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Abstract  

Stress hormones have been shown to be important mediators in driving malignant growth and 

reducing treatment efficacy in breast cancer.   Glucocorticoids can induce DNA damage through an 

inducible nitric oxide synthase (iNOS) mediated pathway to increase levels of nitric oxide (NO). Using 

an immune competent mouse breast cancer model and 66CL4 breast cancer cells we identified a 

novel role of NOS inhibition to reduce stress-induced breast cancer metastasis. On a mechanistic 

level we show that the glucocorticoid cortisol induces expression of keys genes associated with 

angiogenesis, as well as pro-tumourigenic immunomodulation. Transcriptomics analysis confirmed 

that in the lungs of tumour-bearing mice, stress significantly enriched pathways associated with 

tumourigenesis, some of which could be regulated with NOS inhibition. These results demonstrate 

the detrimental involvement of NOS in stress hormone signalling, and the potential future benefits 

of NOS inhibition in highly stressed patients.  
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1. Introduction 32 

Psychological stress induces an increase in the circulating levels of stress hormones, including the 33 

glucocorticoid cortisol. [1]. Epidemiological evidence has associated negative psychosocial factors, 34 

including chronic stress,  with increased incidence and poorer survival in breast cancer patients [2]. 35 

Furthermore, multiple studies have linked psychological stress with biological processes involved in 36 

metastasis [3-5], findings  of particular importance since the primary cause of breast cancer-related 37 

death is metastatic spread [6].  38 

Glucocorticoid signalling, mediated through the glucocorticoid receptor (GR), has been shown to 39 

promote tumourigenesis and drug-resistance in triple negative breast cancer (TNBC) [7], and 40 

increases in expression of GR in breast tumours have been correlated with decreased survival [8]. GR 41 

antagonism has also previously been shown to induce apoptosis and, in combination with 42 

conventional chemotherapies, reduce tumour size in models of TNBC [9]. We have previously 43 

explored the mechanistic actions of psychological stress in breast cancer, and shown that stress 44 

hormone exposure can induce DNA damage in breast cancer through the generation of reactive 45 

oxygen and nitrogen species (ROS/RNS). We have also previously shown that glucocorticoids 46 

mediate a non-genomic effect on inducible nitric oxide synthase (iNOS), the enzyme that generates 47 

NO, and increase nitric oxide (NO) signalling in breast cancer cells [10]. Although iNOS is expressed in 48 

both ER+ and ER- breast cancers [11, 12], expression of iNOS has been found to correlate with 49 

tumour progression and poor survival in basal-like breast cancers [13, 14], indicating that NO activity 50 

may drive malignant growth and spread. As such, iNOS represents a potential target to abrogate the 51 

detrimental effects of psychological stress hormone signalling.  52 

Nitric oxide (NO) is an important signalling molecule modulating a range of functions within the cell, 53 

however the role of NO in tumour biology is complex and multifaceted [15]. Aspects of tumourigenic 54 

transformation can be driven by prolonged inflammation and exposure to high concentrations of 55 

NO, resulting in an increase in oxidative stress and subsequent DNA damage [16]. It is thought that 56 

NO may also be capable of driving transformation through the induction of angiogenesis and 57 

migration [17]. The highest concentrations of NO are produced by iNOS, and expression of iNOS has 58 

been shown to be positively correlated with tumour grade, stage and metastasis in breast cancer 59 

[11, 18-20]. Several studies have shown that induction of iNOS expression in tumour cells promotes 60 

an increase in angiogenesis, and subsequently an increase in invasiveness and progression [16] [21, 61 

22]. However transfection of iNOS in certain tumour types has been proven to inhibit growth, and 62 

when delivered as a gene therapy extends survival of metastases-bearing mice [23] . The biphasic 63 
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effect of NO is therefore dependent on localization, expression and activity of NOS isoforms as well 64 

as the concentration and length of exposure to NO.   65 

Selective or non-selective inhibition of NOS as a potential therapy has been studied in relation to 66 

cancer, and has been shown to decrease angiogenesis, tumour growth and metastases and increase 67 

survival in breast cancers [14, 16, 22, 24-26]. As such, our aim is to determine whether non-selective 68 

inhibition of NOS in the context of highly metastatic mammary tumours may abrogate the NO-69 

mediated metastatic signalling induced by psychological stress.  70 

2. Methods 71 

2.1 Cells and Culture Conditions 72 

The murine cell line 66CL4 (RRID:CVCL_9721), derived from a spontaneously-arising mammary 73 

tumour, were kindly donated by Dr Erica Sloan; Monash University Australia and maintained in MEM 74 

with 10% FBS (Gibco, UK). Human breast cancer cell line MCF-7 (RRID:CVCL_0031) was purchased 75 

from ATCC and maintained in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, UK) with 10% FBS 76 

(Gibco, UK). MCF-7 cells were chosen as a comparator as they express similar levels of GR expression 77 

compared to human triple negative breast cancer (TNBC) cell lines [27] and also are known to 78 

express iNOS [12]. All cell lines were maintained in humid conditions at 37
O
C and with 5% 79 

atmospheric CO2. Cells were treated with hydrocortisone (Sigma Aldrich, UK) at a concentration of 80 

5μM, and all other pharmacological agents as stated previously [10]. 81 

2.2 Electrochemistry 82 

Electrodes were fabricated by modification of a previously published approach [28]. Characterisation 83 

was carried out as detailed previously [10]. 66CL4 and MCF-7 cells were plated at a density of 5x10
4
 84 

per well and incubated for 24 hrs.  Cells were exposed to cortisol in the presence and absence of 85 

RU486, 1400W dihydrochloride or L-NAME for 30mins prior to hormone treatment. Cells were 86 

immediately lysed and ROS/RNS levels were quantified using multiple-step amperometry using a 87 

stainless steel counter electrode and non-leak Ag|AgCl reference electrode. Measurements of the 88 

current were obtained at +0.3 V, +0.45 V, +0.62 V and +0.85 V for a duration of 30 s. The responses 89 

were analysed using approaches detailed in [29], using a CHI760E potentiostat (CH Instruments, 90 

Texas, USA). 91 

2.3 Griess Assay  92 

66CL4 and MCF-7 cells were plated at a density of 3x10
5
 per well of a 6 well plate. Cells were treated 93 

with cortisol in the presence or absence of RU486 or L-NAME for 30mins. Cell culture media was 94 
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removed and assayed for extracellular nitrite using the Griess Reagent System (Promega, UK), as per 95 

the manufacturer’s instructions.  96 

2.4 Immunofluorescence   97 

Cells plated on glass coverslips and treated. Cells were then fixed in 3% paraformaldehyde 2% 98 

sucrose (pH 7.2) PBS for 10 minutes, washed, and permeabilized using 0.2% TritonX-100 in PBS for 99 

2.5mins at room temperature. Incubation with the primary antibody; anti-phospho-Histone H2AX 100 

(1:800 in 2% BSA) (Cell Signalling, RRID:AB_2118010), anti-RAD51 (1:200 in 2% BSA) (Cell Signalling, 101 

RRID:AB_2721109) or anti-GR (1:200 in 2% BSA) (Santa Cruz Biotech, RRID:AB_2155786) occurred for 102 

