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Abstract

The Rough Set Theory (RST) was proposed by Pawlak [4] as a new mathematical

approach to deal with uncertain knowledge in expert systems. In 1991 Ziarko [11]

proposed the Variable Precision Rough Set Model (VPRSM) as a certain extension

of the rough set theory. VPRSM approach makes it possible to use a certain level

of misclassi�cation.

The aim of this paper is to introduce belief and plausibility functions de�ned by

the �{approximation regions. On the basis of the �{approximation regions, the

�{basic probability assignment is de�ned and the Dempster's combination rule for

product of two decision tables is constructed. This entire approach is illustrated by

examples.

1 Introduction

The Evidence Theory (ET) or Dempster-Shafer Theory was proposed by

Dempster in 1967 [2] as a statistical methodology for approximation of prob-

ability and developed by Shafer in 1976 [7] as an autonomic mathematical

theory. The evidence theory approach is based on the idea of placing a num-

ber from the interval [0,1], to indicate a degree of belief for a given proposition

on the basis of a given evidence [8].

In this paper we de�ne basic numerical functions of evidence theory using

the main concepts related to the �{approximation. We also de�ne Dempster's

combination rule for the product of decision tables. It gives us ability to:

� extract some information from sub-tables,

� join this information and create a new decision table.

At the end of the paper we show that our assumptions can be used to real

data, which are stored in decision table.

1 We wish to express our thanks to prof. A. Skowron for his critical remarks.
2 Email: paszek@us.edu.pl

c2003 Published by Elsevier Science B. V.
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2 �{approximation

In RST [5] vague concepts are replaced by a pair of precise concepts of the lower

and upper approximations. The lower approximation of a given set of objects

(given concept) is a set of objects with certainty belonging to the concept.

The upper approximation of a given set of objects (a given concept) is the set

of objects probably belonging to the concept. According to �{approximation

an object could be classi�ed to a giv enset X as:

� certainly belonging to X, or

� with high probability belonging to X, or

� weakly belonging to X, or

� with high probability belonging to the complement of X, or

� certainly belonging to the complement of X.

According to Ziarko [11] the �{approximations of sets can be de�ned as

follows.

Let A = (U;A) be an information system, where U is a nonempty, �nite set of

objects called the universe and A is a nonempty, �nite set of attributes, i.e.,

a : U ! Va for a 2 A, where Va is called the value set of a, the indiscernibility

relation IND(B) for B � A is de�ned b y

IND(B) = f(x; y) 2 U � U : 8
a2B

a(x) = a(y)g:

By [x]B we denote the equivalence class of IND(B), i.e., the set

[x]B = fy 2 U : x IND(B) yg:

Let ; 6= X � U and � 2 [0; 0:5). F oursets, called �{approximation regions,

can be de�ned from X in the information system A:

(i) A
�
X = fx 2 U :

j[x]A\Xj

j[x]Aj
� 1� �g { lower �{approximation of X in A;

(ii) A�X = fx 2 U :
j[x]A\Xj

j[x]Aj
> �g {upper �{approximation of X in A;

(iii) BNA;�X = fx 2 U : � �
j[x]A\Xj

j[x]Aj
� 1 � �g { boundary region of

�{approximation of X in A;

(iv) NEGA;�X = fx 2 U : 0 �
j[x]A\Xj

j[x]Aj
� �g { negative region of �{

approximation of X in A.

For � = 0 we obtain approximation regions considered in rough set theory [5]

and related to approximation of X.

3 Properties of �{approximation

An information system A = (U;A[fdg), where d =2 A is the decision attribute

is called the de cisiontable. We assume the set of values of decision d to be

equal to f1; : : : ; r(d)g.
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The classi�cation made by d is the set

CLASSA(d) = fX1; : : : ; Xr(d)g where Xi = fx 2 U : d(x) = ig

and r(d) is called rank of d.

The set �A = f1; : : : ; r(d)g is called frame of discernment de�ned b yd.

