

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: Decomposition of two functions in the orthogonality equation

Author: Radosław Łukasik, Paweł Wójcik

Citation style: Łukasik Radosław, Wójcik Paweł. (2016). Decomposition of two functions in the orthogonality equation. "Aequationes Mathematicae" (Vol. 90, no. 3 (2016), s. 495-499), doi 10.1007/s00010-015-0385-8

Uznanie autorstwa - Licencja ta pozwala na kopiowanie, zmienianie, rozprowadzanie, przedstawianie i wykonywanie utworu jedynie pod warunkiem oznaczenia autorstwa.
\square

Decomposition of two functions in the orthogonality equation

RadosŁaw Łukasik and Pawee Wójcik

Abstract

The aim of this paper is to solve the orthogonality equation with two unknown functions. This problem was posed by J. Chmieliński during two international conferences.

Mathematics Subject Classification. Primary 39B52, 47A05, Secondary 47A62.
Keywords. Orthogonality equation, Hilbert space, Bounded linear operator.

1. Introduction

Let \mathcal{H}, \mathcal{K} be Hilbert spaces over the same field $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. Let $\langle\cdot \mid \cdot\rangle$ denote the inner product and $\|\cdot\|$ the norm associated with it. We shall not distinguish between the symbols used for \mathcal{H} and \mathcal{K}. The Banach space of all bounded linear operators from \mathcal{H} to \mathcal{K} is denoted by $\mathcal{L}(\mathcal{H} ; \mathcal{K})$. It is known that $h: \mathcal{H} \rightarrow \mathcal{K}$ is a solution of the orthogonality equation:

$$
\forall_{x, y \in \mathcal{H}} \quad\langle h(x) \mid h(y)\rangle=\langle x \mid y\rangle
$$

if and only if h is a linear isometry (or equivalently $h \in \mathcal{L}(\mathcal{H} ; \mathcal{K})$ and $h^{*} h=I_{\mathcal{H}}$).
The following considerations have been inspired by the talks of J. Chmieliński during the 15 th ICFEI and CUTS (see [3, p. 95] and [4, p. 145]). Namely, we will solve the generalized orthogonality equation:

$$
\begin{equation*}
\forall_{x, y \in \mathcal{H}} \quad\langle f(x) \mid g(y)\rangle=\langle x \mid y\rangle, \tag{1}
\end{equation*}
$$

with two unknown functions $f, g: \mathcal{H} \rightarrow \mathcal{K}$. The paper [1] also deals with Eq. (1) and similar topics. We need the following lemma for further investigations.

Lemma 1. Let $f, g: \mathcal{H} \rightarrow \mathcal{K}$ satisfy Eq. (1) and $\overline{\operatorname{Lin} f(\mathcal{H})}=\mathcal{K}$. Then g is linear.
Proof. Fix $y \in \operatorname{Lin} f(\mathcal{H})$. Then $y=\sum_{k=1}^{n} \alpha_{k} f\left(x_{k}\right)$ for some $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{K}$, $x_{1}, \ldots, x_{n} \in \mathcal{H}$. Thus we have

$$
\begin{aligned}
\langle y \mid g(u+\beta w)\rangle & =\left\langle\sum_{k=1}^{n} \alpha_{k} f\left(x_{k}\right) \mid g(u+\beta w)\right\rangle=\sum_{k=1}^{n} \alpha_{k}\left\langle f\left(x_{k}\right) \mid g(u+\beta w)\right\rangle \\
& =\sum_{k=1}^{n} \alpha_{k}\left\langle x_{k} \mid u+\beta w\right\rangle=\sum_{k=1}^{n} \alpha_{k}\left(\left\langle x_{k} \mid u\right\rangle+\bar{\beta}\left\langle x_{k} \mid w\right\rangle\right) \\
& =\sum_{k=1}^{n} \alpha_{k}\left(\left\langle f\left(x_{k}\right) \mid g(u)\right\rangle+\bar{\beta}\left\langle f\left(x_{k}\right) \mid g(w)\right\rangle\right) \\
& =\sum_{k=1}^{n}\left\langle\alpha_{k} f\left(x_{k}\right) \mid g(u)+\beta g(w)\right\rangle \\
& =\left\langle\sum_{k=1}^{n} \alpha_{k} f\left(x_{k}\right) \mid g(u)+\beta g(w)\right\rangle \\
& =\langle y \mid g(u)+\beta g(w)\rangle, u, w \in \mathcal{H}, \quad \beta \in \mathbb{K} .
\end{aligned}
$$