45 mins at 37
O
C and the secondary antibody; anti-rabbit IgG FITC (1:200 in 2% BSA) (Sigma Aldrich, 103 

RRID:AB_259682) at 37
O
C for 20 mins. Fluorescent foci were detected using confocal microscopy 104 

(Leica, Germany) and positive cells, categorised as >5 foci, expressed as a percentage of total cells 105 

counted.  106 

2.5 In Vivo Study 107 

All in vivo studies were carried out with Home Office approval and approved by the Animal Welfare 108 

and Ethical Review Body (AWERB) at the University of Brighton. All animal experiments comply with 109 

the ARRIVE guidelines and were carried out in accordance with the U.K. Animals (Scientific 110 

Procedures) Act, 1986 Female BALB/c mice were purchased at 6 weeks old from Envigo. They were 111 

housed 5 per cage with food and water ad libitum in a 12 hour light/dark cycle. Mice were handled 112 

daily for 1 week prior to experimentation to acclimatise the mice to the investigator. Tumours were 113 

induced by the subcutaneous injection of 1 x 10
5
 66CL4 cells were injected into the 4

th
 mammary fat 114 

pad. Tumours were measured using digital callipers until they reached 150-200mm
3
, mice were then 115 

randomized into groups (n=9). Groups were treated with intraperitoneal (IP) injections of saline or L-116 

NAME (80mg/kg dissolved in saline) (Sigma Aldrich, UK). To induce psychological stress a restraint 117 

stress model previously described [30] was used. Mice were individually placed in adequately 118 

ventilated 50ml conical tubes for 2hrs 6 days a week for 2 weeks. Tumour volumes were measured 119 

twice a week using digital callipers and calculated using the formula for an ellipsoid sphere; volume 120 

(mm
3
) = shortest (S)

 2 
x longest (L) x 0.52. Mice were also weighed once a week. Mice were sacrificed 121 

after 2 weeks of treatment. Animals that were sacrificed before the endpoint of the study due to 122 

tumour burden were excluded from the study. Primary tumours were weighed, dissected and cut in 123 

half, with half flash frozen in liquid nitrogen and half fixed in 10% neutral buffered formalin. Lungs 124 

were also removed, one half (lobe) was fixed in formalin and the other flash frozen in liquid 125 

nitrogen.  126 
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2. 6 Bone Marrow-Derived Macrophage Isolation and Culture  127 

Female BALB/c 6-8weeks old were sacrificed and primary bone marrow-derived macrophages 128 

(BMDM) were isolated from the femurs and tibiae as described in [31]. BMDM’s were cultured in 129 

RPMI-1640 with 10% FBS, 100 U/ml penicillin, 100 μg/ml streptomycin (Gibco, UK) and 130 

supplemented with 10ng/ml M-CSF (Peprotech, UK). Growth media was changed on day 3, and on 131 

day 7 M-CSF was removed and BMDM were polarized to M1 by the addition of 100ng/ml LPS (Sigma 132 

Aldrich, UK), or M2 by the addition of 10ng/ml IL-4 (Peprotech, UK). Polarization was confirmed 133 

using qPCR to determine the expression of iNOS, arginase 1 (Arg1) and CCR2.  134 

2. 7 3D Spheroid Co-culture 135 

66CL4 cells and polarized BMDM’s were collected by scraping and 1x10
6
 cells resuspended in 1ml of 136 

serum free media. The lipophilic tracer dyes SP-DiOC18(3) (66CL4) or DiL (BMDM) (Thermo Fisher, 137 

UK) were added at a concentration of 5µg/ml and the cells incubated at 37
O
C for 1hr. Cells were 138 

washed with PBS and combined in a ratio of 2000:1000 66CL4 to BMDM, or 2000 66CL4 cells alone 139 

in 30µl/well of a 96-well Ultra Low Attachment plate (Corning, UK). The plates were centrifuged at 140 

300g for 5mins and incubated at 37
O
C and with 5% atmospheric CO2 for 7 days. Each day media was 141 

removed and the spheroids treated with fresh media alone, cortisol 5µM, L-NAME 100µM or a 142 

combination or cortisol and L-NAME.  143 

2. 8 ELISA 144 

The levels of CCL2 and IL-10 in the media from co-cultured 66CL4/BMDM spheroids was measured 145 

using a CCL2 or IL-10 ABTS ELISA kit (Peprotech, UK) as per the manufacturers instructions. Levels 146 

were normalized to protein extracted from the spheroids (mg/mL).  147 

2. 9 Immunohistochemistry 148 

Formalin fixed tissues were processed using standard histological practices (Leica TP1050) and 149 

embedded into paraffin wax. For CD31 staining - Sections were dewaxed and subsequently 150 

transferred to antigen retrieval buffer (Tris/ EDTA/ Tween-20) at 95
o
C for 20 minutes. 151 

Permeabilization (0.1% Triton-X in PBS) and blocking (2% BSA in PBs) followed. Sections were 152 

incubated with the primary antibody anti-CD31 (Abcam, RRID:AB_726362) and secondary anti-rabbit 153 

FITC conjugated (Sigma Aldrich, UK) for 1 hour and 30 minutes at room temperature respectively. 154 

Areas of high microvessel density were identified at low magnification (x20), and at (x63) the 155 

number of small CD31-positive vessels were counted per field.  156 
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For KI67 staining - staining was performed Using Benchmark ULTRA autostainer (Ventana Medical 157 

Systems) as per the standard protocol. Slides were imaged at x20 magnification using GXcapture 158 

software and KI67 labelling index analysed using ImmunoRatio [32]. Sections of fixed lungs were also 159 

taken through the midline and stained with Haematoxylin and eosin (H&E). Metastatic nodules were 160 

histologically identified at low magnification (x10) and counter per lung section.  161 

2. 10 qPCR 162 

66CL4 cells were treated with cortisol for 30mins and 24hrs. RNA was extracted from cells and tissue 163 

using an RNeasy Kit (Qiagen, UK) and cDNA was synthesised using a Quantitect Reverse Transcription 164 

kit (Qiagen, UK) as per the manufacturer’s instructions. A Rotor-Gene SYBR Green (Qiagen, UK) 165 

master mix was prepared according to the manufacturer’s instructions using Quantitect Primer 166 

Assay for mouse ACTB, NOS2, VEGFA, TWIST1, CCL2 and ARG1 (Qiagen, UK). Ct values were obtained 167 

using Rotor-Gene Q software. Change in expression was measured using the ΔΔCt method and 168 

expressed as relative expression versus the experimental control or an internal universal reference. 169 

2. 11 Western Blot 170 

Cells were lysed in ice cold radioimmunoprecipitation assay (RIPA) buffer (150 mM NaCl, 1% 10 171 

NP40/Igepal, 0.5% NaDoC, 0.1% SDS, 50 mM protease inhibitor (Sigma Aldrich, UK)) for 1–2 minutes. 172 

The lysates were subsequently spun at 13,000 g for 14 minutes at 4 °C. Protein concentration was 173 

determined using a DC protein assay (BioRad, UK) and 10µg resolved on SDS-PAGE gels (10% 174 

resolving and 4.5% stacking) and transferred onto polyvinylidene fluoride (PVDF) membranes. 175 