A �{boundary regionof � � �A is a set de�ned b y:

BdA;�(�) =
T
i2�

BNA;�Xi \
T
i=2�

NEGA;�Xi:

Proposition 3.1 All non-empty sets from the family

fA
�
X1; : : : ; A�

Xr(d)g [ fBdA;�(�) : � � �Ag

cr eate a partition of the universe U.

4 Relationship between �{approximation and evidence

theory

We extend �A to �A[f0g where 0 is a special element. It means that objects

from BdA;�(;) hav e a special decision d = 0.

Hence, �A = f1; : : : ; r(d)g [ f0g:

Now, we would like to �nd a function transforming subsets of �A = f1; : : : ; r(d)g[
f0g into elements of the family

fA
�
X1; : : : ; A�

Xr(d)g [ fBdA;�(�) : � � �Ag:

Such a function is de�ned b y

�A;�(�) =

8>>>>>><
>>>>>>:

A
�
Xi [ BdA;�(fig) for � = fig where i 2 f1; : : : ; r(d)g

BdA;�(;) for � = f0g

; for � = ;

BdA;�(�) for j�j > 1 where � � f1; :::; r(d)g

where � � �A.

Let � = f�0; �1; �2; :::; �kg be a frame of discernment compatible with a

given decision table and let � : �! �A be the standard bijection between �

and �A, i.e., �(�i) = i for i = 0, 1,. . . ,k.

Let us de�ne a function mA;� : 2� ! R+ b y

mA;�(�) =

8<
:

0 for � = ;

j�A;�
(�(�))j

jU j
for � 6= ;

for any � � �.

Proposition 4.1 The function mA;� : 2� ! R+ de�ned above is a basic

probability assignment (mass function).
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Proof. We hav e to show that:

mA;�
(;) = 0 and

P
���

mA;�
(�) = 1.

The �rst condition in a simple consequence of mA;�
de�nition. T oprov e the

second condition let us observe thatP
���

mA;�
(�) =

P
���

j�A;�
(�(�))j

jU j
= 1

jU j

P
���

j�A;�
(�(�))j =

= 1
jU j

 P
i2�(�)

j�A;�
(fig)j+

P
���A;j�j>1

j�A;�
(�)j

!
=

= 1
jU j

 
jBdA;�

(f0g)j+
P

i2�(�)

jA
�
(X

i
) [ BdA;�

(fig)j+
P

���A;j�j>1

jBdA;�
(�)j

!
=

= 1
jU j

 
jBdA;�

(f0g)j+
P

i2�(�)

��A
�
(X

i
) [BdA;�

(fig)
��+ P

���A;j�j>1

jBdA;�
(�)j

!
=

= 1
jU j

 P
i2�(�)

jA
�
(X

i
)j+

P
���;j��1j

jBdA;�
(�)j

!
= 1

jU j
jU j = 1:

2

The �{belief function for a given A is de�ned b y

BelA;�
(�) =

X
���

mA;�
(�) where � � �:

Let � be a frame of discernment compatible with the decision table A =

(U;A [ fdg) and let � be a standard bijection between � and �A. The

follo wing equalities hold:

BelA;�
(�) =

X
���

mA;�
(�) =

X
i2�(�)

j A
�
X

i
j

jU j
+

X
���;j�j�1

jBdA;�
(�(�))j

jU j

for any � � �

The �{plausibility function for a given A is de�ned b y

P lA;�
(�) =

X
�\� 6=;

mA;�
(�) where � � �:

The follo wing equalities hold:

P lA;�
(�) =

X
�\� 6=;

mA;�
(�) = 1�

X
�\�=;;�����

mA;�
(�) = 1� BelA;�

(�� �)

for any � � � .

Now we can de�ne a new �{decision attribute @
�

A
: U ! 2�A, approximat-

ing the decision d in a following way:

@
�

A
(x) =

8>>>><
>>>>:

fig for x 2 A
�
X

i
[ BdA;�

(fig)

f0g for x 2
T

i2f1;:::;r(d)g

NEGA;�
X

i

� for x 2 BdA;�
(�); � � f1; : : : ; r(d)g ; j�j > 1
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where �A = f0g [ f1; : : : ; r(d)g and x 2 U .

