2751 0.673 0.6017

Root mean squared error 98.9762 110.7431 79.7304 104.3023 76.2757 91

Mean absolute error 56.3901 70.2367 37.3863 46.4132 37.7741 38.1872

0
20
40
60
80

100
120

Test options: "Supplied test set" with data transformed
using CFS and GreedyStepwise

Correlation coefficient Root mean squared error Mean absolute error

 50

Data was then transformed using attribute evaluator PCA and ranker as search method. This
process transformed the dataset to 12 attribute dataset. The efficiency reduced for all
algorithms as compared to original dataset as can be seen in Figure 4.20.

Figure 4.20:Performance analysis report on Energy dataset transformed with PCA and

Ranker

It can be deduced from the experimentation performed on appliances energy prediction
dataset that data transformation deteriorate the overall performance and was not worth the
application. Random forest and GBM had the best evaluation metric statistics as compared to
other selected algorithms. Further extensive validation process covered in chapter 5 assert the
outcome of initial findings.

4.3.2. Experiment 4-Puma 560 robot arm
Regression algorithms were evaluated for Puma 560 robot arm dataset analysis using similar
test setup as of appliance energy prediction dataset. Correlation coefficient, RMSE and MAE
metrics were measured and compared by running the WEKA test bench shown in Figure 3.3.
Tests were performed first with the original data and then data was transformed with different
preprocessing techniques.

Linear
Regession

Multilayer
Perceptron

GBM SVM
Random
Forest

kNN

Correlation coefficient 0.3076 0.2319 0.6431 0.276 0.6746 0.5168

Root mean squared error 97.9072 109.2189 78.9151 103.5937 76.6824 100.0117

Mean absolute error 55.626 71.2878 37.7021 45.8311 38.4993 43.9702

0
20
40
60
80

100
120

Test options: "Supplied test set" with data transformed using
PCA and ranker

Correlation coefficient Root mean squared error Mean absolute error

 51

Figure 4.21: Performance analysis report on Puma 560 robot arm dataset with no

transformation
As seen in Figure 4.21 models build with Random Forest and Multilayer perceptron were
satisfactory with a low RMSE and high correlation coefficient. In this dataset as well random
forest had the best results with a RMSE value of 3.2429 and correlation coefficient of 0.817.
Models generated from data transformed with random projection generated a significantly
poor validation results as seen from the number in Figure 4.22.

Figure 4.22: : Performance analysis report on Puma 560 robot arm dataset transformed with

Random Projection

Linear
Regession

Multilayer
Perceptron

GBM SVM
Random
Forest

kNN

Correlation coefficient 0.6089 0.7487 0.633 0.6317 0.817 0.5999

Root mean squared error 4.4597 3.8137 4.3566 4.4086 3.2429 5.0438

Mean absolute error 3.6433 2.9572 3.5754 3.4751 2.5085 3.8278

0
1
2
3
4
5
6
7
8
9

10

Test options: "10-fold Cross validation" with no data
transformation

Correlation coefficient Root mean squared error Mean absolute error

Linear
Regession

Multilayer
Perceptron

GBM SVM
Random
Forest

kNN

Correlation coefficient 0.2166 0.0955 0.2058 0.2191 0.1379 0.0222

Root mean squared error 5.4886 5.9889 5.5043 5.5702 5.6538 7.8965

Mean absolute error 4.6541 4.9917 4.6653 4.6 4.7493 6.32

0
1
2
3
4
5
6
7
8
9

10

Test options: "Supplied test set with data transformed
using random projection

Correlation coefficient Root mean squared error Mean absolute error

 52

As seen in Figure 4.23 , poor results were reported for all models generated for data
transformed with CFS and GreedyStepwise except kNN compared to model created with the
original data(Figure 4.21). A RMSE value less than 5 and correlation coefficient of 0.6846
was observed.

Figure 4.23:Performance analysis report on Puma 560 robot arm dataset transformed with

CFS and GreedyStepwise
Classifiers’ evaluation with data transformed using with PCA and ranker method with
original dataset being used as test data and transformed data being used as training data, also
showed negligible improvement in the performance of the models and results we similar to
the models generated with the original data. (Figure 4.24).

