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Evidence Theory and VPRS model

Barbara Marszal-Paszek and Piotr Paszek 12
Institute of Applied Computer Science
University of Silesia
Bedzinska 39, 41-200 Sosnowiec, Poland

Abstract

The Rough Set Theory (RST) was proposed by Pawlak [4] as a new mathematical
approach to deal with uncertain knowledge in expert systems. In 1991 Ziarko [11]
proposed the Variable Precision Rough Set Model (VPRSM) as a certain extension
of the rough set theory. VPRSM approach makes it possible to use a certain level
of misclassification.

The aim of this paper is to introduce belief and plausibility functions defined by
the S—approximation regions. On the basis of the fg—approximation regions, the
[-basic probability assignment is defined and the Dempster’s combination rule for
product of two decision tables is constructed. This entire approach is illustrated by
examples.

1 Introduction

The Evidence Theory (ET) or Dempster-Shafer Theory was proposed by
Dempster in 1967 [2] as a statistical methodology for approximation of prob-
ability and developed by Shafer in 1976 [7] as an autonomic mathematical
theory. The evidence theory approach is based on the idea of placing a num-
ber from the interval [0,1], to indicate a degree of belief for a given proposition
on the basis of a given evidence [8].

In this paper we define basic numerical functions of evidence theory using
the main concepts related to the S—approximation. We also define Dempster’s
combination rule for the product of decision tables. It gives us ability to:

e extract some information from sub-tables,

e join this information and create a new decision table.

At the end of the paper we show that our assumptions can be used to real
data, which are stored in decision table.

1 We wish to express our thanks to prof. A. Skowron for his critical remarks.
2 Email: paszek@us.edu.pl

(©2003 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.
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2 [—approximation

In RST [5] vague concepts are replaced by a pair of precise concepts of the lower
and upper approximations. The lower approximation of a given set of objects
(given concept) is a set of objects with certainty belonging to the concept.
The upper approximation of a given set of objects (a given concept) is the set
of objects probably belonging to the concept. According to f—approximation
an object could be classified to a giv enset X as:
 certainly belonging to X, or
* with high probability belonging to X, or
* weakly belonging to X, or
e with high probability belonging to the complement of X, or
« certainly belonging to the complement of X.

According to Ziarko [11] the -approximations of sets can be defined as
follows.
Let A = (U, A) be an information system, where U is a nonempty, finite set of
objects called the universe and A is a nonempty, finite set of attributes, i.e.,

a:U — V, for a € A, where V, is called the value set of a, the indiscernibility
relation IND(B) for B C A is defined by

IND(B) ={(z,y) e UxU: V a(x)=a(y)}.

acB
By [z]p we denote the equivalence class of IND(B), i.e., the set
z]p ={y € U :2IND(B)y}.
Let ) # X C U and 8 € [0,0.5). Foursets, called S—approzimation regions
can be defined from X in the information system A:

(i) A X ={reU: [[z]anx] ]‘mX| > 1— [} — lower f—approzimation of X in A,

(i) AgX ={z €U : ‘[T%A}mm > (3} —upper B—approximation of X in A;

(iii) BNagX ={z € U : < Hﬁ“ﬁf' < 1— B} — boundary region of
[—approximation of X in A;

(iv) NEGagX = {zr e U: 0 < HT%&Z?' < B} — negative region of [—
approximation of X in A.

For 3 = 0 we obtain approximation regions considered in rough set theory [5]
and related to approximation of X.

3 Properties of f—approximation

An information system A = (U, AU{d}), where d ¢ A is the decision attribute
is called the de cisiontable. We assume the set of values of decision d to be
equal to {1,...,7(d)}.
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The classification made by d is the set
CLASSA(d) ={X1,..., X, (d)} where X;={zeU:d(x)=1i}

and r(d) is called rank of d.
The set ©a ={1,...,7(d)} is called frame of discernment defined byd.
A B-boundary regionof § C ©4 is a set defined by:

Bda(0) = (| BNagXiN () NEGa 3X;.
i€l i¢0
Proposition 3.1 All non-empty sets from the family
{A,gXla o ;Ang(d)} U{Bdas(0):0 C Oa}

crate a partition of the universe U.

4 Relationship between f—approximation and evidence
theory

We extend O to ©a U{0} where 0 is a special element. It means that objects
from Bda () havea special decision d = 0.

Hence, ©4 = {1,...,7(d)} U {0}.

