Infinitely many solutions for fractional Kirchhoff-Sobolev-Hardy critical problems

Vincenzo Ambrosio ${ }^{1}$, Alessio Fiscella ${ }^{\boxtimes 2}$ and Teresa Isernia ${ }^{1}$
${ }^{1}$ Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche, 12, 60131 Ancona, Italy
${ }^{2}$ Departamento de Matemática, Universidade Estadual de Campinas, IMECC, Rua Sérgio Buarque de Holanda, 651, Campinas, SP CEP 13083-859, Brazil

Received 2 September 2018, appeared 8 April 2019
Communicated by Dimitri Mugnai

Abstract

We investigate a class of critical stationary Kirchhoff fractional p-Laplacian problems in presence of a Hardy potential. By using a suitable version of the symmetric mountain-pass lemma due to Kajikiya, we obtain the existence of a sequence of infinitely many arbitrarily small solutions converging to zero.

Keywords: fractional p-Laplacian, Kirchhoff coefficient, Hardy potentials, critical Sobolev exponent, variational methods.
2010 Mathematics Subject Classification: 35R11, 35A15, 47G20, 49J35.

1 Introduction

In this paper we consider the following fractional problem

$$
\begin{cases}M\left([u]_{s, p}^{p}\right)(-\Delta)_{p}^{s} u-\gamma \frac{|u|^{p-2} u}{|x|^{\mid s p}}=\lambda w(x)|u|^{q-2} u+\frac{|u|^{p_{s}^{*}(\alpha)-2} u}{|x|^{\alpha}}, & \text { in } \Omega \tag{1.1}\\ u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

where $0<s<1<p<\infty, 0 \leq \alpha<s p<N, 1<q<p, p_{s}^{*}(\alpha)=\frac{p(N-\alpha)}{N-s p} \leq p_{s}^{*}(0)=p_{s}^{*}$ is the critical Hardy-Sobolev exponent, γ and λ are real parameters, w is a positive weight whose assumption will be introduced in the sequel and $\Omega \subseteq \mathbb{R}^{N}$ is a general open set. Naturally, the condition $u=0$ in $\mathbb{R}^{N} \backslash \Omega$ disappears when $\Omega=\mathbb{R}^{N}$.

Here $(-\Delta)_{p}^{s}$ denotes the fractional p-Laplace operator which, up to normalization factors, may be defined by the Riesz potential as

$$
(-\Delta)_{p}^{s} u(x)=2 \lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{N} \backslash B_{\varepsilon}(x)} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{N+s p}} d y, \quad x \in \mathbb{R}^{N},
$$

[^0]along any $u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, where $B_{\varepsilon}(x)=\left\{y \in \mathbb{R}^{N}:|x-y|<\varepsilon\right\}$. See [11,23] and the references therein for further details on the fractional Sobolev space $W^{s, p}(\Omega)$ and some recent results on the fractional p-Laplacian.

Problem (1.1) is fairly delicate due to the intrinsic lack of compactness, which arise from the Hardy term and the nonlinearity with critical exponent $p_{s}^{*}(\alpha)$. For this reason, we strongly need that the Kirchhoff coefficient M is non-degenerate, namely $M(t)>0$ for any $t \geq 0$. Hence, along the paper, we suppose that the Kirchhoff function $M: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$is continuous and satisfies
$\left(M_{1}\right) \inf _{t \in \mathbb{R}_{0}^{+}} M(t)=a>0 ;$
$\left(M_{2}\right)$ there exists $\theta \in\left[1, p_{s}^{*}(\alpha) / p\right)$, such that $M(t) t \leq \theta \mathscr{M}(t)$ for all $t \in \mathbb{R}_{0}^{+}$, where $\mathscr{M}(t)=$ $\int_{0}^{t} M(\tau) d \tau$.

Concerning the positive weight w, we assume that

$$
(w) w(x)|x|^{\frac{q \alpha}{p_{s}^{(}(\alpha)}} \in L^{r}\left(\mathbb{R}^{N}\right) \text {, with } r=\frac{p_{s}^{*}(\alpha)}{p_{s}^{*}(\alpha)-q} \text {. }
$$

Condition (w) is necessary, since it guaranties that the embedding $Z(\Omega) \hookrightarrow L^{q}(\Omega, w)$ is compact, even when Ω is the entire space \mathbb{R}^{N}. Indeed, the natural solution space for problem (1.1) is the fractional density space $Z(\Omega)$, that is the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm $[\cdot]_{s, p}$, given by

$$
[u]_{s, p}=\left(\iint_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y\right)^{1 / p} .
$$

Thus, by arguing similarly to Lemma 4.1 of [15], we have that the embedding $Z(\Omega) \hookrightarrow$ $L^{q}(\Omega, w)$ is compact with

$$
\begin{equation*}
\|u\|_{q, w} \leq C_{w}[u]_{s, p} \quad \text { for any } u \in Z(\Omega), \tag{1.2}
\end{equation*}
$$

where the weighted norm is set by

$$
\|u\|_{q, w}=\left(\int_{\Omega} w(x)|u(x)|^{q} d x\right)^{1 / q}
$$

and $C_{w}=H_{\alpha}^{-1 / p}\left(\int_{\mathbb{R}^{N}} w^{r}(x)|x|^{\frac{q \alpha}{p s(\alpha)-q}} d x\right)^{1 / q r}$ is a positive constant. Here $H_{\alpha}=H(N, p, s, \alpha)$ denotes the best fractional critical Hardy-Sobolev constant, given by

$$
\begin{equation*}
H_{\alpha}=\inf _{u \in Z(\Omega) \backslash\{0\}} \frac{[u]_{s, p}^{p}}{\|u\|_{H_{\alpha}}^{p}}, \quad\|u\|_{H_{\alpha}}^{p_{s}^{*}(\alpha)}=\int_{\Omega}|u(x)|^{p_{s}^{*}(\alpha)} \frac{d x}{|x|^{\alpha}} . \tag{1.3}
\end{equation*}
$$

Of course number H_{α} is well-defined and strictly positive for any $\alpha \in[0, p s]$, since Lemma 2.1 of [15]. We observe that when $\alpha=0$ then H_{0} coincides with the critical Sobolev constant, while when $\alpha=s p$ then $H_{s p}$ is the true critical Hardy constant. In order to simplify the notation, throughout the paper we denote the true fractional Hardy constant and the true fractional Hardy norm with $H=H_{s p}$ and $\|\cdot\|_{H}=\|\cdot\|_{H_{s p}}$, in (1.3) when $\alpha=s p$.

When $s=1$ and $p=2$, our problem (1.1) is related to the celebrated Kirchhoff equation

$$
\begin{equation*}
\rho u_{t t}-\left(\frac{P_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|u_{x}\right|^{2} d x\right) u_{x x}=0, \tag{1.4}
\end{equation*}
$$

proposed by Kirchhoff [21] in 1883 as a nonlinear generalization of D'Alembert's wave equation for free vibrations of elastic strings. This model describes a vibrating string, taking into account the changes in the length of the string during vibrations. In the equation (1.4) $u=u(x, t)$ is the transverse string displacement at the space coordinate x and time t, L is the length of the string, h is the area of the cross section, E is Young's modulus of the material, ρ is the mass density, and P_{0} is the initial tension. The early studies devoted to the Kirchhoff model were given by Bernstein [6], Lions [22] and Pohozaev [26].

In the nonlocal setting, Fiscella and Valdinoci [17] proposed a stationary Kirchhoff variational model in smooth bounded domains of \mathbb{R}^{N}, which takes into account the nonlocal aspect of the tension arising from nonlocal measurements of the fractional length of the string, given by Caffarelli et al. in [8]. In other words, the problem studied in [17] is the fractional version of the Kirchhoff equation (1.4). Starting from [17], a great attention has been devoted to the study of fractional Kirchhoff problems; see for example [1-3,9,13-16,24,27].

