Accepted Manuscript

Reduced skeletal muscle protein balance in paediatric crohn's disease

Amanda Davies, Aline Nixon, Rafeeq Muhammed, Kostas Tsintzas, Sian Kirkham, Francis B. Stephens, Gordon W. Moran

PII: S0261-5614(19)30228-6

DOI: https://doi.org/10.1016/j.clnu.2019.05.017

Reference: YCLNU 3908

To appear in: Clinical Nutrition

Received Date: 15 January 2019

Revised Date: 2 May 2019

Accepted Date: 16 May 2019

Please cite this article as: Davies A, Nixon A, Muhammed R, Tsintzas K, Kirkham S, Stephens FB, Moran GW, Reduced skeletal muscle protein balance in paediatric crohn's disease, *Clinical Nutrition*, https://doi.org/10.1016/j.clnu.2019.05.017.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	REDUCED SKELETAL MUSCLE PROTEIN BALANCE IN PAEDIATRIC		
2	CROHN'S DISEASE.		
3			
4	SHORT Title: Muscle Physiology in paediatric Crohn's disease		
5	Amanda Davies ¹ , Aline Nixon ¹ , Rafeeq Muhammed ² , Kostas Tsintzas ¹ , Sian Kirkham ³ ,		
6	Francis B. Stephens ⁴ , Gordon W. Moran ^{5,6} .		
7	1. Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham		
8	2. Birmingham Women's and Children's Hospital, Birmingham		
9	3. Nottingham Children's Hospital, Nottingham University Hospitals, Nottingham		
10	4. Sport and Health Sciences, University of Exeter, Exeter		
11	5. Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham		
12	6. National Institute of Health Research Nottingham Biomedical Research Centre at the		
13	Nottingham University Hospitals and University of Nottingham, Nottingham		
14			
15	Corresponding Author:		
16	Gordon W. Moran		
17	Clinical Associate Professor in Gastroenterology		
18	NIHR Nottingham Biomedical Research Centre,		
19	Nottingham University Hospitals NHS Trust & The University of Nottingham, Nottingham,		
20	United Kingdom		
21	E-mail: Gordon.Moran@nottingham.ac.uk		
22	Telephone no: +44 (0)115 9249924 ext 70608		
23			
24			
25			

- 26 Abbreviations: ASMI: appendicular skeletal muscle index; a-v: arterio-venous; BCAA:
- 27 branched chain amino acids; BMI: body mass index; CD: Crohn's disease; CDM: male CD;
- 28 Con: controls; ConM: male controls; CRP: C-reactive protein; dom: dominant arm; EGTA:
- 29 Ethyleneglycol-Bis-β-Aminoethylether Tetraacetate; FCP: faecal calprotectin; FFM: fat free
- 30 mass; FM: fat mass; HBI: Harvey Bradshaw Index; IL-1β: Interleukin 1 beta; IL-6:
- 31 Interleukin 6; IPAQ: international physical activity questionnaire; LBM: lean body mass; LM:
- 32 lean mass; non-dom: non-dominant arm; REE: resting energy expenditure; RER: respiratory
- 33 exchange ratio (volume CO₂ expired / volume of O₂ inspired); SDS: standard deviation score;
- 34 TNFα: Tumor necrosis factor alpha; TBM: total body mass.

CEP CEP

35 ABSTRACT

- Background and Aims: An inability to respond to nutrition could be implicated in low
 muscle mass in Crohn's disease. We aim to determine skeletal muscle metabolic response to
 feeding in Crohn's disease and healthy volunteers.
- 39 Methods: Twenty asymptomatic Crohn's disease participants (15.6 ± 0.5 yrs; BMI 20.6 ± 0.9
- 40 kg/m²); 9 with active disease (faecal calprotectin, 808 ± 225 ug/g and C-reactive protein, $2.2 \pm$
- 41 1.2 mg/dl), 11 in deep remission (faecal calprotectin, 61 ± 12 ug/g and C-reactive protein, 0.3
- 42 $\pm 0.2 \text{ mg/dl}$) and 9 matched healthy volunteers (16.0 $\pm 0.6 \text{ yrs}$; BMI 20.7 $\pm 0.6 \text{ kg/m}^2$) were
- 43 recruited. Participants had a dual energy X-ray absorptiometry scan, handgrip dynamometer
- 44 test, wore a pedometer and completed a food diary. Arterialised hand and venous forearm
- 45 blood samples were collected concurrently and brachial artery blood flow measured at
- 46 baseline and every 20mins for 2hrs after the ingestion of a standardised liquid meal. Net

47 balance of branched chain amino acids and glucose were derived.

48 **Results:**

Controls had a positive mean BCAA balance. CD participants had an initial anabolic response to the meal, with increasing BCAA balance between t=0 & t=20, but returned to negative by t=60. This was associated with reduced FFM z-scores in CD but not with insulin resistance or disease activity. Exploratory analyses suggest that negative postprandial BCAA response seen in CD is predominant in males (p=0.049), with associated lower appendicular muscle mass (p=0.034), higher muscle fatigue (p=0.014) and reduced protein intake (p=0.026).

an explanation for the reduced muscle mass seen in CD. Further mechanistic studies will be
needed to confirm these findings.

- 58
- 59 Keywords: Crohn's disease; Inflammatory Bowel Disease; Nutrition; Sarcopenia.

60 INTRODUCTION

In the era of biological therapy and rising obesity in the general population ¹ malnutrition is 61 less prevalent in paediatric Crohn's disease (CD), though still an apparent complication in a 62 substantial minority ^{2,3,4}. Many of these patients also have disproportionately lower skeletal 63 muscle mass 5,6 . Reduced muscle mass is seen in active disease 7 , persists in remission 8 and 64 is negatively correlated with disease duration⁹. Low muscle mass has been linked to 65 decreased muscle function 10,11,12 , low bone mass and density 13,14 , reduced physical activity 66 ¹⁴, fatigue and impaired quality of life ¹⁵. 67 Skeletal muscle mass is determined by the balance between muscle protein synthesis and 68 breakdown, rates of which determine protein turnover. Children in active disease a have high 69 protein turnover ¹⁶. However, whereas conventional medical treatments such as 70 corticosteroids¹⁷, elemental diets¹⁷ and biological therapies¹⁸ reduce fasting protein 71 72 breakdown, they also reduce fasting protein synthesis, resulting in no change in net fasting protein balance when patients are in remission. 73 74 Protein synthesis is stimulated by protein nutrition, particularly the branched chain amino 75 acids (BCAA). Twelve weeks of elemental diet induce partial normalisation of muscle crosssectional area with no further change at 52 weeks even when patients are in remission ¹⁴. 76 Once the inflammatory burden is reduced, patients in remission may still suffer from low 77 muscle mass 8 , despite receiving apparently adequate protein nutrition 16,19 . 78 79 This suggests that reduced muscle mass in active disease is driven by inflammation and a suboptimal muscle protein synthetic response to protein feeding, termed anabolic resistance²⁰ 80 that may persist in remission. Anabolic resistance is thought to be the main driver of muscle 81 loss in critical illness, ageing and disuse ²¹. 82 83 We hypothesise that reduced muscle mass and function in paediatric CD patients could be associated with anabolic resistance. We aimed to measure skeletal muscle protein balance in a 84