5 Examples: �{approximation regions

Example 1.

Les us consider an example of decision table with 21 objects, three condition

attributes a; b; c and one decision attribute D { Table 1.

In Table 1 we hav e three decision classes:

X1=f1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12g, X2=f13, 14, 15, 16, 17g,

X3=f18, 19, 20, 21g,

and four equivalence classes:

[1]A = f1, 2, 19, 20, 21g, [4]A = f4, 5, 6, 7, 8, 9, 10, 11, 12, 13g,

[3]A= f3g, [14]A = f14, 15, 16, 17, 18g.

Let us observe that, lower �{approximation for � = 0.1 is a set of the

following form:

A�(X) =

�
y 2 U :

j[y]A \Xj

j[y]Aj
� 0:9

�
:

We hav e�A = f1, 2, 3 g. Let us observe that:

A�(X1) = [3]A [ [4]A; A�(X2) = ;; A�(X3) = ;;

A�(X1) = [1]A [ [3]A [ [4]A; A�(X2) = [14]A; A�(X3) = [1]A [ [14]A;

BNA;�(X1) = [1]A; BNA;�(X2) = [14]A; BNA;�(X3) = [1]A [ [14]A;

NEGA;�(X1) = [14]A; NEGA;�(X2) = [1]A [ [3]A [ [4]A;

NEGA;�(X3) = [3]A [ [4]A; BdA;�(;) = ;; BdA;�(f1g) = ;;

BdA;�(f2g) = ;; BdA;�(f3g) = ;; BdA;�(f1; 2g) = ;;

BdA;�(f1; 3g) = [1]A; BdA;�(f2; 3g) = [14]A; BdA;�(f1; 2; 3g) = ;:

F rom abov e equations it follows that the equality[
i2f1;:::;r(d)g

A�(Xi) [
[

���A

BdA;�(�) = U

holds (see Proposition 3.1).

157



Marszal P aszek and Paszek

Table 1

Example 1 { Decision table

U a b c D U a b c D

1 1 0 0 1 12 0 1 1 1

2 1 0 0 1 13 0 1 1 2

3 1 1 1 1 14 1 1 0 2

4 0 1 1 1 15 1 1 0 2

5 0 1 1 1 16 1 1 0 2

6 0 1 1 1 17 1 1 0 2

7 0 1 1 1 18 1 1 0 3

8 0 1 1 1 19 1 0 0 3

9 0 1 1 1 20 1 0 0 3

10 0 1 1 1 21 1 0 0 3

11 0 1 1 1

Table 2

Example 1 { Table after transformation

U a b c @
�=0:2

1,2,19,20,21 1 0 0 f1,3g

3 1 1 1 f1g

4,5,6,7,8,9,10,11,12,13 0 1 1 f1g

14,15,16,17,18 1 1 0 f2g

Let us take � = 0.2 and repeat our calculations:

A�(X1
) = [3]A [ [4]A; A�(X2

) = [14]A; A�(X3
) = ;;

A�(X1
) = [1]A [ [3]A [ [4]A; A�(X2

) = [14]A; A�(X3
) = [1]A;

BNA;�(X1
) = [1]A; BNA;�(X2

) = ;; BNA;�(X3
) = [1]A;

NEGA;�(X1
) = [14]A; NEGA;�(X2

) = [1]A [ [3]A [ [4]A;

NEGA;�(X3
) = [3]A [ [4]A [ [14]A; BdA;�(;) = ;; BdA;�(f1g) = ;;

BdA;�(f2g) = ;; BdA;�(f3g) = ;; BdA;�(f1; 2g) = ;;

BdA;�(f1; 3g) = [1]A; BdA;�(f2; 3g) = ;; BdA;�(f1; 2; 3g) = ;:

We are looking for a new �-decision attribute.

Next transform Table 1 into Table 2 with this new attribute.