The true local version of problem (1.1), namely when $M \equiv 1$ and $s=1$, given by

$$
\begin{cases}-\Delta_{p} u-\gamma \frac{|u|^{p-2} u}{|x|^{p}}=\lambda w(x)|u|^{q-2} u+\frac{|u|^{*}(\alpha)-2}{|x|^{\alpha}}, & \text { in } \Omega \tag{1.5}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has been widely studied in $[10,12,18,19]$. In these works, the authors proved the existence of infinitely many solutions of (1.5), when the parameter λ is controlled by a suitable threshold depending on the following Sobolev-Hardy constant

$$
S_{\gamma}=\inf _{W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}\left(|\nabla u(x)|^{p}-\gamma \frac{|u(x)|^{p}}{|x|^{p}}\right) d x}{\left(\int_{\Omega} \frac{|u(x)|^{p^{*}(\alpha)}}{|x|^{\alpha}} d x\right)^{\frac{p}{p^{p}(\alpha)}}} .
$$

In order to overcome the lack of compactness, due to the presence of two Hardy potentials in (1.5), they exploit a concentration compactness principle, applied to the combined norm $\int_{\Omega}\left(|\nabla u|^{p}-\gamma \frac{|u|^{p}}{|x|^{p}}\right) d x$ and to the critical norm $\int_{\Omega} \frac{|u|^{p^{*}(\alpha)}}{|x|^{\alpha}} d x$. Because of the bi-nonlocal nature of the problem (1.1), the same approach of $[10,12,18,19]$ can not work in our case. Indeed, due to the presence of a Kirchhoff coefficient M, for which the equation in (1.1) is no longer a pointwise identity, we have difficulties in considering a combined norm. Since Ω could be unbounded, we can not apply a concentration compactness argument because of the nonlocal nature of $(-\Delta)_{s}^{p}$, as well explained in Section 2.3 of [25]. For these reasons, we use a tricky analysis of the energy functional which allows us to handle the two Hardy potentials in (1.1); see Sections 2 and 3 .

Thus, we get the next multiplicity result for (1.1), which involves the main geometrical parameter $\kappa_{\sigma}=\kappa(\sigma)$ defined by

$$
\begin{equation*}
\kappa_{\sigma}=\frac{a(\sigma-\theta p)}{\theta(\sigma-p)} \tag{1.6}
\end{equation*}
$$

for any $\sigma \in\left(p \theta, p_{s}^{*}(\alpha)\right)$. A parameter similar to (1.6) already appeared in [9]. Clearly $\kappa_{\sigma} \leq a$, since $\theta \geq 1$ and $p \theta \leq \sigma$. When $\theta=1$ in $\left(M_{2}\right)$, we observe that parameter $\kappa_{\sigma}=a$ does not depend by the choice of σ. As shown in Section 2 of [9], the situation $\theta=1$ holds true in other cases, besides the obvious one $M \equiv a$.

Now, we are ready to state the main result of the present paper.

Theorem 1.1. Let $N>p s>\alpha \geq 0, q \in(1, p)$, with $s \in(0,1)$ and $p \in(1, \infty)$. Assume that M and w satisfy assumptions $\left(M_{1}\right)-\left(M_{2}\right)$ and (w).

Then, for any $\sigma \in\left(p \theta, p_{s}^{*}(\alpha)\right)$ and for any $\gamma \in\left(-\infty, \kappa_{\sigma} H\right)$, there exists $\bar{\lambda}=\bar{\lambda}(\sigma, \gamma)>0$ such that for any $\lambda \in(0, \bar{\lambda})$ problem (1.1) admits a sequence of solutions $\left\{u_{n}\right\}_{n}$ in $Z(\Omega)$ with the energy functional $\mathcal{J}_{\gamma, \lambda}\left(u_{n}\right)<0, \mathcal{J}_{\gamma, \lambda}\left(u_{n}\right) \rightarrow 0$ and $\left\{u_{n}\right\}_{n}$ converges to zero as $n \rightarrow \infty$.

The proof of Theorem 1.1 is obtained by applying suitable variational methods and consists of several steps. In Section 2 we study the compactness property of the Euler-Lagrange functional associated with (1.1). After that, in Section 3, we introduce a truncated functional which allows us to apply the symmetric mountain pass lemma in [20]. Finally, we prove that the critical points of the truncated functional are indeed solutions of the original problem (1.1).

2 The Palais-Smale condition

Throughout the paper we assume that $N>p s>\alpha \geq 0, s \in(0,1), p \in(1, \infty), q \in(1, p)$, $\left(M_{1}\right)-\left(M_{2}\right)$ and (w), without further mentioning.

According to the variational nature, (weak) solutions of (1.1) correspond to critical points of the Euler-Lagrange functional $\mathcal{J}_{\gamma, \lambda}: Z(\Omega) \rightarrow \mathbb{R}$, defined by

$$
\mathcal{J}_{\gamma, \lambda}(u)=\frac{1}{p} \mathscr{M}\left([u]_{s, p}^{p}\right)-\frac{\gamma}{p}\|u\|_{H}^{p}-\frac{\lambda}{q}\|u\|_{q, w}^{q}-\frac{1}{p_{s}^{*}(\alpha)}\|u\|_{H_{\alpha}}^{p_{s}^{*}(\alpha)} .
$$

Note that $\mathcal{J}_{\gamma, \lambda}$ is a $C^{1}(Z(\Omega))$ functional and for any $u, \varphi \in Z(\Omega)$

$$
\begin{equation*}
\left\langle\mathcal{J}_{\gamma, \lambda}^{\prime}(u), \varphi\right\rangle=M\left([u]_{s, p}^{p}\right)\langle u, \varphi\rangle_{s, p}-\gamma\langle u, \varphi\rangle_{H}-\lambda\langle u, \varphi\rangle_{q, w}-\langle u, \varphi\rangle_{H_{\alpha}}, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\langle u, \varphi\rangle_{s, p} & =\iint_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p-2}[u(x)-u(y)] \cdot[\varphi(x)-\varphi(y)]}{|x-y|^{N+s p}} d x d y \\
\langle u, \varphi\rangle_{q, w} & =\int_{\Omega} w(x)|u(x)|^{q-2} u(x) \varphi(x) d x \\
\langle u, \varphi\rangle_{H} & =\int_{\Omega}|u(x)|^{p-2} u(x) \varphi(x) \frac{d x}{|x|^{s p}}, \quad\langle u, \varphi\rangle_{H_{\alpha}}=\int_{\Omega}|u(x)|^{p_{s}^{*}(\alpha)-2} u(x) \varphi(x) \frac{d x}{|x|^{\alpha}}
\end{aligned}
$$

Now, we discuss the compactness property for the functional $\mathcal{J}_{\gamma, \lambda}$, given by the PalaisSmale condition. We recall that $\left\{u_{n}\right\}_{n} \subset Z(\Omega)$ is a Palais-Smale sequence for $\mathcal{J}_{\gamma, \lambda}$ at level $c \in \mathbb{R}$ if

$$
\begin{equation*}
\mathcal{J}_{\gamma, \lambda}\left(u_{n}\right) \rightarrow c \quad \text { and } \quad \mathcal{J}_{\gamma, \lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in }(Z(\Omega))^{\prime} \text { as } n \rightarrow \infty \tag{2.2}
\end{equation*}
$$

We say that $\mathcal{J}_{\gamma, \lambda}$ satisfies the Palais-Smale condition at level c if any Palais-Smale sequence $\left\{u_{n}\right\}_{n}$ at level c admits a convergent subsequence in $Z(\Omega)$.

