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An alternative approach to the dielectric relaxation and resonance absorption is proposed. Two
assumptions were taken into consideration. One, that there exists a dielectric in which particular
molecules have different freedom of motion. The other, that the value of the motion damping
coefficient can be described by the distribution function.

The obtained formula for the description of the experimental data of dielectric relaxation and
resonance absorption measurements is presented.

Key words: Dielectrics; Debye Relaxation; Poley Absorption.

Introduction

The behaviour of dielectrics in an electromagnetic
field is of great interest to many researchers. A lot of
papers have been and are still being published on this
subject [1, 2].

In the historical Debye model the molecules have
a limited freedom of motion, so only the relaxation
with one relaxation time is possible [3]. Expand-
ing this model gave a relatively good agreement with
the experimental data by using the semi-experimental
Cole-Cole [4] and Cole-Davidson [5] relations. For
dielectrics which cannot be described by the Debye
model (one relaxation time), several relaxation times
or even their distribution are postulated [6]. Different
functions were suggested for describing the distribu-
tion of the relaxation times [6, 7]. In the Cole-David-
son formula, either the existence of several relaxation
times or a non-symmetrical distribution function of
the relaxation times is assumed. The most general
and perhaps best suggestion describing the dielectric
behaviour in the electrical field is the one proposed
by Dissado and Hill [8].

The above mentioned works concern absorption
connected with relaxation, i. e. dipole reaction to
the external electrical field of frequencies up to mi-
crowave ones. This absorption gives a curve which
is never narrower than relation (3). Apart from this
absorption, which is relatively well described in liter-
ature, there exists another one at higher frequencies.

Distortions in the range of high frequencies have
been observed in alcohols [9] and also in benzene
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derivatives [10]. It was also found that they have a
resonance character [11]. Models explaining this phe-
nomenon have been described [12 - 15].

In [2] a good description of the behaviour of CH3Cl
(at 193 K) in an alternating “enlarged” electrical field
is given. This dielectric spectrum has two maxima,
one in the microwave region (max = 2.51010 Hz)
and the other one in the infrared range (0 =
2.5 1012 Hz).

The described method of treating molecules in a
dielectric is different from any approaches existing so
far. Two assumptions were taken into consideration.
One, that there exist dielectrics in which particular
molecules have a different freedom of motion. The
other one, that the motion damping coefficient can be
described by the distribution function. Different func-
tions defined as distribution functions of the damping
coefficient are discussed here.

It seems that the proposed explanation of the be-
haviour of molecules in a dielectric is quite reason-
able. Thus it is worth looking at the results obtained
with these assumptions.

Theory

According to Debye’s theory [3] the polarisation
of a dielectric resulting from permanent dipole mo-
ments of molecules decays exponentially. This can be
expressed by the relaxation equation

d
d

+
1

= 0
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If an alternating electric field

= 0 exp( )

is applied to a dielectric, the polarisation equation
takes the form

d
d

+
1

=

and the polarisation is obtained in the form

= 0 exp ( + ) =
1 +

(1)

The experiment provides the dielectric susceptibility
[16, 17, 19]

( ) =
d
d

(2)

In our case

D( ) = 0

1 +

or

D( ) = 0

1 + 2 2 D( ) = 0

1 + 2 2
(3)

where = 0 in relation (1), since for = 0,

D(0) = 0, D(0) = 0, and for D( ) and

D( ) = 0. (The dielectric permittivity ( ) is often
introduced: ( ) = ( ) ( ), ( ) = ( ) 1,

( ) = ( ) 1).
These are Debye’s relations that describe well the

behaviour of dispersion and of absorption caused by
permanent dipole moments of many dielectrics.