cohort of paediatric CD patients and age- and BMI-matched controls in both the overnight-fasted and fed states.

87

88 MATERIALS AND METHODS

89 Study population

We aimed to recruit male and female, stable, asymptomatic CD outpatients (age 11-18 years). 90 Relevant CD symptoms were measured through a Harvey Bradshaw index ²². Patients were 91 92 approached from Nottingham University Hospitals Trust and Birmingham Women's and 93 Children's NHS Foundation Trust existing patient population. Disease activity was quantified through C-reactive protein (CRP), faecal calprotectin (FCP) and ileocolonoscopy 94 95 or magnetic resonance imaging (MRI). Active disease was defined as CRP >5mg/dl or FCP $>250\mu g/g$ or the presence of ulceration at ileocolonoscopy or MRI scan. In the absence of 96 these findings patients were classed as in deep remission. Any CD-related medication apart 97 98 from corticosteroids within 3 months prior to recruitment was permitted. Age-, gender- and 99 BMI-matched healthy volunteers were recruited through advertisements at both institutions, 100 through local press, and social media posts to parents. All potential participants were given 101 comprehensive written and verbal explanations of the study before giving written informed 102 consent (parental consent at ≤ 15 yrs) and were free to withdraw at any time. Participants 103 completed a general health questionnaire and underwent a short medical screening prior to 104 participation. The study was approved by the Health Research Authority (15/WM/0285) on the 26th July 2016 with the study conforming to the recognised standards of the Declaration 105 106 of Helsinki.

107 Outcome Measures

108 The primary outcome was forearm skeletal muscle protein net balance under fasted and fed109 conditions. Secondary outcomes were; forearm skeletal muscle glucose net balance; forearm

6

110 and whole body insulin sensitivity; resting and fed metabolic rate, daily physical activity; 111 forearm muscle isometric strength and fatigability; appendicular lean mass (LM) and 112 appendicular skeletal muscle index (ASMI); daily energy intake and dietary macronutrient 113 composition; and markers of active disease (interleukin (IL)-1 β , IL-6, TNF α , CRP and FCP). 114 We investigated the effect of gender and disease activity on the primary outcome in an 115 exploratory sub-analysis. Differences between arterialised venous and venous concentrations (a-v difference) of BCAA, 116 117 and glucose, multiplied by brachial artery blood flow and corrected for forearm lean mass 118 were used to determine the net balance of these nutrients across the forearm under fasted and fed conditions. Positive values indicated net tissue uptake, whereas negative values indicated 119 120 net release of nutrients. The following equation was used for a given nutrient (N): 121 Net balance of N (μ mol/min/100g of forearm lean mass) = {Blood flow (ml/min) x ([N]arterialised – [N]venous (mmol/L or µmol/L)}/1000 (not for glucose)/ {lean mass (g) x 122 123 100}. 124 Lean mass (LM) was measured by Dual-energy X-ray absorptiometry (DEXA) (Luna 125 Prodigy, GE Healthcare). The Matsuda index was used as an index of whole body insulin sensitivity ^{23,24}, with a lower index indicating a higher level of insulin resistance. Muscle 126 127 strength measurements were standardized for muscle size, as well as for height and age, using the method developed by Rauch et.al²⁵, to facilitate comparison. Appendicular LM (sum of 128 lean mass in the limbs measured by DEXA) and ASMI (appendicular lean mass (kg) / height 129

130 (m)²) were calculated to give more precise indices of skeletal muscle mass than total lean

131 mass alone.

132 Experimental protocol

Participants reported to the laboratory at 0800, following an overnight fast, having abstainedfrom strenuous exercise for the previous 48 hours. On arrival, their body composition was

135 assessed by DEXA. Body mass, whole body, and regional body composition and body mass 136 index were calculated. Subsequently, participants were asked to rest in a semi-supine position 137 on a bed while a cannula was inserted in a retrograde fashion into a superficial vein on the 138 dorsal surface of the dominant hand. This hand was kept in a hand-warming unit (air temperature 55°C) to arterialize the venous drainage of the hand 26 . A second cannula was 139 140 placed in an antecubital vein in the non-dominant forearm. Both these cannulas were used for blood sampling. After baseline blood samples, and measurements of brachial artery blood 141 142 flow (in the non-dominant arm), as measured by Doppler ultrasound (Toshiba Aplio 300), and 143 resting energy expenditure by indirect calorimetry (Cosmed, Italy), all participants ingested a 220ml bottle of Ensure plus nutrition shake (t = 0). This meal provided 330kcal, consisting of 144 145 30% of energy as fat (11g), 53% of energy as carbohydrates (44g), and 17% of energy as protein (14g). This meal composition mirrors dietary recommendations and specifically the 146 147 protein content equates to 32% of the daily protein requirements of the CD subjects (0.75g/kg 148 bw).

Arterialized-venous (2 ml) and venous (2 ml) blood were obtained concurrently from the heated hand vein and antecubital vein along with brachial artery blood flow measurements at t = 0 and every 20 minutes thereafter for 2 hours, so that forearm muscle net balance of amino acids and glucose could be calculated in the fasted and fed states. At t = 100 a final indirect calorimetry was performed providing resting energy expenditure (REE) and respiratory exchange ratio (RER) to compare with fasting levels.