Lemma 2.1. Let $c<0$.
Then, for any $\sigma \in\left(p \theta, p_{s}^{*}(\alpha)\right)$ and any $\gamma \in\left(-\infty, \kappa_{\sigma} H\right)$ there exists $\lambda_{0}=\lambda_{0}(\sigma, \gamma)>0$ such that for any $\lambda \in\left(0, \lambda_{0}\right)$, the functional $\mathcal{J}_{\gamma, \lambda}$ satisfies the Palais-Smale condition at level c.

Proof. Fix $\sigma \in\left(p \theta, p_{s}^{*}(\alpha)\right)$ and $\gamma \in\left(-\infty, \kappa_{\sigma} H\right)$. Since $\gamma<\kappa_{\sigma} H \leq a H$, there exists a number $\widetilde{c} \in[0,1)$ such that $\gamma^{+}=\widetilde{c} a H$. Thus, let us consider $\lambda_{0}=\lambda_{0}(\sigma, \gamma)>0$ sufficiently small such that

$$
\begin{equation*}
\left(\frac{1}{\sigma}-\frac{1}{p_{s}^{*}(\alpha)}\right)^{-\frac{p_{s}^{*}(\alpha)}{p_{s}^{s}(\alpha)-q}}\left[\lambda_{0}\left(\frac{1}{q}-\frac{1}{\sigma}\right)\|w\|_{r}\right]^{\frac{p_{s}^{*}(\alpha)}{p_{s}^{*}(\alpha)-q}}<\left[(1-\widetilde{c}) a H_{\alpha}\right]^{\frac{p_{s}^{*}(\alpha)}{p_{s}^{s}(\alpha)-p}} \tag{2.3}
\end{equation*}
$$

where $q<p<p_{s}^{*}(\alpha), a$ is set in $\left(M_{1}\right)$, while H_{α} is given in (1.3).
Fix $\lambda \in\left(0, \lambda_{0}\right)$. Let $\left\{u_{n}\right\}_{n}$ be a $(P S)_{c}$ sequence in $Z(\Omega)$. We first show that $\left\{u_{n}\right\}_{n}$ is bounded. By using the assumptions $\left(M_{1}\right)$ and $\left(M_{2}\right)$, and the inequalities (1.2) and (1.3), we get

$$
\begin{align*}
\mathcal{J}_{\gamma, \lambda}\left(u_{n}\right)-\frac{1}{\sigma}\left\langle\mathcal{J}_{\gamma, \lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \geq & \left(\frac{1}{p \theta}-\frac{1}{\sigma}\right) M\left(\left[u_{n}\right]_{s, p}^{p}\right)\left[u_{n}\right]_{s, p}^{p}-\frac{\gamma^{+}}{H}\left(\frac{1}{p}-\frac{1}{\sigma}\right)\left[u_{n}\right]_{s, p}^{p} \\
& -\lambda\left(\frac{1}{q}-\frac{1}{\sigma}\right) C_{w}^{q}\left[u_{n}\right]_{s, p}^{q}-\left(\frac{1}{p_{s}^{*}(\alpha)}-\frac{1}{\sigma}\right)\left\|u_{n}\right\|_{H_{\alpha}}^{\psi_{s}^{*}(\alpha)} \\
\geq & v\left[u_{n}\right]_{s, p}^{p}-\lambda\left(\frac{1}{q}-\frac{1}{\sigma}\right) C_{w}^{q}\left[u_{n}\right]_{s, p}^{q} \\
& -\left(\frac{1}{p_{s}^{*}(\alpha)}-\frac{1}{\sigma}\right)\left\|u_{n}\right\|_{H_{\alpha}}^{*}(\alpha), \tag{2.4}
\end{align*}
$$

where

$$
\begin{equation*}
v=\left(\frac{1}{p \theta}-\frac{1}{\sigma}\right) a-\frac{\gamma^{+}}{H}\left(\frac{1}{p}-\frac{1}{\sigma}\right)>0 \tag{2.5}
\end{equation*}
$$

in view of (1.6) and the fact that $\sigma>p \theta \geq p$ and $\gamma \in\left(-\infty, \kappa_{\sigma} H\right)$. Thus, by (2.2) there exists $\beta>0$ such that as $n \rightarrow \infty$

$$
c+\beta\left[u_{n}\right]_{s, p}^{q}+o(1) \geq v\left[u_{n}\right]_{s, p}^{p},
$$

which implies at once that $\left\{u_{n}\right\}_{n}$ is bounded in $Z(\Omega)$, being $q<p$.
Therefore, using arguments similar to Lemma 4.1 of [15], there exists a subsequence, still denoted by $\left\{u_{n}\right\}_{n}$, and a function $u \in Z(\Omega)$ such that

$$
\begin{array}{lr}
u_{n} \rightharpoonup u \text { in } Z(\Omega), & {\left[u_{n}\right]_{s, p} \rightarrow d,} \\
u_{n} \rightharpoonup u \text { in } L^{p}\left(\Omega,|x|^{-s p}\right), & \left\|u_{n}-u\right\|_{H} \rightarrow i, \\
u_{n} \rightharpoonup u \text { in } L^{p s}(\alpha)\left(\Omega,|x|^{-\alpha}\right), & \left\|u_{n}-u\right\|_{H_{\alpha}} \rightarrow \ell, \tag{2.6}\\
u_{n} \rightarrow u \text { in } L^{q}(\Omega, w), & u_{n} \rightarrow u \text { a.e. in } \Omega
\end{array}
$$

as $n \rightarrow \infty$.
Furthermore, as shown in the proof of Lemma 2.4 of [9], by (2.6) the sequence $\left\{\mathcal{U}_{n}\right\}_{n}$, defined in $\mathbb{R}^{2 N} \backslash \operatorname{Diag} \mathbb{R}^{2 N}$ by

$$
(x, y) \mapsto \mathcal{U}_{n}(x, y)=\frac{\left|u_{n}(x)-u_{n}(y)\right|^{p-2}\left(u_{n}(x)-u_{n}(y)\right)}{|x-y|^{\frac{N+s p p}{p^{\prime}}}},
$$

is bounded in $L^{p^{\prime}}\left(\mathbb{R}^{2 N}\right)$ as well as $\mathcal{U}_{n} \rightarrow \mathcal{U}$ a.e. in $\mathbb{R}^{2 N}$, where

$$
\mathcal{U}(x, y)=\frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{\frac{N+s p}{p^{\prime}}}}
$$

Thus, up to a subsequence, we get $\mathcal{U}_{n} \rightarrow \mathcal{U}$ in $L^{p^{\prime}}\left(\mathbb{R}^{2 N}\right)$, and so as $n \rightarrow \infty$

$$
\begin{equation*}
\left\langle u_{n}, \varphi\right\rangle_{s, p} \rightarrow\langle u, \varphi\rangle_{s, p} \tag{2.7}
\end{equation*}
$$

for any $\varphi \in Z(\Omega)$, since $|\varphi(x)-\varphi(y)| \cdot|x-y|^{-\frac{N+s p}{p}} \in L^{p}\left(\mathbb{R}^{2 N}\right)$. Similarly, (2.6) and Proposition A. 8 of [4] imply that $\left|u_{n}\right|^{p-2} u_{n} \rightharpoonup|u|^{p-2} u$ in $L^{p^{\prime}}\left(\Omega,|x|^{-s p}\right)$ and $\left|u_{n}\right|^{p_{s}^{*}(\alpha)-2} u_{n} \rightharpoonup|u|^{p_{s}^{*}(\alpha)-2} u$ in $L^{p_{s}^{*}(\alpha)^{\prime}}\left(\Omega,|x|^{-\alpha}\right)$, from which as $n \rightarrow \infty$

$$
\begin{equation*}
\left\langle u_{n}, \varphi\right\rangle_{H} \rightarrow\langle u, \varphi\rangle_{H}, \quad\left\langle u_{n}, \varphi\right\rangle_{H_{\alpha}} \rightarrow\langle u, \varphi\rangle_{H_{\alpha}} \tag{2.8}
\end{equation*}
$$

for any $\varphi \in Z(\Omega)$.
Thanks to (2.6), by using Hölder inequality it results