Linear
Regession

Multilayer
Perceptron

GBM SVM
Random
Forest

kNN

Correlation coefficient 0.6089 0.7057 0.6333 0.6317 0.8052 0.6846

Root mean squared error 4.4597 4.0448 4.3566 4.4102 3.3406 4.4602

Mean absolute error 3.36433 3.1452 3.5754 3.4748 2.5559 3.3604

0
1
2
3
4
5
6
7
8
9

10

Test options: "Supplied test set" with data transformed
using CFS and GreedyStepwise

Correlation coefficient Root mean squared error Mean absolute error

 53

Figure 4.24: Performance analysis report on Puma 560 robot arm dataset transformed with

PCA and Ranker

Linear
Regession

Multilayer
Perceptron

GBM SVM
Random
Forest

kNN

Correlation coefficient 0.6082 0.7463 0.5443 0.626 0.7599 0.5966

Root mean squared error 4.4628 3.8228 4.7401 4.4312 3.6999 5.0617

Mean absolute error 3.6446 2.9882 3.8894 3.5015 2.9814 3.836

0
1
2
3
4
5
6
7
8
9

10

Test options: "Supplied test set" with data transformed
using PCA and ranker

Correlation coefficient Root mean squared error Mean absolute error

 54

Chapter 5

This chapter covers the an empirical comparative analysis of machine learning algorithms
studied in chapter 4. In the first section , paired t-test is performed on the selected datasets
and algorithms are validated in terms of chosen evaluation metrics. The next section provides
a conclusive scrutiny of the analysis results from chapter 4 and section 5.1. This study is
finalized with an overall summary in section 5.3.

5.1 T-Test performance comparison
 In many big data problems, a basic 10 fold cross validation on individual dataset is not a
satisfactory decisive process for finalizing the optimal machine learning scheme for analytics
design. A further extensive test is commonly carried out when conducting a performance
comparative analysis. A repeated cross validation is performed for each algorithm for
multiple datasets and a mean of (error estimates)/accuracy is computed to determine whether
the mean of one data sample is significantly greater or less than other.. WEKA Experimenter
interface uses paired t-test to compare the mean of two different data samples where the
observation of one sample is paired with other observation. The conceptual background of
paired t test has been presented in section 2.

WEKA Experimenter paired t-test is conducted in a three step using three panels in the GUI
shown in Figure 5.1 . In Setup panel datasets are and algorithms are selected. The Run panel
is used to process 10-fold cross validation multiplied by 10 repeats per algorithm for each
dataset. Paired t test is performed in the Analyse panel. The confidence level is by default set
to 0.05 and the comparison metric is “percent correct” by default. The base algorithm is
selected in the test configuration settings. Section 5.1.1 discusses the test results for
classification data samples and section 5.1.2 covers the regression data samples test results.

 55

Figure 5.1 WEKA Experimenter

 5.1.1: T-test analysis of classification algorithms
The Experimenter was configured to perform paired t-test on the original HAR and vehicle
dataset to analyze the classifiers Random Forest, C4,5, Naïve Bayes, SVM and kNN.
Random forest was configured as the baseline scheme. Accuracy(“percent_correct”)
evaluation metric is used to compare the performance. The symbol “v” and “*” beside the
result indicates that the method is statistically high value(v) or low value(*) than the base
method which is Random Forest in this case at a significance level of 5%. At the bottom of
each column are counts (𝑥/𝑦/𝑧) which indicate the number of times the scheme is better or
worse than the base scheme(𝑥 being high , 𝑦 being the same , 𝑧 is low value) as shown in
Figure 5.3. It was observed from the test outcome that SVM with an accuracy of 98.49% was
rated the best algorithm with highest “percent correct” value for HAR dataset. The number of
times it is better than Random forest is 1. For vehicle dataset , none of the scheme’s

performance was better than the baseline scheme i.e. Random Forest with accuracy of 86.26%
. The bottom row statistics shows that C4.5 , Naive Bayes, kNN are worse than Random
forest with a factor of 2 while SVM was worse with factor of 1. Multilayer perceptron was
excluded from the paired t-test analysis of the original dataset because it was extremely slow
during the initial analysis as observed in section 4.1.