At the end of the 2-hour postprandial period, an assessment of forearm muscle function was undertaken. Participants performed 12 maximal static voluntary contractions using a dynamometer (MIE medical research Ltd. UK), with both dominant and non-dominant arms. The peak contraction was taken as maximal handgrip isometric strength (kg), usually achieved within the first 2-3 contractions. Level of fatigue was derived from the difference in

peak strength and strength measured at the end of 12 maximal contractions (mean of the last
3) ²⁷. Participants were familiarised with the protocol during screening and the same trained
operator both gave instructions and took measurements from all participants ²⁸. SDS
(standard deviation scores) were calculated for height dependent and weight dependent

164 forearm strength as previously shown 25 .

165 Blood metabolite, cytokine & hormone analysis

166 Blood glucose levels were measured using Yellow Springs Instrument Analyzer, YSI, 2300

167 STAT PLUS. Plasma separated from Ethyleneglycol-Bis-(β-Aminoethylether) Tetraacetate

168 (EGTA) treated blood was analysed for BCAA concentrations by spectrophometric assay ²⁹.

169 Serum separated from arterialised blood was analysed for insulin concentration with an

170 enzyme-linked immunosorbent assay (ELISA) technique (DRG diagnostics, Germany). CRP

171 was measured by ELISA at the Department of Clinical Chemistry, Queen's Medical Centre,

172 Nottingham, as part of the initial screening process or in baseline blood samples.

173 Inflammatory cytokines tumour necrosis factor (TNF)α; interleukin (IL)-6; IL-1β, and

bioavailable testosterone, were measured in baseline (over-night fasted) arterialized plasma

175 samples by colorimetric ELISA (R&D systems, Minneapolis, US) according to

176 manufacturer's instructions,

177 Assessment of physical activity, habitual dietary intake & anthropometrics

178 Step counts measured using a pedometer (Omron, Kyoto, Japan) for 3-days in advance of the

179 study visit and self-reported levels of physical activity, using short form International

180 Physical Activity Questionnaire (IPAQ)³⁰ were used to assess habitual physical activity

181 levels. Routine energy intake was measured using a 3-day paper-based food diary completed

- 182 by participants in the days preceding their study visit (1 weekend day and 2 week days).
- 183 Great care was taken in briefing participants, checking diaries during the study visit and the
- 184 same operator analysed all the diaries using Nutritics software (Dublin, Ireland) in an effort to

- 185 minimise inaccuracy. Anthropometrics were collected by a single investigator using a
- 186 standard protocol and z-scores were calculated for height and BMI (WHO Growth Reference
- 187 data for 5-19 year olds) and for fat mass (FM) and fat free mass $(FFM)^{31}$.

188 Statistical analyses

- 189 The parametric or non-parametric nature of the data was determined with a Shapiro-Wilk test.
- 190 Parametric data are presented as mean ± standard error of the mean (SEM) and non-
- 191 parametric as median plus interquartile range (IQR). Parametric data has been examined
- using t-tests or where time is also a variable, two-way analysis of variance (experimental
- 193 group x time). Where data were not normally distributed, these were analysed using a Mann-
- 194 Whitney test. Area under the curve (AUC) has also been calculated to illustrate glucose net
- 195 uptake in response to feeding. P value of <0.05 was considered significant. Data analysis
- 196 was undertaken with Prism software V.7.0 (La Jolla, San Diego, US)
- 197

201

205

198 **RESULTS**

199 Subject characteristics

200 Twenty CD participants (15.6 ± 0.5 yrs; BMI 20.6 ± 0.9 kg/m²) were recruited (**Table 1**).

- with an HBI of < 4. Nine CD participants had evidence of disease activity with a mean FCP

Mean number of years since diagnosis was 4.3 ± 0.6 . All CD participants were asymptomatic

- 203 of 808 ± 225 ug/g, mean CRP of 2.2 ± 1.2 mg/dl or evidence of ulceration at ileocolonoscopy
- 204 or magnetic resonance enterography (MRE). The other eleven CD participants were in deep

remission with mean FCP of 61 ± 12 ug/g and CRP of 0.3 ± 0.2 mg/dl and absence of disease

- 206 activity at ileocolonoscopy or MRE. Eleven participants were being treated with anti-TNF
- 207 therapy (Adalimumab or Infliximab) while the rest were naïve to biological therapies. Five
- 208 CD participants had a history of intestinal resection for stricturing (n=3) or penetrating (n=2)
- 209 disease behaviour. See supplementary table for individual CD participant details. Nine

healthy control (Con) participants (16.0 \pm 0.6 years; BMI 20.7 \pm 0.6 kg/m²) were recruited 210 211 and matched to CD participants. Although there were no significant differences in 212 anthropometrics between groups 10% of CD patients had a BMI z-score of <-2. It was not 213 possible to cannulate two of the female CD participants, so for mechanistic studies in CD 214 n=18. All endoscopic or imaging investigations were undertaken as part of the patients' 215 standard care. 216 Muscle physiology: protein and glucose metabolism 217 Arterialized plasma BCAA (BCAA) peaked at t = 40 in response to feeding (time p<0.0001) 218 (Figure 1A). Con but not CD were in positive forearm muscle BCAA balance (Figure 1B), although both groups mounted an initial response to feeding (t = 0 to t = 20) (Figure 1C). 219

- 220 Glucose a-v difference across the forearm increased in response to feeding, with this and
- 221 glucose net uptake not different between CD and Con suggesting no skeletal muscle insulin
- 222 resistance (Figures 2A & C).

223 Body composition and muscle function

- There was a significant difference between Con and CD FFM z-scores (0.10 and -0.84
- respectively, p=0.015) but only trends towards a difference in LBM, appendicular LM and
- ASMI (Table 2). All other body composition measures were comparable between Con and
- 227 CD. No differences were found in muscle strength or fatigue although there was a trend for
- 228 CD to fatigue more than Con in the dominant arm.

229 Whole body physiology: insulin sensitivity and energy expenditure

- 230 Arterialized blood glucose and serum insulin levels increased in both groups post-feeding (t =
- 231 20) and peaked at t = 40, (time p<0.0001), (**Figures 3A & B**). Glucose concentrations then
- 232 dropped back, stabilizing above fasting levels by t = 60, whereas insulin continued to decline
- 233 until t = 120. CD response to feeding in terms of these parameters and Matsuda index was
- not different to Con and therefore no whole-body insulin resistance was detected (Figures 3A

- C). REE and RER increased post-feeding (t = 0 vs. t = 20-120) in CD and Con (all p<0.05)
- with no differences between groups (**Table 3**).

237 Cytokine analyses

- 238 No differences in TNF α , IL-1 β and IL-6 were observed between CD and Con groups although
- there was a trend for higher TNFα in CD (**Table 1**).

