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Around a problem of Nicole Brillouët-Belluot, II

Janusz Morawiec

Abstract. For every α ∈ R we determine all increasing bijections f : (0,+∞) → (0,+∞) such
that f(1) �= 1 and f(x)f−1(x) = xα for every x ∈ (0,+∞).
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In this note we answer Problem 3.8 posed in my article [4]. More precisely,
given α ∈ R we determine all increasing bijections f : (0,+∞) → (0,+∞) such
that f(1) �= 1 and

f(x)f−1(x) = xα for every x ∈ (0,+∞). (1.1)

Theorem 1. (i) If (1.1) admits a solution f which is an increasing bijection
from (0,+∞) onto (0,+∞), then we have α > 2. Let β ∈ (1,+∞) be the
unique number satisfying β + 1

β = α.
If f(1) = c �= 1 and f0 = f |[min{1,c},max{1,c}], then f0 is continuous,

f0(c) = cα and (y

x

) 1
β ≤ f0(y)

f0(x)
≤

(y

x

)β

(1.2)

for all x, y ∈ [min{1, c},max{1, c}] with x < y.
(ii) Conversely, let c ∈ (0, 1)∪ (1,+∞) and let f0 : [min{1, c},max{1, c}] → R

be a continuous function such that f0(1) = c, f0(c) = cα and (1.2) holds
for all x, y ∈ [min{1, c},max{1, c}] with x < y. Then f0 can be uniquely
extended to an increasing bijection f : (0,+∞) → (0,+∞) satisfying (1.1).

Moreover:
(a) if c ∈ (0, 1), then f(x) < min{xβ , x

1
β } for every x ∈ (0,+∞);

(b) if c ∈ (1,+∞), then f(x) > max{xβ , x
1
β } for every x ∈ (0,+∞).

Proof. (i) The case f(1) = 1 was treated in [4]. Then we have α > 0 by Lemma
3.2 of [4].
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Fix an increasing bijective solution f : (0,+∞) → (0,+∞) of (1.1) such
that f(1) �= 1.

Put c = f(1) and f0 = f |[min{1,c},max{1,c}]. Then f0 is continuous, f0(1) = c

and f0(c) = f2(1) = [f(1)]α = cα.
Fix x, y ∈ [min{1, c},max{1, c}] with x < y. Since all the iterates of f are

increasing, by Lemma 2.3 of [4] we have

[f0(x)]an

xan−1
<

[f0(y)]an

yan−1
and

xan+1

[f0(x)]an
<

yan+1

[f0(y)]an
for every n ∈ N.

Hence
(y

x

) an−1
an ≤ f0(y)

f0(x)
≤

(y

x

) an+1
an for every n ∈ N. (1.3)

In particular, an−1 < an+1 for every n ∈ N. Finally, using Lemma 3.3 of
[4] we get α > 2 and passing with n to +∞ in (1.3) we obtain (1.2).

(ii) Define a function g0 : [min{0, log c},max{0, log c}] → R by setting g0(x)
= log f0(ex). Then g0 is continuous, g0(0) = log c, g0(log c) = α log c and
1
β ≤ g0(y)−g0(x)

y−x ≤ β for all x, y ∈ [min{0, log c},max{0, log c}] with x < y.
Since 0 < 1

β < 1 < β, we conclude from Theorem 2 of [5] that g0 can be
uniquely extended to a continuous function g : R → R satisfying

g2(x) = αg(x) − x for every x ∈ R, (1.4)

and this unique extension g satisfies

g(x) < min
{

βx,
1
β

x

}
for every x ∈ R, if c ∈ (0, 1),

g(x) > max
{

βx,
1
β

x

}
for every x ∈ R, if c ∈ (1,+∞),

1
β
(y − x) ≤ g(y) − g(x) ≤ β(y − x) for all x, y ∈ R with x < y.

Consequently, g is strictly increasing and maps R onto R. This jointly with
(1.4) implies g(x) + g−1(x) = αx for every x ∈ R.

Now define a function f : (0,+∞) → (0,+∞) by setting f(x) = eg(log x).
Then f is an increasing bijection satisfying (1.1) such that (a) and (b) hold.
The proof of the theorem is complete. �

Remark 2. An answer to the problem posed during The Forty-ninth Interna-
tional Symposium on Functional Equations by Nicole Brillouët-Belluot (see
[2]) as well as the result presented during The Fiftieth International Sympo-
sium on Functional Equations by Zoltán Boros (see [1]) can be derived from
Theorem 10 of [5] in the same way as above (involving Lemmas 2.1–2.5 of [3]
in the case of the problem of Nicole Brillouët-Belluot).
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