Now, we would like to find a function transforming subsets of ©a = {1,...,r(d)}U
{0} into elements of the family

{AﬂXla ce 7AﬁXr(d)} U {BdA”g(g) 10 g @A}
Such a function is defined by

(

AsX;U Bdag({i}) for 6 = {i} where i€ {1,...,r(d)}
Bda 5(0 for # = {0
Das(0) = as(0) {0}
0 for 6 =0
\ Bda 3(0) for |#| > 1 where 6 C {1,...,7(d)}
where 6 C O4.

Let © = {6y,01,02,...,0r} be a frame of discernment compatible with a
given decision table and let y : © — ©4 be the standard bijection between ©
and G4, ie., x(0;) =ifori=0,1,.. k.

Let us define a function ma 5:2° — R, by

0 for 6 =

3] 0
| A,T[(;‘(( )| fOI‘ 9 7£ (Z)

map(0) =

for any 6 C ©.

Proposition 4.1 The function ma g : 2° — R, defined above is a basic
probability assignment (mass function,).
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Proof. We haveto show that:

mas(®) =0 and 3 map(A)=1.
ACO
The first condition in a simple consequence of ma g definition. T oprovethe
second condition let us observe that
@ A
> map(d) = 3 PasON L ST (3, 5(x(A))] =
ACO ACO

ACO

=ml X [@as{iHl+ X |(I)A,5(A)|> =
i€x(©) ACO4,|A[>1
= g7 | 1Bdas({0)]+ 3 [145(Xi) UBdas({ib)]+ X IBdA,ﬂ(A)|>=
i€x(0) ACO4,A[>1
= g7 | 1Bdas({0D)[+ X |A5(X) UBdas({i})]+ X |BdA,ﬁ(A)|>:
i€x(0) ACO4,|A[>1
=g | X 14X+ X |BdA,[3(A)|> = lUl=1.
icx(0) ACO,|A>1|

The pB-belief function for a given A is defined by
Bela g(0) = Z mag(A) wheref C ©.
ACH
Let © be a frame of discernment compatible with the decision table A =
(U, AU {d}) and let y be a standard bijection between © and ©O4. The
follo wing equalities hold:

Bela 5(0) = ZmA,B(A) _ Z | 45X | Z |Bda s(x(A))]

ACH iex(6) vl ACH|AI>1 vl

for any 6 C ©
The (-plausibility function for a given A is defined by

Plap(0) = Z mag(A)  where C O.

ANOAD
The follo wing equalities hold:
Plag(0) = Y mag(d)=1— > mag(A)=1—Belas(® —0)
ANOAD ANO=0,ACO—0
for any 6 C O .

Now we can define a new —decision attribute 8§ : U — 294 approximat-
ing the decision d in a following way:

{i} for x € AsX; U Bda s({i})
3&@) _J {0} forze . (N NEGagX;

0 forz € Bdag(0),0C {1,....r(d)},]0] > 1
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where ©4 = {0} U{1,...,7(d)} and z € U.

5 Examples: f—approximation regions

Ezample 1.

Les us consider an example of decision table with 21 objects, three condition
attributes a, b, ¢ and one decision attribute D — Table 1.
In Table 1 we havethree decision classes:

Xi={1,2,3,4,5,6,7,8,9,10, 11, 12}, X,={13, 14, 15, 16, 17},
X3={18, 19, 20, 21},

and four equivalence classes:

[1]a = {1,2, 19, 20, 21}, [4]4 = {4, 5,6, 7, 8,9, 10, 11, 12, 13},

[3]a= {3}, [14]4 = {14, 15, 16, 17, 18}.
Let us observe that, lower S—approximation for # = 0.1 is a set of the
following form:

A (X) = {y €U %&X' > 0.9} .

We have©a = {1, 2, 3 }. Let us observe that:
Ag(X1) = [BlaU[d]a, As(X2) =0, Az(X3) =0,
Ap(Xy) = [HaUBlaU [4]a, Ap(Xo) = [14]4, Ap(X3) = [1]4 U [14]4,
BNas(X1) = [1]a, BNag(Xo) =[14]4, BNa(X3) = [1]4 U[14]4,
NE'GA,g(Xl) [14],4, NE'GAg(Xg) :[l]AU[?)]AU[ ]
NEGa5(X3) = [3]aU[4]a, Bdas(0) =0, Bdas({1}) =
Bdas({2}) =0, Bdas({3}) =0, Bdas({1,2}) =10,
Bdas({1,3}) = [1]a, Bdas({2,3}) =[14]4, Bdas({1,2,3}) =0.