240 **Testosterone levels**

- 241 Testosterone levels were significantly higher in CD (median 9.0 ng/ml, IQR: 3.1-16.6) when
- 242 compared to Con (1.8ng/ml, 1.4-8.2, p=0.031) (**Table 1**).

243 **Physical activity and diet**

244 Neither activity levels nor total energy intake differed between groups (**Table 3**).

245 Gender and disease activity sub-analyses

- 246 Male CD participants (CDM) n=11, were in overall negative BCAA balance, in contrast to
- the positive balance of male control participants (ConM) n=5, (p=0.049). CDM also had
- 248 lower levels of arterialised BCAA than ConM at baseline and post feeding (condition
- p=0.027). CDM had a lower height for age when compared to ConM (z-scores -0.2 and 0.5
- respectively, p=0.021) and appendicular LM was 24% lower than in ConM (p=0.034). CDM
- 251 fatigued significantly more than ConM in the dominant arm (p=0.014). Protein intake was
- lower in CDM (p=0.026) with 75 \pm 5g/kg body mass/day reported in CDM and 105 \pm
- 253 15g/kg/day reported in ConM.
- 254 There was a difference in skeletal muscle insulin sensitivity in active (n=9) versus deep
- 255 remission (n=11). In active disease forearm glucose net uptake was more than 2-fold greater
- than deep remission (p=0.036) implying skeletal muscle insulin resistance in CD in deep
- remission. Serum insulin also peaked sooner in active disease, at 20 min, versus 40 mins in
- deep remission (interaction p=0.0014). Active disease also had higher serum IL-6 levels than
- 259 deep remission (median: 206 pg/ml, IQR: 83-390 vs. 41 pg/ml, 0-135, respectively; p=0.025).

260 There was however no difference in anabolic response between those in active disease and261 deep remission.

262

263 **DISCUSSION**

264 We hypothesised that the reduced muscle mass in CD could be driven through anabolic 265 resistance of skeletal muscle to a mixed oral meal that may persist even when in clinical remission. Con but not CD were in a positive net protein balance and this was associated 266 267 with reduced FFM z-scores. However, CD participants were able to mount an initial positive BCAA balance response to feeding and so may not be completely anabolically resistant as 268 hypothesised. Protein balance, and the ability to increase muscle protein mass, is also 269 determined by muscle protein breakdown. The overall neutral net balance observed in the 270 271 current study may suggest that muscle protein synthesis and/or breakdown are affected. Male 272 CD participants had an overall negative protein balance, with associated lower appendicular LM, higher levels of muscle fatigue and reduced habitual dietary protein intake. Moreover, 273 274 CD patients with active disease had similar net muscle protein balance, but a higher skeletal muscle glucose uptake, compared to those in deep remission. These exploratory findings may 275 imply that anabolic resistance plays a role in the aetiology of reduced LM in males 276 277 irrespective of disease status. These findings will need to be validated in a larger cohort. 278 Adolescent CD patients may therefore require more protein per meal compared to age-279 matched controls in order to maintain a positive protein balance and muscle mass. This is the 280 first study to have investigated skeletal muscle protein balance in paediatric CD. 281 Findings of reduced muscle mass in paediatric CD in remission are congruent with the majority of the literature ^{5,6,7,8}. Reduced muscle function has been previously found in 282 paediatric CD patients with mild disease and in clinical remission¹¹. 283

284 CD participants in the current study still consumed more protein than recommended and their consumption was above National Diet and Nutrition Survey (NDNS) 2014-16³² average 285 286 values. CD: 79g and NDNS: 67g (NDNS aged 11-18 and weighted to match our gender 287 split). However, a higher protein recommendation may be appropriate as a linear relationship 288 between amino acid availability and protein balance holds true above current recommended 289 intake levels because amino acids suppress muscle protein breakdown as well as stimulate protein synthesis³³. An overall increase in protein intake, rather than specific amino acid 290 291 supplements, has recently been suggested to be most effective in both stimulating muscle protein synthesis and suppressing muscle protein breakdown³⁴. Greater anabolic response to 292 higher doses of protein in healthy adults has been shown to be largely due to the suppression 293 of protein breakdown with only a small increase in protein synthesis ³⁵. Despite experimental 294 studies indicating leucine is key in stimulating the mTOR pathway³⁶ chronic supplementation 295 has not consistently produced positive results ³⁴. It has now been demonstrated that 296 stimulation of muscle protein synthesis by protein ingestion is not solely due to leucine 37 . A 297 298 study in CD adults showed that protein supplementation equivalent to a 25% increase in 299 protein intake for 16 weeks improved LM; though no detail of protein turn-over was available³⁸. Our observation of a lower net protein balance in the face of adequate amino acid 300 301 availability would further support the notion of an impaired anabolic response in CD. 302 Testosterone levels were raised in CD. This contrasts with previous studies that have reported both reduced androgens and delayed maturation in CD^{39,40}, though it is likely that these 303 studies reported on total rather than bioavailable testosterone but did not specify. 304 305 Insulin inhibits protein breakdown and has a permissive effect in stimulating protein synthesis via the Akt/mTOR signalling pathway^{41,42}. Whole body insulin resistance has been found in 306 CD patients with active disease 43 with TNF α being shown to reduce insulin sensitivity in 307 humans⁴⁴. In the present study skeletal muscle insulin sensitivity is similar between CD and 308

309 Con as has been previously shown ⁴⁵. However skeletal muscle glucose uptake was higher in 310 active disease vs. deep remission. Although plasma TNF α levels were similar between these 311 groups, plasma IL-6 was significantly higher in patients with active disease. Chronically 312 elevated levels of IL-6 have been implicated in insulin resistance and reduced skeletal muscle 313 mass⁴⁶. Conversely acute administration of IL-6 has been found to increase glucose disposal 314 ⁴⁷. It remains unclear why skeletal muscle insulin sensitivity may be higher in active disease 315 vs. deep remission.

Higher basal metabolic rate per FFM ratio and diet-induced thermogenesis have regularly
been reported in CD, which could explain lower body mass⁴⁸. However, in accordance with
the current study, several other studies in both paediatric CD⁴⁹ and adults^{50,51} have found no
relationship between the two.