Membranes were blocked in 5% BSA (Sigma Aldrich, UK) and incubated with the following primary 176 

antibodies; iNOS 1:2000 in 5% BSA (Santa Cruz, RRID:AB_2298577) and β-actin 1:10000 (Santa Cruz, 177 

RRID:AB_2714189) overnight at 4 °C, and appropriate secondary antibodies (Anti-rabbit/mouse IgG-178 

HRP, Santa Cruz, RRID:AB_631746/ RRID:AB_10915700) 1:2000 in 2.5% BSA for 1 h at room 179 

temperature. The membranes were developed using Amersham ECL Prime detection kit and 180 

exposed to Amersham Hyperfilm. The film was then processed using a developing system (Xograph 181 

Compact X4) and imaged in a Chemi Imager (Alpha Inotech).  182 

2. 12 Migration assay 183 

66CL4 cells were transfected with NOS2-directed siRNA alongside a scrambled control (100µM) 184 

(Qiagen, UK) using lipofectamine 2000 (10μg/ml) (Fisher, UK) in Opti-MEM media (Gibco, UK). Cells 185 

were incubated overnight and replated at a density of 6x10
5
 cells/well in MEM containing no FBS 186 

with or without cortisol (5µM) onto transwell inserts (8µM pores). The lower chamber was filled 187 

with MEM+10% FBS and the cells incubated for 4 hours. After 4 hours inserts were removed, and 188 
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cells that did not migrate on the top of the membrane were removed using a cotton swab. Cells on 189 

the underside were fixed with 3% PFA, stained with Mayer’s Haematoxylin and counted (x20). Data 190 

is expressed as cells per field.  191 

2. 13 Scratch Assay 192 

66CL4 cells were plated at a density of 1x10
5
 in a 12 well plate and grown to confluencey. A ‘scratch’ 193 

was made using a p200 pipette tip and the cells treated with antagonists (RU486, L-NAME or 1400W) 194 

for 30mins prior to the addition of cortisol. Images were taken at 0hrs and 24hrs. Area of the wound 195 

was measured using ImageJ and expressed as area closure relative to the 0hr time point.  196 

2. 14Cell Viability Assay 197 

66CL4 cells were plated at a density of 1x10
4
 cells/well in a 96 well plate. Cells were treated with 198 

treated with antagonists (RU486, L-NAME or 1400W) for 30mins prior to the addition of cortisol and 199 

incubated for 48hrs. Cell viability was determined by incubating the cells with 0.2mg/ml MTT 200 

powder dissolved in cell culture media. Plates were protected from the light and incubated for 2hrs 201 

at 37
o
C. The MTT solution was removed and replaced with 200μL dimethyl sulfoxide (DMSO), the 202 

plate shaken for 5mins and absorbance read at 495nm (Digiread). Cell viability is expressed as a 203 

percentage of the control.  204 

2. 15 Transcriptomics 205 

Total RNA was extracted from whole lungs flash frozen in liquid nitrogen immediately after removal 206 

from sacrificed animals. Lung tissues were immersed in RNA-later ice solution over night at 4°C 207 

(Thermo Fisher Scientific, UK) to stabilize the mRNA populations prior to tissue homogenization. 208 

Lung tissues were homogenized in a Tissue Lyser (Qiagen, UK) 2x 2 min at 30 rpm and centrifuged at 209 

13.2K rpm for 3 min to remove cell debris. Total RNA was extracted using RNeasy mini columns 210 

(Qiagen, UK) with an additional step of genomic DNA removal through agDNA eliminator column. 211 

RNA was quantified using a Nanodrop One C spectrophotometer (Labtech International) and quality 212 

checked using an RNA Screen Tape on aTape Station instrument (Agilent Technologies). All the 213 

extracted RNAs used in the subsequent analysis had an RNA integrity number (RIN
e
 )>6.  Total RNA 214 

(200ng) was labelled with Cy3-CTP using the Low input Quick Amp One Color labelling kit (Agilent 215 

Technologies) and hybridized onto whole genome 8 X 60K mouse microarrays v2 (AMADID 074809) 216 

following the manufacturer’s instructions. The microarrays were washed and scanned using an 217 

Agilent microarray scanner G2505C. 218 
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Transcriptome data analysis - Raw scanned microarray images were processed using Agilent Feature 219 

Extraction software v11.5 and the data imported into R for normalization using the limma package 220 

[33]. Microarray data were background corrected using the ‘normexp’ method (with an offset of 50), 221 

quantile normalized and the data for technical replicates averaged. The processed data were then 222 

filtered to remove probes exhibiting low signals across the arrays, retaining non-control probes that 223 

are at least 10% brighter than negative control probe signals on at least three arrays. Data from 224 

identical replicate probes was then averaged to produce expression values at the unique probe level. 225 

Tests for differential expression were performed using the RankProd [34] package. Hierarchical 226 

clustering was performed by complete linkage clustering and using the Pearson correlation for the 227 

distance metric. Protein-protein interaction network construction and analysis, and functional 228 

enrichment analysis at the protein level, was undertaken in Cytoscape [35] (v3.6.1;  using the STRING 229 

app (v1.4.0)[36] In STRING, confidence interaction scores of >0.4 or >0.7 were used to generate 230 

medium and high confidence networks, respectively. 231 

2. 16 Bioinformatic data mining  232 

Kaplan-Meier survival curves for RFS and DMFS in breast cancer patients were generated using 233 

KMplotter [37], (http://kmplot.com/analysis/index.php?p=service). The Cancer Genome Atlas 234 

(TCGA) expression data according to breast cancer subtype was assessed and downloaded using 235 

TCGA Portal (tumorsurvival.org).  236 

2. 17 Other statistical analysis 237 

Graphpad Prism v5.0 was used for the statistical analysis of all data other than the transcriptomics 238 

data described above. For qPCR a one sample t-test was performed on using 1 as the hypothetical 239 

value. For continuous data assuming normal variance a t-test or one-way analysis of variance was 240 

used with Tukey’s multiple comparisons tests between groups. Statistical significance was 241 

determined where p<0.05. All the results are representative of the mean of three or more 242 

independent experiments (n=3) ± SEM unless otherwise stated. 243 

2. 18 Data Availability  244 

The transcriptomics datasets are deposited in the ArrayExpress database at EMBL-EBI 245 

(www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-7299. 246 

3 Results  247 

3. 1 Glucocorticoids increase ROS/RNS production and DNA damage in murine breast cancer cells  248 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 

 

Increases in NO production, have the potential to activate oncogenic pathways and induce genetic 249 

instability through DNA damage [38]. The highly metastatic murine mammary carcinoma cell line 250 

66CL4 was used as a model for aggressive triple negative breast cancer, and to validate previous 251 

findings in human breast cancer cell lines [10]. To characterise the acute glucocorticoid exposure 252 

ROS/RNS signature in 66CL4 cells; the cells were incubated with cortisol alongside the GR antagonist 253 

RU486, as well as the non-specific NOS inhibitor N-Nitroarginine methyl ester (L-NAME) and 254 

selective iNOS inhibitor 1400W dihydrochloride (1400W). Levels of intracellular nitrite, the stable by-255 

product of nitric oxide was measured using electrochemical sensors, and extracellular nitrite by the 256 

