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Abstract. This paper investigates the asymptotic behaviour of the solutions of the
retarded-type linear differential functional equations with bounded delays

ẋ(t) = −L(t, xt)

when t → ∞. The main results concern the existence of two significant pos-
itive and asymptotically different solutions x = ϕ∗(t), x = ϕ∗∗(t) such that
limt→∞ ϕ∗∗(t)/ϕ∗(t) = 0. These solutions make it possible to describe the family of
all solutions by means of an asymptotic formula. The investigation basis is formed by
an auxiliary linear differential functional equation of retarded type ẏ(t) = L∗(t, yt) such
that L∗(t, yt) ≡ 0 for an arbitrary constant initial function yt. A commented survey of
the previous results is given with illustrative examples.
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1 Introduction

1.1 Auxiliary notions

Let C([a, b], R), where a, b ∈ R, a < b, R = (−∞,+∞), be the Banach space of continuous
functions mapping the interval [a, b] into R with the topology of uniform convergence. In the
case of a = −r < 0, b = 0, we will denote this space by C, that is, C = C([−r, 0], R) and
designate the norm of an element ϕ ∈ C by

‖ϕ‖ = sup
−r≤θ≤0

|ϕ(θ)|.
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Consider a retarded nonlinear functional differential equation

ẋ = f (t, xt) (1.1)

where f : Ω 7→ R is a continuous map that is quasibounded and satisfies a local Lipschitz
condition with respect to the second argument in each compact set in Ω ⊂ R× C where Ω is
specified below. The symbol “ · ” represents the right-hand derivative.

If σ ∈ R, A ≥ 0 and x ∈ C([σ − r, σ + A], R), then, for each t ∈ [σ, σ + A], we define
xt ∈ C by means of the equation xt(θ) = x(t + θ), θ ∈ [−r, 0], which takes into account the
history of the considered process on the past interval of a constant length r, that is, the delays
considered in (1.1) are bounded.

In accordance with [29], a function x is said to be a solution of equation (1.1) on
[σ − r, σ + A) with σ ∈ R and A > 0 if x ∈ C([σ − r, σ + A), R), (t, xt) ∈ Ω and x satis-
fies the equation (1.1) for t ∈ [σ, σ + A).

For given σ ∈ R, ϕ ∈ C and (σ, ϕ) ∈ Ω, we say that x(σ, ϕ) is a solution of equation (1.1)
through (σ, ϕ) (or that x(σ, ϕ) is defined by the initial point σ and initial function ϕ ∈ C) if
there exists an A > 0 such that x(σ, ϕ) is a solution of equation (1.1) on [σ − r, σ + A) and
xσ(σ, ϕ) = ϕ.

In view of the above conditions, each element (σ, ϕ) ∈ Ω determines a unique solution
x(σ, ϕ) of equation (1.1) through (σ, ϕ) ∈ Ω on its maximal interval of existence Iσ,ϕ = [σ, A),
σ < A ≤ ∞. If the functional f is linear with respect to the second argument, then A = ∞.
This solution depends continuously on the initial data [29].

In the sequel, we will use the notation R+ = (0, ∞), I = [t0 − r, ∞) and I0 = [t0, ∞) where
t0 ∈ R. Moreover, we specify Ω := {(t, ϕ) ∈ I0 × C}.

1.2 Outline of investigation

The present paper is devoted to the asymptotic behaviour for t → ∞ of the solutions of the
retarded-type linear differential functional equation

ẋ(t) = −L(t, xt) (1.2)

where L(t, ·) is a linear functional with respect to the second argument. As the functional
L(t, ·) is a particular case of functional f (t, ·) on the right-hand side of (1.1), we assume that
the properties of f (t, ·) formulated above are valid for L(t, ·) as well. Moreover, we will assume
that L(t, ·) is strongly increasing within the meaning of the following definition.

Definition 1.1. We say that a linear functional L(t, ·) is strongly increasing if, for arbitrary
ψ1, ψ2 ∈ C satisfying

ψ1(θ) < ψ2(θ), θ ∈ [−r, 0), (1.3)

we have
L(t, ψ1) < L(t, ψ2)

for every t ∈ I0.

From this definition, it follows that L(t, xt) > 0 for every (t, xt) ∈ I0 × C if x(t + θ) > 0,
θ ∈ [−r, 0).
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The paper investigates the existence of two asymptotically different positive solutions to
equation (1.2) and a structure formula describing the asymptotic behaviour of all solutions is
derived. As a prototype of this equation, we can take the equation

ẋ(t) = − 1
re

x(t− r) (1.4)

with its two positive solutions

x = ϕ∗(t) := te−t/r, x = ϕ∗∗(t) := e−t/r (1.5)

each having a different asymptotic behaviour for t→ ∞ and

lim
t→∞

ϕ∗∗(t)
ϕ∗(t)

= 0. (1.6)

We will show that the limit property (1.6) for a pair of positive solutions x = ϕ∗(t), x = ϕ∗∗(t)
is not a specific property of given equation (1.4) only, but is characteristic of retarded-type
linear differential functional equations (1.2) in general. More precisely, characteristic of the
considered classes of equations is that, if an eventually positive solution x = ϕ1(t) to (1.2)
exists, then there always exists a second, eventually positive, solution x = ϕ2(t) such that
either

lim
t→∞

ϕ2(t)
ϕ1(t)

= 0

or

lim
t→∞

ϕ2(t)
ϕ1(t)

= ∞.

To obtain the desired results, it is necessary to analyze the properties of the solutions of
an auxiliary retarded-type linear differential functional equation

ẏ(t) = L∗(t, yt), (1.7)

connected by a simple transformation with equation (1.2), where L∗(t, ·) is a linear functional
with respect to the second argument such that L∗(t, yt) ≡ 0 for an arbitrary constant initial
function yt.

The rest of the paper is organized as follows. Initially, in part 2, we will study the structure
of solutions of the equation (1.7). An auxiliary lemma on the existence of solutions, staying on
their maximal interval of existence in a previously defined domain, is formulated in part 2.1.
Then, in parts 2.2, 2.3, the long-time behaviour is described of solutions of equation (1.7)
in the so-called divergent and convergent cases. In part 3, the results derived are used for
the investigation of the structure of solutions of equation (1.2) and the main results of the
paper (Theorems 3.1–3.4) are proved. Two types of applications are demonstrated in part 4,
the first one considers an integro-differential equation in part 4.1, and the second one deals
with an equation with multiple delays in part 4.2. The paper is finished by part 5 with some
concluding remarks (parts 5.1, 5.2) and some open problems formulated in part 5.3.
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2 Structure of solutions of auxiliary equation (1.7)

In this section, we consider linear equation (1.7), that is,

ẏ(t) = L∗(t, yt)

where the functional L∗(t, ·) is defined on I0 × C and is linear with respect to the second
argument. Since the functional L∗(t, ·) is a particular case of functional f (t, ·) on the right-
hand side of (1.1), we assume that the above-formulated properties of f (t, ·) are reduced to
L∗(t, ·) as well. Below, we require the following additional properties of L∗(t, ·):