320 The association of reduced protein balance with reduced FFM z-scores in CD is a possible 321 explanation as to why patients fail to gain muscle mass even when in remission. CD may not be able to re-build muscle mass because they cannot maintain a positive protein balance in 322 323 response to feeding. In a study of young adult males with inflammatory bowel disease, a fifth 324 of participants had significantly reduced muscle mass raising the possibility that these LM deficits persist into adulthood ⁵². A longitudinal study would be needed to investigate this. 325 326 The main limitation of this study is the relatively small sample size that will not allow 327 detailed sub-analyses by disease activity and gender. Moreover, it is cross-sectional and acts 328 as a precursor to a larger prospective study. Furthermore, although reduced serum Vitamin D has been implicated in reduced LM ⁵³ values were unavailable in this cohort. 329 330 A key strength was our use of the a-v balance technique giving a holistic view of the anabolic 331 response and high temporal resolution. The discovery that CD can respond to anabolic 332 stimuli, albeit to a lesser extent than healthy controls, has important implications for

treatment.

334 In conclusion, we have shown that reduced FFM z-scores in CD patients are associated with a 335 reduced protein balance in response to feeding, thus providing a possible explanation for the 336 persistence of low muscle mass in children regardless of disease activity. Moreover, male CD participants were in overall negative protein balance with associated lower appendicular LM, 337 338 height for age, fatigue in the dominant arm and protein intake. This is an interesting 339 preliminary observation that requires further elucidation. A large prospective interventional 340 study is warranted to confirm the effects of disease activity and gender, protein intake and 341 exercise, with the aim of restoring muscle mass to healthy levels in children and young adult 342 CD patients.

ALA ALA

343	Acknowledgements: We acknowledge the support of the National Institute of Health
344	Research Nottingham Biomedical Research Centre in the conduct of this study. All
345	authors approved the final version of the article, including the authorship list.
346	Statement of Authorship: Dr Gordon W. Moran is the guarantor of the article.
347	Gordon W. Moran and Francis B. Stephens designed the research. Amanda Davies,
348	Aline Nixon, Rafeeq Muhammed, Sian Kirkham conducted the study and acquired the
349	data. Kostas Tsintzas, Francis B. Stephens and Gordon W. Moran provided study
350	supervision. Amanda Davies, Kostas Tsintzas, Francis B. Stephens and Gordon W
351	Moran analyzed and interpreted the data. Amanda Davies and Gordon W. Moran
352	drafted the article. All authors critically revised the article for important intellectual
353	content and approved the final version of the article, including the authorship list.
354	Conflicts of interest: Dr Moran has received: educational support from Abbvie,
355	Janssen, NAPP, Takeda Pharmaceuticals, Merck Sharp & Dohme Ltd, Ferring and Dr
356	Falk. He has received speaker honoraria from Merck Sharp & Dohme Ltd, Abbvie,
357	Janssen, Ferring and Takeda Pharmaceuticals. He attended advisory boards for
358	Abbvie, Takeda Pharmaceuticals, Janssen, Medtronic, Phebra Pharmaceuticals,
359	Servertus Associates Ltd and Dr Falk.
360	Dr Muhammed has received speaker's fees, travel support, research grants, or has
361	performed consultancy work with AbbVie, Dr Falk Pharma, Tillotts Pharma, 4-D
362	Pharmaceuticals, Takeda and Pfizer.
363	Funding Sources: This study was supported by grant donations from: British Society
364	of Paediatric Gastroenterology Hepatology and Nutrition-Core Development Award
365	2015 and Nottingham University Hospitals Charity (PP-G MORAN-APR15).
366	Amanda Davies is supported by a Biotechnology and Biological Sciences Research

367	Cou	uncil PhD studentship. This work is supported by the National Institute of Health
368	Res	earch.
369		
370	RE	FERENCES
371		
372	1.	NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass
373		index, underweight, overweight, and obesity from 1975 to 2016: a pooled
374		analysis of 2416 population-based measurement studies in 128-9 million
375		children, adolescents, and adults. Lancet Lond Engl. 2017 Dec
376		16;390(10113):2627-42.
377	2.	Gerasimidis K, McGrogan P, Edwards CA. The aetiology and impact of
378		malnutrition in paediatric inflammatory bowel disease. J Hum Nutr Diet Off
379		J Br Diet Assoc. 2011 Aug;24(4):313–26.
380	3.	Vasseur F, Gower-Rousseau C, Vernier-Massouille G, Dupas JL, Merle V,
381		Merlin B, et al. Nutritional status and growth in pediatric Crohn's disease: a
382		population-based study. Am J Gastroenterol. 2010 Aug;105(8):1893–900.
383	4.	Marcil V, Levy E, Amre D, Serban D, Bitton A, Sant'Anna AMG de A, et al. A
384		Cross-Sectional Study on Malnutrition in Inflammatory Bowel Disease: Is
385		There a Difference Based on Pediatric or Adult Age Grouping? Inflamm
386		Bowel Dis. 2019 Feb 22;
387	5.	Thayu M, Shults J, Burnham JM, Zemel BS, Baldassano RN, Leonard MB.
388		Gender differences in body composition deficits at diagnosis in children and

ACCEPTED MANUSCRIPT

		ACCEPTED MANUSCRIPT
389		adolescents with Crohn's disease. Inflamm Bowel Dis. 2007
390		Sep;13(9):1121–8.
391	6.	Bechtold S, Alberer M, Arenz T, Putzker S, Filipiak-Pittroff B, Schwarz HP, et
392		al. Reduced muscle mass and bone size in pediatric patients with
393		inflammatory bowel disease. Inflamm Bowel Dis. 2010 Feb;16(2):216–25.
394	7.	Burnham JM, Shults J, Semeao E, Foster BJ, Zemel BS, Stallings VA, et al.
395		Body-composition alterations consistent with cachexia in children and
396		young adults with Crohn disease. Am J Clin Nutr. 2005 Aug;82(2):413–20.
397	8.	Sylvester FA, Leopold S, Lincoln M, Hyams JS, Griffiths AM, Lerer T. A two-
398		year longitudinal study of persistent lean tissue deficits in children with
399		Crohn's disease. Clin Gastroenterol Hepatol Off Clin Pract J Am
400		Gastroenterol Assoc. 2009 Apr;7(4):452–5.
401	9.	Schneider SM, Al-Jaouni R, Filippi J, Wiroth J-B, Zeanandin G, Arab K, et al.
402		Sarcopenia is prevalent in patients with Crohn's disease in clinical
403		remission. Inflamm Bowel Dis. 2008 Nov;14(11):1562–8.
404	10.	Wiroth J-B, Filippi J, Schneider SM, Al-Jaouni R, Horvais N, Gavarry O, et al.
405		Muscle performance in patients with Crohn's disease in clinical remission.
406		Inflamm Bowel Dis. 2005 Mar;11(3):296–303.
407	11.	Werkstetter KJ, Ullrich J, Schatz SB, Prell C, Koletzko B, Koletzko S. Lean
408		body mass, physical activity and quality of life in paediatric patients with
409		inflammatory bowel disease and in healthy controls. J Crohns Colitis. 2012
410		Jul;6(6):665–73.