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} w(x)\left|u_{n}(x)\right|^{q-2} u_{n}(x)\left(u_{n}(x)-u(x)\right) d x=0 . \tag{2.9}
\end{equation*}
$$

Consequently, from (2.2), (2.6)-(2.9) we deduce that, as $n \rightarrow \infty$

$$
\begin{align*}
o(1)= & \left\langle\mathcal{J}_{\gamma, \lambda}^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle=M\left(\left[u_{n}\right]_{s, p}^{p}\right)\left[u_{n}\right]_{s, p}^{p}-M\left(\left[u_{n}\right]_{s, p}^{p}\right)\left\langle u_{n}, u\right\rangle_{s, p} \\
& -\gamma \int_{\Omega}\left|u_{n}(x)\right|^{p-2} u_{n}(x)\left(u_{n}(x)-u(x)\right) \frac{d x}{|x|^{s p}} \\
& -\lambda \int_{\Omega} w(x)\left|u_{n}(x)\right|^{q-2}\left(u_{n}(x)-u(x)\right) d x \\
& -\int_{\Omega}\left|u_{n}(x)\right|^{p_{s}^{*}(\alpha)-2} u_{n}(x)\left(u_{n}(x)-u(x)\right) \frac{d x}{|x|^{\alpha}} \\
= & M\left(\left[u_{n}\right]_{s, p}^{p}\right)\left(\left[u_{n}\right]_{s, p}^{p}-[u]_{s, p}^{p}\right)-\gamma\left(\left\|u_{n}\right\|_{H}^{p}-\|u\|_{H}^{p}\right) \\
& -\left\|u_{n}\right\|_{H_{\alpha}^{*}}^{p_{\beta_{2}}^{*}(\alpha)}+\|u\|_{H_{\alpha}}^{p_{s}^{*}(\alpha)}+o(1) . \tag{2.10}
\end{align*}
$$

Furthermore, by using (2.6) and the celebrated Brézis and Lieb Lemma in [7], we have

$$
\begin{align*}
\left\|u_{n}\right\|_{H}^{p} & =\left\|u_{n}-u\right\|_{H}^{p}+\|u\|_{H}^{p}+o(1), \\
\left\|u_{n}\right\|_{H_{\alpha}}^{v_{*}^{*}(\alpha)} & =\left\|u_{n}-u\right\|_{H_{\alpha}}^{p_{s}^{*}(\alpha)}+\|u\|_{H_{\alpha}}^{p_{*}^{*}(\alpha)}+o(1), \tag{2.11}
\end{align*}
$$

as $n \rightarrow \infty$. By applying again the Brézis and Lieb Lemma [7] to

$$
\frac{\left(u_{n}-u\right)(x)-\left(u_{n}-u\right)(y)}{|x-y|^{\frac{N+s p}{p}}} \in L^{p}\left(\mathbb{R}^{2 N}\right)
$$

we can see that

$$
\begin{equation*}
\left[u_{n}\right]_{s, p}^{p}=\left[u_{n}-u\right]_{s, p}^{p}+[u]_{s, p}^{p}+o(1) \quad \text { as } n \rightarrow \infty . \tag{2.12}
\end{equation*}
$$

Therefore, combining (2.6), the continuity of M and relations (2.10)-(2.12), we have proved the crucial formula

$$
\begin{equation*}
M\left(d^{p}\right) \lim _{n \rightarrow \infty}\left[u_{n}-u\right]_{s, p}^{p}=\gamma \lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{H}^{p}+\lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{H_{\alpha}}^{p_{s}^{*}(\alpha)}=\gamma 1^{p}+\ell^{p_{s}^{*}(\alpha)} . \tag{2.13}
\end{equation*}
$$

Now, let us rewrite the formula (2.13) as

$$
(1-\widetilde{c}) M\left(d^{p}\right) \lim _{n \rightarrow \infty}\left[u_{n}-u\right]_{s, p}^{p}+\widetilde{c} M\left(d^{p}\right) \lim _{n \rightarrow \infty}\left[u_{n}-u\right]_{s, p}^{p}=\gamma \imath^{p}+\ell^{p_{s}^{*}(\alpha)},
$$

with $\widetilde{c} \in[0,1)$ fixed at the beginning of the proof. By $\left(M_{1}\right)$ and (1.3), we have

$$
\begin{aligned}
(1-\widetilde{c}) a H_{\alpha} \ell^{p}+\widetilde{c} a H \imath^{p} & \leq(1-\widetilde{c}) M\left(d^{p}\right) \lim _{n \rightarrow \infty}\left[u_{n}-u\right]_{s, p}^{p}+\widetilde{c} M\left(d^{p}\right) \lim _{n \rightarrow \infty}\left[u_{n}-u\right]_{s, p}^{p} \\
& \leq \gamma^{+} \imath^{p}+\ell^{p_{s}^{*}(\alpha)} .
\end{aligned}
$$

Therefore, since $\gamma^{+}=\widetilde{c} a H$, we obtain

$$
\ell^{p_{s}^{*}(\alpha)} \geq(1-\widetilde{c}) a H_{\alpha} \ell^{p}
$$

from which, assuming by contradiction that $\ell>0$, we get

$$
\begin{equation*}
\ell^{p_{s}^{*}(\alpha)} \geq\left[(1-\widetilde{c}) a H_{\alpha}\right]^{\frac{p_{s}^{*}(\alpha)}{p_{s}^{(\alpha)}(\alpha)-p}} . \tag{2.14}
\end{equation*}
$$

Exploiting (2.4) and (2.5), taking the limit as $n \rightarrow \infty$, and by using (2.2), (2.6), (2.10), assumption (w), Hölder inequality and Young inequality, we can infer

$$
\begin{aligned}
c \geq & \left(\frac{1}{\sigma}-\frac{1}{p_{s}^{*}(\alpha)}\right)\left(\ell^{p_{s}^{*}(\alpha)}+\|u\|_{H_{\alpha}}^{p_{s}^{*}(\alpha)}\right)-\lambda\left(\frac{1}{q}-\frac{1}{\sigma}\right)\|u\|_{q, w}^{q} \\
\geq & \left(\frac{1}{\sigma}-\frac{1}{p_{s}^{*}(\alpha)}\right)\left(\ell^{p_{s}^{*}(\alpha)}+\|u\|_{H_{\alpha}}^{p_{s}^{*}(\alpha)}\right)-\lambda\left(\frac{1}{q}-\frac{1}{\sigma}\right)\|w\|_{r}\|u\|_{H_{\alpha}}^{q} \\
\geq & \left(\frac{1}{\sigma}-\frac{1}{p_{s}^{*}(\alpha)}\right)\left(\ell_{s}^{p_{s}^{*}(\alpha)}+\|u\|_{H_{\alpha}}^{p_{s}^{*}(\alpha)}\right)-\left(\frac{1}{\sigma}-\frac{1}{p_{s}^{*}(\alpha)}\right)\|u\|_{H_{\alpha}}^{p_{s}^{*}(\alpha)} \\
& -\left(\frac{1}{\sigma}-\frac{1}{p_{s}^{*}(\alpha)}\right)^{-\frac{q}{p_{s}^{*}(\alpha)-q}}\left[\lambda\left(\frac{1}{q}-\frac{1}{\sigma}\right)\|w\|_{r}\right]^{\frac{p_{s}^{*}(\alpha)}{p_{s}(\alpha)-q}} .
\end{aligned}
$$