L∗(t, ψ) > 0 for every (t, ψ) ∈ I0 × C such that ψ(0) > ψ(θ), θ ∈ [−r, 0), (2.1)

L∗(t, ψ) < 0 for every (t, ψ) ∈ I0 × C such that ψ(0) < ψ(θ), θ ∈ [−r, 0). (2.2)

Note that properties (2.1), (2.2) imply the following:

L∗(t, M) = 0 for every (t, M) ∈ I0 × C where M is an arbitrary constant function. (2.3)

We will study two cases of asymptotic behaviour of solutions if t → ∞. The first case is
referred to as a divergence one. In this case, we prove, provided that there exists a solution
y = Y(t), t ∈ I of (1.7) with the property limt→∞ Y(t) = ∞, that, for every solution y = y∗(t),
t ∈ I of (1.7), either there exists a constant K∗ 6= 0 such that y∗(t) ∼ K∗Y(t) for t → ∞ or this
solution is bounded. The second case is referred to as a convergence case. In this case, every
solution of (1.7) has a finite limit as t→ ∞.

2.1 Auxiliary lemma

Here we formulate an auxiliary lemma necessary for the proof of Theorem 2.3 below. As
noted above, solutions of the equation (1.1) are defined by the initial points and functions.
Below we need to work with systems of initial functions having some common properties.
Their descriptions are given below.

If a set ω ⊂ R×R, then, by ω and ∂ω, we denote, as is customary, the closure and the
boundary of ω, respectively.

Let C1, C2 be positive constants and C1 < C2. Define the sets ω and A as follows:

ω := {(t, y) ∈ I ×R, C1 < y < C2} (2.4)

and
A(t0) := {(t0, y) ∈ ω}. (2.5)

Definition 2.1. A system of initial functions pA(t0),ω with respect to the sets A(t0) and ω is
defined as a continuous mapping p : A(t0)→ C with the properties:

(α) if z = (t0, y) ∈ A(t0) ∩ω, then (t0 + θ, p(z)(θ)) ∈ ω, θ ∈ [−τ, 0];

(β) if z = (t0, y) ∈ A(t0) ∩ ∂ω, then (t0 + θ, p(z)(θ)) ∈ ω, θ ∈ [−τ, 0) and (t0, p(z)(0)) = z.

Lemma 2.2. Let, for all points (t, y∗) ∈ ∂ω and for all functions π ∈ C such that π(0) = y∗ and
(t + θ, π(θ)) ∈ ω, θ ∈ [−r, 0), it follows that

(2y∗ − C1 − C2) f (t, π) > 0. (2.6)
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Then, for each given system of initial functions pA(t0),ω, there exists a point z∗∗ = (t0, y∗∗) ∈ A(t0) ∩
ω (depending on the choice of the system of initial functions) such that, for the corresponding solution
y(t0, p(z∗∗)) of (1.1), we have

(t, y(t0, p(z∗∗))(t)) ∈ ω, t ∈ I. (2.7)

We omit the proof since it is a simple consequence of Lemma 1 in [8], which describes
the main results – Theorem 3.1, Theorem 2.1 and Corollary 3.1 – of the paper [37], proved by
an original adaptation of the well-known retract principle for retarded ordinary differential
equations (note that its founder T. Ważewski created in [41] this principle originally for ordi-
nary differential equations). To apply Lemma 1 in [8], it is sufficient to set n = 1, p = 1, q = 0,
lp = l1 := (y− C1)(y− C2), A := A(t0) and to define the set ω as described above.

Definition 2.1 of a system of initial functions, too, is a specification of Definition 2 in [8],
which in turn was motivated by Definition 2.2 in [37].

2.2 Long-time behaviour of solutions in the divergent case

Below is the main result related to the long-time behaviour of solutions in the divergent
case.

Theorem 2.3. Let the functional L∗, defined on I0 × C, be linear with respect to the second argument
and satisfy (2.1), (2.2). Let there exist a positive solution y = Y(t), t ∈ I of (1.7) such that

lim
t→∞

Y(t) = ∞. (2.8)

Then, for every fixed solution y = y∗(t), t ∈ I of (1.7), there exists a unique constant K∗ and a unique
bounded solution y = δ(t), t ∈ I of (1.7) such that

y∗(t) = K∗Y(t) + δ(t). (2.9)

Proof. i) The case of the solution y = y∗(t) being eventually strictly monotone.
Let us discuss the behaviour of the solution y = y∗(t) on I. If there exists an interval [t∗− r, t∗]
with t∗ ≥ t0 such that

y∗(t∗) > y∗(t), t ∈ [t∗ − r, t∗), (2.10)

then, by (2.1), this solution is strictly increasing on the interval [t∗, ∞). Similarly, if there exists
an interval [t∗ − r, t∗] (without loss of generality and to avoid unnecessary extra definitions of
auxiliary points, we use here and below the same interval) such that

y∗(t∗) < y∗(t), t ∈ [t∗ − r, t∗),

then, by (2.2), this solution is strictly decreasing on the interval [t∗, ∞). Due to property (2.8),
the solution Y(t) is either strictly increasing or strictly decreasing on [t∗, ∞).

Without loss of generality again, we can assume (due to the linearity of the functional L∗)
that Y(t) is strictly increasing on [t∗, ∞) and y = y∗(t) is strictly decreasing on [t∗, ∞) and that
(by property (2.3))

Y(t) > y∗(t) > 0, t ∈ [t∗ − r, t∗]

since, if necessary, we can use a solution y∗(t) + My∗ (My∗ is a suitable constant) instead of
y∗(t) and Y(t) + MY (MY is a suitable constant) instead of Y(t) because

L∗(t, (y∗ + My∗)t) = L∗(t, y∗t ) + L∗(t, (My∗)t) = L∗(t, y∗t )
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and
L∗(t, (Y + MY)t) = L∗(t, Yt) + L∗(t, (MY)t) = L∗(t, Yt)

where (My∗)t and (MY)t are constant functions (generated by constants My∗ , MY) from C. Set
in Lemma 2.2

t0 := t∗, C1 := y∗(t∗), C2 := Y(t∗)

and use C1, C2 in the definition of the set ω by (2.4).
Now, define a system of initial functions pA(t∗),ω by the formula

p(z)(θ) = p(t∗, y)(θ) =
y− C1

C2 − C1
Y(t∗ + θ) +

C2 − y
C2 − C1

y∗(t∗ + θ), θ ∈ [−r, 0]. (2.11)

