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Abstract 
We describe ion mobility mass spectrometry techniques for the in situ analysis of intact proteins, 

i.e., the analysis of proteins directly from their biological environment. The benefits of in situ analysis 

include those associated more broadly with analysis of intact proteins, e.g., retention of connectivity 

between post-translational modifications and direct determination of amino acid substitutions, and 

those associated with surface sampling, e.g., retention of spatial information. Sampling techniques 

include liquid extraction surface analysis, continuous-flow liquid-microjunction surface sampling, 

desorption electrospray ionisation and matrix assisted laser desorption/ionisation. Direct surface 

sampling is beset by the challenge of inherent sample complexity, a challenge which can be 

addressed through integration of ion mobility spectrometry. To date, travelling wave ion mobility 

spectrometry and high field asymmetric waveform ion mobility spectrometry have been applied to 

the area of in situ analysis of proteins. In the case of travelling wave ion mobility spectrometry, 

information relating to tertiary or quaternary structure can also be obtained.  
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List of abbreviations 
CCS: collision cross section 

CF: compensation field 

CF-LMJ-SSP: continuous flow liquid microjunction surface sampling probe  

DESI: desorption electrospray ionisation 

DC: direct current 

DF: dispersion field 

DMA: differential mobility analyser 

DMS: differential mobility spectrometry 

DTIMS: drift tube ion mobility spectrometry 

FAIMS: high field asymmetric ion mobility mass spectrometry 

FT-ICR: Fourier transform ion cyclotron resonance 

LC: liquid chromatography 

LESA: liquid extraction surface analysis 

MALDI: matrix assisted laser desorption ionisation 

MS: mass spectrometry 

MSI: mass spectrometry imaging 

MS/MS: tandem mass spectrometry 

m/z: mass to charge 

NAMS: Native ambient mass spectrometry 

S/N: signal-to-noise 

TIMS: trapped ion mobility spectrometry 

TWIMS: travelling wave ion mobility mass spectrometry 

 

  



3 
 

1.0 Introduction 
Proteins play a fundamental role in all biological processes and there is great interest in their 

characterisation at a molecular level by mass spectrometry. The mass spectrometry analysis of intact 

proteins offers advantages over approaches in which enzymatic digestion is employed to generate 

proteolytic peptides. Connectivity between post-translational modifications is maintained and the 

presence (and location) of amino acid substitutions can be confirmed. Furthermore, higher levels of 

protein structure (tertiary and quaternary) may be probed. In situ analysis of intact proteins, i.e., the 

analysis of proteins directly from their biological environment, provides further advantages as both 

spatial information, and correlation of protein structure with molecular environment can be derived. 

Surface sampling techniques which have been used for in situ analysis of intact proteins include 

liquid extraction surface analysis (LESA) [1], the continuous-flow liquid microjunction surface 

sampling probe (CF-LMJ-SSP) [2], desorption electrospray ionisation (DESI) [3], matrix-assisted laser 

desorption/ionisation (MALDI) [4], laserspray ionisation (LSI) [5], matrix assisted ionisation (MAI; also 

known as matrix assisted ionisation in vacuum, MAIV) [6] and laser ablation electrospray (LAESI) [7]. 

Schematics of some of these techniques are given in Figure 1. 

Despite the advantages, in situ mass spectrometry analysis of proteins has proved challenging due to 

the inherent complexity of biological samples, particularly in the case of the ambient surface 

techniques (LESA, CF-LMJ-SSP and DESI). This challenge can be met through the use of either 

solution-phase or gas-phase separation techniques. Liquid chromatography is time-consuming, 

counteracting the benefit of speed of analysis afforded by in situ sampling. Gas-phase separation by 

use of ion mobility spectrometry [8, 9], however, is achieved on the millisecond timescale.  In linear 

ion mobility spectrometry, the reduced mobility (K0) of an ion is assumed to be independent of the 

electric field and its transit time is linearly proportional to the field. Linear methods include drift 

tube ion mobility mass spectrometry (DTIMS) [10, 11], trapped ion mobility spectrometry (TIMS) 

[12],  differential mobility analysers (DMA) [13], and travelling wave ion mobility (TWIMS) [14]. In 

non-linear ion mobility spectrometry, such as high field asymmetric waveform in mobility 

spectrometry (FAIMS) [15] (also known as differential mobility spectrometry, DMS),  the mobility of 

an ion (K) depends on the intensity of the electric field (E).  The application of ion mobility mass 

spectrometry for the analysis of intact proteins is well-established [16]; however, to date, two ion 

mobility spectrometry techniques have been coupled with in situ analysis of intact proteins: FAIMS 

and TWIMS, see Figure 1. In this review, we describe the integration and applications of these two 

ion mobility spectrometry techniques with in situ surface sampling for the analysis of intact proteins. 

