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Decomposition of two functions in the orthogonality equation

Rados�law �Lukasik and Pawe�l Wójcik

Abstract. The aim of this paper is to solve the orthogonality equation with two unknown
functions. This problem was posed by J. Chmieliński during two international conferences.
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1. Introduction

Let H, K be Hilbert spaces over the same field K ∈ {R,C}. Let 〈·|·〉 denote the
inner product and ‖·‖ the norm associated with it. We shall not distinguish
between the symbols used for H and K. The Banach space of all bounded linear
operators from H to K is denoted by L(H;K). It is known that h : H → K is
a solution of the orthogonality equation:

∀x,y∈H 〈h(x)|h(y)〉 = 〈x|y〉
if and only if h is a linear isometry (or equivalently h ∈ L(H;K) and h∗h = IH).

The following considerations have been inspired by the talks of
J. Chmieliński during the 15th ICFEI and CUTS (see [3, p. 95] and [4, p.
145]). Namely, we will solve the generalized orthogonality equation:

∀x,y∈H 〈f(x)|g(y)〉 = 〈x|y〉 , (1)

with two unknown functions f, g : H → K. The paper [1] also deals with Eq.
(1) and similar topics. We need the following lemma for further investigations.

Lemma 1. Let f, g : H → K satisfy Eq. (1) and Linf(H) = K. Then g is linear.

Proof. Fix y ∈ Linf(H). Then y =
∑n

k=1 αkf(xk) for some α1, . . . , αn ∈ K,
x1, . . . , xn ∈ H. Thus we have
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〈y|g(u + βw)〉 =

〈
n∑

k=1

αkf(xk)|g(u + βw)

〉

=
n∑

k=1

αk 〈f(xk)|g(u + βw)〉

=
n∑

k=1

αk 〈xk|u + βw〉 =
n∑

k=1

αk

(〈xk|u〉 + β 〈xk|w〉)

=
n∑

k=1

αk

(〈f(xk)|g(u)〉 + β 〈f(xk)|g(w)〉)

=
n∑

k=1

〈αkf(xk)|g(u)+βg(w)〉

=

〈
n∑

k=1

αkf(xk)|g(u)+βg(w)

〉

= 〈y|g(u) + βg(w)〉 , u, w ∈ H, β ∈ K.

The set Linf(H) is dense in K, whence g(u+βw) = g(u)+βg(w) for u, v ∈ H,
β ∈ K. This means that g is linear. �

Some well-known facts will be useful for further considerations. Let
T ∈ L(K;H). Then there exists a unique T ∗ ∈ L(H;K) such that

∀x∈K ∀y∈H 〈Tx|y〉H = 〈x|T ∗y〉K.
Moreover,

if ∀x∈H ϑ‖x‖ � ‖Tx‖, then T (H) is closed. (2)
It is also known that

T is invertible if and only if T ∗ is invertible. (3)

Lemma 2. Let T1, T2 : H → K be linear maps and satisfy

∀x,y∈H 〈T1(x)|T2(y)〉 = 〈x|y〉 . (4)

Assume that T1(H) is dense. Then T2 is continuous, i.e., T2 ∈ L(H;K).

Proof. Fix a sequence (xn)n=1,2,... such that xn ∈ H and xn → xo for some
xo ∈ H. Suppose that T2xn → z for some z ∈ H. It suffices to show that
T2xo = z and apply The Closed Graph Theorem. Fix y ∈ H and notice that

〈xn − xo|y〉 → 0. On the other hand 〈xn − xo|y〉 (4)
= 〈T2xn − T2xo|T1y〉 →

〈z − T2xo|T1y〉. Thus we get

∀y∈H 〈z − T2xo|T1y〉 = 0.

Since T1(H) is dense in K, it follows that z − T2xo = 0. We have shown that
the graph of T2 is closed. �

Lemma 3. Let T, S ∈ L(H;K) satisfy the equation

∀x,y∈H 〈T (x)|S(y)〉 = 〈x|y〉 . (5)
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Then T is invertible if and only if S is invertible.

Proof. Assume that T is invertible. Then 〈x|y〉 = 〈Tx|Sy〉 = 〈x|T ∗Sy〉 for
all x, y ∈ H. Thus we have IH = T ∗S. It follows from Lemma (3) that T ∗

is invertible. Therefore (T ∗)−1 = S, hence S is invertible. The proof of the
reverse is the same. �

2. Main result

In this section, we solve functional Eq. (1). Now we can state and prove the
main result of the paper.

Theorem 4. Let f, g : H → K satisfy Eq. (1) if and only if there exist suitable
closed subspaces M1,M2,M3 ⊂ K such that K = M1 + M2 + M3, Mk⊥Mj

(for k 
= j) and f, g can be written as the following decomposition

f = A + ϕ, g = (A∗)−1 + γ,

for some invertible A∈L(H;M1) and for some mappings ϕ : H→M2, γ : H→
M3.