Let us consider a dielectric in which the molecules
are freer than in the dielectric analysed by Debye.
This dielectric, as the previous one, is placed in a
harmonic electric field. Now the polarisation will be
described by [18, 19]

d2

d 2
+ 2

d
d

+ 2
1 =

A solution of the form

= 0 exp ( + ) = 2
1 + 2 + 2

Fig. 1. Functions (4) for different dumping coefficients
( 0 = 1, 1 = 1).

can be expected. The dielectric susceptibility (2) now
takes the form

( ) = 0
2
1

2
1

2 + 2

and the real and imaginary parts of the dielectric sus-
ceptibility can be written as

( ) = 0
2
1( 2

1
2)

( 2
1

2)2 + 4 2 2

( ) =
2 0

2
1

( 2
1

2)2 + 4 2 2

(4)

where is a coefficient responsible for the damping
of the motion of the molecules. Now = 0

2
1, since

for = 0, (0) = 0, (0) = 0, and for ,
( ) and ( ) = 0.
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The function ) (4) has a maximum for

max =
2
1 2 2 + 2 4 2 2

1
4
1

3
(5)

Figure 1 shows changes of the functions ( ) and
( ) versus . For 10 ( 1 = 1) the diagrams

of ( ) and ( ) versus do not differ (visually)
from the diagrams of the Debye’s relations (3) ( D( ),

D( )).
The relations (4) are a description of the molecular

motion when all the molecules are equally damped.
Let us assume that we deal with a medium in which the
damping of the motion is different for each molecule.
The freedom of motion depends on the distribution of
the molecules at a given moment, and first of all on
the closest neighbours of a particular molecule. Thus,
at a given moment takes different values for each
molecule. For further consideration, the distribution
of the damping coefficient must be determined.

Distribution of the Damping Coefficient

In order to obtain the absorption maximum that
is observed in dielectrics, the distribution function of
the damping coefficient must be a “bell” function and,
since it also has to describe the dielectric behaviour
shown by the Cole-Cole relation [4], it must be sym-
metrical. Let ( ) fulfil our requirements and have the
maximum at = 0. Thus the dielectric susceptibility
can be written as

( ) = 0
2
1( 2

1
2)

( 2
1

2)2 + 4 2 2

( ) =
2 0

2
1

( 2
1

2)2 + 4 2 2

(6)

where is the normalised value of our distribution
function ( ) for .

We know that for 10 (Fig. 1) the maximum
values of ( ) (4) differ and can be very big, while
for 10 all the ( ) components reach the max-
imum value of 0.5 ( 0 = 1, 1 = 1).

Thus, one should expect that two maxima will oc-
cur for ( ) (6), one derived from the small values
of 10, situated close to 1, and the other one for

10. This maximum will occur at max (5) when
= 0. This is the value at which the distribution

Table 1. a) ( ) values calculated from Debye’s relation
(3) and from the discussed formulae (4) and (6).

max
0

1+ 2 2
0

2
1 ( 2

1
2)

( 2
1

2)2+4 2 2
0

2
1( 2

1
2)

( 2
1

2)2+4 2 2

with the Gauss
function (7)

= 9 = 50 0 = 9 0 = 50
0 = 10 0 = 20

10 1 75 0.9997 0.9997 0.9997 0.9997 0.9997
10 1 5 0.9990 0.9990 0.9990 0.9989 0.9990
10 1 25 0.9968 0.9968 0.9968 0.9967 0.9968
10 1 0.9901 0.9901 0.9901 0.9895 0.9900
10 0 75 0.9693 0.9692 0.9693 0.9677 0.9690
10 0 50 0.9091 0.9088 0.9091 0.9052 0.9082
10 0 25 0.7597 0.7590 0.7598 0.7541 0.7585
10 0.5000 0.4984 0.5000 0.4985 0.5000
100 25 0.2403 0.2379 0.2402 0.2428 0.2415
100 5 0.0909 0.0881 0.0908 0.0916 0.0917
100 75 0.0307 0.0276 0.0306 0.0290 0.0309
101 0.0099 0.0068 0.0098 0.0072 0.0099
101 25 0.0032 0.0001 0.0031 0.0001 0.0031
101 5 0.0010 –0.0021 0.0009 –0.0022 0.0009
101 75 0.0003 –0.0027 0.0002 –0.0028 0.0002
102 0.0001 –0.0027 0.0000 –0.0029 0.0000
102 25 0.0000 –0.0024 –0.0001 –0.0024 –0.0001