 56

Figure 5.2: Paired T-test “Percent_Correct” analysis results of classifiers on original HAR

and Vehicle dataset

Since satisfactory results were seen with datasets transformed with CFS and GreedyStepwise
method, paired t-test was run on both the transformed datasets as well. Results indicated
Random Forest as the most efficient scheme for both the datasets as illustrated in Figure 5.4.
Multilayer perceptron was also included in the test run since promising results were visible in
the initial analysis in section 4.1 and also good results were seen in paired t-test with a
96.49% “percent correct”. The (𝑥/𝑦/𝑧) statistics in the bottom row shows that all schemes
are worse than the base scheme by factor of 2 which indicate Random forest as a clear winner
for both type of analytics design.

 Figure 5.3: Paired T-test “Percent_Correct” analysis results of algorithms on HAR and

Vehicle dataset transformed with CFS and GreedyStepwise.

 57

 5.1.2 T-test analysis of regression algorithms
The Experimenter was configured to perform paired t-test on the original Energy and
puma8NH dataset to analyze the regression models built with Linear regression, Random
Forest, GBM, multilayer perceptron, SVM and kNN. Random Forest is configured as the
baseline scheme. Correlation coefficient and RMSE evaluation metrics are used to measure
perform a comparative analysis. Due to limited computation capability, paired t-test was run
on each datasets once at a time. It was observed that Random Forest outperformed all other
schemes in terms of RMSE as it had significantly lower value than other schemes. Figure 5.5
illustrate the test results for energy dataset. Random Forest also had an optimal correlation
coefficient compared to other schemes as illustrated in Figure 5.6.

Figure 5.4: Paired T-test “RMSE” analysis of algorithms energy dataset

Figure 5.5: Paired T-test “Correlation coefficient” analysis of algorithms energy dataset

 58

The next paired t-test was run on puma dataset with same configuration as energy dataset. In
puma dataset Random Forest was observed as the optimal scheme based on the best values of
RMSE and correlation coefficient compared to other schemes as illustrated in Figure 5.7 and
5.8.

Figure 5.6: Paired T-test “RMSE” analysis of algorithms puma8NH dataset

Figure 5.7: Paired T-test “Correlation Coefficient” analysis of algorithms puma8NH dataset
 T-test comparative analysis results indicated Random Forest as the best scheme with optimal
accuracy and RMSE. SVM proved to be the optimal in terms of accuracy in case of HAR
dataset when performed with no data transformation whereas overall analysis results indicated
that Random Forest generate optimal results in different test scenarios.

 59

Conclusion

The intent of this thesis is to exhibit an analogical perspective of different machine learning
algorithms to aid in the data analytics design process. In this study, diverse datasets were
subjected to selected machine learning algorithms and models’ performance was cross-
validated using WEKA and validation results were scrutinized. A separate test was conducted
for regression and classification problems using two datasets in each data mining category.
Most of the algorithms chosen are capable of handling both regression and classification
predictive tasks, hence aided in the algorithm analogy. The initial test was performed with 10-
fold cross-validation to measure the efficiency of each algorithm with respect to the specific
dataset. Evaluation metrics such as accuracy, Kappa statistic, Precision, recall, FP rate, f-
measure and AUC formed the basis of evaluation for classification problems and RMSE and
correlation coefficient for regression type data problems. Datasets were also transformed
using preprocessing techniques and then used as test set to access the impact of preprocessing
on the performance of the algorithms. In the initial evaluation with 10-fold cross validation,
it was found that linearity and structure of the dataset has a visible impact on accuracy
percentage and the error rate. As seen in case of HAR dataset where the dataset is more
structured and linear, the error rate is low and accuracy is high compared to results from
another dataset. It was also seen that with the chosen dataset, preprocessing had no
significant impact on the performance of the algorithms except for a couple of specific cases
such as kNN had better efficiency when applied to datasets transformed with CFS and
GreedyStepwise techniques. Multilayer perceptron also showed improvement in case of HAR
dataset transformed with CFS and GreedyStepwise techniques. It was also seen that in case of
HAR dataset, with the transformed data which reduced the dataset to 58 attributes from 561
attributes, the overall efficiency of algorithms did not degrade significantly, hence can be
stated as an optimal preprocessing method for classification datasets with respect to data
storage cost. But in case of regression dataset, the difference in performance was evident and
hence data transformation cannot be applied to datasets to achieve an efficient data model.
Random Forest is seen as optimal modeling scheme for all the datasets selected for this study
.The better performance of Random Forest schemes can be justified from its basic principle
which combines multiple tree predictors at training time where the final prediction is made
from the average of each prediction of the individual trees using the bootstrap averaging(
bagging) techniques. This process leads to significant reduction in variance and overfitting
caused by single tree predictors. Another important factor that makes Random Forest one of