F rom abo eequations it follows that the equality

U 4sx)u | Bdas(0) =

i€{1,.r(d)} 0COA

holds (see Proposition 3.1).
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Table 1
Example 1 — Decision table

Ujla|b|c|D Ula|b|c|D
1]11]0]0]1 1270|111
21110101 131011 2
31|11 |1 1471|102
4 10111 571|1(0| 2
o |01 |1]1 166|110 2
6 [0|1 |11 17]1|1|0| 2
710111 8]1|1|0|3
8 (0|1 |1]1 1911003
9 (01|11 2001(0(0] 3
0j0j1 |11 2010|033
1mmjof1j11
Table 2
Example 1 — Table after transformation
U al|b|c|of=02
1,2,19,20,21 1100/ {1,3}
3 111 {1}

45,6,7,8,9,10,11,12,13 |0 | 1 | 1| {1}

14,15,16,17,18 1|1]0] {2}

Let us take 3 = 0.2 and repeat our calculations:
Ag(Xh) = BlaU[4]a, As(Xo) =[14]4, Au(X5) =0,
Ap(X1) = [1aU BlaU [4a, As(X2) = [14]4, Ap(X;
BNas(X1) = [1]a, BNap(Xz) =0, BNag(Xs) =[1]a,
NEGa g(X1) = [14]4, NEGA 3(X2) = [1]a U [3]4 U [4]4,

NEGA 3(X3) = [3]aU [4]a U [14]4, Bdag(0) =0, Bdas({1}) =0,
) =0

) = [1]a,
1

Bdas({2}) =0, Bdag({3}) =0, Bdags({1,2}) =10,
Bdas({1,3}) = [1]a, Bdas({2,3}) =0, Bdas({1

We are looking for a new [3-decision attribute.
Next transform Table 1 into Table 2 with this new attribute.

In our example we have ® = {6y, 0;,05,03}. For all # C © we can present
valuesof the basic n umerical functionsfrom evidence theory in Table 3.

3} = 0.
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Table 3
Example 1 — Basic numerical functions

0 {01} | {02} | {0s} | {01,602} | {02,0s} | {61,603} | {01,02,05} | {60}
x(0) {1y ] {2y | {8} | {12} {2,3} {1,3} {1,2,3} {0}
ma(0) | 11/21 | 5/21 | 0 0 0 5/21 0 0
Bela 5(0) | 11/21 | 5/21 | © 16/21 5/21 16/21 1 0
Pla g(0) | 16/21 | 5/21 | 5/21 1 10/21 16/21 1 1
Table 4

Example 2 — Results

tab | (B | certainty

1 0 | 0.72549

2 | 0.1 0.901961
3 | 0.2 0901961
4 10.3 | 0.960784
5 | 0.4 | 0.960784

Ezxample 2.

We have calculated the f-approximation regions for different 3 values for
chosen decision table.

We consider a decision table with 51 objects, 7 condition attributes and
one decision attribute with decisions 1, 2, 3. The table was without missing
values and was consistent. First we calculated f-approximation regions for
B =140, 0.1, 0.2, 0.3, 0.4}. As the result we got five new decision tables with
new decision attribute for any (. Next, we applied the Rosetta System for
each table [3,6].

Initially we calculated dynamic reducts [1]. F orthese reducts we applied
the Rosetta System for the rules generation and classification. The results are
presented in the T able 4.

The coefficients of certainty are obtained from the confusion matrix which
is computed during the classification.

A confusion matrix C'is Vyx V, matrix with integer en tryC'(, j) counts
the nunber of objects that really belong to class ¢, but where classified as
belonging to class j.

From confusion matrix presented in the Table 5, we are able to get an
information that for 4 = 0.3 and # = 0.4 more than 96% of the objects from
the decision table are properly classified. Observe that rules for § = 0.4 are
more general.
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Table 5
Example 2 — Confusion matrix

B=04]1 2 3
1 0 1 0 0.0
2 0| 27 0 1.0
3 0 1 22 | 0.95652
0.93103 | 1.0 | 0.96078

6 Dempster’s combination rule

Let © be a frame of discernment compatible with two decision tables:
A1 == (Ul, Al U {dl}) and A2 == (UQ, A2 U {dg})

A decision table A = (U, AU {d}) is called a ©—independent pr auct of
decision tables Ay and A, if the following properties hold [9]:

(1) U= (U1 X UQ)\(Ul X Ug) R
where U; ® Uy = {(81,82) celUy xUy: 8§1 (s1)N 8i2(52) = (b} )

(11) If (81, 82) € U1 X U2 then 3&1 (81) N 6512 (82) = d(Sl, 82),
(i) A= (A x{1})U(Az x{2}),
_ , , a(sy) fori=1
(iv)  If (a,i) € A than for any (s1,s9) € U (a,i)(s1, s2) =
a(sqg) fori=2.