Griess assay. Incubation with cortisol produced a significant increase in intracellular nitrite (Fig. 1A) 257 

which was reversed with the addition of iNOS blockers L-NAME, 1400W and the GR antagonist, 258 

RU486. Similarly, extracellular levels of nitrite were increased in response to cortisol and a significant 259 

reduction was observed in response to RU486, 1400W and L-NAME, and this was validated using the 260 

human breast cancer cell line MCF-7 (Fig. 1B). However, it should be noted that RU486 may also 261 

inhibit progesterone receptors present on MCF-7 cells [39]. To confirm the effects of glucocorticoids 262 

on nitrite production, the synthetic glucocorticoid dexamethasone (Dex) was also used to treat MCF-263 

7 cells. Dex increased levels of nitrite in a similar manner, however no significant difference was 264 

observed between cortisol and dexamethasone treatment by either electrochemical detection or 265 

Griess assay (Supplementary Figure 1A-B). 66CL4 cells were incubated with cortisol alongside GR 266 

antagonist RU486 and cells were immunofluorescently stained for the GR. In response to cortisol, 267 

translocation of the GR was observed and this was inhibited by RU486 (Supplementary Fig. 1C). The 268 

expression of the GR mRNA remains unchanged in response to glucocorticoids (Supplementary Fig. 269 

1D). To further explore the potential contribution of stress hormone signalling to tumour 270 

invasiveness, 66CL4 cells were incubated with cortisol for 24hrs and the expression of iNOS, VEGF-A 271 

and Twist1 was examined using qPCR. A significant increase in mRNA levels of iNOS was seen after 272 

incubation in the presence of cortisol for 24hrs. A significant increase was also seen in expression of 273 

VEGF-A and Twist1 after the addition of cortisol (Fig. 1C). 274 

Previously glucocorticoids have been shown to induce DNA damage in human breast cancer cell 275 

lines. To assess cortisol-induced damage a marker of DNA damage, phosphorylated γ-H2AX foci, 276 

were visualised immunofluorescently in 66CL4 cells (Fig. 1D). In response to acute exposure to 277 

cortisol the percentage of foci positive cells was significantly increased, and this effect was inhibited 278 

by prior incubation with RU486 (Fig. 1E). RAD51 is involved in homologous recombination of double 279 

stranded DNA breaks. Elevated levels of RAD51 correlate with poor clinical outcome in certain breast 280 

cancers and RAD51 is often over expressed in human triple negative breast cancer cell lines [40]. 281 

RAD51 foci were examined in cells exposed to cortisol and a significant increase was observed, 282 
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which was reversed with the addition of RU486 (Fig. 1F). These in vitro analyses demonstrate that 283 

murine mammary carcinoma cells respond to glucocorticoids in a similar manner to the human cell 284 

lines previously examined [10]. 285 

To determine if the effect of cortisol on cell migration was mediated through increased expression of 286 

iNOS, 66CL4 cells were transfected with siRNA directed towards NOS2 (siNOS2) or a scrambled 287 

control (siControl) (Fig. 1G). Cortisol significantly increased the migration of siControl transfected 288 

66CL4 cells through transwell membranes, and knockdown of iNOS negated the effect of cortisol on 289 

migration (Fig. 1H). Knockdown of NOS2 also reduced the expression of the invasion-related genes 290 

TWIST1 and VEGFA (Supplementary Fig. 1E). Furthermore, using the in vitro scratch assay as a 291 

measure of cell migration, treatment with cortisol was seen to promote migration, and this was 292 

reduced by inhibition of the GR and iNOS (Supplementary Fig. 1G). To determine if cortisol or 293 

inhibition of iNOS has effects on cell proliferation, 66cl4 cells were incubated with cortisol for 24 294 

hours alongside RU486, as well as L-NAME. None of the treatments had an effect on cell 295 

proliferation (Supplementary Fig. 1F). Taken together these results demonstrate that cortisol 296 

increases the invasive potential of mammary tumour cells, through increased expression of 297 

metastatic markers and NO signalling.  298 

3.2 Inhibition of NOS reduces primary tumour growth and propensity for metastatic spread in 299 

stressed mice 300 

A syngeneic mouse model of highly metastatic mammary tumours was used to examine the effects 301 

of psychological stress on tumourigenesis in combination with NOS inhibition. 66CL4 cells were 302 

chosen as their route of dissemination has been characterised as rapidly colonizing the lung but not 303 

liver, unlike 4T1 cells which colonise both [41]. Female mice bearing subcutaneous 66CL4 tumours 304 

were randomized into groups and underwent a program of restraint stress (RS) – a  model of 305 

psychological stress known to induce sustained elevation of cortisol [42]. Groups were then further 306 

stratified into saline (vehicle) treated or L-NAME, the pan-NOS inhibitor treated mice (Fig. 2A)  307 

There was no significant difference in tumour volume observed after 14 days between vehicle and L-308 

NAME treated groups. In previous studies, reductions were seen after longer time courses as well as 309 

in combination with conventional chemotherapies [14]. There was also no difference in primary 310 

tumour volume between vehicle and stress groups, a normal observation in stress studies [43]. 311 

However, at 14 days a significant reduction in tumour volume was observed between the stress and 312 

L-NAME + stress groups (Fig. 2B). The weight of the primary tumours was also reduced in L-NAME 313 

treated groups, however not significantly so (Supplementary Fig. 2A). An increase in NO in the 314 

tumour microenvironment can stimulate microvascularisation [44, 45], and it is therefore 315 
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hypothesised that inhibition of NOS may serve as a regulator of angiogenic activity. To evaluate the 316 

degree of angiogenesis in the primary tumours, CD31 expression was immunofluorescently 317 

quantified as a measure of microvessel density. There was no difference in microvessel density 318 

between the vehicle and L-NAME treated groups. However, a significant increase in microvessel 319 

density was observed in the stress group compare to the vehicle treated, and this was significantly 320 

reduced in the L-NAME + stress group (Fig. 2C).  321 

To examine the metastatic propensity of 66CL4 tumours in stressed mice, metastatic colonization of 322 

the lung was examined using histopathology. Stressed mice had significantly more metastatic 323 

nodules per lung compared to vehicle treated mice, and in stressed mice treated with L-NAME a 324 

significant reduction in metastatic lung colonization was seen (Fig. 2D). The marker of proliferation 325 

Ki67 was quantified in the metastases, and a significant increase was also seen in stressed mice 326 

compared to vehicle treated (Fig. 2E). Twist1, a marker of metastasis which has been shown to 327 

promote metastatic seeding and spread in breast cancer [46, 47], was quantified in the lungs of 328 

experimental mice. The expression of Twist1 was significantly elevated in the lungs of stressed mice 329 

compared to vehicle treated. Expression in stressed mice decreased with L-NAME treatment, 330 

although still remained significantly higher that vehicle treated (Fig. 2F).  331 