 60

the most preferred model schemes is that Random Forest requires minimal parameter tuning
and is simple to implement to generate a decent model which outputs faster and efficient
prediction. Finally, it can be stated that the efficiency of a model is greatly dependent on the
dataset characteristics and a rigorous scrutiny of the predictive capability of algorithms with
respect to the data problem in question and a comprehensive cost/benefit estimate are the two
key aspects to designing an intelligent data analytics system.

 61

References
[1] Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques. Burlington, MA: Elsevier. [2] Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: Practical machine learning tools and techniques. San Francisco: Morgan Kaufman. [3] He, S., Chen, J., Yau, D. K., & Sun, Y. (2010). Cross-Layer Optimization of Correlated Data Gathering in Wireless Sensor Networks. 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON). doi:10.1109/secon.2010.5508271. [4] Li, H., Yu, H., & Liu, A. (n.d.). A Tree Based Data Collection Scheme for Wireless Sensor Network. International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies (ICNICONSMCL06). doi:10.1109/icniconsmcl.2006.36 [5] Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications,30(14-15), 2826-2841. doi:10.1016/j.comcom.2007.05.024 [6] Zhang, S., Zhang, C., & Yang, Q. (2003). Data preparation for data mining. Applied Artificial Intelligence,17(5-6), 375-381. doi:10.1080/713827180 [7] Z. Marzuki and F. Ahmad, “Data Mining Discretization Methods and Performances,” Proceedings of the International Conference on Electrical Engineering and Informatics, Institute Teknologi Bandung, Bandung, 17-19 June 2007, pp. 535-537 [8] M. (n.d.). Mining Models (Analysis Services - Data Mining). Retrieved April 02, 2018, from https://docs.microsoft.com/en-us/sql/analysis-services/data-mining/mining-models-analysis-services-data-mining. [9] Hale, R., & Rollins, J. B. (2006, March 13). Embedded data mining steps to success. Retrieved April 02, 2018, from https://www.computerworld.com/article/2562243/business-intelligence/embedded-data-mining-steps-to-success.html [10] M. A. Hall and G. Holmes, "Benchmarking attribute selection techniques for discrete class data mining," in IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 6, pp. 1437-1447, Nov.-Dec. 2003. doi: 10.1109/TKDE.2003.1245283 [11] Novakovic, J. (2009). Using Information Gain Attribute Evaluation to Classify Sonar Targets. [12] Pierre Dangauthier, Pierre Bessiere, Anne Spalanzani. Feature Selection For Self-Supervised Learning. [Technical Report] 2005 [13] Liu, H. et. al(2002) : Discretization : An Enabling Technique.Data Mining and Knowledge Discovery, 6,393-423.