The set $\operatorname{Lin} f(\mathcal{H})$ is dense in \mathcal{K}, whence $g(u+\beta w)=g(u)+\beta g(w)$ for $u, v \in \mathcal{H}$, $\beta \in \mathbb{K}$. This means that g is linear.

Some well-known facts will be useful for further considerations. Let $T \in \mathcal{L}(\mathcal{K} ; \mathcal{H})$. Then there exists a unique $T^{*} \in \mathcal{L}(\mathcal{H} ; \mathcal{K})$ such that

$$
\forall_{x \in \mathcal{K}} \forall_{y \in \mathcal{H}}\langle T x \mid y\rangle_{\mathcal{H}}=\left\langle x \mid T^{*} y\right\rangle_{\mathcal{K}} .
$$

Moreover,

$$
\begin{equation*}
\text { if } \quad \forall_{x \in \mathcal{H}} \vartheta\|x\| \leqslant\|T x\|, \quad \text { then } T(\mathcal{H}) \text { is closed. } \tag{2}
\end{equation*}
$$

It is also known that

$$
\begin{equation*}
T \text { is invertible if and only if } T^{*} \text { is invertible. } \tag{3}
\end{equation*}
$$

Lemma 2. Let $T_{1}, T_{2}: \mathcal{H} \rightarrow \mathcal{K}$ be linear maps and satisfy

$$
\begin{equation*}
\forall_{x, y \in \mathcal{H}} \quad\left\langle T_{1}(x) \mid T_{2}(y)\right\rangle=\langle x \mid y\rangle . \tag{4}
\end{equation*}
$$

Assume that $T_{1}(\mathcal{H})$ is dense. Then T_{2} is continuous, i.e., $T_{2} \in \mathcal{L}(\mathcal{H} ; \mathcal{K})$.
Proof. Fix a sequence $\left(x_{n}\right)_{n=1,2, \ldots}$ such that $x_{n} \in \mathcal{H}$ and $x_{n} \rightarrow x_{o}$ for some $x_{o} \in \mathcal{H}$. Suppose that $T_{2} x_{n} \rightarrow z$ for some $z \in \mathcal{H}$. It suffices to show that $T_{2} x_{o}=z$ and apply The Closed Graph Theorem. Fix $y \in \mathcal{H}$ and notice that $\left\langle x_{n}-x_{o} \mid y\right\rangle \rightarrow 0$. On the other hand $\left\langle x_{n}-x_{o} \mid y\right\rangle \stackrel{(4)}{=}\left\langle T_{2} x_{n}-T_{2} x_{o} \mid T_{1} y\right\rangle \rightarrow$ $\left\langle z-T_{2} x_{o} \mid T_{1} y\right\rangle$. Thus we get

$$
\forall_{y \in \mathcal{H}} \quad\left\langle z-T_{2} x_{o} \mid T_{1} y\right\rangle=0 .
$$

Since $T_{1}(\mathcal{H})$ is dense in \mathcal{K}, it follows that $z-T_{2} x_{o}=0$. We have shown that the graph of T_{2} is closed.

Lemma 3. Let $T, S \in \mathcal{L}(\mathcal{H} ; \mathcal{K})$ satisfy the equation

$$
\begin{equation*}
\forall_{x, y \in \mathcal{H}} \quad\langle T(x) \mid S(y)\rangle=\langle x \mid y\rangle \tag{5}
\end{equation*}
$$

Then T is invertible if and only if S is invertible.
Proof. Assume that T is invertible. Then $\langle x \mid y\rangle=\langle T x \mid S y\rangle=\left\langle x \mid T^{*} S y\right\rangle$ for all $x, y \in \mathcal{H}$. Thus we have $I_{\mathcal{H}}=T^{*} S$. It follows from Lemma (3) that T^{*} is invertible. Therefore $\left(T^{*}\right)^{-1}=S$, hence S is invertible. The proof of the reverse is the same.