Finally, by (2.14) we get

$$
\begin{aligned}
0>c \geq & \left(\frac{1}{\sigma}-\frac{1}{p_{s}^{*}(\alpha)}\right)\left[(1-\widetilde{c}) a H_{\alpha}\right]^{\frac{p_{s}^{*}(\alpha)}{p_{s}^{(\alpha)-p}}} \\
& -\left(\frac{1}{\sigma}-\frac{1}{p_{s}^{*}(\alpha)}\right)^{-\frac{q}{p_{s}^{*}(\alpha)-q}}\left[\lambda\left(\frac{1}{q}-\frac{1}{\sigma}\right)\|w\|_{r}\right]^{\frac{p_{s}^{*}(\alpha)}{p_{s}^{(\alpha)-q}}}>0,
\end{aligned}
$$

where the last inequality follows from (2.3). This is impossible, so $\ell=0$.
Now, let us assume by contradiction that $\tau>0$. Then, from $\left(M_{1}\right),(1.3)$ and (2.13) we have

$$
\begin{aligned}
M\left(d^{p}\right) \lim _{n \rightarrow \infty}\left[u_{n}-u\right]_{s, p}^{p} & =\gamma \lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{H}^{p} \\
& <a H \lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{H}^{p} \leq M\left(d^{p}\right) \lim _{n \rightarrow \infty}\left[u_{n}-u\right]_{s, p}^{p},
\end{aligned}
$$

which gives a contradiction. Therefore, $\imath=0$ and by using again $\left(M_{1}\right)$ and (2.13) it follows that $u_{n} \rightarrow u$ in $Z(\Omega)$ as $n \rightarrow \infty$, as claimed.

3 The truncated functional

In this section we prove that problem (1.1) admits a sequence of solutions which goes to zero. Firstly, we recall the definition of genus and some its fundamental properties; see [29] for more details.

Let E be a Banach space and A a subset of E. We say that A is symmetric if $u \in A$ implies that $-u \in A$. For a closed symmetric set A which does not contain the origin, we define the genus $\mu(A)$ of A as the smallest integer k such that there exists an odd continuous mapping from A to $\mathbb{R}^{k} \backslash\{0\}$. If there does not exist such a k, we put $\mu(A)=\infty$. Moreover, we set $\mu(\varnothing)=0$.

Let us denote by Σ_{k} the family of closed symmetric subsets A of E such that $0 \notin A$ and $\mu(A) \geq k$. Then we have the following result.

Proposition 3.1. Let A and B be closed symmetric subsets of E which do not contain the origin. Then we have
(i) If there exists an odd continuous mapping from A to B, then $\mu(A) \leq \mu(B)$.
(ii) If there is an odd homeomorphism from A onto B, then $\mu(A)=\mu(B)$.
(iii) If $\mu(B)<\infty$, then $\mu(A \backslash B) \geq \mu(A)-\mu(B)$.
(iv) The n-dimensional sphere S^{n} has a genus of $n+1$ by the Borsuk-Ulam Theorem.
(v) If A is compact, then $\mu(A)<\infty$ and there exist $\delta>0$ and a closed and symmetric neighborhood $N_{\delta}(A)=\{x \in E:\|x-A\| \leq \delta\}$ of A such that $\mu\left(N_{\delta}(A)\right)=\mu(A)$.

Now, we state the following variant of symmetric mountain pass lemma due to Kajikija [20].

Lemma 3.2. Let E be an infinite-dimensional Banach space and let $I \in C^{1}(E, \mathbb{R})$ be a functional satisfying the conditions below:
$\left(h_{1}\right) I(u)$ is even, bounded from below, $I(0)=0$ and $I(u)$ satisfies the local Palais-Smale condition; that is, for some $c^{*}>0$, in the case when every sequence $\left\{u_{n}\right\}_{n}$ in E satisfying $I\left(u_{n}\right) \rightarrow c<c^{*}$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$ in E^{*} has a convergent subsequence;
(h_{2}) For each $n \in \mathbb{N}$, there exists an $A_{n} \in \Sigma_{n}$ such that $\sup _{u \in A_{n}} I(u)<0$.
Then either (i) or (ii) below holds.
(i) There exists a sequence $\left\{u_{n}\right\}_{n}$ such that $I^{\prime}\left(u_{n}\right)=0, I\left(u_{n}\right)<0$ and $\left\{u_{n}\right\}_{n}$ converges to zero.
(ii) There exist two sequences $\left\{u_{n}\right\}_{n}$ and $\left\{v_{n}\right\}_{n}$ such that $I^{\prime}\left(u_{n}\right)=0, I\left(u_{n}\right)=0, u_{n} \neq 0$, $\lim _{n \rightarrow \infty} u_{n}=0, I^{\prime}\left(v_{n}\right)=0, I\left(v_{n}\right)<0, \lim _{n \rightarrow \infty} I\left(v_{n}\right)=0$ and $\left\{v_{n}\right\}_{n}$ converges to a non-zero limit.

Remark 3.3. It is worth to point out that in [20] the functional I verifies the Palais-Smale condition in global. Anyway, a careful analysis of the proof of Theorem 1 in [20], allows us to deduce that the result in [20] holds again if I satisfies the local Palais-Smale condition with the critical levels below zero.

Let us note that the functional $\mathcal{J}_{\gamma, \lambda}$ is not bounded from below in $Z(\Omega)$. Indeed, assumption $\left(M_{1}\right)$ implies that $M(t)>0$ for any $t \in \mathbb{R}_{0}^{+}$and consequently by $\left(M_{2}\right)$ we have $\frac{M(t)}{\mathscr{M}(t)} \leq \frac{\theta}{t}$. Thus, integrating on $[1, t]$, with $t>1$, we get

$$
\mathscr{M}(t) \leq \mathscr{M}(1) t^{\theta} \quad \text { for any } t \geq 1 .
$$

From this, by using (1.2) and (1.3), for any $u \in Z(\Omega)$ we have

$$
\begin{aligned}
& \mathcal{J}_{\gamma, \lambda}(t u) \leq t^{p \theta} \frac{\mathscr{M}(1)}{p}[u]_{s, p}^{p \theta}-t^{p} \frac{\gamma}{p}\|u\|_{H}^{p}-t^{q} \frac{\lambda}{q}\|u\|_{q, w}^{q} \\
&-t^{p}(\alpha) \\
& \frac{1}{p_{s}^{*}(\alpha)}\|u\|_{H_{\alpha}}^{p_{\alpha}^{*}(\alpha)} \rightarrow-\infty \quad \text { as } t \rightarrow \infty .
\end{aligned}
$$

Now, fix $\gamma \in(-\infty, a H)$ and $\lambda>0$ and let us consider the function

$$
\mathcal{Q}_{\gamma, \lambda}(t)=\frac{1}{p}\left(a-\frac{\gamma^{+}}{H}\right) t^{p}-\frac{\lambda C_{w}}{q} t^{q}-\frac{1}{p_{s}^{*}(\alpha) H_{\alpha}} t^{p_{s}^{*}(\alpha)} .
$$

Choose $R_{1}>0$ such that

$$
\begin{equation*}
\frac{1}{p}\left(a-\frac{\gamma^{+}}{H}\right) R_{1}^{p}>\frac{1}{p_{s}^{*}(\alpha) H_{\alpha}} R_{1}^{p_{s}^{*}(\alpha)} \tag{3.1}
\end{equation*}
$$

and define

$$
\begin{equation*}
\lambda^{*}=\frac{C_{w}}{2 q R_{1}^{q}}\left[\left(a-\frac{\gamma^{+}}{H}\right) R_{1}^{p}-\frac{1}{p_{s}^{*}(\alpha) H_{\alpha}} R_{1}^{p_{s}^{*}(\alpha)}\right] \tag{3.2}
\end{equation*}
$$

such that $\mathcal{Q}_{\gamma, \lambda^{*}}\left(R_{1}\right)>0$. Let us set

$$
\begin{equation*}
R_{0}=\max \left\{t \in\left(0, R_{1}\right): \mathcal{Q}_{\gamma, \lambda^{*}}(t) \leq 0\right\} . \tag{3.3}
\end{equation*}
$$

Taking in mind the fact that $\mathcal{Q}_{\gamma, \lambda}(t) \leq 0$ for t near zero, since $q<p<p_{s}^{*}(\alpha)$, and $\mathcal{Q}_{\gamma, \lambda^{*}}\left(R_{1}\right)>$ 0 , we can infer that $\mathcal{Q}_{\gamma, \lambda^{*}}\left(R_{0}\right)=0$.