 

2.0 High-field asymmetric waveform ion mobility spectrometry (FAIMS) 
High field asymmetric waveform ion mobility spectrometry (FAIMS) (see Figure 1e) separates gas 

phase ions by exploiting the differences in an ion’s mobility in high and low electric fields. FAIMS 

devices consist of parallel electrodes; these can be of planar or curved geometry. Ions are passed 

between the electrodes by a carrier gas. An asymmetric waveform is applied to the electrodes such 

that an alternating high and low electric field is experienced by the ions perpendicular to their 

trajectory in the carrier gas. The high electric field is also known as the dispersion field (DF). The 

difference in an ion’s mobility in the high and low electric field causes a displacement in the ions 

trajectory towards one of the electrodes. If the ion collides with the electrode, it is neutralised and 

therefore not transmitted through the device. To prevent this, a DC voltage can be applied across 
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the electrodes, creating a compensation field (CF) which counteracts the displacement of the ion 

towards the electrode. The CF and DF are tuneable parameter in all FAIMS devices and can be used 

to selectively transmit ions of choice.  

FAIMS has been applied to the analysis of both intact proteins and proteolytic peptides, i.e., top-

down and bottom-up proteomics [17]. Integration of FAIMS with liquid chromatography tandem 

mass spectrometry (LC-MS/MS) in  bottom-up  proteomic workflows has been shown to result in 

increased numbers of peptide and protein identifications, as well as the separation of  isobaric 

peptide ions [18-20].  FAIMS analysis of intact proteins has demonstrated the ability to separate 

charge states and conformations of protein standards such as ubiquitin and lysozyme [21, 22]. It is 

important to note, however, that while FAIMS is capable of separating protein conformations, it is 

not possible to directly determine the collision cross sections by FAIMS. More recently, FAIMS has 

been successfully coupled with surface sampling techniques. Galhena et al. coupled DESI with FAIMS 

for the analysis of small molecule drugs [23]. DESI FAIMS was applied to lipid imaging in mouse brain 

[24] and LESA FAIMS was applied to the separation of isomeric drug metabolites from human kidney 

and muscle tissue samples [25].  FAIMS has also been coupled with surface sampling techniques 

(LESA, DESI and CF-LMJ-SSP) for the analysis of intact proteins from complex substrates such as thin 

tissue sections [26-28], dried blood spots [29] and bacterial colonies growing on agar [26]. In each 

case, the sampling technique has been coupled with an ultrahigh field chip-based planar FAIMS 

device (available from Owlstone) on which it is possible to tune both the DF and CF parameters. 

2.1 Liquid extraction surface analysis (LESA) FAIMS 
Liquid extraction surface analysis (LESA) (see Figure 1a) is an ambient surface sampling technique. 

The sampling procedure in LESA is as follows:  a small volume of solvent (~1-10 µL) is aspirated from 

a solvent well and dispensed onto a sample surface using a robotic pipette. A liquid junction is 

maintained between the surface and the conductive pipette tip for a few seconds (~ 1-30 s) to allow 

the diffusion of analytes into the solvent. The sample is reaspirated and introduced to the mass 

spectrometer by nanoelectrospray ionisation. LESA was first described by Van Berkel in 2010 [1] and 

has since been used to sample a range of biological substrates such as dried blood spots [29], thin 

tissue sections [30, 31] and bacteria [32]. By tailoring the composition of the solvent system, LESA 

can be used to extract a range of molecular analytes from small metabolites and lipids [33] to intact 

proteins and protein complexes [34].  