3.3 Stress differentially regulates genes associated with tumourigenesis in the lungs of tumour-332 

bearing mice 333 

A transcriptomics analysis using microarrays was performed on the whole lungs of tumour-bearing 334 

mice to probe the effects of stress on metastatic spread by identifying stress-related changes in gene 335 

expression, and explore changes that can be reversed by L-NAME treatment (Fig. 3 and 336 

Supplementary data 2). The results identified 212 genes that are significantly upregulated in the 337 

stress group compared to the vehicle only control group, 18 of which are also significantly 338 

downregulated in the L-NAME + stress cohort compared to the stress only group (Fig. 3A). Functional 339 

analysis of the proteins encoded by the stress-induced transcripts indicates that stress provokes 340 

changes in gene expression associated with cell division, proliferation and chemotaxis (Fig. 3B and 341 

Supplementary data 2). Furthermore, of particular relevance were genes associated with cellular 342 

response to DNA damage, blood vessel development and cell migration. Indeed, a significant 343 

(p<1.0e-16) protein-protein interaction (PPI) network derived from the Mus musculus medium 344 

confidence interactions curated in the STRING database [36] exhibits two connected sub-networks in 345 

the stress-induced gene products, that are centred on a highly connected group of proteins required 346 

for the mitotic cell cycle on the one hand, and cell chemotaxis and chemokine signalling on the other 347 

(Fig. 3B).  As expected from the data in Fig. 2Fthe Twist1 transcription factor is in the group of genes 348 
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identified as being significantly induced by stress, along with the related regulator Twist2. 349 

Hierarchical clustering of the microarray transcript abundance data for the stress-induced genes was 350 

used to identify groups of transcripts that are potentially co-regulated across the experimental 351 

conditions and revealed a group of 75 containing all 18 of the stress-induced transcripts identified as 352 

being responsive to correction by L-NAME (Fig. 3C). Analysis in STRING generated a significant PPI 353 

network (p = 1 × 10
−13

)
 
with components integral to the control of the mitotic cell cycle and 354 

chemokine signalling, suggesting that L-NAME functions to ameliorate the effects of stress via 355 

perturbations in these processes (Fig. 3C). The aurora kinase protein A (AURKA) is prominent as one 356 

of the L-NAME reversible gene products identified in this analysis, and the network results suggest 357 

an important role in the mediation of the effects of stress on breast cancer. AURKA is required for 358 

correct progression through the mitotic cell cycle and has previously been implicated in 359 

tumourigenesis, with increased expression associated with migration and metastasis [48-50].   It is 360 

ca. 5-fold upregulated in the stressed mice, a change that is completely reversed by L-NAME 361 

(Supplementary Fig. 2B), and, since it is also among the top 3% of most highly connected proteins in 362 

the entire STRING mouse PPI network, this can be expected to generate extensive effects on cell 363 

function. CCR2 chemokine receptor binding proteins are significantly enriched in the network in Fig. 364 

3C, including CCL2, CCL7, CCL12. Increases in expression of the CCL2 gene, encoding a monocyte 365 

chemoattractant, are associated with enhanced recruitment of infiltrating macrophages, promoting 366 

metastasis and correlating with poor overall survival [51]. In addition, Arg1, a marker of M2 367 

macrophages [52] was significantly upregulated in the lungs from stressed mice.  Furthermore 368 

S100/Ca-BP-9k-type calcium binding protein are also enriched. The S100A8 protein is secreted by 369 

monocytes during the inflammatory response and is highly expressed in aggressive breast cancers 370 

where it has been linked to the facilitation of invasion and metastasis [53, 54].  S100A8, S100A4 and 371 

S100B are ligands for the Receptor for Advanced Glycation Endproducts (RAGE) and have been 372 

implicated in RAGE-dependent signalling that plays diverse roles in cell biology and disease 373 

processes, including inflammation, tumour outgrowth and metastatic colonisation [53-55]. 374 

Of the 36 genes that are significantly downregulated in the stressed mice compared to the control 375 

group, only 2 are also significantly upregulated in the stress + L-NAME group compared to the stress 376 

only cohort (Supplementary data 1). The proteins encoded by the stress-repressed gene are 377 

significantly enriched for localization in the extracellular space (GO:0005615, p=1.82E-08) and for 378 

functions associated with complement and coagulation cascades (KEGG 4610, p=2.71E-05) and 379 

lipocalin binding (IPR002971, p=7.56E-05). 380 

Genes that were identified as being induced by stress - but repressed by L-NAME in the metastatic 381 

lungs of stressed mice - were also examined in relation to distant metastasis-free survival (DMFS) in 382 
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breast cancer patients (Fig. 3D). Patients were not stratified into subtype as the GR can be expressed 383 

on both Luminal and HER2+ subtypes as well as basal. High expression of AURKA (p=1.9e-8, logrank 384 

test) and S100A8 (p=0.0012, logrank test) were significantly correlated with poor probability of 385 

DMFS. As was high expression of LMNB1 (p=0.0013, logrank test), which encodes for lamin B1 and 386 

PRRX2 (p=0.031, logrank test), a transcription factor related to EMT.   387 

3. 4 Stress associated genes are correlated with poor survival in invasive breast cancer subtypes 388 

Glucocorticoids have been shown to regulate genes associated with breast cancer progression, 389 

including genes involved in neoplasm invasiveness and cell transformation [7]. The clinical 390 

importance of the glucocorticoid receptor (GR), as well as other genes linked to breast cancer 391 

progression such as Twist1 - a transcription factor identified as essential for the metastatic process 392 

[56] - was evaluated using survival analysis.  The association between expression and recurrence-393 

free survival (RFS) was investigated using gene expression and survival data from a publicly available 394 

microarray database (KM Plotter) [57]. Because we observed increases in NO2
-
 in both TNBC and 395 

luminar A cell lines, cohorts were stratified according to intrinsic subtype (Basal-like, HER2, Luminal 396 

A, Luminal B) and further into high and low gene expression. Kaplan-Meier analysis shows high 397 

expression of GR correlates with lower probability of RFS in basal-like breast cancer (p=0.021, 398 

logrank test; Fig. 4A), but not in HER2 (p=0.17, logrank test; Fig. 1B), luminal A or B (Fig. 4C-D). 399 

Similarly, high expression of Twist1 was shown to correlate with significantly worse probability of 400 

RFS in basal-like (p=0.0087, logrank test; Fig. 4A) and HER2 (p=0.028, logrank test; Fig. 4B) breast 401 

cancers, but not luminal A or B (Fig. 4C-D). 402 

Increases in expression of iNOS in breast cancer have also been correlated with invasiveness and 403 

increased vascularization [21], and aberrant NO signalling is linked to induction of angiogenesis 404 

through stimulation of vascular endothelial growth factor (VEGF) [58, 59]. Mining of the publically 405 

available TCGA breast cancer dataset was carried out in relation to iNOS (NOS2) and VEGFA, genes 406 

closely involved in breast cancer progression. Expression of the chemokine CCL2 similarly implicated 407 

in breast cancer metastasis was also examined [60]. Comparison of the expression of NOS2, VEGFA 408 

and CCL2 across intrinsic subtypes of breast cancer demonstrates that these genes are significantly 409 

associated with basal breast cancers compared to other subtypes (Fig. 4E-G).  410 