Choose $\phi \in C_{0}^{\infty}([0, \infty))$ such that $0 \leq \phi(t) \leq 1, \phi(t)=1$ for $t \in\left[0, R_{0}\right]$ and $\phi(t)=0$ for $t \in\left[R_{1}, \infty\right)$. Thus, we consider the truncated functional

$$
\widetilde{\mathcal{J}}_{\gamma, \lambda}(u)=\frac{1}{p} \mathscr{M}\left([u]_{s, p}^{p}\right)-\frac{\gamma}{p}\|u\|_{H}^{p}-\frac{\lambda}{q}\|u\|_{w, q}^{q}-\frac{\phi\left([u]_{s, p}\right)}{p_{s}^{*}(\alpha)}\|u\|_{H_{\alpha}}^{p_{s}^{*}(\alpha)} .
$$

It immediately follows that $\widetilde{\mathcal{J}}_{\gamma, \lambda}(u) \rightarrow \infty$ as $[u]_{s, p} \rightarrow \infty$, by $\left(M_{1}\right)$, since $\gamma \in(-\infty, a H)$ and $q<p$. Hence, $\widetilde{\mathcal{J}}_{\gamma, \lambda}$ is coercive and bounded from below. Now, we prove a local Palais-Smale result for the truncated functional $\widetilde{\mathcal{J}}_{\gamma, \lambda}$.
Lemma 3.4. For any $\gamma \in(-\infty, a H)$, there exists $\bar{\lambda}>0$ such that, for any $\lambda \in(0, \bar{\lambda})$
(i) if $\widetilde{\mathcal{J}}_{\gamma, \lambda}(u) \leq 0$ then $[u]_{s, p} \leq R_{0}$, and for any v in a small neighborhood of u we have $\mathcal{J}_{\gamma, \lambda}(v)=$ $\widetilde{\mathcal{J}}_{\gamma, \lambda}(v)$;
(ii) $\widetilde{\mathcal{J}}_{\gamma, \lambda}$ satisfies a local Palais-Smale condition for $c<0$.

Proof. Let us choose $\bar{\lambda}$ sufficiently small such that $\bar{\lambda} \leq \min \left\{\lambda_{0}, \lambda^{*}\right\}$, where λ_{0} is defined in Lemma 2.1 and λ^{*} in (3.2). Fix $\lambda<\bar{\lambda}$.
(i) Let us assume that $\widetilde{\mathcal{J}}_{\gamma, \lambda}(u) \leq 0$.

If $[u]_{s, p} \geq R_{1}$, then by using $\left(M_{1}\right),(1.2),(1.3)$, the definition of $\phi(t)$ and the fact that $\lambda<\lambda^{*}$, we obtain

$$
\widetilde{\mathcal{J}}_{\gamma, \lambda}(u) \geq \frac{1}{p}\left(a-\frac{\gamma^{+}}{H}\right)[u]_{s, p}^{p}-\frac{\lambda^{*} C_{w}}{q} t^{q}[u]_{s, p}^{q}>0,
$$

where the last inequality follows from $q<p$ and $\mathcal{Q}_{\gamma, \lambda^{*}}\left(R_{1}\right)>0$. Thus we get a contradiction because of $0 \geq \widetilde{\mathcal{J}}_{\gamma, \lambda}(u)>0$.

When $[u]_{s, p}<R_{1}$, by using $\left(M_{1}\right),(1.2),(1.3), \lambda<\lambda^{*}$, the definition of $\phi(t)$, we can infer

$$
0 \geq \widetilde{\mathcal{J}}_{\gamma, \lambda}(u) \geq \mathcal{Q}_{\gamma, \lambda}\left([u]_{s, p}\right) \geq \mathcal{Q}_{\gamma, \lambda^{*}}\left([u]_{s, p}\right) .
$$

From the definition of R_{0} we deduce that $[u]_{s, p} \leq R_{0}$. Moreover, for any $u \in B_{\frac{R_{0}}{2}}(0)$ we have that $\mathcal{J}_{\gamma, \lambda}(u)=\widetilde{\mathcal{J}}_{\gamma, \lambda}(u)$.
(ii) Being $\widetilde{\mathcal{J}}_{\gamma, \lambda}$ a coercive functional, every Palais-Smale sequence for $\widetilde{\mathcal{J}}_{\gamma, \lambda}$ is bounded. Thus, since $\lambda<\lambda_{0}$, by Lemma 2.1 we deduce a local Palais-Smale condition for $\mathcal{J}_{\gamma, \lambda} \equiv \widetilde{\mathcal{J}}_{\gamma, \lambda}$ at any level $c<0$.

Taking into account that $Z(\Omega)$ is reflexive and separable (see Appendix A in [28]), we can
 set $X_{n}=\operatorname{span}\left\{\varphi_{n}\right\}$ and $Y_{n}=\oplus_{i=1}^{n} X_{i}$.

Lemma 3.5. For any $\gamma \in(-\infty, a H), \lambda>0$ and $k \in \mathbb{N}$, there exists $\varepsilon=\varepsilon(\gamma, \lambda, k)>0$ such that

$$
\mu\left(\widetilde{\mathcal{J}}_{\gamma, \lambda}^{-\varepsilon}\right) \geq k,
$$

where $\widetilde{\mathcal{J}}_{\gamma, \lambda}^{-\varepsilon}=\left\{u \in Z(\Omega): \widetilde{\mathcal{J}}_{\gamma, \lambda}(u) \leq-\varepsilon\right\}$.

Proof. Fix $\gamma \in(-\infty, a H), \lambda>0$ and $k \in \mathbb{N}$. Since Y_{k} is finite dimensional, there exist two positive constants $c_{1}(k)$ and $c_{2}(k)$ such that for any $u \in Y_{k}$

$$
\begin{equation*}
c_{1}(k)[u]_{s, p}^{p} \leq\|u\|_{H}^{p} \quad \text { and } \quad c_{2}(k)[u]_{s, p}^{q} \leq\|u\|_{q, w}^{q} . \tag{3.4}
\end{equation*}
$$

By using (3.4), for any $u \in Y_{k}$ such that $[u]_{s, p} \leq R_{0}$, we can infer

$$
\begin{equation*}
\widetilde{\mathcal{J}}_{\gamma, \lambda}(u)=\mathcal{J}_{\gamma, \lambda}(u) \leq \frac{M^{*}}{p}[u]_{s, p}^{p}+\frac{\gamma^{-}}{p} c_{1}(k)[u]_{s, p}^{p}-\frac{\lambda}{q} c_{2}(k)[u]_{s, p}^{q} \tag{3.5}
\end{equation*}
$$

with $M^{*}=\max _{\tau \in\left[0, R_{0}\right]} M(\tau)<\infty$, by continuity of M. Now, let ϱ be a positive constant such that

$$
\begin{equation*}
\varrho<\min \left\{R_{0},\left[\frac{\lambda c_{2}(k) p}{q\left(M^{*}+\gamma^{-} c_{1}(k)\right)}\right]^{\frac{1}{p-q}}\right\} \tag{3.6}
\end{equation*}
$$