2. Main result

In this section, we solve functional Eq. (1). Now we can state and prove the main result of the paper.

Theorem 4. Let $f, g: \mathcal{H} \rightarrow \mathcal{K}$ satisfy Eq. (1) if and only if there exist suitable closed subspaces $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3} \subset \mathcal{K}$ such that $\mathcal{K}=\mathcal{M}_{1}+\mathcal{M}_{2}+\mathcal{M}_{3}, \mathcal{M}_{k} \perp \mathcal{M}_{j}$ (for $k \neq j$) and f, g can be written as the following decomposition

$$
f=A+\varphi, \quad g=\left(A^{*}\right)^{-1}+\gamma
$$

for some invertible $A \in \mathcal{L}\left(\mathcal{H} ; \mathcal{M}_{1}\right)$ and for some mappings $\varphi: \mathcal{H} \rightarrow \mathcal{M}_{2}, \gamma: \mathcal{H} \rightarrow$ \mathcal{M}_{3}.

Proof. The implication " \Leftarrow " is immediate. We start with proving " \Rightarrow ". It is clear that $\mathcal{K}=\overline{\operatorname{Lin} f(\mathcal{H})} \oplus \overline{\operatorname{Lin} f(\mathcal{H})}^{\perp}$, whence there are two mappings $T_{1}: \mathcal{H} \rightarrow$ $\overline{\operatorname{Lin} f(\mathcal{H})}$ and $\varphi_{1}: \mathcal{H} \rightarrow \overline{\operatorname{Lin} f(\mathcal{H})}{ }^{\perp}$ such that $g(x)=T_{1}(x)+\varphi_{1}(x)$ for all $x \in \mathcal{H}$. It is easy to check that f, T_{1} satisfy

$$
\begin{equation*}
\forall_{x, y \in \mathcal{H}} \quad\left\langle f(x) \mid T_{1}(y)\right\rangle=\langle x \mid y\rangle . \tag{6}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
\langle x \mid y\rangle=\langle f(x) \mid g(y)\rangle= & \left\langle f(x) \mid T_{1}(y)+\varphi_{1}(y)\right\rangle=\left\langle f(x) \mid T_{1}(y)\right\rangle+\left\langle f(x) \mid \varphi_{1}(y)\right\rangle \\
& =\left\langle f(x) \mid T_{1}(y)\right\rangle+0=\left\langle f(x) \mid T_{1}(y)\right\rangle
\end{aligned}
$$

We have shown that f, T_{1} satisfy (6). Moreover, the set $\operatorname{Lin} f(\mathcal{H})$ is dense in $\overline{\operatorname{Lin} f(\mathcal{H})}$. It follows from 1 that T_{1} is linear.

There exists the closed subspace $\mathcal{M} \subset \overline{\operatorname{Lin} f(\mathcal{H})}$ such that $\overline{T_{1}(\mathcal{H})} \perp \mathcal{M}$ and $\overline{\operatorname{Lin} f(\mathcal{H})}=\overline{T_{1}(\mathcal{H})} \oplus \mathcal{M}$. Therefore there are two mappings $T_{2}: \mathcal{H} \rightarrow \overline{T_{1}(\mathcal{H})}$ and $\varphi_{2}: \mathcal{H} \rightarrow \mathcal{M}$ such that $f(x)=T_{2}(x)+\varphi_{2}(x)$ for all $x \in \mathcal{H}$. In a similar way we prove that T_{2}, T_{1} satisfy

$$
\begin{equation*}
\forall_{x, y \in \mathcal{H}} \quad\left\langle T_{2}(x) \mid T_{1}(y)\right\rangle=\langle x \mid y\rangle \tag{7}
\end{equation*}
$$

Now, we can consider the linear operators $T_{2}: \mathcal{H} \rightarrow \overline{T_{1}(\mathcal{H})}$ and $T_{1}: \mathcal{H} \rightarrow \overline{T_{1}(\mathcal{H})}$ instead of $T_{1}: \mathcal{H} \rightarrow \overline{\operatorname{Lin} f(\mathcal{H})}$. By Lemma 1 and (7), T_{2} is linear. By Lemma 2 and (7), T_{2} is continuous, i.e., $T_{2} \in \mathcal{L}\left(\mathcal{H} ; \overline{T_{1}(\mathcal{H})}\right)$.