Table 1. b) ( ) values calculated from Debye’s relation
(3) and from the discussed formulae (4) and (6).

max
0

1+ 2 2

2 0
2
1

( 2
1

2)2+4 2 2

2 0
2
1

( 2
1

2)2+4 2 2

with the Gauss
function (7)

= 9 = 50 0 = 9 0 = 50
0 = 10 0 = 20

10 3 0.0010 0.0010 0.0010 0.0010 0.0010
10 2 75 0.0018 0.0018 0.0018 0.0018 0.0018
10 2 5 0.0032 0.0032 0.0032 0.0032 0.0032
10 2 25 0.0056 0.0056 0.0056 0.0057 0.0056
10 2 0.0100 0.0100 0.0100 0.0102 0.0100
10 1 75 0.0178 0.0178 0.0178 0.0181 0.0178
10 1 5 0.0316 0.0317 0.0316 0.0321 0.0316
10 1 25 0.0561 0.0562 0.0561 0.0570 0.0561
10 1 0.0990 0.0993 0.0990 0.1005 0.0990
10 0 75 0.1724 0.1729 0.1724 0.1746 0.1724
10 0 5 0.2875 0.2884 0.2875 0.2896 0.2875
10 0 25 0.4272 0.4286 0.4273 0.4259 0.4272
10 0.5000 0.5015 0.5001 0.4951 0.5000

function ( ) has the maximum, hence ( ) will
also take the highest value.

The frequency of the relaxation maximum max de-
pends on 0 and 1 and is always smaller than 1. We
relate max to the frequency of the absorption max-
imum described by Debye, and the resonance maxi-
mum for frequency 1 to the one described by
Poley.
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For simplicity it was assumed that all the molecules
are represented by only one frequency 1. For testing
this it was assumed that 1 = 1 and 0 = 1 (Table 1,
Table 2).

Application

The Gauss function was used as the distribution
function ( ) of the damping coefficient

0( ) = exp ( 0)2 2
0 (7)

The parameters 0, 0, s, l (the smallest and the
largest values of the damping coefficient) decide
about the shape of ( ) and ( ) (6). The results
obtained by using Debye’s (3), the Cole-Cole [4] and
Dissado-Hill [8] relations as the “standard” together
with the results obtained from the above discussed
formulas are presented in Tables 1 and 2.

Table 1 shows that the higher 0 and 0, the closer
are the results to the values of D( ) and D( ) ob-
tained with the Debye relation (3). However, one does
not obtain full agreement of the results. With increase
of frequency the way the values of D( ) and ( )
tend to zero is different. D( ) is always bigger than
zero.

Table 2 presents results of the Cole-Cole and
Dissado-Hill formulas and the ones discussed above.
The calculations were carried out for = = 0.6 of
the Dissado-Hill formula parameters. For these pa-
rameters max = 0.32550. The parameters of the other
formulas, i. e. Cole-Cole (h) and the tested ones were
chosen in such a way that in all cases the same value of
maximum was obtained as in the case of the Dissado-
Hill relation. As can be seen, the results in all columns
are different.

The Gauss function as a distribution function does
not fulfil all the expectations. The resonance peak oc-
curs for lowered Cole-Cole arcs, ( 0 < 4, max 0 4).
However, for benzene derivatives it was experimen-
tally found that there exists a relaxation which can be
well described by the Debye’s formula [10] ( = 0 5)
and a peak in the high frequency range.

Thus the question arises about the conditions the
distribution function should fulfil additionally to the
ones mentioned earlier. First of all it should more
“gently” tend to zero than the Gauss function, so that
the resonance peak would occur simultaneously with
the relaxation described by Debye’s formula (3). The
shape of the function is also important. It must retrace

Table 2. a) ( ) calculated from the Cole-Cole, Dissado-
Hill and discussed formulae (6) for different distribution
functions of the damping coefficient ( max = 0.32550).

max
Cole-Cole Dissado-Hill 0

2
1( 2

1
2)