Then, for any $u \in Y_{k}$ such that $[u]_{s, p}=\varrho$, by (3.5) we get

$$
\begin{equation*}
\widetilde{\mathcal{J}}_{\gamma, \lambda}(u) \leq \varrho^{q}\left[\frac{M^{*}+\gamma^{-} c_{1}(k)}{p} \varrho^{p-q}-\frac{\lambda c_{2}(k)}{q}\right]<0 \tag{3.7}
\end{equation*}
$$

where the last inequality follows from (3.6). Hence we can find a constant $\varepsilon=\varepsilon(\gamma, \lambda, k)>0$ such that $\widetilde{\mathcal{J}}_{\gamma, \lambda}(u) \leq-\varepsilon$ for any $u \in Y_{k}$ such that $[u]_{s, p}=\varrho$. As a consequence

$$
\left\{u \in Y_{k}:[u]_{s, p}=\varrho\right\} \subset\left\{u \in Z(\Omega): \widetilde{\mathcal{J}}_{\gamma, \lambda}(u) \leq-\varepsilon\right\} \backslash\{0\}
$$

By using (ii) and (iv) of Proposition 3.1 we have the thesis.
For any $c \in \mathbb{R}$ and any $k \in \mathbb{N}$, let us define the set

$$
K_{c}=\left\{u \in Z(\Omega): \widetilde{\mathcal{J}}_{\gamma, \lambda}^{\prime}(u)=0 \text { and } \widetilde{\mathcal{J}}_{\gamma, \lambda}(u)=c\right\}
$$

and the number

$$
\begin{equation*}
c_{k}=\inf _{A \in \Sigma_{k}} \sup _{u \in A} \widetilde{\mathcal{J}}_{\gamma, \lambda}(u) . \tag{3.8}
\end{equation*}
$$

Lemma 3.6. For any $\gamma \in(-\infty, a H), \lambda>0$ and $k \in \mathbb{N}$, we have that $c_{k}<0$.
Proof. Fix $\gamma \in(-\infty, a H), \lambda>0$ and $k \in \mathbb{N}$. Then, by using Lemma 3.5 we can find a positive constant ε such that $\mu\left(\widetilde{\mathcal{J}}_{\gamma, \lambda}^{-\varepsilon}\right) \geq k$. Moreover, $\widetilde{\mathcal{J}}_{\gamma, \lambda}^{-\varepsilon} \in \Sigma_{k}$ since $\widetilde{\mathcal{J}}_{\gamma, \lambda}$ is a continuous and even functional. Taking into account that $\widetilde{\mathcal{J}}_{\gamma, \lambda}(0)=0$, we have $0 \notin \widetilde{\mathcal{J}}_{\gamma, \lambda}^{-\varepsilon}$ and $\sup _{u \in \widetilde{\mathcal{J}}_{\gamma, \lambda}^{-\varepsilon}} \widetilde{\mathcal{J}}_{\gamma, \lambda}(u) \leq-\varepsilon$. Therefore, recalling that $\widetilde{\mathcal{J}}_{\gamma, \lambda}$ is bounded from below, we get

$$
-\infty<c_{k}=\inf _{A \in \Sigma_{k}} \sup _{u \in A} \widetilde{\mathcal{J}}_{\gamma, \lambda}(u) \leq \sup _{u \in \widetilde{\mathcal{J}}_{\gamma, \lambda}^{-\varepsilon}} \widetilde{\mathcal{J}}_{\gamma, \lambda}(u) \leq-\varepsilon<0
$$

Lemma 3.7. Let $\gamma \in(-\infty, a H)$ and $\lambda \in(0, \bar{\lambda})$, where $\bar{\lambda}$ is given by Lemma 3.4. Then all c_{k} are critical values for $\widetilde{\mathcal{J}}_{\gamma, \lambda}$ and $c_{k} \rightarrow 0$ as $k \rightarrow \infty$.

Proof. Fix $\gamma \in(-\infty, a H)$ and $\lambda>0$. It is easy to see that $c_{k} \leq c_{k+1}$ for all $k \in \mathbb{N}$. By Lemma 3.6 it follows that $c_{k}<0$, so we can assume that $c_{k} \rightarrow \bar{c} \leq 0$. Since $\widetilde{\mathcal{J}}_{\gamma, \lambda}$ satisfies the Palais-Smale condition at level c_{k} by Lemma 3.4, we can argue as in [29] to see that all c_{k} are critical value of $\widetilde{\mathcal{J}}_{\gamma, \lambda}$.

Now, we prove that $\bar{c}=0$. We argue by contradiction, and we suppose that $\bar{c}<0$. In view of Lemma 3.4, we know that $K_{\bar{c}}$ is compact, so, by applying part (v) of Proposition 3.1 we can deduce that $\mu\left(K_{\bar{c}}\right)=k_{0}<\infty$ and there exists $\delta>0$ such that $\mu\left(K_{\bar{c}}\right)=\mu\left(N_{\delta}\left(K_{\bar{c}}\right)\right)=k_{0}$. By Theorem 3.4 of [5], there exists $\varepsilon \in(0, \bar{c})$ and an odd homeomorphism $\eta: Z(\Omega) \rightarrow Z(\Omega)$ such that

$$
\eta\left(\widetilde{\mathcal{J}}_{\gamma, \lambda}^{\bar{c}+\varepsilon} \backslash N_{\delta}\left(K_{\bar{c}}\right)\right) \subset \widetilde{\mathcal{J}}_{\gamma, \lambda}^{\bar{c}-\varepsilon} .
$$

Now, taking into account that c_{k} is increasing and $c_{k} \rightarrow \bar{c}$, we can find $k \in \mathbb{N}$ such that $c_{k}>\bar{c}-\varepsilon$ and $c_{k+k_{0}} \leq \bar{c}$. Take $A \in \Sigma_{k+k_{0}}$ such that $\sup _{u \in A} \widetilde{\mathcal{J}}_{\gamma, \lambda}(u)<\bar{c}+\varepsilon$. By using part (iii) of Proposition 3.1, we obtain

$$
\begin{equation*}
\mu\left(\overline{A \backslash N_{\delta}\left(K_{\bar{c}}\right)}\right) \geq \mu(A)-\mu\left(N_{\delta}\left(K_{\bar{c}}\right)\right) \quad \text { and } \quad \mu\left(\eta\left(\overline{A \backslash N_{\delta}\left(K_{\bar{c}}\right)}\right)\right) \geq k, \tag{3.9}
\end{equation*}
$$

from which $\eta\left(\overline{A \backslash N_{\delta}\left(K_{\bar{c}}\right)}\right) \in \Sigma_{k}$. Thus

$$
\begin{equation*}
\sup _{u \in \eta\left(\overline{\left.A \backslash N_{\delta}\left(K_{\bar{c}}\right)\right)}\right.} \widetilde{\mathcal{J}}_{\text {r, }}(u) \geq c_{k}>\bar{c}-\varepsilon . \tag{3.10}
\end{equation*}
$$

However, in view of (3.7) and (3.9) we can see that

$$
\eta\left(\overline{A \backslash N_{\delta}\left(K_{\bar{c}}\right)}\right) \subset \eta\left(\widetilde{\mathcal{J}}_{\gamma, \lambda}^{\bar{c}+\varepsilon} \backslash N_{\delta}\left(K_{\bar{c}}\right)\right) \subset \widetilde{\mathcal{J}}_{\gamma, \lambda}^{\bar{c}}
$$

which gives a contradiction in virtue of (3.10). Therefore, $\bar{c}=0$ and $c_{k} \rightarrow 0$.
Proof of Theorem 1.1. Let $\sigma \in\left(p \theta, p_{s}^{*}(\alpha)\right), \gamma \in\left(-\infty, \kappa_{\sigma} H\right)$ and $\lambda \in(0, \bar{\lambda})$. Since $\kappa_{\sigma} \leq a$, putting together Lemma 3.4, Lemma 3.5, Lemma 3.6 and Lemma 3.7, we can see that $\mathcal{J}_{\gamma, \lambda}$ verifies all the assumptions of Lemma 3.2. Therefore, the thesis follows by point (i) of Lemma 3.4.