3. 5 Cortisol promotes the release of pro-tumourigenic monocyte chemoattractants from breast 411 

cancer-macrophage co-cultures  412 

Glucocorticoids have been shown to activate tumour associated macrophages (TAM’s), which play a 413 

crucial role in tumour cell dissemination [61], as well as inducing polarization of macrophages to the 414 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

 

pro-tumourigenic M2 phenotype [62, 63], and upregulating anti-inflammatory mediators such as IL-415 

10 which also promote TAM recruitment and activation [64, 65]. In breast cancers the monocyte 416 

chemoattractant C-C Motif Chemokine Ligand 2 (CCL2), produced by tumour cells to recruit and 417 

polarize M2 macrophages, has been shown to correlate with decreased survival, as well an increase 418 

in angiogenesis and metastasis [46, 51, 66].   419 

In murine breast cancer cells (66CL4) treatment with cortisol significantly increased the expression 420 

of CCL2 (Fig. 5A). In order to further investigate the role of glucocorticoids in potentially promoting 421 

metastasis through an immune-mediated mechanism, 3D heterospheroids were cultured using 422 

murine breast cancer cells and murine primary macrophages. Primary bone marrow-derived 423 

monocyctes (BMDM) were isolated, matured and polarized to either M1 or M2 macrophages. 424 

Markers of polarization (M1 – iNOS, M2 – Arginase 1) were confirmed by qPCR (Fig. 5B-C). 425 

Expression of the receptor for CCL2, CCR2 was also significantly increased in M2 macrophages, but 426 

not M1, compared to an internal control (Fig. 5D). Macrophages were combined with 66CL4 cells 427 

and grown as 3D heterospheroid co-cultures to model a tumour-TAM environment (Fig. 5E). 428 

Spheroids were treated with cortisol and L-NAME alone and in combination for 7 days and levels of 429 

CCL2 and IL-10 in the media were assayed. Cortisol treatment had no effect on levels of either CCL2 430 

or IL-10 secreted by 66CL4+M1 spheroids. However levels of both CCL2 and IL-10 were significantly 431 

increased in response to cortisol treatment of 66CL4+M2 spheroids. As expected, inhibition of NOS 432 

using L-NAME had no effect alone, and in combination with cortisol did not affect the cortisol-433 

induced release of CCL2 or IL-10 (Fig. 5F-G).  434 

4 Discussion  435 

This study demonstrates the effects of glucocorticoids on pro-tumourigenic signalling and metastatic 436 

spread in breast cancer, and identifies a novel role for NOS inhibition.  437 

The results show that the stress hormone cortisol increases the production of RNS and DNA damage 438 

through a NOS-mediated mechanism in mouse mammary tumour cells.  A strong correlation has 439 

been shown to exist between oxidative stress, DNA damage and tumourigenesis, however there has 440 

been little conclusive evidence to suggest glucocorticoids exert a direct effect on this process.  441 

Previous work has shown acute exposure to cortisol stimulates the production of RNS in human 442 

breast cancer cell lines [10]. To confirm these effects would translate into an in vivo model of breast 443 

cancer, a mouse mammary tumour line was studied. Cortisol was able to activate the GR in mouse 444 

mammary tumour cells, and through GR activation increase levels of nitrite in a similar manner. 445 

Pharmacological inhibition of NOS was able to reverse cortisol-mediated nitrite production, and 446 

furthermore selective inhibition of iNOS proves that cortisol-induced generation of nitrite is 447 
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facilitated through iNOS specifically. In the same cell line, DNA damage and repair, as evidenced by 448 

the formation of phosphorylated γ-H2AX foci and RAD51 foci, was also significantly increased in 449 

response to cortisol. Inhibition of NOS was able to negate the effect of cortisol on DNA damage 450 

indicating that the generation of NO is partly responsible for inducing DNA damage. Data from 451 

microarray analysis also reveals that in the lungs of stressed mice pathways pertaining to response 452 

to steroid hormone and response to DNA damage and were significantly enriched (Supplementary 453 

data 1). Taken together these results demonstrate the involvement of cortisol-regulated NO in DNA 454 

damage, and strengthens the hypothesis that one of the mechanisms through which exposure to 455 

glucocorticoids may influence tumourigenesis is through the upregulation of oxidative stress.   456 

Furthermore, the in vitro data also demonstrates that not only does cortisol upregulate expression 457 

of iNOS, but also the expression of VEGF and Twist1, two pro-metastatic markers heavily involved in 458 

the transformation to aggressive phenotypes. The deregulation of growth factor signalling is a 459 

hallmark of tumourigenesis, and is usually observed in invasive tumours [67]. The production and 460 

signalling of the potent angiogenic factor VEGF is often upregulated in the hypoxic tumour 461 

microenvironment and plays a role in the increased NO signalling within tumours. VEGF binding 462 

mobilizes intracellular calcium which induces eNOS and the production of NO, increasing the 463 

angiogenic potential by creating a feedback mechanism whereby VEGF induces NO, and NO in turn 464 

upregulates VEGF [58]. Therefore the increased NO signalling stimulated by glucocorticoids may 465 

serve to promote angiogenesis through VEGF in a chronic stress model.  466 

In our study, we found that cortisol can increase NO production in luminal A MCF-7 cells, however 467 

although expression of GR correlated with lower probability of RFS in basal-like breast cancer it was 468 

not significant in other breast cancer subtypes as previously described [8].  469 

In the syngeneic mouse model of breast cancer used in this study, daily restraint stress - a well 470 

characterised model of psychological stress - had no effect on primary tumour volume. This is in 471 

keeping with previous studies, and supports the view that stress hormone signalling does not 472 

directly affect primary tumour growth. The effects of chronic restraint stress on primary tumour 473 

volume are instead much more pronounced when combined with chemotherapy, with stress 474 

reducing the efficacy of chemotherapies in breast cancer [30], as well as in lung carcinoma [68]. 475 

Chronic stress alone has however been shown to affect the lymph vasculature surrounding the 476 

primary tumour, with restraint stress significantly increasing the lymphatic network and metastasis 477 

to the lymph node in a TNBC mouse model [5]. Similarly, in this study restraint stress significantly 478 

increased the microvasculature of the primary tumour compared to the control, indicating that 479 

whilst the tumours grew at the same rate, the primary tumours in stressed mice were more 480 
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aggressive and had an increased propensity for metastasis. Inhibition of NOS was able to exert a 481 

significant effect on primary tumour growth when administered alongside restraint stress. There was 482 

a significant reduction in primary tumour volume in the L-NAME + stress group compared to the 483 

stress alone, as well as a reduction in microvasculature indicating an inhibition of angiogenic NO 484 

signalling. As such the data gathered from this in vivo trial suggests that inhibition of NOS may be 485 

able to reduce the pro-tumourigenic effect of psychological stress in breast cancer, through 486 

reduction of NO-mediated angiogenesis. This is supported by the observation that stress significantly 487 

increased metastatic colonization of the lungs and cell proliferation, both of which were reduced by 488 