Sarsby et al. [26] described a LESA FAIMS MS workflow for the analysis of proteins from thin sections 

of mouse liver and brain, as well as E. coli colonies growing on agar. A two-dimensional FAIMS 

analysis, in which both the DF and CF are varied, was performed in order to determine the settings 

for optimum transmission of the ions of interest. At DF = 270 Td, mid to low mass proteins were 

transmitted in the CF range ~ 1.5 – 3 Td, whereas at lower CF values (i.e., -0.5-1 Td), unresolved 

higher molecular weight proteins were transmitted. Although the incorporation of FAIMS in the LESA 

workflow resulted in a drop in overall signal intensity, it also resulted in improved signal to noise 

(S/N) and therefore much richer mass spectra. For example, at DF = 270 Td and CF = 2.6 Td, 29 

individual protein masses were detected compared to 3 proteins detected without FAIMS (see 

Figure 2). Subsequent work demonstrated LESA FAIMS MS of proteins from dried blood spots [29]. 

LESA mass spectra of dried blood spots are characterised by highly abundant ions corresponding to 

the α- and β-globin chains of haemoglobin.  Integration of FAIMS did not enable separation of the α-

globin from the β-globin ions (or the detection of any additional proteins); however, it did enable the 
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separation of the globin chains and lipids, and consequently the observation of previously 

undetected lipids.  

A major advantage of the incorporation of FAIMS in LESA mass spectrometry is the improved S/N. 

The increase in S/N allows for a reduced analysis time making it a useful addition in LESA mass 

spectrometry imaging (MSI) workflows, particularly for intact proteins where longer acquisitions are 

often required due to the low abundance of the protein ions. The incorporation of FAIMS with LESA 

MSI, resulted in the detection of 34 proteins across a mouse brain tissue section compared to 15 

proteins that were detected using LESA alone [35]. Twenty six of the 34 proteins were unique to the 

FAIMS dataset. Similar results were obtained from mouse liver with 40 proteins detected with LESA 

FAIMS (29 unique to FAIMS) compared to 24 proteins detected with LESA alone.  

In LESA the sampling process is decoupled from the ionisation process which means that the mass 

spectrometry data acquisition time can be optimised according to the experiment.  This capability 

allows for greater flexibility in the design of a FAIMS experiment, e.g., the inclusion of multiple 

FAIMS settings, thereby transmission of different ions, in a single acquisition. Using a multistep static 

FAIMS approach in the LESA MSI of sections of rat kidney and rat testes,  it was possible to increase 

the number of proteins detected several fold over a single step FAIMS approach [36]. For example, 

55 proteins were detected in a multistep FAIMS analysis of fresh frozen rat kidney tissue compared 

with seven proteins detected in a single-step analysis.  

2.2 Flowprobe FAIMS 
The continuous flow liquid microjunction surface sampling probe (CF-LMJ-SSP) [2], commercialised 

as the Flowprobe, is an ambient surface sampling technique which also makes use of a liquid 

junction between the sample surface and the sampling probe (see Figure 1b). The Flowprobe 

consists of two coaxial capillaries; the outer capillary carries the extraction solvent towards the 

substrate with a typical flow rate of 10-60 µL/min. The inner capillary carries the solvent away from 

the surface to the mass spectrometer where it is introduced by electrospray ionisation. At the 

surface of the substrate a liquid junction is formed into which analytes diffuse. The size of the 

microjunction can be controlled by adjusting the flow rates of the solvent in the capillaries. CF-LMJ-

SSP, like LESA, has been shown to be suitable for sampling a range of analytes including metabolites 

[37], lipids [37],  drugs [38], and proteins [38, 39]. CF-LMJ-SSP is  suitable for extracting proteins from 

dried blood spots prior to LC separation [38], and extracting proteins (ubiquitin, β-thymosin 4 and 

haemoglobin) from tissue [39]. Due to the continuous flow of solvent in this sampling method, the 

sensitivity is much lower compared to LESA as a result of dilution of the analytes in the solvent.  To 

compensate for this loss in sensitivity, Feider et al. [27] coupled CF-LMJ-SSP with FAIMS for the 

sampling of proteins from rat brain. The FAIMS device was optimised to transmit proteins in the 

mass range 4 - 12 kDa with DF = 230 Td and CF = 2.25 Td. The S/N for the peak corresponding to the 

10+ charge state of ubiquitin (m/z 857) was reported to increase from 23 (without FAIMS) to 180 

(with FAIMS). Consequently, these researchers were able to detect 84 protein species (of which 66 

were unique to FAIMS) compared to the 66 protein species detected using CF-LMJ-SSP alone. CF-