Acknowledgements

A. Fiscella realized the manuscript within the auspices of the FAPESP Project titled Fractional problems with lack of compactness (2017/19752-3) and of the CNPq Project titled Variational methods for singular fractional problems (3787749185990982).
V. Ambrosio and T. Isernia realized the manuscript under the auspices of the INDAM Gnampa Project 2017 titled: Teoria e modelli per problemi non locali.

References

[1] V. Ambrosio, An existence result for a fractional Kirchhoff-Schrödinger-Poisson system, Z. Angew. Math. Phys. 69(2018), No. 2, Art. 30, 13 pp. https://doi.org/10.1007/ s00033-018-0921-1; MR3764547; Zbl 1403.35013
[2] V. Ambrosio, T. Isernia, A multiplicity result for a fractional Kirchhoff equation in \mathbb{R}^{N} with a general nonlinearity, Commun. Contemp. Math. 20(2018), No. 5, 1750054, 17 pp. https://doi.org/10.1142/S0219199717500547; MR3833902; Zbl 1394.35544
[3] V. Ambrosio, T. Isernia, Concentration phenomena for a fractional SchrödingerKirchhoff type problem, Math. Methods Appl. Sci. 41(2018), No. 2, 615-645. https: //doi.org/10.1002/mma.4633; MR3745335; Zbl 06836039
[4] G. Autuori, P. Pucci, Existence of entire solutions for a class of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl. 20(2013), No. 3, 977-1009. https://doi.org/10.1007/s00030-012-0193-y; MR3057162; Zbl 1273.35137
[5] V. Benci, On critical points theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc. 274(1982), No. 2, 533-572. https://doi.org/10.1090/ S0002-9947-1982-0675067-X; MR0675067; Zbl 0504.58014
[6] S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivées partielles (in Russian, French summary), Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4(1940), 17-26. MR0002699; Zbl 66.0471.01
[7] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88(1983), No. 3, 486-490. https://doi.org/ 10.2307/2044999; MR0699419; Zbl 0526.46037
[8] L. Caffarelli, J. M. Roquejoffre, O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math. 63(2010), No. 9, 1111-1144. https://doi.org/10.1002/cpa.20331; MR2675483; Zbl 1248.53009
[9] M. Caponi, P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat. Pura Appl. (4) 195(2016), No. 6, 2099-2129. https://doi.org/10.1007/s10231-016-0555-x; MR3558321; Zbl 1359.35212
[10] J. Chen, S. LI, On multiple solutions of a singular quasilinear equation on unbounded domain, J. Math. Anal. Appl. 275(2002), No. 2, 733-746. https://doi.org/10.1016/ S0022-247X (02) 00398-0; MR1943776; Zbl 1072.35529
[11] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136(2012), No. 5, 521-573. https://doi. org/10.1016/j .bulsci. 2011.12.004; MR2944369; Zbl 1252.46023
[12] H. Fan, Multiple solutions for a singular elliptic problem involving Hardy terms on unbounded domains, Differential Integral Equations 27(2014), No. 9-10, 821-836. MR3229093; Zbl 1340.35073
[13] G. Figueiredo, G. Molica Bisci, R. Servadei, On a fractional Kirchhoff-type equation via Krasnoselskii's genus, Asymptot. Anal. 94(2015), No. 3-4, 347-361. https ://doi .org/ 10.3233/ASY-151316; MR3403427; Zbl 1330.35500
[14] A. Fiscella, P. Pucci, On certain nonlocal Hardy-Sobolev critical elliptic Dirichlet problems, Adv. Differential Equations 21(2016), No. 5-6, 571-599. MR3473584; Zbl 1357.35283
[15] A. Fiscella, P. Pucci, Kirchhoff Hardy fractional problems with lack of compactness, Adv. Nonlinear Stud. 17(2017), No. 3, 429-456. https ://doi.org/10.1515/ans-2017-6021; MR3667053; Zbl 1375.35180
[16] A. Fiscella, P. Pucci, p-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl. 35(2017), 350-378. https://doi. org/10.1016/j . nonrwa. 2016.11.004; MR3595331; Zbl 1372.35335
[17] A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. 94(2014), 156-170. https://doi.org/10.1016/j.na.2013.08.011; MR3120682; Zbl 1283.35156
[18] X. He, W. Zou, Infinitely many arbitrarily small solutions for singular elliptic problems with critical Sobolev-Hardy exponents, Proc. Edinb. Math. Soc. (2) 52(2009), No. 1, 97-108. https://doi.org/10.1017/S0013091506001568; MR2475883; Zbl 1156.35028
[19] X. He, W. Zou, Infinitely many solutions for a singular elliptic equation involving critical Sobolev-Hardy exponents in \mathbb{R}^{N}, Acta Math. Sci. Ser. B Engl. Ed. 30(2010), No. 3, 830-840. https://doi.org/10.1016/S0252-9602(10)60082-3; MR2675790; Zbl 1240.35164
[20] R. Kajiкiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal. 225(2005), No. 2, 352-370. https : //doi.org/10.1016/j.jfa.2005.04.005; MR2152503; Zbl 1081.49002
[21] G. Кirchнoff, Mechanik, Teubner, Leipzig, 1883.
[22] J. L. Lions, On some questions in boundary value problems of mathematical physics, in: Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), NorthHolland Math. Stud., Vol. 30, North-Holland, Amsterdam-New York, 1978, pp. 284-346. MR0519648; Zbl 0404.35002
[23] G. Molica Bisci, V. Rădulescu, R. Servadei, Variational methods for nonlocal fractional problems, with a foreword by Jean Mawhin, Encyclopedia of Mathematics and its Applications, Vol. 162, Cambridge University Press, Cambridge, 2016. https://doi.org/10. 1017/CB09781316282397; MR3445279; Zbl 1356.49003
[24] G. Molica Bisci, L. Vilasi, On a fractional degenerate Kirchhoff-type problem, Commun. Contemp. Math. 19(2017), No. 1, 1550088, 23 pp. https://doi.org/10.1142/ S0219199715500881; MR3575909; Zbl 1352.35005
[25] S. Mosconi, M. Squassina, Nonlocal problems at nearly critical growth, Nonlinear Anal. 136(2016), 84-101. https://doi.org/10.1016/j.na.2016.02.012; MR3474405; Zbl 1337.35053
[26] S. I. Роноžaev, A certain class of quasilinear hyperbolic equations, Mat. Sb. 96(1975), 152-166. MR0369938; Zbl 0309.35051
[27] P. Pucci, M. Xiang, B. Zhang, Multiple solutions for nonhomogeneous SchrödingerKirchhoff type equations involving the fractional p-Laplacian in \mathbb{R}^{N}, Calc. Var. Partial Differential Equations 54(2015), No. 3, 2785-2806. https://doi.org/10.1007/ s00526-015-0883-5; MR3412392; Zbl 1329.35338
[28] P. Pucci, M. Xiang, B. Zhang, Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal. 5(2016), No. 1, 27-55. https://doi.org/10. 1515/anona-2015-0102; MR3456737; Zbl 1334.35395
[29] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, Vol. 65, Amer. Math. Soc., Providence RI, 1986. MR0845785; Zbl 0609.58002

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: fiscella@ime.unicamp.br