Since, obviously,
C1 < p(t∗, y)(θ) < C2, θ ∈ [−r, 0]

for every y ∈ (C1, C2),
p(t∗, C1)(0) = C1, p(t∗, C2)(0) = C2

and
C1 < p(t∗, C1)(θ) < C2, C1 < p(t∗, C2)(θ) < C2, θ ∈ [−r, 0),

assumptions (α), (β) of Definition 2.1 hold.
Let us apply Lemma 2.2 where, as announced above, t0 := t∗. We need to verify that, for

all points (t, y∗) ∈ ∂ω and for all functions π ∈ C such that π(0) = y∗ and (t + θ, π(θ)) ∈ ω,
θ ∈ [−r, 0), inequality (2.6) with f (t, π) := L∗(t, π) holds, that is,

(2y∗ − C1 − C2)L∗(t, π) > 0. (2.12)

In our case, there are only two possibilities, either y∗ = C1 or y∗ = C2. If the fist equality is
true, the left-hand side of (2.12) equals

(2y∗ − C1 − C2)L∗(t, π) = (C1 − C2)L∗(t, π). (2.13)

Since, in the considered case for functions π ∈ C, we have

π(θ) > C1 = π(0), θ ∈ [−r, 0), (2.14)

property (2.2) implies L∗(t, π) < 0, and from (2.13), we conclude that (2.12) holds. If the
second equality is true, we get

(2y∗ − C1 − C2)L∗(t, π) = (C2 − C1)L∗(t, π) (2.15)

and, in the considered case for functions π ∈ C, we have

π(θ) < C2 = π(0), θ ∈ [−r, 0).

From (2.1), we have L∗(t, π) > 0 and (2.15) implies that (2.12) holds again.
All assumptions of Lemma 2.2 hold. Then, by its statement, for our system of initial

functions pA(t∗),ω defined by (2.11), there exists a point

z∗∗ = (t∗, y∗∗) = (t∗, y∗∗) ∈ A(t∗) ∩ω,
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where C1 < y∗∗ < C2, such that, for the corresponding solution y(t∗, p(z∗∗)) of (1.7), prop-
erty (2.7) holds. In our case, this property says that

C1 < y(t∗, p(z∗∗))(t) < C2, t ∈ [t∗ − r, ∞),

that is, the solution y(t∗, p(z∗∗))(t) is bounded. In the following, we set

δ∗(t) := y(t∗, p(z∗∗))(t).

By (2.11), the initial function that defines this solution is

p(z∗∗)(θ) =
y∗∗ − C1

C2 − C1
Y(t∗ + θ) +

C2 − y∗∗

C2 − C1
y∗(t∗ + θ), θ ∈ [−r, 0] (2.16)

and, therefore,

δ∗(t) =
y∗∗ − C1

C2 − C1
Y(t) +

C2 − y∗∗

C2 − C1
y∗(t), t ∈ [t∗ − r, ∞). (2.17)

Solving (2.17) with respect to y∗(t), we derive

y∗(t) =
C1 − y∗∗

C2 − y∗∗
Y(t) +

C2 − C1

C2 − y∗∗
δ∗(t), t ∈ [t∗ − r, ∞). (2.18)

Finally, set

K∗ :=
C1 − y∗∗

C2 − y∗∗

and

δ(t) :=
C2 − C1

C2 − y∗∗
δ∗(t).

Because of linearity of (1.7), the function δ(t) is a bounded solution again. Then, (2.18) can be
rewritten as

y∗(t) = K∗Y(t) + δ(t), t ∈ [t∗ − r, ∞). (2.19)

This representation on interval [t∗ − r, ∞) coincides with (2.9). It remains to be explained
why representation (2.19) holds on I. This follows from (2.17) because Y(t) and y∗(t) are also
defined on [t0 − t, t∗ − r), so δ∗(t) can be defined on this interval by the same formula (2.17).
Then, (2.17) as well as (2.19) hold on I. Taking into account that K∗ 6= 0, we conclude that the
statement of Theorem 2.3 given by formula (2.9) holds in the considered case, that is, if (2.10)
holds.

ii) The case of the solution y = y∗(t) being eventually not strictly monotone.
We will prove that formula (2.9) holds even if (2.10) does not hold. It means that the solution
y∗(t) is not eventually either strictly increasing or strictly decreasing. Moreover, we can easily
deduce that y∗(t) is bounded on I and

min
s∈[t0−r,t0]

y∗(s) ≤ y∗(t) ≤ max
s∈[t0−r,t0]

y∗(s), t ∈ I.

In this case, formula (2.9) holds as well since we can put K∗ = 0 and δ(t) ≡ y∗(t).
Although the uniqueness follows, in both cases i), and ii), from the method of proof, we

remark that, if y∗(t) admits on I two representations of the type (2.9)

y∗(t) = K∗1Y(t) + δ1(t), t ∈ I
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and
y∗(t) = K∗2Y(t) + δ2(t), t ∈ I

with K∗1 6= K∗2 and δ1(t) 6≡ δ2(t) on I, then the difference between both expressions yields

0 = (K∗1 − K∗2)Y(t) + (δ1(t)− δ2(t)), t ∈ I.

By (2.8), this is only possible if K∗1 = K∗2 . But, in this case,

δ1(t) = δ2(t), t ∈ I.

Corollary 2.4. If all assumptions of Theorem 2.3 are valid, then, from its proof, the following statements
also hold.

1) If y∗(t) is eventually either strictly increasing or strictly decreasing, then formula (2.9) where
K∗ 6= 0 holds. In other words, every eventually either strictly increasing or strictly decreasing
solution y∗(t) is asymptotically equivalent with a multiple 1/K∗ of Y(t) and

y∗(t) ∼ 1
K∗

Y(t), t→ ∞.

This simultaneously says that there exists no eventually either strictly increasing or strictly decreas-
ing solution y∗(t) with a finite limit limt→∞ y∗(t).

2) Let two constants C1, C2, C1 < C2 be given. Then, there exists a nonconstant solution y = y(t),
t ∈ I of (1.7), neither strictly increasing nor strictly decreasing such that

C1 < y(t) < C2, t ∈ I.

To prove this statement, it is sufficient to consider a system of initial initial functions pA(t0),ω where
p(z∗∗) is similar to (2.16):

p(z∗∗)(θ) =
y∗∗ − C1

C2 − C1
Ỹ(t0 + θ) +

C2 − y∗∗

C2 − C1
ỹ∗(t0 + θ), θ ∈ [−r, 0]

with the difference that Ỹ ∈ C is a strictly increasing function, ỹ ∈ C is a strictly decreasing
function and Ỹ, ỹ are linearly independent.

2.3 Long-time behaviour of solutions in the convergent case

In this part, we will formulate a complement to Theorem 2.3 about the long-time behaviour
of solutions in the case of a strictly increasing initial function not defining a solution Y(t) with
property (2.8). A simple analysis shows that, in such a case, each solution of (1.7) converges
to a finite limit.

Theorem 2.5. Let the functional L∗, defined on I0 × C, be linear with respect to the second argument
and satisfy (2.1), (2.2). Let no solution y = Y(t), t ∈ I exist of (1.7) satisfying (2.8). Then, every fixed
solution y = y∗(t), t ∈ I of (1.7) is convergent, that is, there exists a finite limit

lim
t→∞

y∗(t) = M∗ ∈ R.