LMJ-SSP FAIMS MSI was also applied to the comparison of cancerous human ovarian tissue samples 

with healthy samples. The resulting  ion images show the localisation of proteins such as ubiquitin, 

β-thymosin 4 and calcyclin in tumour regions compared to necrotic and healthy tissue [27]. 
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2.3 Desorption Electrospray Ionisation (DESI) FAIMS 
Desorption electrospray ionisation (DESI) [3] is an ambient mass spectrometry technique (see Figure 

1c) that has been shown to be suitable for the imaging of metabolites and lipids from tissue samples 

[40]. DESI sampling is achieved by directing a stream of charged solvent ions at an angle towards the 

sample surface. When the charged droplets hit the surface, analytes are desorbed and charge is 

imparted creating analyte ions which are introduced to the mass spectrometer. DESI analysis of 

purified intact proteins from solid surfaces was first demonstrated over a decade ago [41]. In that 

work, DESI was coupled with a drift tube ion mobility mass spectrometer for the analysis of 

cytochrome c and lysozyme. Later work demonstrated DESI of protein standards up to 66 kDa, 

however limits of detection were found to increase with increasing molecular weight  [42]. Douglass 

et al. showed that this mass-dependent drop in sensitivity was due to incomplete dissolution and 

protein-protein and protein contaminant clustering [43]. It was subsequently demonstrated  that the 

use of solvent additives, such as ammonium bicarbonate, greatly improved the observed S/N of 

protein standards [44]. Modifications of the DESI set up itself have also resulted in significant 

improvements.  Ambrose et al. [45] demonstrated  DESI to be capable of sampling the 

tetradecameric GroEL (~800 kDa) by minimising the length of the sample transfer tube and locating 

the stage directly under the inlet of the ion source.  

Despite these advances, DESI analysis of intact proteins from thin tissue sections remained 

challenging due to inefficient desorption of larger molecules and the high amount of chemical noise 

inherent to tissue sampling.  This challenge was finally addressed by the integration of ion mobility 

spectrometry, which enables the separation of protein ions from ions from other molecular classes, 

and therefore improves S/N. In 2018, two groups independently demonstrated DESI for the analysis 

of intact proteins from tissue.  Garza et al. [28] approached this challenge by introducing FAIMS into 

their workflow, while Towers et al. [46] incorporated TWIMS into their workflow. The latter is 

discussed in more detail below.  Garza et al. first optimised the DESI set up for proteins by reducing 

the spray angle to 55o, decreasing the sample-to-inlet distance (to 2.5 mm) and using a solvent 

system of acetonitrile and water (80:20) with 0.5 % formic acid, before coupling with the FAIMS 

device. The workflow was optimised for mouse kidney tissue sections. Two-dimensional FAIMS 

analyses (DF and CF scanning) were performed in order to find the optimal parameters for detection 

of proteins (DF = 180 Td, CF = 1 Td). An overall decrease in the absolute signal intensities was 

observed; however, the improved S/N resulted in the detection of 11 proteoforms from kidney. The 

optimised workflow was subsequently applied to DESI imaging of proteins (α-globin, β-globin, MBP 

isoform 4, and an unidentified 8 kDa protein) in mouse brain as well as comparison of the 

distribution of α-globin and S100 A6 in healthy and cancerous human ovarian tissue. The protein 

S100A6 was observed at higher abundance in cancerous tissue. 

3.0 Travelling wave ion mobility spectrometry (TWIMS) 
Travelling wave ion mobility spectrometry (TWIMS) (see Figure 1f) utilises a stacked-ring ion guide 

(SRIG) operated with a travelling wave that separates ions based on their size and shape [47]. The 

radial confinement of ions is achieved by applying opposite phases of an RF voltage to neighbouring 

ring electrodes. A pulsed DC voltage is superimposed on the RF voltage, which is applied to each 

electrode plate pair for a fixed pulse, and stepped from one side of the device to the other in 

succession. The ion mobility cell is filled with an inert buffer gas, typically nitrogen, in which the ions 

traverse the device. Alterations in the speed and magnitude of the periodic travelling wave and 
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collision with the inert buffer gas will lead to the separation of ions according to their mobility. 