There is the closed subspace $\mathcal{N} \subset \overline{T_{1}(\mathcal{H})}$ such that $\overline{T_{1}(\mathcal{H})}=\overline{T_{2}(\mathcal{H})} \oplus \mathcal{N}$ and $T_{2}(\mathcal{H}) \perp \mathcal{N}$. Hence there are two mappings $T_{3}: \mathcal{H} \rightarrow \overline{T_{2}(\mathcal{H})}$ and $\varphi_{3}: \mathcal{H} \rightarrow \mathcal{N}$ such
that $T_{1}(x)=T_{3}(x)+\varphi_{3}(x)$ for all $x \in \mathcal{H}$. In a similar way we prove that T_{3} is linear and T_{2}, T_{3} satisfy

$$
\begin{equation*}
\forall_{x, y \in \mathcal{H}} \quad\left\langle T_{2}(x) \mid T_{3}(y)\right\rangle=\langle x \mid y\rangle . \tag{8}
\end{equation*}
$$

Now, we consider the linear operator $T_{2} \in \mathcal{L}\left(\mathcal{H} ; \overline{T_{2}(\mathcal{H})}\right)$ (instead of $\left.T_{2} \in \mathcal{L}\left(\mathcal{H} ; \overline{T_{1}(\mathcal{H})}\right)\right)$. Let us consider also the linear operator $T_{3}: \mathcal{H} \rightarrow \overline{T_{2}(\mathcal{H})}$. Applying again Lemma 2 and (8) we can say that T_{3} is continuous, i.e., $T_{3} \in \mathcal{L}\left(\mathcal{H} ; \overline{T_{2}(\mathcal{H})}\right)$. Now, we get

$$
\|x\|^{2}=\langle x \mid x\rangle \stackrel{(8)}{=}\left\langle T_{2} x \mid T_{3} x\right\rangle \leqslant\left\|T_{2} x\right\| \cdot\left\|T_{3} x\right\| \leqslant\left\|T_{2} x\right\| \cdot\left\|T_{3}\right\| \cdot\|x\|
$$

for all $x \in \mathcal{H}$. It follows from the above inequality that

$$
\begin{equation*}
\forall_{y \in \mathcal{H}} \frac{1}{\left\|T_{3}\right\|} \cdot\|x\| \leqslant\left\|T_{2} x\right\| \tag{9}
\end{equation*}
$$

Thus $T_{2}(\mathcal{H})$ is closed (see 2). Thus we obtain that $T_{2}(\mathcal{H})=\overline{T_{2}(\mathcal{H})}$ and T_{2}, $T_{3} \in \mathcal{L}\left(\mathcal{H} ; T_{2}(\mathcal{H})\right)$. It follows from (9) that T_{2} in injective, hence T_{2} is invertible. Therefore $T_{3} \in \mathcal{L}\left(\mathcal{H} ; T_{2}(\mathcal{H})\right)$ is also invertible by Theorem 3 and (8).

Finally, we define $\mathcal{M}_{1}:=T_{2}(\mathcal{H}), \mathcal{M}_{2}:=\mathcal{M}$ and $\mathcal{M}_{3}:=\mathcal{N} \oplus \overline{\operatorname{Lin} f(\mathcal{H})}^{\perp}$. Next, we define $\varphi: \mathcal{H} \rightarrow \mathcal{M}_{2}, \gamma: \mathcal{H} \rightarrow \mathcal{M}_{3}$ by $\varphi:=\varphi_{2}, \gamma:=\varphi_{3}+\varphi_{1}$. Moreover, we define $A \in \mathcal{L}\left(\mathcal{H} ; \mathcal{M}_{1}\right)$ by $A:=T_{2}$. Clearly A is invertable and $\left(A^{*}\right)^{-1}=T_{3}$. Thus we get $f=A+\varphi$ and $g=\left(A^{*}\right)^{-1}+\gamma$ and $\mathcal{K}=\mathcal{M}_{1}+\mathcal{M}_{2}+\mathcal{M}_{3}$, where $\mathcal{M}_{k} \perp \mathcal{M}_{j}$ for $k \neq j$.