In other words, for every solution, there exists a unique constant M∗ and a unique solution y = ε(t),
t ∈ I of (1.7) such that

y∗(t) = M∗ + ε(t) (2.20)

and
lim
t→∞

ε(t) = 0. (2.21)
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Proof. Every initial problem
y∗t0

= ϕ ∈ C

for (1.7) defines a unique solution y∗(t0, ϕ) on I. Moreover, y∗(t0, ϕ), being a continuously dif-
ferentiable solution of (1.7) on I0, is absolutely continuous on [t0, t0 + r]. It is well-known that
every absolutely continuous function can be written as the difference of two strictly increasing
absolutely continuous functions (cite, for example, [40, p. 315]). Therefore, on [t0, t0 + r], we
can write

y∗(t0, ϕ)(t) = y∗1(t0, ϕ)(t)− y∗2(t0, ϕ)(t)

where y∗i(t0, ϕ)(t), i = 1, 2 are strictly increasing and absolutely continuous functions. Obvi-
ously, due to linearity, both y∗i(t0, ϕ)(t), i = 1, 2 can be used as initial functions, and initial
problems

y∗t0+r = y∗it0+r(t0, ϕ), i = 1, 2

can be discussed. Both initial problems define strictly increasing solutions y∗i(t0, ϕ)(t), i = 1, 2
on I0 (we will not repeat the details given in the proof of Theorem 2.3). Neither of y∗i(t0, ϕ)(t),
i = 1, 2 satisfies

lim
t→∞

y∗i(t0, ϕ)(t) = ∞, i = 1, 2

since this is excluded by the assumptions of the theorem. Therefore, since the above limits
exists, there are constants M∗i , i = 1, 2 such that

lim
t→∞

y∗i(t0, ϕ)(t) = M∗i , i = 1, 2.

Finally, since
y∗(t0, ϕ)(t) = y∗1(t0, ϕ)(t)− y∗2(t0, ϕ)(t), t ∈ I0,

we have

lim
t→∞

y∗(t0, ϕ)(t) = lim
t→∞

(y∗1(t0, ϕ)(t)− y∗2(t0, ϕ)(t)) = M∗ := M∗1 −M∗2 .

The proof of the uniqueness of representation (2.20) can be performed in much the same way
as the proof of the uniqueness of representation (2.9) in the proof of Theorem 2.3. Assume
that a solution y∗(t) admits two different representations of the type (2.20), that is,

y∗(t) = M∗a + εa(t)

and

y∗(t) = M∗b + εb(t).

Subtracting, we get
0 = M∗a −M∗b + εa(t)− εb(t).

By (2.21), we get M∗a = M∗b and, consequently, εa(t) ≡ εb(t).

Corollary 2.6. If all assumptions of Theorem 2.5 are valid, then, obviously, the existence of a strictly
increasing and convergent solution is equivalent with the convergence of all solutions.

This statement can be improved irrespective of whether a solution y = Y(t), t ∈ I of (1.7) satisfy-
ing (2.8) exists. Omitting this existence, the following holds:

1) If there exists a strictly increasing and convergent solution of (1.7), then all solutions are convergent.
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2) If all bounded solutions of (1.7) are convergent, then all solutions of (1.7) are convergent.

3) For every two strictly increasing and positive solutions y = Yi(t), i = 1, 2, t ∈ I of (1.7), there
exists a constant ν ∈ (0, ∞) such that

lim
t→∞

Y1(t)
Y2(t)

= ν.

Remark 2.7. In part 3 below, we will discuss the existence of eventually positive solutions to
equation (1.2). In this connection, the following remark is important. If all assumptions of
Theorem 2.5 are valid, then formula (2.20) holds. Let us remark that, in this case, there exists
a solution

y = ε∗+(t), t ∈ I

of equation (1.7) such that

ε∗+(t) > 0, t ∈ I, lim
t→∞

ε∗+(t) = 0. (2.22)

To explain the existence of such a solution, assume that a function ϕ ∈ C satisfies ϕ(θ) > ϕ(0),
θ ∈ [−r, 0). Then, property (2.2) implies that the solution y(t0, ϕ)(t) is strictly decreasing on
I0 and, by Theorem 2.5, there exists a finite limit

lim
t→∞

y(t0, ϕ)(t) = M∗∗

and
y(t0, ϕ)(t) > M∗∗, t ∈ I.

By property (2.3), the function

ε∗+(t) := y(t0, ϕ)(t)−M∗∗, t ∈ I

is a solution of (1.7) obviously having properties (2.22).

3 Structure of solutions of equation (1.2)

It this part, we use the results derived in part 2 to explain the asymptotic behaviour of solu-
tions to equation (1.2), that is,

ẋ(t) = −L(t, xt)

for t → ∞ in the so called “non-oscillatory case”. This terminology, in contrast to the oscilla-
tory case of all solutions of (1.2) being oscillatory for t→ ∞, is used if (1.2) has an eventually
positive solution. We recall that L(t, ·) is a linear functional with respect to the second argu-
ment.

Theorem 3.1. Let the functional L, defined on I0 × C, be linear and strongly increasing with respect
to the second argument. If there exists a positive solution x = ϕ(t), t ∈ I of (1.2), then there exist two
positive solutions x = ϕ∗(t), x = ϕ∗∗(t), t ∈ I of (1.2) such that

lim
t→∞

ϕ∗∗(t)
ϕ∗(t)

= 0. (3.1)



Long-time behaviour of solutions 11

Proof. Substituting
x(t) = ϕ(t)y(t) (3.2)

in (1.2), we get
ϕ̇(t)y(t) + ϕ(t)ẏ(t) = −L(t, (yϕ)t). (3.3)

or
ẏ(t) =

1
ϕ(t)

[L(t, ϕt)y(t)− L(t, (yϕ)t)] . (3.4)

Because of the linearity of L, the right-hand side of (3.4) equals

1
ϕ(t)

[L(t, ϕt)y(t)− L(t, (yϕ)t)]

=
1

ϕ(t)
[L(t, y(t)ϕt)− L(t, (yϕ)t)] =

1
ϕ(t)

L(t, y(t)ϕt − (yϕ)t). (3.5)

Define a functional L∗(t, yt) on the right-hand side of (1.7) by the formula (suggested by (3.4)
and (3.5))

L∗(t, ψ) :=
1

ϕ(t)
L(t, ψ(0)ϕt − ψϕt) =

1
ϕ(t)

L(t, (ψ(0)− ψ)ϕt).