Proof. The implication “⇐” is immediate. We start with proving “⇒”. It is
clear that K = Linf(H)⊕Linf(H)

⊥
, whence there are two mappings T1 : H→

Linf(H) and ϕ1 : H →Linf(H)
⊥

such that g(x)=T1(x)+ϕ1(x) for all x∈H.
It is easy to check that f, T1 satisfy

∀x,y∈H 〈f(x)|T1(y)〉 = 〈x|y〉 . (6)

Indeed,

〈x|y〉 = 〈f(x)|g(y)〉 = 〈f(x)|T1(y)+ϕ1(y)〉 = 〈f(x)|T1(y)〉+〈f(x)|ϕ1(y)〉
= 〈f(x)|T1(y)〉+0 = 〈f(x)|T1(y)〉 .

We have shown that f, T1 satisfy (6). Moreover, the set Linf(H) is dense in
Linf(H). It follows from 1 that T1 is linear.

There exists the closed subspace M ⊂ Linf(H) such that T1(H)⊥M and
Linf(H) = T1(H) ⊕ M. Therefore there are two mappings T2 : H→T1(H) and
ϕ2 : H → M such that f(x) = T2(x)+ϕ2(x) for all x ∈ H. In a similar way we
prove that T2, T1 satisfy

∀x,y∈H 〈T2(x)|T1(y)〉 = 〈x|y〉 . (7)

Now, we can consider the linear operators T2 : H→T1(H) and T1 : H→T1(H)
instead of T1 : H→Linf(H). By Lemma 1 and (7), T2 is linear. By Lemma 2
and (7), T2 is continuous, i.e., T2 ∈ L(H;T1(H)).

There is the closed subspace N ⊂T1(H) such that T1(H) = T2(H)⊕N and
T2(H)⊥N . Hence there are two mappings T3 : H→T2(H) and ϕ3 : H→N such
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that T1(x)=T3(x)+ϕ3(x) for all x∈H. In a similar way we prove that T3 is
linear and T2, T3 satisfy

∀x,y∈H 〈T2(x)|T3(y)〉 = 〈x|y〉 . (8)

Now, we consider the linear operator T2 ∈ L(H;T2(H)) (instead of
T2 ∈ L(H;T1(H))). Let us consider also the linear operator T3 : H → T2(H).
Applying again Lemma 2 and (8) we can say that T3 is continuous, i.e.,
T3 ∈ L(H;T2(H)). Now, we get

‖x‖2=〈x|x〉 (8)= 〈T2x|T3x〉 � ‖T2x‖· ‖T3x‖ � ‖T2x‖·‖T3‖·‖x‖
for all x ∈ H. It follows from the above inequality that

∀y∈H
1

‖T3‖ ·‖x‖ � ‖T2x‖. (9)

Thus T2(H) is closed (see 2). Thus we obtain that T2(H) = T2(H) and T2,
T3∈L(H;T2(H)). It follows from (9) that T2 in injective, hence T2 is invertible.
Therefore T3∈L(H;T2(H)) is also invertible by Theorem 3 and (8).

Finally, we define M1 := T2(H), M2 := M and M3 := N ⊕ Linf(H)
⊥

.
Next, we define ϕ : H → M2, γ : H → M3 by ϕ := ϕ2, γ := ϕ3+ϕ1. Moreover,
we define A ∈ L(H;M1) by A := T2. Clearly A is invertable and (A∗)−1 = T3.
Thus we get f = A+ϕ and g = (A∗)−1+γ and K = M1+M2+M3, where
Mk⊥Mj for k 
=j. �

Corollary 5. Suppose that dim H < ∞. Let f, g : H → H satisfy Eq. (1). Then
f, g ∈ L(H;H) and f = (g∗)−1.

Proof. By the above theorem we have a decomposition f =A+ϕ, g=(A∗)−1+γ
for some invertible A∈L(H;M1) and some mappings ϕ : H→M2, γ : H→M3

(where H = M1 +M2 +M3 and Mk⊥Mj). Since A∈L(H;M1) is invertible
and dim H < ∞, it follows that M1 = H and M2 = {0} = M3. So ϕ = 0 =
γ. �

Corollary 6. Let f : H → K satisfy the equation

∀x,y∈H 〈f(x)|f(y)〉 = 〈x|y〉 . (10)

Then f is a linear isometry.

Proof. By Theorem 4 we have a decomposition f =A+ϕ, f =(A∗)−1+γ for some
A∈L(H;M1) and ϕ : H →M2, γ : H →M3. Thus we get A+ϕ=(A∗)−1+γ.
Since M2⊥M3, we get ϕ = 0 = γ. Hence f = A. Then f is a linear mapping
and by (10), f is a linear isometry. �

Similar investigations have been carried out in the manuscript [2]. Namely,
Eq. (1) and its stability, as well as the approximate orthogonality preserving
property are considered in [2].
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