Smaller, more compact ions encounter fewer collisions and are propelled more quickly through the 

device, whereas larger, more extended ions experience a greater lag and take longer to travel. Since 

the electric field is neither uniform nor time dependent [47] and the pressure readouts are not 

accurate, a drift time calibration with protein standards of known collision cross section (CCS) is 

necessary [48, 49]. It is important that consideration is given to the nature of buffer gas in which the 

CCS is derived.  A systematic approach for reporting collision cross sections obtained from TWIMS 

and other forms of ion mobility measurements has been recently devised [9]. One of the 

unparalleled merits of TWIMS is its versatility. It has been integrated with gas phase infrared 

spectroscopy [50], surface induced dissociation [51] and ultraviolet photodissociation of proteins 

[52]. Furthermore, TWIMS can be coupled to matrix assisted laser desorption/ionisation (MALDI) 

and DESI for in situ analysis of proteins from tissue. 

3.1 DESI TWIMS 
The coupling of DESI with FAIMS [28] was discussed above; however Towers et al. [46] have also met 

success imaging intact proteins by using DESI in combination with TWIMS for the analysis of thin 

sections of rat  liver. A modified heated inlet capillary was used, together with solvents comprising 

high organic content (80% acetonitrile). In the absence of TWIMS, only the 9+ through 22+ charge 

states of α- and β-globin were observed. Incorporation of TWIMS enabled the DESI imaging (at a 

spatial resolution of 150 µm) of a number of proteins and peptides by allowing the selection of 

specific regions of interest from the plot of drift time vs. m/z. Proteins imaged included the 

haemoglobin subunits, acetylated fatty acid binding protein, 10 kDa heat shock protein and a 

cytochrome c oxidase subunit 8A, see Figure 3.  

3.2 Matrix assisted laser desorption/ionisation (MALDI) TWIMS 
Matrix assisted laser desorption/ionisation (MALDI) coupled with ion mobility mass spectrometry 

has been successfully deployed in an array of applications for the analysis of peptides and proteins 

[53, 54]. MALDI is a surface sampling technique, where the analytes of interest, e.g., the constituents 

of thin tissue sections, are coated with matrix, placed under vacuum and ablated with a laser  (see 

Figure 1d) to generate predominantly singly- or doubly charged molecular ions [4, 55] for profiling or 

imaging purposes.  MALDI imaging permits the acquisition of a series of multiple mass spectra across 

the entire tissue section at a defined spatial resolution. These spectra are then combined together to 

create images, representing the spatial distribution and relative intensity of an ion present within 

the tissue. Owing to the complexity of tissue environment, in situ digestion of proteins, enabling 

subsequent MS/MS fragmentation and assignments of proteolytic peptides (bottom-up approach), 

prior to MALDI imaging is often favoured. That is, MALDI MSI of intact proteins is less common than 

MALDI MSI of proteolytic peptides. Spraggins et al. [56] demonstrated MALDI MSI of intact proteins 

up to ~12 kDa in rat brain using a Fourier transform ion cyclotron resonance (FT-ICR) mass 

spectrometer. Later work showed MALDI FT-ICR MSI of intact proteins up to 20 kDa [57].  To the 

best of our knowledge, in situ MALDI analysis of intact proteins from tissue coupled with TWIMS has 

not been demonstrated to date.  

The addition of TWIMS to the MALDI MSI of proteolytic peptides can enhance selectivity and 

specificity by minimising peak interferences and distinguishing between isobaric species. Djidja et al. 

applied bottom-up MALDI TWIMS MSI for the in situ identification of glucose regulated protein 78 

kDa (Grp78) from formalin-fixed, paraffin-embedded pancreatic adenocarcinoma tissue [53]. 
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Integration of TWIMS enabled the separation of isobaric tryptic peptides based on their ion mobility. 

Similarly, Stauber et al. applied bottom-up MALDI TWIMS imaging to formalin fixed paraffin 

embedded rat brain tissue and frozen human brain tissue [54].  Again, the benefit of ion mobility 

separation was illustrated by the effective discrimination of proteolytic peptide ions with similar m/z 

values but different mobility. For example, TWIMS separated two isobaric peptide ions with m/z 

1039, enabling the identification of tubulin and ubiquitin. Moreover, ion mobility selection could 

distinguish between low intensity peptide and lipid fragment ions. Cole et al. [58] applied bottom-up 

MALDI TWIMS MSI to the analysis of tissue from a drug treated mouse fibrosarcoma model. 