The functional L∗(t, · ) is linear with respect to the second argument since, for arbitrary con-
stants α, β and functions ξ, ζ ∈ C, we have

L∗(t, αξ + βζ) =
1

ϕ(t)
L(t, ((αξ(0) + βζ(0))− (αξ + βζ))ϕt)

=
1

ϕ(t)
L(t, (αξ(0) + βζ(0))ϕt)−

1
ϕ(t)

L(t, (αξ + βζ)ϕt)

=
1

ϕ(t)
L(t, αξ(0)ϕt + βζ(0)ϕt)−

1
ϕ(t)

L(t, αξϕt + βζϕt)

=
α

ϕ(t)
L(t, ξ(0)ϕt) +

β

ϕ(t)
L(t, ζ(0)ϕt)−

α

ϕ(t)
L(t, ξϕt)−

β

ϕ(t)
L(t, ζϕt)

=
α

ϕ(t)
L(t, (ξ(0)− ξ)ϕt) +

β

ϕ(t)
L(t, (ζ(0)− ζ)ϕt)

= αL∗(t, ξ) + βL∗(t, ζ).

Now, let us verify that inequality (2.1) holds. The functional L is strongly increasing, therefore,
if ψ(0) > ψ(θ), θ ∈ [−r, 0), we have

L∗(t, ψ) =
1

ϕ(t)
L(t, ψ(0)ϕt − ψϕt) >

1
ϕ(t)

L(t, ψ(0)ϕt − ψ(0)ϕt) =
ψ(0)
ϕ(t)

L(t, ϕt − ϕt) = 0.

Similarly, inequality (2.2) holds since, if ψ(0) < ψ(θ), θ ∈ [−r, 0), we get

L∗(t, ψ) =
1

ϕ(t)
L(t, ψ(0)ϕt − ψϕt) <

1
ϕ(t)

L(t, ψ(0)ϕt − ψ(0)ϕt) =
ψ(0)
ϕ(t)

L(t, ϕt − ϕt) = 0.

We conclude that the functional L∗ satisfies assumptions (2.1), (2.2). Consequently, either
Theorem 2.3 or Theorem 2.5 can be applied.

Assume, at first, that the assumptions of Theorem 2.3 hold. Then, the family of all solutions
to equation (1.2), as follows from the substitution (3.2) and formula (2.9), is

x(t) = ϕ(t)y(t) = ϕ(t)y∗(t) = ϕ(t)(K∗Y(t) + δ(t)), t ∈ I. (3.6)
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Set K∗ = 0, δ(t) = 1 and define
ϕ∗∗(t) := ϕ(t).

Moreover, let K∗ = 1, δ(t) = 0 and define

ϕ∗(t) := ϕ(t)Y(t).

Solutions ϕ∗∗(t), ϕ∗(t) are positive on I and (3.1) holds since

lim
t→∞

ϕ∗∗(t)
ϕ∗(t)

= lim
t→∞

ϕ(t)
ϕ(t)Y(t)

= lim
t→∞

1
Y(t)

= 0.

It remains to consider the case covered by Theorem 2.5. Then, the family of all solutions to
equation (1.2), as follows from substitution (3.2) and formula (2.20), is

x(t) = ϕ(t)y(t) = ϕ(t)y∗(t) = ϕ(t)(M∗ + ε(t)), t ∈ I. (3.7)

Let, in (3.7), M∗ = 0 and ε(t) = ε∗+(t) where ε∗+(t) is a positive solution mentioned in Re-
mark 2.7, with properties given by formula (2.22). Then,

x(t) = ϕ(t)ε∗+(t), t ∈ I.

Set
ϕ∗∗(t) := ϕ(t)ε∗+(t).

If M∗ = 1 and ε(t) = 0 in (3.7), then
x(t) = ϕ(t)

and we define
ϕ∗(t) := ϕ(t).

The new set of solutions ϕ∗∗(t), ϕ∗(t) positive on I satisfies (3.1) as well since

lim
t→∞

ϕ∗∗(t)
ϕ∗(t)

= lim
t→∞

ϕ(t)ε∗+(t)
ϕ(t)

= lim
t→∞

ε∗+(t) = 0.

Theorem 3.2. Let the functional L, defined on I0×C, be linear and strongly increasing with respect to
the second argument. If there exists a positive solution x = ϕ(t) of (1.2), then there exist two positive
solutions x = ϕ∗(t), x = ϕ∗∗(t), t ∈ I of (1.2) satisfying (3.1) such that every solution x = x(t),
t ∈ I of (1.2) can be uniquely represented by the formula

x(t) = K∗ϕ∗(t) + δ∗(t)ϕ∗∗(t), t ∈ I (3.8)

where K∗ ∈ R and δ∗ : I → R is a continuous and bounded function.

Proof. The assumptions of the theorem are the same as those of Theorem 3.1 and, in the proof,
we utilize some parts of the proof of this theorem. Then, obviously, a given solution x(t) is
represented either by formulas (3.6) and (3.8) where ϕ∗(t) = ϕ(t)Y(t), ϕ∗∗(t) = ϕ(t), or by
formulas (3.7) and (3.8) where ϕ∗(t) = ϕ(t), ϕ∗∗(t) = ϕ(t)ε∗+(t).

To prove the uniqueness, assume that, except for the formula (3.8), x(t) is represented, by
the formula

x(t) = K∗b ϕ∗(t) + δ∗b (t)ϕ∗∗(t), t ∈ I,
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where K∗ 6= K∗b , δ∗(t) 6≡ δ∗b (t), as well. Subtracting, we obtain

0 = (K∗ − K∗b )ϕ∗(t) + (δ∗(t)− δ∗b (t))ϕ∗∗(t), t ∈ I,

or

0 = (K∗ − K∗b ) + (δ∗(t)− δ∗b (t))
ϕ∗∗(t)
ϕ∗(t)

, t ∈ I. (3.9)

Passing to the limit in (3.9) as t → ∞, we see that property (3.1) is in contradiction to our
assumption. Therefore, K∗ = K∗b and, consequently, δ∗(t) ≡ δ∗b (t).

Now we show that the representation (3.8) is, in a sense, independent of the choice of
solutions x = ϕ∗(t) and x = ϕ∗∗(t).

Theorem 3.3. Let the functional L, defined on I0 × C, be linear and strongly increasing with respect
to the second argument. Let x = ϕ∗A(t), x = ϕ∗∗A (t), t ∈ I be two positive solutions of (1.2) such that
the property

lim
t→∞

ϕ∗∗A (t)
ϕ∗A(t)

= 0 (3.10)

holds. Then, every solution x = x(t), t ∈ I of (1.2) can be uniquely represented by the formula

x(t) = K∗A ϕ∗A(t) + δ∗A(t)ϕ∗∗A (t), t ∈ I (3.11)

where K∗A ∈ R and δ∗A : I → R is a continuous and bounded function.