NOS inhibition.  489 

However, whilst the inhibition of NOS alongside glucocorticoid treatment had effects on tumour 490 

cells and in vivo, NOS inhibition had no effect on the cortisol-induced release of pro-tumourigenic 491 

chemokines from breast cancer-macrophage spheroids. This may indicate a dual role for 492 

glucocorticoids in metastatic processes, by which glucocorticoids promote the pro-inflammatory and 493 

pro-tumourigenic release of NO from tumour cells, and the anti-inflammatory pro-metastatic 494 

recruitment of M2 macrophages, which is an NO independent process (Fig. 6).  495 

Twist1, a transcription factor known to promote EMT, invasiveness and metastasis, was upregulated 496 

both in vitro in response to cortisol, and in vivo in the lungs of stressed mice. Furthermore, 497 

interrogation of breast cancer data sets identified expression of both the GR and Twist1 as markers 498 

of poor prognosis specifically in aggressive subtypes of breast cancer. This finding is consistent with a 499 

previous discovery that activation of the GR is associated with poor prognosis in ER- breast cancers, 500 

and is also linked to activation of epithelial-to-mesenchymal transition (EMT) pathways [8]. 501 

Increased NO signalling driven by an upregulation of iNOS expression in basal-like breast cancers can 502 

also activate oncogenic signalling networks that induce EMT [69]. The data presented therefore 503 

suggests a potential mechanism through which glucocorticoid signalling and can promote metastatic 504 

dissemination and modulation of the tumour microenvironment through increased NO signalling 505 

and upregulation of Twist1.  506 

Interestingly, Twist1 has also been shown to modify the tumour microenvironment to promote 507 

angiogenesis and metastasis by inducing the secretion of CCL2, and subsequently attracting 508 

macrophages in a model of breast cancer [70]. Treatment with cortisol increased the expression of 509 

CCL2 in 66CL4 cells alone, and in 66CL4-macrophage spheroids this result was verified, with levels of 510 

CCL2 released significantly increasing as a result of cortisol treatment.  It is unclear if in the 511 

experiments presented here, cortisol induces the production of CCL2 directly, or as a result of 512 

increased Twist1. However, the identification in the transcriptomics analysis of CCL2, as well as CCL7 513 
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and CCL12 as significantly induced in the lungs of stressed tumour-bearing mice provides further 514 

indication that stress can promote metastasis through macrophage signalling. This finding is in 515 

agreement with previous research detailing the role of β-adrenergic signalling on polarization of 516 

macrophages to an M2-like phenotype [71]. Indeed the both arms of the stress response have well 517 

characterised effects on immune function, with chronically elevated levels of glucocorticoids also 518 

having been shown to be immunosuppressive [3]. Glucocorticoids have also been shown to 519 

upregulate the expression of CCR2 - the receptor for CCL2, CCL7 and CCL12 - in human monocytes 520 

[72], and enhance the migratory potential of monocytes through upregulation of CCR2 [73]. The M2 521 

marker Arginase 1 (Arg1) was also identified as significantly upregulated by stress in the lungs, 522 

suggesting that pro-tumourigenic M2 macrophages were being recruited as opposed to M1 523 

macrophages [52, 74].   524 

Similarly our transcriptome analysis also identified S100A8, another signalling protein involved in 525 

macrophage-promoted tumour invasion, as being significantly induced by stress, an effect which was 526 

then negated by NOS inhibition using L-NAME.  At metastatic sites macrophages can induce 527 

expression of S100A8, which enhances tumour cell migration and invasion, and acts as a marker of 528 

tumour aggressiveness [53].  Although not explicitly related to immune cell function, the same 529 

pattern of induction by stress and regulation by L-NAME was also observed with AURKA, which is 530 

also heavily implicated in metastatic colonization in breast cancer [48, 75]. Furthermore 531 

upregulation of paired-related homeobox1 (PRRX2), a transcription factor implicated in invasion and 532 

the induction of EMT, is seen in response to stress and reduced upon treatment with L-NAME. The 533 

stress-induced expression of these genes, and subsequent downregulation in stressed mice treated 534 

with L-NAME, coupled with evidence that high expression is correlated with poor probability of 535 

metastasis-free survival, indicates a mechanistic link between stress and metastasis in breast cancer. 536 

Furthermore, the data suggests stress is able to modulate the function of M2-like macrophages and 537 

alter cytokine signalling within the tumour microenvironment which promotes metastasis. This 538 

cytokine signalling is not blocked by L-NAME, however it may represent another potential new 539 

target for stress-mediated acceleration of cancer metastasis.  540 

In conclusion, this study highlights new insights into the effect of stress hormone signalling on 541 

tumorigenesis in a model of invasive breast cancer, and the potential therapeutic benefit of NOS 542 

inhibition. This may be of relevance to highly stressed breast cancer patients, and especially to 543 

patients with aggressive cancer subtypes such as basal, where an increase in the expression of the 544 

GR and GR-mediated signalling may contribute to the spread of tumour cells.  545 
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Figure Legends 747 

Fig. 1 Glucocorticoids increase ROS/RNS production and DNA damage in murine breast cancer 748 

cells. (A) 66CL4 cells were incubated with cortisol +/- RU486, L-NAME and 1400W. Levels of 749 

intracellular nitrite (NO2) were measured using electrochemical sensors. (B) 66CL4 and MCF-7 cells 750 

were incubated with cortisol +/- RU486 and L-NAME. Extracellular nitrite levels were quantified 751 

using the Griess assay. (C) 66CL4 cells were incubated with cortisol for 24hrs and the expression of 752 

NOS2, VEGFA, TWIST1 and ACTB quantified using qPCR. Ct values were normalised against β-actin 753 

and fold change calculated using the delta-Ct method. (D) Cells were immunofluorescently stained 754 

for phosphorylated γ-H2AX and RAD51. Representative images shown. (E-F) Cells with >5 foci were 755 

scored as positive and expressed as % of total cells. (G) 66CL4 cells were transfected with NOS2-756 

directed siRNA (siNOS2) or scrambled control siRNA (siControl) and expression of iNOS quantified by 757 

western blot. (H) siControl or siNOS2 transfected 66CL4 cells were plated onto transwell permeable 758 

supports and treated with cortisol for 4 hours. Migrated tumour cells were stained and counted. 759 

Data expressed as number of cells/field. Mean ± SEM expressed and statistical significance was 760 

determined one sample t-test, one way or two way ANOVA (post hoc Tukey’s multiple comparisons). 761 

* = p<0.05, ** = p<0.01, ***= p<0.001.  762 

Fig. 2 Inhibition of NOS reduces primary tumour growth and propensity for metastatic spread in 763 

stressed mice. (A) 66CL4 mouse mammary tumour cells were transplanted into the fourth mammary 764 

fat pad of female BALB/C mice. Groups were exposed to restraint stress (2hrs/day)(n=8) or no stress 765 

(Vehicle)(n=9), in combination with L-NAME treatment (80mg/kg)(n=7). (B)  Primary tumour volume. 766 

Data presented as mean +/- SEM. (C) (Right) Primary tumours were immunofluorescently stained for 767 

CD31 expression, representative panels shown, (left) microvessel density was quantified and 768 

expressed as mean +/- SEM. (D) Lungs were resected and sections taken midway through the lung 769 

were stained with H&E to quantify metastatic nodules. (Right) Arrows indicate metastatic nodules, 770 

representative panels shown, scale = 1mm. (E) Lung sections were immunohistochemically stained 771 

for Ki67, and staining intensity quantified using ImmunoRatio. (Right) representative images shown. 772 