Corollary 5. Suppose that $\operatorname{dim} \mathcal{H}<\infty$. Let $f, g: \mathcal{H} \rightarrow \mathcal{H}$ satisfy Eq. (1). Then $f, g \in \mathcal{L}(\mathcal{H} ; \mathcal{H})$ and $f=\left(g^{*}\right)^{-1}$.
Proof. By the above theorem we have a decomposition $f=A+\varphi, g=\left(A^{*}\right)^{-1}+\gamma$ for some invertible $A \in \mathcal{L}\left(\mathcal{H} ; \mathcal{M}_{1}\right)$ and some mappings $\varphi: \mathcal{H} \rightarrow \mathcal{M}_{2}, \gamma: \mathcal{H} \rightarrow \mathcal{M}_{3}$ (where $\mathcal{H}=\mathcal{M}_{1}+\mathcal{M}_{2}+\mathcal{M}_{3}$ and $\mathcal{M}_{k} \perp \mathcal{M}_{j}$). Since $A \in \mathcal{L}\left(\mathcal{H} ; \mathcal{M}_{1}\right)$ is invertible and $\operatorname{dim} \mathcal{H}<\infty$, it follows that $\mathcal{M}_{1}=\mathcal{H}$ and $\mathcal{M}_{2}=\{0\}=\mathcal{M}_{3}$. So $\varphi=0=$ γ.

Corollary 6. Let $f: \mathcal{H} \rightarrow \mathcal{K}$ satisfy the equation

$$
\begin{equation*}
\forall_{x, y \in \mathcal{H}} \quad\langle f(x) \mid f(y)\rangle=\langle x \mid y\rangle . \tag{10}
\end{equation*}
$$

Then f is a linear isometry.
Proof. By Theorem 4 we have a decomposition $f=A+\varphi, f=\left(A^{*}\right)^{-1}+\gamma$ for some $A \in \mathcal{L}\left(\mathcal{H} ; \mathcal{M}_{1}\right)$ and $\varphi: \mathcal{H} \rightarrow \mathcal{M}_{2}, \gamma: \mathcal{H} \rightarrow \mathcal{M}_{3}$. Thus we get $A+\varphi=\left(A^{*}\right)^{-1}+\gamma$. Since $\mathcal{M}_{2} \perp \mathcal{M}_{3}$, we get $\varphi=0=\gamma$. Hence $f=A$. Then f is a linear mapping and by (10), f is a linear isometry.

Similar investigations have been carried out in the manuscript [2]. Namely, Eq. (1) and its stability, as well as the approximate orthogonality preserving property are considered in [2].

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Chmieliński, J.: Orthogonality equation with two unknown functions. Aequationes Math., to appear; doi:10.1007/s00010-015-0359-x
[2] Chmieliński, J., Łukasik, R., Wójcik, P.: On the stability of the orthogonality equation and orthogonality preserving property with two unknown functions (submitted)
[3] Report of Meeting, Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica, Vol. 12, pp. 91-131 (2013)
[4] Report of Meeting, Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica, Vol. 13, pp. 139-169 (2014)

Radosław Łukasik
Institute of Mathematics
University of Silesia
ul. Bankowa 14, 40-007 Katowice, Poland
e-mail: rlukasik@math.us.edu.pl
Paweł Wójcik
Institute of Mathematics
Pedagogical University of Cracow
Podchorążych 2, 30-084 Kraków, Poland
e-mail: pwojcik@up.krakow.pl
Received: January 25, 2015
Revised: September 30, 2015