( 2
1

2)2+4 2 2

relation relation with (7) with (9)
= 0.26525 = = 0.6 0 = 50 0 = 50, = 0 05,

0 = 1.2311 0 = 1.4419

10 2 5 0.9940 0.9871 0.9997 0.9991
10 2 25 0.9907 0.9818 0.9991 0.9974
10 2 0.9855 0.9742 0.9975 0.9933
10 1 75 0.9774 0.9635 0.9934 0.9856
10 1 5 0.9643 0.9479 0.9838 0.9729
10 1 25 0.9430 0.9254 0.9636 0.9522
10 1 0.9083 0.8921 0.9254 0.9168
10 0 75 0.8524 0.8418 0.8612 0.8575
10 0 5 0.7663 0.7647 0.7660 0.7666
10 0 25 0.6457 0.6496 0.6419 0.6437
10 0.5000 0.5000 0.5000 0.5000
100 25 0.3543 0.3504 0.3582 0.3564
100 5 0.2337 0.2353 0.2340 0.2334
100 75 0.1476 0.1581 0.1388 0.1425
101 0.0917 0.1078 0.0744 0.0833
101 25 0.0570 0.0746 0.0360 0.0479
101 5 0.0357 0.0520 0.0153 0.0270
101 75 0.0226 0.0365 0.0051 0.0130
102 0.0145 0.0257 0.0000 0.0000
102 25 0.0093 0.0182 –0.0016 –0.0041

Table 2. b) ( ) calculated from the Cole-Cole, Dissado-
Hill and discussed formulae (6) for different distribution
functions of the damping coefficient ( max = 0.32550).

max
Cole-Cole Dissado-Hill

2 0
2
1

( 2
1

2)2+4 2 2

relation relation with (7) with (9)
= 0.26525 = = 0.6 0 = 50 0 = 50, = 0 05,

0 = 1.2311 0 = 1.4419

10 2 5 0.0132 0.0176 0.0075 0.0100
10 2 25 0.0199 0.0249 0.0133 0.0172
10 2 0.0302 0.0351 0.0231 0.0284
10 1 75 0.0453 0.0495 0.0394 0.0445
10 1 5 0.0675 0.0695 0.0651 0.0674
10 1 25 0.0992 0.0973 0.1027 0.1006
10 1 0.1424 0.1352 0.1526 0.1466
10 0 75 0.1968 0.1849 0.2108 0.2034
10 0 5 0.2562 0.2442 0.2676 0.2623
10 0 25 0.3057 0.3005 0.3098 0.3081
10 0.3255 0.3255 0.3255 0.3255

the lowered arcs at the curve of ( ) versus ( )
(Cole-Cole diagram). The function that is the sum of
two Gauss functions was then tested as the distribution
function of the damping coefficient:

1( ) = exp[ 0)2 2
0]

+ exp[ 0)2 2
1]

(8)
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Fig. 6. Chloromethane. Circles: experi-
mental points [2], solid line: formula (6)
with function (9) ( 0 = 10, 0

1
= 51,

s

1
= 0 33, l

1
= 105 2, = 0 0165).

It turns out that the contribution of the second com-
ponent, exp[ 0)2 2

1], is small (0.2
4%) and is almost constant in the range of summing

[ s l]. Hence a simpler form of the distribu-
tion function of the damping coefficient can be used,
namely

2( ) = exp[ 0)2 2
0] + (9)

where is constant for a given dielectric.
Literature data for five dielectrics [2, 20, 21] were

used for testing. All these dielectrics show two ab-
sorption maxima: the relaxation and the resonance
one (Figs. 2 - 6). Using (6), a probable shape of ( )
was reproduced by fitting the curve to the experimen-
tal data. Two functions were used as the distribution
functions of the damping coefficient, that is 1( )
(8) and 2( ) (9). For all dielectrics the fittings of the
two functions did not differ.

The fitting parameters are shown below the figures.
Scales from the original works were used. It seems
that the maxima assigned to the relaxations are well
described by the curves. However, the fittings of the
curves to the experimental points of the resonance
maxima are a matter of concern. A tendency to shift
from the experimental points can be observed in the
high frequency range. However, the general fitting of
the curves to the experimental data is good.