	A		EP	ΓED	MA	NU	JS	CR	IPT
--	---	--	----	-----	----	----	----	----	-----

411	12.	Lu ZL, Wang TR, Qiao YQ, Zheng Q, Sun Y, Lu JT, et al. Handgrip Strength
412		Index Predicts Nutritional Status as a Complement to Body Mass Index in
413		Crohn's Disease. J Crohns Colitis. 2016 Dec;10(12):1395–400.
414	13.	Dubner SE, Shults J, Baldassano RN, Zemel BS, Thayu M, Burnham JM, et al.
415		Longitudinal assessment of bone density and structure in an incident cohort
416		of children with Crohn's disease. Gastroenterology. 2009 Jan;136(1):123–
417		30.
418	14.	Werkstetter KJ, Schatz SB, Alberer M, Filipiak-Pittroff B, Koletzko S.
419		Influence of exclusive enteral nutrition therapy on bone density and
420		geometry in newly diagnosed pediatric Crohn's disease patients. Ann Nutr
421		Metab. 2013;63(1-2):10–6.
422	15.	Irvine EJ, Zhou Q, Thompson AK. The Short Inflammatory Bowel Disease
423		Questionnaire: a quality of life instrument for community physicians
424		managing inflammatory bowel disease. CCRPT Investigators. Canadian
425		Crohn's Relapse Prevention Trial. Am J Gastroenterol. 1996
426		Aug;91(8):1571–8.
427	16.	Motil KJ, Grand RJ, Matthews DE, Bier DM, Maletskos CJ, Young VR. Whole
428		body leucine metabolism in adolescents with Crohn's disease and growth
429		failure during nutritional supplementation. Gastroenterology. 1982
430		Jun;82(6):1359–68.
431	17.	Thomas AG, Miller V, Taylor F, Maycock P, Scrimgeour CM, Rennie MJ.
432		Whole body protein turnover in childhood Crohn's disease. Gut. 1992
433		May;33(5):675–7.

434	18.	Steiner SJ, Pfefferkorn MD, Fitzgerald JF, Denne SC. Protein and energy
435		metabolism response to the initial dose of infliximab in children with
436		Crohn's disease. Inflamm Bowel Dis. 2007 Jun;13(6):737–44.
437	19.	Diamanti A, Basso MS, Gambarara M, Papadatou B, Bracci F, Noto C, et al.
438		Positive impact of blocking tumor necrosis factor alpha on the nutritional
439		status in pediatric Crohn's disease patients. Int J Colorectal Dis. 2009
440		Jan;24(1):19–25.
441	20.	Breen L, Stokes KA, Churchward-Venne TA, Moore DR, Baker SK, Smith K, et
442		al. Two weeks of reduced activity decreases leg lean mass and induces
443		"anabolic resistance" of myofibrillar protein synthesis in healthy elderly. J
444		Clin Endocrinol Metab. 2013 Jun;98(6):2604–12.
445	21.	Rennie MJ. Anabolic resistance in critically ill patients. Crit Care Med. 2009
446		Oct;37(10 Suppl):S398–9.
447	22.	Harvey RF, Bradshaw JM. A simple index of Crohn's-disease activity. Lancet
448		Lond Engl. 1980 Mar 8;1(8167):514.
449	23.	Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral
450		glucose tolerance testing: comparison with the euglycemic insulin clamp.
451		Diabetes Care. 1999 Sep;22(9):1462–70.
452	24.	DeFronzo RA, Matsuda M. Reduced time points to calculate the composite
453		index. Diabetes Care. 2010 Jul;33(7):e93.
454	25.	Rauch F, Neu CM, Wassmer G, Beck B, Rieger-Wettengl G, Rietschel E, et al.
455		Muscle analysis by measurement of maximal isometric grip force: new

456		reference data and clinical applications in pediatrics. Pediatr Res. 2002
457		Apr;51(4):505–10.
458	26.	Gallen IW, Macdonald IA. Effect of two methods of hand heating on body
459		temperature, forearm blood flow, and deep venous oxygen saturation. Am J
460		Physiol. 1990 Nov;259(5 Pt 1):E639–43.
461	27.	White C, Dixon K, Samuel D, Stokes M. Handgrip and quadriceps muscle
462		endurance testing in young adults. SpringerPlus. 2013;2:451.
463	28.	Bandinelli S, Benvenuti E, Del Lungo I, Baccini M, Benvenuti F, Di Iorio A, et
464		al. Measuring muscular strength of the lower limbs by hand-held
465		dynamometer: a standard protocol. Aging Milan Italy. 1999 Oct;11(5):287-
466		93.
467	29.	Beckett PR, Hardin DS, Davis TA, Nguyen HV, Wray-Cahen D, Copeland KC.
468		Spectrophometric Assay for Measuring Branched-Chain Amino Acid
469		Concentrations: Application for Measuring the Sensitivity of Protein
470		Metabolism to Insulin. Anal Biochem. 1996 Aug 15;240(1):48–53.
471	30.	Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et
472		al. International physical activity questionnaire: 12-country reliability and
473		validity. Med Sci Sports Exerc. 2003 Aug;35(8):1381–95.
474	31.	McCarthy HD, Samani-Radia D, Jebb SA, Prentice AM. Skeletal muscle mass
475		reference curves for children and adolescents. Pediatr Obes. 2014
476		Aug;9(4):249–59.