Integration of TWIMS enabled separation of doubly charged peptide ions from interfering singly-

charged ions (peptides, matrix, lipids) and thus improved MS/MS data quality and confidence in 

peptide assignments. Bottom-up MALDI TWIMS MSI revealed the spatial distribution of proteins and 

peptides from ex-vivo human skin [59]. Imaging of peptides from the proteins keratin 1, collagen 

alpha 1 and keratin sulphate proteoglycan at 30 µm resolution was possible as a result of the 

separation afforded by TWIMS.  

3.3 Laserspray ionisation (LSI) and matrix assisted ionisation (MAI) TWIMS 
MALDI typically generates singly-charged ions limiting its usefulness for the analysis of higher 

molecular weight proteins.  LSI is an atmospheric pressure MALDI method which generates multiply-

charged ions [5]. The sample and matrix are deposited on a glass slide. Laser ablation via a UV laser 

directed at the back side (transmission geometry) of the glass slide results in the formation of highly-

charged clusters which are desolvated and introduced to the mass spectrometer through a heated 

capillary. Detection of proteins up to ~20 kDa from mouse brain tissue sections, and up to 15 kDa 

from rat brain sections,  by LSI mass spectrometry has been demonstrated [60, 61].  

Building on this work, Trimpin and co-workers introduced MAI, in which multiply-charged ions are 

produced when the sample (analyte and matrix) are produced spontaneously under the vacuum 

conditions of the mass spectrometer [6]. That is, MAI does not require a laser or high voltages. (LSI is 

a subset of MAI). MAI was combined with TWIMS for the in situ analysis of proteins directly from 

sections of mouse brain. A challenge for MAI TWIMS of tissue sections is spatial profiling of analytes, 

but the authors note that by depositing matrix in defined regions of interest of the tissue spatial 

information could be obtained. 

 

3.4 Native LESA TWIMS 
Native mass spectrometry is a rapidly growing field that enables the study of folded proteins and 

protein assemblies in the gas phase by maintaining weak non-covalent interactions, such as 

hydrogen bonds and salt bridges, that were present in solution phase [62]. Non-covalent bonds are 

maintained through the use of carefully tailored electrospray solutions. The growth of native mass 

spectrometry has been accompanied by development of ion mobility spectrometry techniques 

which enable the conformation of the folded protein to be probed including DTIMS and TWIMS.  

Native ambient mass spectrometry (NAMS) of proteins is an  emerging area of research.  Native 

mass spectrometry generally requires the use of electrospray ionisation, and therefore any ambient 

surface technique which employs electrospray may, in principle, lend itself to NAMS. Note that the 

acidic and denaturing nature of matrices used in MALDI means that non-covalent interactions are 
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generally not maintained. Moreover, the intrinsic production of singly charged ions combined with 

the high masses of native proteins and complexes result in high m/z values that are often out of the 

range of most mass spectrometers [55, 63]. Nevertheless, liquid MALDI of protein-protein complexes  

has recently been demonstrated [64].  

Native LESA mass spectrometry of the haemoglobin tetramer from blood vessel features in thin 

tissue sections of mouse liver [65] and large purified protein assemblies, including GroEL (~800 kDa) 

from glass substrates [66]has been demonstrated.  Native DESI of GroEL from glass substrates [45] 

has also been shown. Recent work in our laboratory has coupled native LESA mass spectrometry of 

tissue with TWIMS. The native LESA workflow was optimised by control of the pressure in the mass 

spectrometer source region,  resulting in the extraction of folded proteins from the bulk tissue of 

mouse liver and brain [34] (i.e., away from the vasculature). The benefit of incorporating TWIMS into 

the workflow was demonstrated through the determination of CCS for proteins extracted from 

mouse brain. The  TWCCSN2→He of β-thymosin 4 (4+), β-thymosin 10 (4+), and ubiquitin (5+) were 

calculated to be 733 ± 2, 796 ± 2 and 1047 ± 8 Å2 respectively (errors represent  one standard 

deviation). The CCS of the ubiquitin 5+ ion from brain was compared against literature CCS values, as 

well as that of a purified ubiquitin standard, and was found to be in good agreement [34].  