Proof. In formula (3.2) of the proof of Theorem 3.1, we assume ϕ(t) := ϕ∗∗A (t). Then, the
family of all solutions to equation (1.2) is described by a formula of the type (3.6), that is,

x(t) = ϕ∗∗A (t)(K∗AY∗∗A (t) + δ∗∗A (t)), t ∈ I (3.12)

where limt→∞ Y∗∗A (t) = ∞ and δ∗∗A (t) has the same properties as δ(t) in the original for-
mula (2.9), and K∗A, δ∗∗A (t) are uniquely determined by x(t). For the choice x(t) := ϕ∗∗(t)
in (3.12), we have

ϕ∗∗(t) = ϕ∗∗A (t)(K∗BY∗∗A (t) + δ∗∗B (t)), t ∈ I (3.13)

and, for the choice x(t) := ϕ∗(t) in (3.12), we have

ϕ∗(t) = ϕ∗∗A (t)(K∗CY∗∗A (t) + δ∗∗C (t)), t ∈ I. (3.14)

Using representations (3.13), (3.14), consider the limit

0 = lim
t→∞

ϕ∗∗(t)
ϕ∗(t)

= lim
t→∞

K∗BY∗∗A (t) + δ∗∗B (t)
K∗CY∗∗A (t) + δ∗∗C (t)

.

From this, we deduce K∗B = 0 and (3.13) yields

ϕ∗∗(t) = ϕ∗∗A (t)δ∗∗B (t), t ∈ I. (3.15)

In view of (3.15), formula (3.8) can be written as

x(t) = K∗ϕ∗(t) + δ∗(t)δ∗∗B (t)ϕ∗∗A (t), t ∈ I. (3.16)

Since (3.16) is assumed to be valid for an arbitrary solution x = x(t) of (1.2), set, in (3.16),
x(t) := ϕ∗A(t). Then,

ϕ∗A(t) = K∗1 ϕ∗(t) + δ∗1 (t)δ
∗∗
B (t)ϕ∗∗A (t), t ∈ I (3.17)



14 J. Diblík

or, dividing by ϕ∗A(t),

1 = K∗1
ϕ∗(t)
ϕ∗A(t)

+ δ∗1 (t)δ
∗∗
B (t)

ϕ∗∗A (t)
ϕ∗A(t)

, t ∈ I.

Passing to limit as t→ ∞, we have, by (3.10),

1 = K∗1 lim
t→∞

ϕ∗(t)
ϕ∗A(t)

,

therefore, K∗1 6= 0. From (3.17), we get

ϕ∗(t) =
1

K∗1
ϕ∗A(t)−

1
K∗1

δ∗1 (t)δ
∗∗
B (t)ϕ∗∗A (t), t ∈ I. (3.18)

Now, apply (3.15) and (3.18) in (3.8). Then,

x(t) = K∗ϕ∗(t) + δ∗(t)ϕ∗∗(t)

= K∗
(

1
K∗1

ϕ∗A(t)−
1

K∗1
δ∗1 (t)δ

∗∗
B (t)ϕ∗∗A (t)

)
+ δ∗(t)ϕ∗∗A (t)δ∗∗B (t)

=
K∗

K∗1
ϕ∗A(t) +

(
δ∗(t)− K∗

K∗1
δ∗1 (t)

)
δ∗∗B (t)ϕ∗∗A (t), t ∈ I.

To end the proof, we set

K∗A :=
K∗

K∗1
, δ∗A(t) :=

(
δ∗(t)− K∗

K∗1
δ∗1 (t)

)
δ∗∗B (t).

Then, (3.11) is valid. The proof of the uniqueness of such a representation can be done in
much the same way as that of Theorem 3.2 and, therefore, is omitted.

We will finish this part with a theorem saying that equation (1.2) cannot have three positive
solutions x = ϕ∗(t), x = ϕ∗∗(t) and x = ϕ∗∗∗(t) on I such that, simultaneously,

lim
t→∞

ϕ∗∗(t)
ϕ∗(t)

= 0 (3.19)

and

lim
t→∞

ϕ∗∗∗(t)
ϕ∗∗(t)

= 0. (3.20)

Theorem 3.4. Let the functional L, defined on I0 × C, be linear and strongly increasing with respect
to the second argument. Then, there exist no three solutions x = ϕ∗(t), x = ϕ∗∗(t), x = ϕ∗∗∗(t),
to (1.2) positive on I such that the limit properties (3.19), (3.20) hold.

Proof. Assume that there exists a triplet of solutions x = ϕ∗(t), x = ϕ∗∗(t) and x = ϕ∗∗∗(t)
to (1.2) positive on I and such that the limit properties (3.19), (3.20) hold. Then, all assumptions
of Theorem 3.2 are satisfied. By formula (3.8), every solution x = x(t), t ∈ I of (1.2) can be
uniquely represented in the form

x(t) = Kϕ∗∗(t) + δ(t)ϕ∗∗∗(t), t ∈ I

where K ∈ R and δ : I → R is a continuous and bounded function. Therefore, for a constant
K = K1 and a function δ(t) = δ1(t),

ϕ∗(t) = K1ϕ∗∗(t)) + δ1(t)ϕ∗∗∗(t), t ∈ I. (3.21)
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Considering in formula (3.21) divided by ϕ∗∗(t) the limit for t → ∞, we get, with the aid
of (3.19), (3.20),

∞ = lim
t→∞

ϕ∗(t)
ϕ∗∗(t)

= lim
t→∞

(
K1 + δ1(t)

ϕ∗∗∗(t)
ϕ∗∗(t)

)
= K1 + 0 = K1.

We get a contradiction, therefore, the mentioned triplet of solutions does not exist.

4 Applications

In this part, we give two applications of the results derived. First we consider a linear integro-
differential equation. Then a linear differential equation with multiple delays will be investi-
gated.

4.1 Positive solutions to an integro-differential equation

Let us consider a scalar linear integro-differential equation with delay

ẋ(t) = −
∫ t

t−τ(t)
c(t, σ)x(σ)dσ, (4.1)

where c : I0 × I → R+ is a continuous function, τ : I0 → (0, r] and t− τ(t) is a non-decreasing
function on I0. We will rewrite the equation (4.1) in the form (1.2). Define

L(t, ψ) :=
∫ 0

−τ(t)
c(t, t + s)ψ(s)ds, ψ ∈ C. (4.2)

Then, the relevant form (1.2) for (4.1) is

ẋ(t) = −L(t, xt) = −
∫ 0

−τ(t)
c(t, t + s)xt(s)ds, t ∈ I0

because ∫ 0

−τ(t)
c(t, t + s)xt(s)ds =

∫ 0

−τ(t)
c(t, t + s)x(t + s)ds =

∫ t

t−τ(t)
c(t, σ)x(σ)dσ.

Obviously, functional (4.2) is linear. Moreover, it is strongly increasing with respect to the
second argument within the meaning of Definition 1.1 since∫ 0

−τ(t)
c(t, t + s)ψ1(s)ds <

∫ 0

−τ(t)
c(t, t + s)ψ2(s)ds

for arbitrary ψ1, ψ2 ∈ C satisfying (1.3).
Equation (4.1) is a particular case of equation considered in [19, formula (17)]. The fol-

lowing theorem on the existence of a positive solution to equation (4.1) is an adaptation of
Theorem 6 in [19].