477	32.	NDNS: results from years 7 and 8 (combined) - GOV.UK [Internet]. [cited
478		2018 Apr 12]. Available from:
479		https://www.gov.uk/government/statistics/ndns-results-from-years-7-
480		and-8-combined
481	33.	Deutz NE, Wolfe RR. Is there a maximal anabolic response to protein intake
482		with a meal? Clin Nutr Edinb Scotl. 2013 Apr;32(2):309–13.
483	34.	Cholewa JM, Dardevet D, Lima-Soares F, de Araújo Pessôa K, Oliveira PH,
484		Dos Santos Pinho JR, et al. Dietary proteins and amino acids in the control of
485		the muscle mass during immobilization and aging: role of the MPS response.
486		Amino Acids. 2017 May;49(5):811–20.
107	25	Kim I.V. Schutzley C. Schueder A. Spencer III. Azher C. Ferrende A.A. et al. The
407	55.	Killi I-1, Schutzler S, Schrauer A, Spencer HJ, Azhar G, Ferrando AA, et al. The
488		anabolic response to a meal containing different amounts of protein is not
489		limited by the maximal stimulation of protein synthesis in healthy young
490		adults. Am J Physiol Endocrinol Metab. 2016 Jan 1;310(1):E73–80.
491	36.	Kimball SR, Shantz LM, Horetsky RL, Jefferson LS. Leucine regulates
492		translation of specific mRNAs in L6 myoblasts through mTOR-mediated
493		changes in availability of eIF4E and phosphorylation of ribosomal protein
494		S6. J Biol Chem. 1999 Apr 23;274(17):11647–52.
495	37.	Van Vliet S, Smith GI, Porter L, Ramaswamy R, Reeds DN, Okunade AL, et al.
496		The muscle anabolic effect of protein ingestion during a hyperinsulinaemic
497		euglycaemic clamp in middle-aged women is not caused by leucine alone. J
498		Physiol. 2018 Oct;596(19):4681–92.

499	38.	Machado JF, Oya V, Coy CSR, Morcillo AM, Severino SD, Wu C, et al. Whey
500		and soy protein supplements changes body composition in patients with
501		Crohn's disease undergoing azathioprine and anti-TNF-alpha therapy. Nutr
502		Hosp. 2015 Apr 1;31(4):1603–10.
503	39.	Ballinger AB, Savage MO, Sanderson IR. Delayed Puberty Associated with
504		Inflammatory Bowel Disease. Pediatr Res. 2003 Feb;53(2):205.
505	40.	DeBoer MD, Denson LA. Delays in Puberty, Growth, and Accrual of Bone
506		Mineral Density in Pediatric Crohn's Disease: Despite Temporal Changes in
507		Disease Severity, the Need for Monitoring Remains. J Pediatr. 2013 Jul
508		1;163(1):17–22.
509	41.	Proud CG. Regulation of protein synthesis by insulin. Biochem Soc Trans.
510		2006 Apr;34(Pt 2):213-6.
511	42.	Lai Y-C, Liu Y, Jacobs R, Rider MH. A novel PKB/Akt inhibitor, MK-2206,
512		effectively inhibits insulin-stimulated glucose metabolism and protein
513		synthesis in isolated rat skeletal muscle. Biochem J. 2012 Oct 1;447(1):137-
514		47.
515	43.	Bregenzer N, Hartmann A, Strauch U, Schölmerich J, Andus T, Bollheimer LC.
516		Increased insulin resistance and beta cell activity in patients with Crohn's
517		disease. Inflamm Bowel Dis. 2006 Jan;12(1):53–6.
518	44.	Plomgaard P, Bouzakri K, Krogh-Madsen R, Mittendorfer B, Zierath JR,
519		Pedersen BK. Tumor necrosis factor-alpha induces skeletal muscle insulin

520		resistance in healthy human subjects via inhibition of Akt substrate 160
521		phosphorylation. Diabetes. 2005 Oct;54(10):2939–45.
522	45.	Capristo E, Mingrone G, Addolorato G, Greco AV, Gasbarrini G. Glucose
523		metabolism and insulin sensitivity in inactive inflammatory bowel disease.
524		Aliment Pharmacol Ther. 1999 Feb;13(2):209–17.
525	46.	Haddad F, Zaldivar F, Cooper DM, Adams GR. IL-6-induced skeletal muscle
526		atrophy. J Appl Physiol Bethesda Md 1985. 2005 Mar;98(3):911–7.
527	47.	Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, et
528		al. Interleukin-6 increases insulin-stimulated glucose disposal in humans
529		and glucose uptake and fatty acid oxidation in vitro via AMP-activated
530		protein kinase. Diabetes. 2006 Oct;55(10):2688–97.
531	48.	Varille V, Cézard JP, de Lagausie P, Bellaiche M, Tounian P, Besnard M, et al.
532		Resting energy expenditure before and after surgical resection of gut
533		lesions in pediatric Crohn's disease. J Pediatr Gastroenterol Nutr. 1996
534		Jul;23(1):13–9.
535	49.	Wiskin AE, Wootton SA, Culliford DJ, Afzal NA, Jackson AA, Beattie RM.
536		Impact of disease activity on resting energy expenditure in children with
537		inflammatory bowel disease. Clin Nutr Edinb Scotl. 2009 Dec;28(6):652–6.
538	50.	Takaoka A, Sasaki M, Kurihara M, Iwakawa H, Inoue M, Bamba S, et al.
539		Comparison of energy metabolism and nutritional status of hospitalized
540		patients with Crohn's disease and those with ulcerative colitis. J Clin
541		Biochem Nutr. 2015 May;56(3):208-14.

0	5
7	J

542	51. Schneeweiss B, Lochs H, Zauner C, Fischer M, Wyatt J, Maier-Dobersberge
543	T, et al. Energy and substrate metabolism in patients with active Crohn's
544	disease. J Nutr. 1999 Apr;129(4):844–8.

- 545 52. Bryant RV, Ooi S, Schultz CG, Goess C, Grafton R, Hughes J, et al. Low muscle
- 546 mass and sarcopenia: common and predictive of osteopenia in
- 547 inflammatory bowel disease. Aliment Pharmacol Ther. 2015
- 548 May;41(9):895–906.
- 549 53. Mager DR, Carroll MW, Wine E, Siminoski K, MacDonald K, Kluthe CL, et al.
- 550 Vitamin D status and risk for sarcopenia in youth with inflammatory bowel
- 551 diseases. Eur J Clin Nutr. 2018;72(4):623–6.