4.0 Conclusion 
Integration of ion mobility spectrometry in the in situ mass spectrometry analysis of intact proteins 

provides two main benefits. Firstly, sensitivity is increased as a result of improved S/N. Improved S/N 

has been observed for both FAIMS and TWIMS, resulting in greater numbers of proteins detected 

and more comprehensive protein imaging. For DESI, the incorporation of ion mobility separation is 

critical for detection of proteins in tissue. It is likely that as ion mobility spectrometry techniques 

develop, further improvements for in situ protein analysis will be realised, and that additional ion 

mobility techniques, such as TIMS, will be integrated into these workflows. A challenge associated 

with intact protein analysis is identification of the protein by top-down mass spectrometry. The 

greater the number of proteins detected, the more challenging the identification problem, 

particularly in the case of protein mass spectrometry imaging where there is limited time and 

sample associated with each pixel. Methods and software for rapid identification need to be 

developed.  

The second benefit of integration of ion mobility spectrometry is that structural information in the 

form of collision cross sections can be obtained. To date, this feature has only been demonstrated 

with TWIMS but it is anticipated that as the field develops other ion mobility techniques, such as 

TIMS, may be applied.  An emerging area of research is native ambient mass spectrometry, which 

focuses on analysis of folded proteins and non-covalent protein assemblies. The ability to combine 

native ambient mass spectrometry with ion mobility spectrometry will be particularly useful. So far, 

native mass spectrometry imaging of proteins and protein complexes has been decoupled from 

measurement of CCS. That is, native mass spectrometry imaging of a thin tissue section is followed 

by measurement of CCS in an adjacent tissue section. By incorporating ion mobility spectrometry 

into the imaging experiment, it will be possible to image protein structures rather than simply their 

masses, a truly exciting prospect. 
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Figure legends 
 

Figure 1: Surface sampling and ion mobility techniques for in situ protein analysis a) Liquid extraction 

surface analysis (LESA) b) Continuous-flow liquid microjunction surface sampling probe (CF-LMJ-SSP) 

c) Desorption electrospray ionisation (DESI) d) Matrix assisted laser desorption ionisation (MALDI) e) 

High field asymmetric waveform ion mobility spectrometry (FAIMS) f) Travelling wave ion mobility 

spectrometry (TWIMS). Adapted and reproduced from Kocurek, K.I. Griffiths, R.L. and Cooper, H.J. J. 

Mass Spectrom. (2018) 53:565–578 https://doi.org/10.1002/jms.4087. Published by John Wiley & 

Sons Ltd. under the terms of the Creative Commons Attribution 4.0 International License 

(http://creativecommons.org/licenses/by/4.0/)  

Figure 2: Liquid extraction surface analysis MS of mouse brain tissue. Top – LESA mass spectrum 

obtained with no FAIMS field. Bottom – LESA FAIMS mass spectrum obtained using DF = 270 Td and 

CF =2.6 Td. Inserts – Expanded m/z region of each spectrum showing the charge states of proteins 

detected. Reproduced from Sarsby, J. Griffiths, R.L. et al. Anal Chem (2015) 87: 6794-6800 

https://doi/10.1021/acs.analchem.5b01151. Published by ACS Publications under the terms of the 

Creative Commons Attribution 4.0 International License 

(http://creativecommons.org/licenses/by/4.0/)  

Figure 3: Desorption electrospray ionisation analysis of rat liver tissue. Top Left - Typical drift time 

plot of liver tissue with three distinct regions highlighted a) high velocity region containing multiply 

charged proteins and peptides (b) haemoglobin trend line (c) singly charged molecules. Top Right - 

The corresponding summed mass spectrum for each region highlighted in drift time plot. Bottom – 

DESI images of proteins showing, from left to right, the distribution of a-globin subunit 1, a-globin 

subunit 2, b-globin subunit 2, b-globin subunit 2 with an S to T amino acid substitution, cytochrome c 

oxidase 8A, fatty acid binding protein liver and 10 kDa heat shock protein. Adapted and reproduced 

from Towers, M.W., Karancsi, T., Jones, E.A. et al. J. Am. Soc. Mass Spectrom. (2018) 29: 2456. 

https://doi.org/10.1007/s13361-018-2049-0, Published by Springer under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)  
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