In our example we hav e� = f�
0
; �

1
; �

2
; �

3
g. For all � � � we can present

values of the basic n umerical functionsfrom evidence theory in Table 3.
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Table 3

Example 1 { Basic numerical functions

� f�1g f�2g f�3g f�1; �2g f�2; �3g f�1; �3g f�1; �2; �3g f�0g

�(�) f1g f2g f3g f1,2g f2,3g f1,3g f1,2,3g f0g

mA;�
(�) 11/21 5/21 0 0 0 5/21 0 0

BelA;�
(�) 11/21 5/21 0 16/21 5/21 16/21 1 0

P lA;�
(�) 16/21 5/21 5/21 1 10/21 16/21 1 1

Table 4

Example 2 { Results

tab � certainty

1 0 0.72549

2 0.1 0.901961

3 0.2 0.901961

4 0.3 0.960784

5 0.4 0.960784

Example 2.

We hav e calculated the �{approximation regions for di�erent � values for

chosen decision table.

We consider a decision table with 51 objects, 7 condition attributes and

one decision attribute with decisions 1; 2; 3. The table was without missing

values and was consistent. First we calculated �{approximation regions for

� = f0; 0:1; 0:2; 0:3; 0:4g. As the result we got �ve new decision tables with

new decision attribute for any �. Next, we applied the Rosetta System for

each table [3,6].

Initially we calculated dynamic reducts [1]. F orthese reducts we applied

the Rosetta System for the rules generation and classi�cation. The results are

presented in the T able 4.

The coeÆcients of certainty are obtained from the confusion matrix which

is computed during the classi�cation.

A confusion matrix C is Vd� Vd matrix with integer en tryC(i; j) counts

the n umber of objects that really belong to class i, but where classi�ed as

belonging to class j.

From confusion matrix presented in the Table 5 , we are able to get an

information that for � = 0:3 and � = 0:4 more than 96% of the objects from

the decision table are properly classi�ed. Observe that rules for � = 0:4 are

more general.
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Table 5

Example 2 { Confusion matrix

� = 0:4 1 2 3

1 0 1 0 0.0

2 0 27 0 1.0

3 0 1 22 0.95652

0.93103 1.0 0.96078

6 Dempster's combination rule

Let � be a frame of discernment compatible with two decision tables:

A1 = (U1; A1 [ fd1g) and A2 = (U2; A2 [ fd2g):

A decision table A = (U;A [ fdg) is called a �{independent pr oduct of

decision tables A1 and A2 if the following properties hold [9]:

(i) U = (U1 � U2)n(U1 
 U2) ,

where U1 
 U2 =
n
(s1; s2) 2 U1 � U2 : @

�
A1

(s1) \ @
�
A2

(s2) = ;

o
;

(ii) If (s1; s2) 2 U1 � U2 then @
�
A1

(s1) \ @
�
A2

(s2) = d(s1; s2),

(iii) A = (A1 � f1g) [ (A2 � f2g),

(iv) If (a; i) 2 A than for any (s1; s2) 2 U (a; i)(s1; s2) =

8<
:
a(s1) for i = 1

a(s2) for i = 2:

This �{independent product of decision tables is denoted b yA1 ÆA2.

The standard basic probability assignment for A1 ÆA2 may be expressed in

the following way: mA1ÆA2;� : 22
�

! R+,

mA1ÆA2;�(�) =

8>>><
>>>:

0 for � = f;g

0 for � � 2�; j�j > 1

? for � � 2�; j�j = 1:

The next proposition explains, in a sense, the question mark in the abov e

formula.

Theorem 6.1 L etA1 ÆA2 be�{independent product of de cisiontables. F or

any � � � the following equation, calle dDempster's combination rule, holds:

mA1ÆA2;�(�) =

P
�1\�2=�

mA1;�(�1) �mA2;�(�2)

1�
P

�1\�2=;

mA1;�(�1) �mA2;�(�2)

Example.