 62

[14] Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441, and 498–520. [15] Jonathon Shlens (2014). A Tutorial on Principal Component Analysis. CoRR, abs/1404.1100, . [16] Johnson, W. B., & Lindenstrauss, J. (1984). Extensions of Lipschitz mappings into a Hilbert space. Conference on Modern Analysis and Probability Contemporary Mathematics,189-206. doi:10.1090/conm/026/737400 [17] Ailon, N., & Chazelle, B. (2009). The Fast Johnson–Lindenstrauss Transform and Approximate Nearest Neighbors. SIAM Journal on Computing,39(1), 302-322. doi:10.1137/060673096 [18] Achlioptas, D. (2003). Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of Computer and System Sciences,66(4), 671-687. doi:10.1016/s0022-0000(03)00025-4 [19] Ron Kohavi(1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th international joint conference on Artificial intelligence - Volume 2 (IJCAI'95), Vol. 2. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1137-1143. [20] Refaeilzadeh, P., Tang, L., & Liu, H. (2016). Cross-Validation. Encyclopedia of Database Systems,1-7. doi:10.1007/978-1-4899-7993-3_565-2 [21] Britannica, T. E. (2016, April 11). Student's t-test. Retrieved April 03, 2018, from https://www.britannica.com/science/Students-t-test [22] T Test (Students T-Test): Definition and Examples. (n.d.). Retrieved April 03, 2018, from http://www.statisticshowto.com/probability-and-statistics/t-test/ [23] Duriqi, R., Raca, V., & Cico, B. (2016). Comparative analysis of classification algorithms on three different datasets using WEKA. 2016 5th Mediterranean Conference on Embedded Computing (MECO). doi:10.1109/meco.2016.7525775
[24] Haigh, K.Z., Mackay, A.M., Cook, M.R., & Lin, L.G. (2015). Machine Learning for Embedded

Systems: A Case Study.

 [25] Zhang, Q., Yang, L. T., Chen, Z., & Li, P. (2018). High-order possibilistic c-means algorithms based on tensor decompositions for big data in IoT. Information Fusion,39, 72-80. doi:10.1016/j.inffus.2017.04.002 [26] Breiman, L. (2001). Machine Learning,45(1), 5-32. doi:10.1023/a:1010933404324 [27] Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. Multiple Classifier Systems Lecture Notes in Computer Science,1-15. doi:10.1007/3-540-45014-9_1 [28] Breiman, L. (1996). Machine Learning,24(2), 123-140. doi:10.1023/a:1018054314350

 63

[29] Ho, T. K. (n.d.). Random decision forests. Proceedings of 3rd International Conference on Document Analysis and Recognition. doi:10.1109/icdar.1995.598994 [30] Jain, A., Mao, J., & Mohiuddin, K. (1996). Artificial neural networks: A tutorial. Computer,29(3), 31-44. doi:10.1109/2.485891 [31] Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., . . . Steinberg, D. (2007). Top 10 algorithms in data mining. Knowledge and Information Systems,14(1), 1-37. doi:10.1007/s10115-007-0114-2 [32] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning,20(3), 273-297. doi:10.1007/bf00994018 [33] Chang, C., & Lin, C. (2011). Libsvm. ACM Transactions on Intelligent Systems and Technology,2(3), 1-27. doi:10.1145/1961189.1961199 [34] Haykin, S. S. (1999). Neural networks: A comprehensive foundation. London: Prentice-Hall International. [35] Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE,78(9), 1464-1480. doi:10.1109/5.58325 [36] Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. [37] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recognition Using Smartphones. 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013. [38] LIBSVM Data: Classification, Regression, and Multi-label. (n.d.). Retrieved April 03, 2018, from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ [39] Duarte, M. F., & Hu, Y. H. (2004). Vehicle classification in distributed sensor networks. Journal of Parallel and Distributed Computing,64(7), 826-838. doi:10.1016/j.jpdc.2004.03.020 [40] Candanedo, L. M., Feldheim, V., & Deramaix, D. (2017). Data driven prediction models of energy use of appliances in a low-energy house. Energy and Buildings,140, 81-97. doi:10.1016/j.enbuild.2017.01.083 [41] Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis,38(4), 367-378. doi:10.1016/s0167-9473(01)00065-2 [42] Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment,62(1), 77-89. doi:10.1016/s0034-4257(97)00083-7 [43] Zweig, M H & Campbell, G (1993). Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39, 561-577. [44] Product List. (n.d.). Retrieved April 03, 2018, from https://www.dtlr.com/brands/puma.html