- 553 FIGURE LEGENDS
- 554 Figure 1. Indicators of protein metabolism in CD vs. Con: arterialized plasma
- 555 BCAA concentrations (A), mean BCAA net balance across the forearm
- 556 standardized for forearm lean mass (B) and BCAA net balance across the forearm,
- 557 over time, standardized for forearm lean mass (C).
- 558 Values are means \pm SEM. Significant differences (p<0.05) & trends (p<0.1) are marked.
- 559 BCAA=branched chain amino acids, CD=Crohn's disease, Con=Control.
- 560 SEM=standard error of the mean.
- 561 Figure 2. Skeletal muscle insulin sensitivity in CD vs. Con: glucose arterio-venous
- 562 difference across the forearm (A), brachial artery blood flow (B) and AUC glucose
- 563 net uptake across the forearm standardized for forearm lean mass (C).
- 564 Values are means \pm SEM. Significant differences (p<0.05) & trends (p<0.1) are marked.
- 565 AUC=area under the curve, CD=Crohn's disease, Con=Control, SEM=standard error
- 566 of the mean.
- 567 Figure 3. Indicators of whole body insulin sensitivity in CD vs. Con: arterialized
- 568 blood glucose concentrations (A), serum insulin (B) and Matsuda index (C).
- 569 Values are means \pm SEM. Significant time effects are marked. CD=Crohn's disease,
- 570 Con=Control.

	Con	CD	p value
	n=9	$n=20^{w} / n=18^{v}$	
Age (yrs) ^w	16.0 ± 0.6	15.6 ± 0.5	n.s.
Height (m) ^w	1.71 ± 0.05	1.66 ± 0.02	n.s.
Height-for-age (z-scores) ^w	0.5 ± 0.4	0.1 ± 0.2	n.s.
Weight (kg) ^w	60.7 ± 3.7	56.8 ± 2.7	n.s.
BMI (kg/m ²) ^w	20.7 ± 0.6	20.6 ± 0.9	n.s.
BMI-for-age (z-scores) ^w	0.03 ± 0.27	-0.2 ± 0.3	n.s.
Years since diagnosis ^w	n/a	4.2 ± 0.6	n/a
HBI ^w	n/a	1 ± 0	n/a
FCP (µg/g) ^w	n/a	132 ± 41	n/a
CRP (mg/dl) ^w	<5 ± 0	2.6 ± 0.6	n.s.
IL-1 β (pg/ml) ^v	169 (37.5-517)	454 (30.5-1835)	n.s.
IL-6 (pg/ml) ^v	101 (50-335)	83 (28-287)	n.s.
TNF α (pg/ml) ^v	37 (0-111)	212 (0-661)	p=0.078
Testosterone (ng/ml) ^v	1.8 (1.4-8.2)	9.0 (3.1-16.6)	p=0.031

Table 1. Subject characteristics of Control and Crohn's disease patients

All values are means \pm SEM except for non-parametric test results (cytokines & testosterone) where values are median and interquartile range and z-scores which were calculated for height-for-age and BMI-for-age using WHO standards. Statistically significant differences (p<0.05) and trends (p<0.1) are listed and n.s. = no significant differences between groups. CD=Crohn's disease, Con=Control.

	Con	CD	p value
	n=9	$n=20^{w} / n=18^{v}$	
Body composition ^w			
FM (z-scores)	0.08 ± 0.37	0.90 ± 0.40	n.s.
FFM (z-scores)	0.10 ± 0.44	-0.84 ± 0.15	p=0.015
LBM (kg)	46.0 ± 4.5	39.3 ± 1.5	p=0.084
Appendicular LM (kg)	22.9 ± 2.6	18.7 ± 0.8	p=0.057
ASMI (kg/m ²)	7.6 ± 0.4	6.8 ± 0.2	p=0.052
Muscle function ^v	/		
Fatigue (%) dom	18 ± 3	26 ± 2	p=0.061
Fatigue (%) non-dom	21 ± 4	23 ± 2	n.s.
Strength dom (kg/kg forearm LM)	23.8 ± 1.3	25.6 ± 1.5	n.s.
Strength non-dom (kg/kg forearm LM)	23.9 ± 1.1	24.3 ± 1.4	n.s.
Age dependent FS SDS dom	-1.41 ± 0.35	-1.50 ± 0.22	n.s.
Age dependent FS SDS non-dom	-1.62 ± 0.31	-1.90 ± 0.21	n.s.
Height dependent FS SDS dom	-1.13 ± 0.35	-0.93 ± 0.34	n.s.
Height dependent FS SDS non-dom	-1.36 ± 0.33	-1.37 ± 0.36	n.s.

Table 2. Body composition and muscle function

All values are means \pm SEM except standard deviation scores (SDS) calculated for height and age dependent strength (see methods) and z-scores calculated for FM & FMM using age and sex appropriate reference data (see methods). Statistically significant differences (p<0.05) and trends (p<0.1) are listed and n.s. = no significant differences between groups.

CD=Crohn's disease, Con=Control, FS=forearm strength, dom=dominant arm, non-dom=non dominant arm.

value

n.s.

n.s.

n.s.

 $0.80 \pm 0.05^{*}$

 7831 ± 725

 4443 ± 994

Table 3. Energy intake & energy expenditure							
	Con	CD	p va				
	n=9	$n=20^{w} / n=18^{v}$					
Energy intake ^w							
Energy intake (kJ/day)	9124 ± 1081	8333 ± 512	n.s.				
Protein intake (kJ/day)	1531 ± 173	1350 ± 93	n.s.				
Protein intake (g/day)	90 ± 10	79 ± 5	n.s.				
Recommended protein intake (g/day)	46 ± 3	43 ± 2	n.s.				
Indirect calorimetry ^v		S					
REE - fasted (kJ/hr/kgLBM)	6.1 ± 0.3	5.9 ± 0.4	n.s.				
REE - post-feeding (kJ/hr/kgLBM)	$6.5 \pm 0.3^{*}$	$6.0 \pm 0.4^{*}$	n.s.				
RER – fasted	0.81 ± 0.02	0.76 ± 0.05	n.s.				

RER - post-feeding

Physical Activity^w

Pedometer (no of steps/day)

IPAQ (total MET-mins/week)

All values are means \pm SEM. Statistically significant differences between fed and fasted states in both groups are marked *=p<0.05. n.s. = no significant differences between groups. CD=Crohn's disease, Con=Control.

 $0.87 \pm 0.02^{*}$

 8056 ± 849

 6196 ± 2158

Highlights

- A positive skeletal muscle protein balance is only seen in healthy controls
- Neutral protein balance and reduced FFM z-scores in CD
- No other differences in body composition or muscle physiology between CD & control
- Negative protein balance, lower muscle mass and function in male CD

CHER MARKS