Let us consider two decision tables (Table 6) and � = 0.4.
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Table 6

The decision tables { A1 and A2

U1 A B D1 @�=0:4

1 0 1 1 f0g

2 0 1 2 f0g

3 0 1 3 f0g

4 1 1 1 f2g

5 1 1 2 f2g

6 1 1 2 f2g

7 1 0 1 f1,3g

8 1 0 3 f1,3g

9 0 0 2 f2g

U2 C E D2 @�=0:4

10 0 1 1 f1g

11 0 1 1 f1g

12 0 1 2 f1g

13 0 1 3 f1g

14 1 1 1 f0g

15 1 1 2 f0g

16 1 1 3 f0g

17 0 0 2 f2g

Table 7

Basic probability assignment { A1 and A2

A1 = (U1; fa; bg [ @�=0:4) A2 = (U2; fc; eg [ @�=0:4)

� f0g f2g f1,3g

mA1;�(�) 1/3 4/9 2/9

� f0g f1g f2g

mA2;�(�) 3/8 1/2 1/8

Instead of the two decision attributes D1 and D2 we put a new decision at-

tribute. F or theabov e tables we calculate the basic probability assignment.

The decision table A1 ÆA2 is presented in the T able8 .

For the abov e table the basic probability assignment is calculated.

One can observe that for �=f0g the Dempster's combination rule has the

following form:

mA1ÆA2;�(f0g) =

P
�1\�2=f0g

mA1;�(�1) �mA2;�(�2)

1�
P

�1\�2=;

mA1;�(�1) �mA2;�(�2)

Let us observe that:
X

�1\�2=;

mA1;�(�1) �mA2;�(�2) =

= mA1;�(f0g) �mA2;�(f1g) +mA1;�(f0g) �mA2;�(f2g)+

+mA1;�(f2g) �mA2;�(f1g) +mA1;�(f2g) �mA2;�(f0g)+

+mA1;�(f1; 3g) �mA2;�(f0g) +mA1;�(f1; 3g) �mA2;�(f2g) =

= 1=3 � 1=2 + 1=3 � 1=8 + 2=9 + 1=6 + 1=12 + 1=36 = 17=24
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Table 8

The decision table A1 ÆA2

U1oU2 A1 B1 C2 E2 @
�
A1oA2

(1,14) 0 1 1 1 f0g

(1,15) 0 1 1 1 f0g

(1,16) 0 1 1 1 f0g

(2,14) 0 1 1 1 f0g

(2,15) 0 1 1 1 f0g

(2,16) 0 1 1 1 f0g

(3,14) 0 1 1 1 f0g

(3,15) 0 1 1 1 f0g

(3,16) 0 1 1 1 f0g

(4,17) 1 1 0 0 f2g

(5,17) 1 1 0 0 f2g

U1oU2 A1 B1 C2 E2 @
�
A1oA2

(6,17) 1 1 0 0 f2g

(7,10) 1 0 0 1 f1g

(7,11) 1 0 0 1 f1g

(7,12) 1 0 0 1 f1g

(7,13) 1 0 0 1 f1g

(8,10) 1 0 0 1 f1g

(8,11) 1 0 0 1 f1g

(8,12) 1 0 0 1 f1g

(8,13) 1 0 0 1 f1g

(9,17) 0 0 0 0 f2g

Table 9

Basic probability assignment { A1 ÆA2

� f0g f1g f2g

mA1ÆA2;�(�) 9/21 4/21 8/21

and

X

�1\�2=f0g

mA1;�(�1) �mA2;�(�2) = mA1;�(f0g) �mA2;�(f0g) = 1=8:

Finally we obtain

mA1ÆA2;�(f0g) =
1=8

1� 17=24
= 3=7:

7 Conclusions

We presented that in the VPRS model the basic n umerical functions from

evidence theory can be de�ned. It gives us a method for inducing decision

rules. Their quality can be tuned b ymeans of �.

Moreov er, the Dempster's combination rule for product of two decision

tables is constructed. This entire approach is illustrated by examples.
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