 64

[45] Pentaho Acquires Weka Project. (2006, September 19). Retrieved April 08, 2018, from http://www.pentaho.com/pentaho-acquires-weka-project

Appendix A
 WEKA algorithm configuration setting:
CfsSubsetEval : weka.attributeSelection.CfsSubsetEval -P 1 -E 1

missingSeparate:- if set then treat missing as a separate value. Otherwise, counts for missing
values are distributed across other values in proportion to their frequency.
preComputeCorrelationMatrix :- Precompute the full correlation matrix at the outset, rather
than compute correlations lazily (as needed) during the search.
locallyPredictive :- Identify locally predictive attributes.

GreedyStepwise: weka.attributeSelection.GreedyStepwise -T -1.7976931348623157E308 -N
-1 -num-slots 1

generateRanking :- if true generate a ranked list. Default value is false.
numToSelect:- Specify the number of attributes to retain. The default value (-1) indicates that
all attributes are to be retained.
searchBackwards:- Search backwards rather than forwards. Default is false.
threshold:- Set threshold for filtering the attributes. Default value results in no attributes being
discarded.
startSet:- Set the start point for the search. This property is not set by default.

Principal Components: weka.attributeSelection.PrincipalComponents -R 0.95 -A 5

centerData:- Center (rather than standardize) the data. PCA will be computed from the
covariance (rather than correlation) matrix
transformBackToOriginal:- Transform through the PC space and back to the original space.
By default set to false.
varianceCovered:- Retain enough PC attributes to account for this proportion of variance.
Default value is 0.95.
maximumAttributeNames:- The maximum number of attributes to include in transformed
attribute names. Default is 5.

Ranker: weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1

numToSelect:- Specify the number of attributes to retain. The default value (-1) indicates that
all attributes are to be retained.
threshold:- Set threshold by which attributes can be discarded.
startSet:- Specify a set of attributes to ignore and is empty by default.

Linear Regression: weka.classifiers.functions.LinearRegression -S 1 -R 1.0E-8 -additional-
stats -num-decimal-places 4

minimal:- Discards the dataset header, means and standard deviation to conserve memory.
Default value is FALSE.
ridge:- WEKA uses a ridge regularization method to minimize the square of the absolute sum
of the learned coefficients, which restricts any specific coefficient from getting too high.
Default value is 1.0E-8
attributeSelectionMethod:- Set the method used to select attributes for use in the linear
regression. For this study this parameter is set to” no attribute selection”
eliminateColinearAttributes:- removed highly correlated attributes to improve the
performance. Default value is TRUE.

Multilayer Perceptron: weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N
500 -V 0 -S 0 -E 20 -H a -R

seed:- Value used to initialize the weights of the connections between nodes, and also for
shuffling the training data
momentum:- Momentum applied to the weights during updating. Default is 0.2
hiddenLayers:- This defines the hidden layers of the neural network. It is represented as
numbers. it also has option for wild card values such as a which is the average of attributes
count and number of classes . Default is “a”.
validationThreshold :- Used to terminate validation testing. The value here dictates how many
times in a row the validation set error can get worse before training is terminated. Default
value is 20.
decay:- This indicate the decay in learning rate.
normalizeAttributes:- this property is set to normalize the numeric attributes.
normalizeNumericClass :- set to normalize the class if it's numeric

trainingTime:-The number of epochs to train through.
learningRate:- The amount the weights are updated. Default is 0.3.

Random Forest : weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M
1.0 -V 0.001 -S 1

seed:- The random number seed to be used.
numExecutionSlots:- The number of threads to use for constructing the ensemble. Default is
1.
bagSizePercent:- Size of each bag, as a percentage of the training set size. Default is 100.
numIterations:- The number of iterations to be performed. Default is 100.
maxDepth:- The maximum depth of the tree, 0 for unlimited.
numFeatures:- Sets the number of randomly chosen attributes.

k-nearest neighbor(kNN): weka.classifiers.lazy.IBk -K 1 -W 0 -A
"weka.core.neighboursearch.LinearNNSearch -A \"weka.core.EuclideanDistance -R first-
last\""

KNN:- The number of neighbours to use.
distanceWeighting:- Gets the distance weighting method used.
nearestNeighbourSearchAlgorithm -- The nearest neighbor search algorithm to use. Default is
weka.core.neighboursearch.LinearNNSearch.
windowSize:- Gets the maximum number of instances allowed in the training pool. A value of
0 signifies no limit to the number of training instances.
meanSquared:- Whether the mean squared error is used rather than mean absolute error when
doing cross-validation for regression problems.