Theorem 4.1. Equation (4.1) has a positive solution x = x(t) on I if and only if there exists a contin-
uous function λ : I → R such that λ(t) > 0 for t ∈ I0 and

λ(t) ≥
∫ t

t−τ(t)
c(t, σ)e

∫ t
σ λ(u)du dσ (4.3)

on the interval I0.
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If Theorem 4.1 holds and a function λ(t) satisfying (4.3) exists, then the existence of a
positive solution x = x(t) to equation (4.1) defined on I is guaranteed. Under the above
assumptions, Theorems 3.1, 3.2, 3.3 hold as well and, therefore, the following result can be
formulated.

Theorem 4.2. Let c : I0 × I → R be a positive continuous function. If there exists a positive solution
x = x(t) to equation (4.1) defined on I, then there are two positive solutions x = ϕ∗(t), x = ϕ∗∗(t),
t ∈ I of (4.1) such that

lim
t→∞

ϕ∗∗(t)
ϕ∗(t)

= 0 (4.4)

and, moreover, every solution x = x(t), t ∈ I of (4.1) can be uniquely represented by the formula

x(t) = K∗ϕ∗(t) + δ∗(t)ϕ∗∗(t), t ∈ I (4.5)

where K∗ ∈ R and δ∗ : I → R is a continuous and bounded function (K∗ and δ∗ depend on x(t)).
In (4.5), solutions ϕ∗(t), ϕ∗∗(t) can be replaced by any two arbitrary positive solutions to equation (4.1)
defined on I and satisfying a limit property analogous to (4.4).

For an equation

ẋ(t) = −c(t)
∫ t

t−r
x(σ)dσ (4.6)

being a particular case of (4.1) if c(t, σ) := c(t) for every (t, σ) ∈ I0 × I, c(t) is a positive con-
tinuous function and τ(t) ≡ r on I0, the following is proved in [19, Theorem 8]:

Theorem 4.3. For the existence of a solution of equation (4.6) positive on I, the inequality

c(t) ≤ M, t ∈ I0

is sufficient for M = α(2− α)/r2 = const with α being the positive root of the equation 2− α = 2e−α.
(Approximate values are α ≈ 1.5936 and M ≈ 0.6476/r2.)

Example 4.4. Let equation (4.6) be of the form

ẋ(t) = − 1
e− 1

∫ t

t−1
x(σ)dσ. (4.7)

Obviously, c(t) ≡ 1/(e− 1), t ∈ I0 and r = 1. Applying Theorem 4.3, we compute

c(t) ≡ 1
e− 1

≈ 0.58198 < M ≈ 0.6476/r2 = 0.6476

and a solution of (4.7) exists positive on I. Consequently, by Theorem 4.2, there exist two
positive solutions on I such that (4.4) holds.

Looking for a solution of (4.7) in the form x = exp(−λt) where λ is a suitable constant,
we arrive at the equation

λ2(e− 1)− eλ + 1 = 0

having two positive roots, one being λ1 = 1 and the other (found with the “WolframAlpha"
software) λ2 ≈ 2.35151. So, equation (4.7) has two positive solutions

x = ϕ∗(t) = exp(−t), x = ϕ∗∗(t) = exp(−λ2t)

satisfying (4.4) and an arbitrary solution x = x(t) to (4.7) can be uniquely represented by
formula (4.5), that is,

x(t) = K∗ e−t + δ∗(t)e−λ2t, t ∈ I

where K∗ is a constant and δ∗(t) is a bounded continuous function.
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4.2 A linear differential equation with multiple delays

Consider a scalar linear differential equation with multiple delays of the form

ẋ(t) = −
n

∑
i=1

ci(t)x(t− τi(t)) (4.8)

where ci : I0 → [0, ∞), i = 1, 2, . . . , n are continuous functions such that ∑n
i=1 ci(t) > 0, t ∈ I0

and delays τi : I0 → (0, r], i = 1, 2, . . . , n are continuous.
Let us rewrite the equation (4.8) in the form (1.2). Obviously, in this case,

L(t, ψ) :=
n

∑
i=1

ci(t)ψ(−τi(t)), (4.9)

and the functional (4.9) is linear and strongly increasing with respect to the second argument
within the meaning of Definition 1.1.

Let us recall the following result [7, Theorem 8].

Theorem 4.5. Equation (4.8) has a positive solution x = x(t) on I if and only if there is a function
λ : I → R such that λ(t) > 0 for t ∈ I0 and

λ(t) ≥
n

∑
i=1

ci(t) exp
[ ∫ t

t−τi(t)
λ(σ)dσ

]
, t ∈ I0. (4.10)

If Theorem 4.5 holds and a function λ, satisfying (4.10) exists, then the existence of a
positive solution x = x(t) to equation (4.8), defined on I, is guaranteed. Theorems 3.1, 3.2, 3.3
can be applied to equation (4.8) because all their assumptions hold. We derive the following
result.

Theorem 4.6. Let ci : I0 → [0, ∞), i = 1, 2, . . . , n be continuous functions such that ∑n
i=1 ci(t) > 0,

t ∈ I0 and delays τi : I0 → (0, r], i = 1, 2, . . . , n be continuous. If there exists a positive solution
x = x(t) to equation (4.8) defined on I, then there are two positive solutions x = ϕ∗(t), x = ϕ∗∗(t),
t ∈ I such that

lim
t→∞

ϕ∗∗(t)
ϕ∗(t)

= 0 (4.11)

and, moreover, every solution x = x(t), t ∈ I of (4.8) can be uniquely represented by the formula

x(t) = K∗ϕ∗(t) + δ∗(t)ϕ∗∗(t), t ∈ I (4.12)

where K∗ ∈ R and δ∗ : I → R is a continuous and bounded function (K∗ and δ∗ depend on x(t)).
In (4.12), solutions ϕ∗(t), ϕ∗∗(t) can be replaced by arbitrary two positive solutions to equation (4.8)
defined on I and satisfying limit property analogous to (4.11).

A sufficient condition for the existence of a positive solution to (4.8) is, for example, the
following [7, Theorem 9], [26, Theorem 3.3.1].

Theorem 4.7. Let ci : I0 → [0, ∞), i = 1, 2, . . . , n be continuous functions such that ∑n
i=1 ci(t) > 0,

t ∈ I0 and let delays τi : I0 → (0, r], i = 1, 2, . . . , n be continuous. If, moreover,∫ t

t−τ(t)

n

∑
i=1

ci(σ)dσ ≤ 1
e

(4.13)

where τ(t) = maxi{τi(t)}, i = 1, . . . , n and t ∈ I0, then equation (4.8) has a positive solution on
interval I.
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Example 4.8. Let equation (4.8) be of the form

ẋ(t) = − 1
5e

x(t− 1)− 1
5e

x(t− 2). (4.14)

Here, n = 2, c1(t) = c2(t) = 1/5e, τ1(t) = 1, τ2(t) = 2 and τ(t) = 2. Inequality (4.13) is
satisfied since ∫ t

t−τ(t)

n

∑
i=1

ci(σ)dσ =
∫ t

t−2

2
5e

dσ =
4
5e

<
1
e

.