(F) RNA was extracted from a whole resected lung and the expression of TWIST1 and ACTB 773 

quantified using qPCR. Ct values were normalised against β-actin and relative expression calculated 774 

using the delta-Ct method. Mean ± SEM expressed, for box-plots whiskers: min to max. Statistical 775 

significance was determined using one or two way ANOVA (post hoc Tukey’s multiple comparisons). 776 

* = p<0.05, ** = p<0.01, ***= p<0.001.  777 
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Fig. 3 Stress differentially regulates genes associated with tumourigenesis in the lungs of tumour-778 

bearing mice. Transcriptomics analysis identifies changes in gene expression in the whole lungs of 779 

tumour-bearing mice subjected to combinations of confinement stress (Stress) and treatment with 780 

the NOS inhibitor L-NAME. (A) Numbers of significantly differentially expressed transcripts identified 781 

between the treatment groups using Rank Products analysis (Vehicle control group, n=4; Stress, n=3; 782 

L-NAME, n=3; Stress + L-NAME, n=3). Analysis of the overlap between the treatment groups 783 

identifies significant stress-related changes in transcription that are reversible by L-NAME treatment. 784 

Full details are provided in Supplementary data 1. (B) The 223 transcripts significantly upregulated in 785 

the lungs of stressed tumour bearing mice compared to the vehicle control group are enriched for 786 

functions associated with cell proliferation, chemotaxis and blood vessel development (see 787 

Supplementary data 1 for the complete analysis). A protein-protein interaction network derived 788 

from the Mus musculus medium confidence (0.4) interaction network in the STRING database shows 789 

two connected sub-networks in the stress-induced gene products. Only connected nodes are shown: 790 

the network for all nodes is significantly enriched for interactions compared to randomized sets, p-791 

value < 1 × 10
−16 

(C). Stress-induced transcripts that co-cluster with the 19 L-NAME responsive stress-792 

induced transcripts generate a significant PPI network (p = 1 × 10
−13

) which suggests roles for Aurka, 793 

Ccl2 and certain S100 proteins (see also Supplementary data 1). (D) High/low expression of AURKA, 794 

S100A8, LMNB1 and PRRX2 and distant metastasis-free survival (DMFS) was compared.  795 

Fig. 4 Stress associated genes are correlated with poor survival in invasive breast cancer subtypes. 796 

Breast cancer microarray datasets were stratified into subtype; (A) Basal-like, (B) HER2, (C) Luminal 797 

A and (D) Luminal B, and further into high/low expression of NR3C1 (GR) or TWIST1, recurrence-free 798 

survival (RFS) was compared using Kaplan-Meier survival plots. Expression of (E) NOS2, (F) VEGFA 799 

and (G) CCL2 was examined in the TCGA data set of breast cancers (n=908). Comparison of 800 

expression levels in intrinsic subtypes was carried out using one-way ANOVA and Tukey’s multiple 801 

comparison test. Mean ± SEM expressed, for box-plots whiskers: 5-95 percentiles. Statistical 802 

significance was determined using one way ANOVA (post hoc Tukey’s multiple comparisons). * = 803 

p<0.05, ** = p<0.01, ***= p<0.001. 804 

Fig. 5 Cortisol promotes the release of pro-tumourigenic monocyte chemoattractants from breast 805 

cancer-macrophage co-cultures. (A) 66CL4 cells were incubated with cortisol for 24hrs and the 806 

expression of CCL2 and ACTB quantified using qPCR. (B-D) Bone marrow-derived macrophages 807 

(BMDM) were isolated, matured and polarized to M1 or M2. Markers of polarization (NOS2, ARG-1) 808 

and CCR2 were quantified using qPCR. Ct values were normalised against β-actin and relative 809 

expression vs an internal reference calculated using the delta-Ct method. (E) Macrophages were co-810 

cultured with 66CL4 breast cancer cells to form 3D spheroids, and incubated with cortisol +/- L-811 

NAME for 7 days. Representative images shown. (F) Media from the spheroid co-cultures was 812 

removed and assayed for CCL2 and IL-10 using ELISA. Levels were normalized to protein extracted 813 

from spheroids. Mean ± SEM expressed and statistical significance was determined using students t-814 

test or two way ANOVA (post hoc Tukey’s multiple comparisons). * = p<0.05, ** = p<0.01, ***= 815 

p<0.001.  816 

Fig. 6. Glucocorticoids promote metastatic dissemination through increased NO-mediated DNA 817 

damage and angiogenic signalling, as well as through immunomodulation.  818 

Supplementary Fig. 1(A) MCF-7 cells were incubated with cortisol or dexamethasone (Dex). Levels of 819 

intracellular nitrite (NO2) were measured using electrochemical sensors. (B) Extracellular nitrite 820 

levels were quantified using the Griess assay. (C) Cells were stained for the glucocorticoid receptor 821 

(GR) (green) and counterstained with DAPI (blue). (D) 66CL4 cells were treated with cortisol for 822 

30mins or 24hrs. Expression of the glucocorticoid receptor (NR3C1) was quantified using qPCR. Ct 823 
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values were normalised against β-actin and fold change calculated using the delta-Ct method. (E) 824 

66CL4 cells were transfected with NOS2-directed siRNA (siNOS2) or scrambled control siRNA 825 

(siControl) the expression of NOS2, VEGFA, TWIST1 and ACTB quantified using qPCR. Ct values were 826 

normalised against β-actin and fold change calculated using the delta-Ct method. (F) 66CL4 cells 827 

were incubated with cortisol +/- RU486, L-NAME and 1400W and cell viability measured using the 828 

MTT assay. Viability expressed at a percentage of control.  (G) 66CL4 cells were grown to confluency 829 

and a wound made in the monolayer. Area closure indicates migration and is expressed as are 830 

closure normalised to area at 0hrs. 831 

Supplementary Fig. 2 (A) 66CL4 mouse mammary tumour cells were transplanted into the fourth 832 

mammary fat pad of female BALB/C mice. Groups were exposed to restraint stress (2hrs/day) or no 833 

stress (Vehicle), in combination with L-NAME treatment (80mg/kg). Primary tumours were weighed 834 

at necropsy (B) Transcript abundance of AURKA in the resected lungs of experimental mice 835 

quantified by microarray expression analysis.  836 

 837 

 838 

 839 

 840 

 841 
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(B) Protein-protein interaction network for gene products significantly induced 

by stress 

Pathway Description Gene

Count

FDR

Cell cycle 

(GO:0007049)
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Highlights 

• The stress hormone cortisol increases production of reactive nitrogen species (RNS) an 

induces DNA damage through a nitric oxide synthase (NOS)-mediated mechanism in breast 

cancer cells 

• Psychological stress promotes metastatic spread, and this in reversed by inhibition of NOS in 

vivo. 

• Stress induces expression of genes associated with tumourigenesis in the lungs of tumour 

bearing-mice.  

• Cortisol promotes the release of pro-tumourigenic monocyte chemoattractants from breast 

cancer-macrophage co-cultures 
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