Gradient Boosting Machines (GBM): weka.classifiers.meta.AdditiveRegression -S 0.2 -A -I
10 -W weka.classifiers.trees.RandomTree -- -K 0 -M 1.0 -V 0.001 -S 1

classifier -- The base classifier to be used. Default is DecisionStump.
shrinkage:- Shrinkage rate. Smaller values help prevent overfitting and have a smoothing
effect but causes an increase in learning time. Default is 1 which means no shrinkage. In this
study a shrinkage of 0.3 is used.
minimizeAbsoluteError :- Minimize absolute error instead of squared error.

Support Vector Machines (SVM) for regression: weka.classifiers.functions.SMOreg-C 1.0
-N 0 -I "weka.classifiers.functions.supportVector.RegSMOImproved -T 0.001 -V -P 1.0E-12 -
L 0.001 -W 1" -K "weka.classifiers.functions.supportVector.RBFKernel -C 250007 -G 0.01"

SMOreg implements the support vector machine for regression. The algorithm is selected by
setting the RegOptimizer.
c:- The complexity parameter C. A value of 0 allows no violations of the margin, Default
value is 1.0
kernel:- The kernel to use. This is the key parameter for SVM and default is Polynomial
Kernel. In this study Radial Basis Function(RBF) kernel is used and RBF is capable of
learning closed polygons and complex shapes to fit the training data.
filterType:- selects the data transformation if needed.
RegOptimizer:- The learning algorithm.

C4.5: weka.classifiers.trees.J48 -U -M 2

seed:- seed is the random number generator when pruning is used.
unpruned:- used to specify if pruning is done.
confidenceFactor:- The confidence factor used for pruning. confidenceFactor value is directly
proportional to pruning strength.
numFolds:- Determines the amount of data used for reduced-error pruning. One fold is used
for pruning, the rest for growing the tree.
reducedErrorPruning :- Whether reduced-error pruning is used instead of C.4.5 pruning.
doNotMakeSplitPointActualValue:- If true, the split point is not relocated to an actual data
value.
subtreeRaising:- used to select if subtree raising operation to be performed when pruning.
binarySplits:- Whether to use binary splits on nominal attributes when building the trees.

Support Vector Machines (SVM) for classification: weka.classifiers.functions.SMO -C 1.0
-L 0.001 -P 1.0E-12 -N 2 -V -1 -W 1 -K "weka.classifiers.functions.supportVector.RBFKernel
-C 250007 -G 0.01" -calibrator "weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-
decimal-places 4"

RBF Kernel: K(x,y) = exp(-0.01*(x-y)^2)

Implements John Platt's sequential minimal optimization algorithm for training a support
vector classifier.
c:- The complexity parameter C. A value of 0 allows no violations of the margin, Default
value is 1.0
kernel:- The kernel to use. This is the key parameter for SVM and default is Polynomial
Kernel. In this study Radial Basis Function(RBF) kernel is used and RBF is capable of
learning closed polygons and complex shapes to fit the training data.
filterType:- selects the data transformation if needed.
calibrator :- The calibration method to use. By default data is normalized but in this thesis no
filter type is selected.

Naive Bayes: weka.classifiers.bayes.NaiveBayes

useKernelEstimator:- Use a kernel estimator for numeric attributes rather than a normal
distribution.
displayModelInOldFormat:- Use old format for model output. The old format is better when
there are many class values. The new format is better when there are fewer classes and many
attributes.
useSupervisedDiscretization:- Use supervised discretization to convert numeric attributes to
nominal ones. By default is set to false.