This ©—independent product of decision tables is denoted by A o As.
The standard basic probability assignment for A; o As may be expressed in
the following way: ma,.a,.4 : 2°° — R,

0 for A={0}
MAoAs,3(A) =¢ 0 for AC2°, Al > 1
7 for AC2° |A|=1.

The next proposition explains, in a sense, the question mark in the above
formula.

Theorem 6.1 L etA; o As be ©O—independent product of de cisiontables. F or
any 0 C O the following equation, calle dDempster’s combination rule, holds:

Z mAl,ﬁ(gl) * mAz,ﬁ(GQ)
01NO2=0

L— > ma,p(0h)*xma,s(0a)
01N02=0

mA10A2,/3(9) =

Ezample.
Let us consider two decision tables (Table 6) and 3 = 0.4.
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Table 6
The decision tables — A7 and Ag

U; | A|B|Dy|0°04
Uy | C| E | Dy | 9904
1 10(1]1 {0}
0]0]1]1 {1}
2 101 2 {0}
1mjo|1]1 {1}
3 10|13 {0}
121011 2 {1}
4 11 (1] 1 {2}
3011 3 {1}
5 | 1| 1] 2 {2}
41|11 {0}
6 |1 |1] 2 {2}
|1 ]1] 2 {0}
71110 1| {13}
6|11 3 {0}
8 | 110 {1,3}
17010 2 {2}
9 0|0 2 {2}
Table 7
Basic probability assignment — A; and Ao
Ay = (U, {a,b} Ud"=0) Az = (Uy, {c,e} UF=01)
4 {0} | {2} | {1,3} 4 {0} | {1} | {2}
ma, s(0) | 1/3 | 4/9 | 2/9 ma,p(0) | 3/8 |1/2]1/8

Instead of the two decision attributes D; and Dy we put a new decision at-
tribute. F or theabovetables we calculate the basic probability assignment.
The decision table A; o As is presented in the T ableS8.
For the abovetable the basic probability assignment is calculated.

One can observe that for 6={0} the Dempster’s combination rule has the
following form:

Z mAl,B(QI) * mAz,ﬁw?)
91M02={0}

mA10A2,ﬂ({O}) - 1— > mA1,5(91) * mA2,5(92)
01N62=0

Let us observe that:

D ma, (1) % may 5(02) =

01N02=0

= ma, 5({0}) ¥ ma, s({1}) + ma, s({0}) * ma, s({2})+

+ma,p({2}) ¥ ma, s({1}) + ma, 5({2}) * ma, s(10})+
+mays({1,3}) * ma, 5({0}) + ma, 5({1,3}) ¥ ma, s({2}) =
=1/3%1/2+1/3%x1/84+2/94+1/6+1/12+1/36 = 17/24
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Table 8
The decision table A1 o Ay

AL AL

and

U10U2 A1 B1 02 E2 8’8 ;
Arods U10U2 A1 Bl CQ E2 aﬁloA?
(1,14) 0 1 1 1 {0} =
617) [ 1|10 0| {2
(1,15) 0 1 1 1 {0}
(7,10) 1 0 0 1 {1}
(1,16) 0 1 1 1 {0}
(7,11) 1 0 0 1 {1}
(2,14) 0 1 1 1 {0}
(7,12) 1 0 0 1 {1}
(2,15) 0 1 1 1 {0}
(7,13) 1 0 0 1 {1}
(2,16) 0 1 1 1 {0}
(8,10) 1 0 0 1 {1}
(3,14) 0 1 1 1 {0}
(8,11) 1 0 0 1 {1}
G315 [0 1] 1] 1| {oy
(8,12) 1 0 0 1 {1}
(3,16) 0 1 1 1 {0}
(8,13) 1 0 0 1 {1}
(4,17) 1 1 0 0 {2}
1) | o] olo] o] {2
GAn [ 1| 10| o0 {2
Table 9
Basic probability assignment — Aj o Ag
4 {0} | {1} | {2}
mAloAz,ﬂ(e) 9/21 | 4/21 | 8/21

S mays(01) * mag p(0:) = may 5({0}) ¥ ma, 5({0}) = 1/8.

01 ﬂ02={0}

Finally we obtain

7 Conclusions

We presented that in the VPRS model the basic numerical functions from
evidence theory can be defined. It gives us a method for inducing decision

mA10A2,/3({0}) =

1/8
1—17/24

rules. Their quality can be tuned b ymeans of .

Moreov er, the Dempster’s combination rule for product of two decision

= 3/7.

tables is constructed. This entire approach is illustrated by examples.
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