Discussion

The approach presented here seems to be quite nat-
ural and the results fit both to the experimental data

and to the formulas used earlier. We sought for a
formula describing both Debye’s and Poley’s absorp-
tions.

As it was already said (Table 1), the formulas (6)
with the distribution function of the damping coeffi-
cient (7) give results that agree well with the results
of Debye’s relation (3). The functions 1( ) (8) and

2( ) (9) can also be used as the distribution function
of the damping coefficient.

As can be seen from Table 2, Gauss’s function
as a damping coefficient distribution function gives
results that differ most from the results obtained with
the Cole-Cole relation. The results obtained from the
function 2( ) (9) seem to fit best to this relation.

The agreement with the Cole-Cole or Dissado-Hill
relation will depend on the parameters of the second
component of the function 1( ) (8) and 1( ) (9)
(Table 2, last column).

The relation ( ) (6) is also useful for the descrip-
tion of the experimental data concerning relaxation
and resonance maxima (Figs. 2 - 6).

In order to describe the experimental data concern-
ing relaxation, we need the parameter 0 describing
the width of the distribution function of the damping
coefficient (equivalent of in the Cole-Cole formula)
and the parameter 0. Thus, the relaxation time is
not needed for the dielectric description. We know,
however, that the experimental relaxation time is de-
termined from max = 1. In our case, max is a
function of and 1 (5). It is easy to obtain for

1
10 (the range of values

1
corresponding to

the dielectric relaxation, see Fig. 1), the simplified
relation max

1
2

1 . Thus the damping coefficient
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can be related to the relaxation time by 1
2

2
1.

Hence, the coefficient is linearly related to the relax-
ation time . Therefore all known relations connected
with the relaxation time will be true for the damping
coefficient, among others the relation concerning the
viscosity coefficient [22 - 24].

One can also interpret the damping coefficient
with the use of Fröhlich’s model [6]. Namely, from
Fröhlich’s interpretation of Eyring’s formula we ob-
tain = 0

∆ , where ∆ is the height of the
potential barrier between the equilibrium positions of
dipoles. And since there is a relation between and

, one can say that the distribution function of the
damping coefficient results from the distribution of
the height of the potential barrier between the equi-
librium positions of dipoles in a dielectric.

Concluding one can say:
The assumption that a dielectric is a set of

molecules with different degrees of motion free-
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[16] C. J. F. Böttcher and P. Bordewijk, Theory of Electric

Polarisation, Elsevier, Amsterdam, 1979, Vol. 2.
[17] N. E. Hill, W. E. Vaughan, A. H. Price, and M. Davies,

Dielectric Properties and Molecular Behaviour, Van
Nostrand Reinhold Company, London 1969.

[18] A. v. Hippel, Dielectrics and Waves, John Wiley &
Sons Inc., New York 1959.

[19] A. Chelkowski, Dielectrics Physics, PWN, Warszawa
1993.

[20] Dynamical Processes in Condensed Matter, M. W.
Evans, New York 1985.

[21] M. W. Evans, G. J. Evans, W. T. Coffey, and
P. Grigolini, Molecular Dynamics and Theory of
Broadband Spectroscopy, Wiley - Interscience, New
York 1982.

[22] O. F. Kalman and C. P. Smyth, J. Amer. Chem. Soc.
83, 571 (1961).

[23] G. K. Youngren and A. Acvivos, J. Chem. Phys. 63,
3846 (1975).

[24] K. Shyamlamba and D. Premswaroop, Indian J. Pure
and Applied Phys. 4, 84 (1966).

dom is a good basis for further scientific considera-
tion.

The application of a proper distribution function
of the damping coefficient leads to the description of
the dielectric relaxation and the resonance absorption
peak.

Dielectrics described by the Debye’s formula (3)
(one relaxation time) can also be described by the
Gauss function as a distribution function of the damp-
ing coefficient (Table 1).

The problem of description of the relaxation maxi-
mum in dielectrics, which cannot be described by one
relaxation time (Debye relaxation), still remains to be
solved (Table 2).
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