By Theorem 4.7, there exists a solution of (4.14) positive on I. Then, by Theorem 4.6, there
exist two positive solutions on I such that (4.12) holds. Assuming a solution of (4.14) in the
exponential form x = exp(−λt) with suitable constant λ, we arrive at the equation

e2λ + eλ − 5eλ = 0.

This equation has two positive roots λ = λi, i = 1, 2. By the “WolframAlpha” software, their
values are:

λ1 ≈ 0.199462, λ2 ≈ 1.32996,

and equation (4.14) has two positive solutions

x = ϕ∗(t) = exp(−λ1t), x = ϕ∗∗(t) = exp(−λ2t)

satisfying (4.11). An arbitrary solution x = x(t) to (4.14) can be uniquely represented by
formula (4.12),

x(t) = K1e−λ1t + δ1(t)e−λ2t, t ∈ I

where K1 is a constant and δ1(t) is a bounded function.

Remark 4.9. Consider equation (1.4) with r = 1, that is, the equation

ẋ(t) = −1
e

x(t− 1). (4.15)

Searching for a positive solution in the form x = exp(−λt) with a suitable constant λ leads to
an equation

eλ − eλ = 0

which has “only” one positive solution λ = 1 and, by this approach, we detected “only”
one positive solution x(t) = e−t of equation (4.15). Nevertheless, Theorem 4.6 holds and,
therefore, there exist two positive solutions (see formulas (1.5) with r = 1). The above case is
called critical and was investigated in detail, for example, in [12].

Remark 4.10. Note that the criteria for the existence of positive solutions to various classes
of linear delayed differential equations can be found, for example in books [1, 2, 24–26] and
papers [3–7,10–12,19–23,31,38,39,43]. Theorems of the type of Theorem 4.5, including gener-
alizations to linear and non-linear delayed systems can be found in [1,2,7,19,24,25] and sharp
explicit criteria for detecting positive solutions are presented in [3, 4, 6, 12, 20, 22, 23, 26, 31, 38].

5 Concluding remarks and open problems

Now we will discuss some interesting features of the results derived, formulating some new,
not yet solved problems.
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5.1 Dominant and subdominant solutions

Two positive solutions x = ϕ∗(t), x = ϕ∗∗(t), t ∈ I of (1.2) satisfying (3.1) always exist if, as
stated in Theorem 3.1, equation (1.2) has a positive solution on I. Moreover, by Theorem 3.2,
such two solutions characterize all solutions of equation (1.2) as described by formula (3.8).
This formula is “invariant” in a sense since, by Theorem 3.3, a given pair of solutions can be
replaced by an arbitrary pair of two positive solutions x = ϕ∗A(t), x = ϕ∗∗A (t), t ∈ I of (1.2)
satisfying (3.10).

The above properties are the reason for the following terminology introduced in [12]. The
solutions x = ϕ∗(t), x = ϕ∗A(t) are called dominant and the solutions x = ϕ∗∗(t), x = ϕ∗∗A (t)
are called subdominant. For this type of investigation, we refer also to [32–34] where the first
results of this type were obtained by E. Kozakiewicz. An overview of a part of these results is
given in [35], and in [30, pp. 155–159], a conclusion about structure of the set of solutions of
equation ẋ(t) = −a(t)x(t− h(t)), based on the above results, is demonstrated). The original
sources [32–34] are written in German and [35] in Russian, a short remark [30] (where the
references to original sources are not cited) is written in English. Comparing our results with
those in [32–34], we see that the main difference is that, there, the existence of dominant
and subdominant (in our terminology) solutions is assumed (or sufficient conditions for their
existence are given). Our results say that their existence is always guaranteed if there exists a
positive solution (irrespectively on the fact whether it is dominant or subdominant), therefore,
the results proved explain some characteristic properties of the solutions of a given class of
equations under very simple assumptions.

Dominant and subdominant solutions to the Dickman equation (having applications in the
number theory), that is, to the equation

ẋ(t) = −1
t

x(t− 1), (5.1)

for t→ ∞, have recently been investigated in [17, 36]. Dominant solutions to (5.1) are studied
in [36], here it is proved, for example, that a positive solution is asymptotically described by
the formula x(t) ∼ C/t where the constant C is exactly computed by using the initial function,
generating the solution x. From the results of the paper, the existence immediately follows of
a second, subdominant, positive solution, which is investigated in [17]. A general approach
how to an investigation of the asymptotic of dominant solutions of some classes of linear
equations is suggested in [28].

The results of the paper also generalize some of the previous results for particular classes
of equations (we refer, for example, to [8, 9, 12, 18, 42]). The paper [18] served as a motivation
for the present research to extend some statements to general linear functional differential
equations. Two classes of positive solutions to nonlinear functional differential equations are
analyzed in [13, 14, 16].

5.2 Oscillating solutions in the “non-oscillatory” case

Consider formula (3.8), that is, the formula

x(t) = K∗ϕ∗(t) + δ∗(t)ϕ∗∗(t), t ∈ I

where solutions x = ϕ∗(t), x = ϕ∗∗(t), t ∈ I of (1.2) satisfy (3.1). Since every positive
solution of (1.2) is strictly decreasing on I0, formula (3.1) implies that limt→∞ ϕ∗∗(t) = 0 and
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the following is true: if equation (1.2) has a positive solution on I, then it also has a positive
solution on I tending to zero.

Moreover, formula (3.8) implies that every eventually oscillating solution must satisfy this
formula as well. Due to the positivity of ϕ∗(t), we get K∗ = 0. Therefore, every oscillating
solution xo(t) satisfies

xo(t) = δ∗(t)ϕ∗∗(t), t ∈ I

and tends to zero with a speed not less than ϕ∗∗(t). In such a case, the function δ∗(t) is
oscillating.

5.3 Open problems

In connection with the above investigation, the following open problems are arising.

Open Problem 1. It was stated above that, if equation (1.2) has one positive solution x = x(t)
on I, then it has two classes of positive solutions – dominant and subdominant. There is an
open question of how to know when a positive solution x = x(t) defined on I is dominant
and when it is subdominant.

Open Problem 2. Similar, but different is a question of which initial-value problem

xt0 = ψ ∈ C

generates a positive solution (some results, for some classes of linear equations, can be found
in [26]). A more deep problem should be considered as well – if this problem defines a positive
solution, is this solution dominant or subdominant? Some results giving particular answers
can be found, for example, in [15, 17].

Open Problem 3. The following problems are not solved here either. How could the above
results be extended to cover the neutral delayed linear functional differential equations, differ-
ential systems of linear functional equations of retarded-type, and higher-order linear delayed
differential equations?
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p(t)[x(t) − x(t − 1)] (in Chinese), Journal of Anhui University (Natural Sciences) 2(1981),
11–21.
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