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Abstract

Cancer stem cells (CSCs) are self‐renewable cell types that are identified in most types

of liquid and solid cancers and contributed to tumor onset, expansion, resistance,

recurrence, and metastasis after therapy. CSCs are identified from the expression of

cell surface markers, which is tumor‐type dependent. The transition between CSCs

with cancer cells and other non‐CSCs occurs in cancers, which is possibly under the

control of signals from CSCs and tumor microenvironment (TME), including CSC niche.

Cancer‐associated fibroblasts are among the most influential cells for promoting both

differentiation of CSCs and dedifferentiation of non‐CSCs toward attaining a CSC‐like
phenotype. WNT/β‐catenin, transforming growth factor‐β, Hedgehog, and Notch are

important signals for maintaining self‐renewal in CSCs. An effective therapeutic

strategy relies on targeting both CSCs and non‐CSCs to remove a possible chance of

tumor relapse. There are multiple ways to target CSCs, including immunotherapy,

hormone therapy, (mi)siRNA delivery, and gene knockout. Such approaches can be

designed for suppressing CSC stemness, tumorigenic cues from TME, CSC extrinsic

and/or intrinsic signaling, hypoxia or for promoting differentiation in the cells. Because

of sharing a range of characteristics to normal stem/progenitor cells, CSCs must be

targeted based on their unique markers and their preferential expression of antigens.
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1 | INTRODUCTION

Tumors (solid and liquid) are composed of a large number of bulk

cancer cells along with a small population of cancer stem cells (CSCs)

(Marquardt, Solanki, Spitschak, Vera, & Pützer, 2018; Takebe, Harris,

Warren, & Ivy, 2011). CSCs are a group of quiescent self‐renewing

cell types pre‐exist in primary cancers and localized within the tumor

niches bearing enriched functional potential to drive cancer growth,

to reconstruct their heterogeneity (Batlle & Clevers, 2017; Lytle,

Barber, & Reya, 2018) and so to make variations in cancer

regenerative capacity (Visvader & Lindeman, 2008). The cells have

the capacity to generate in vitro clones and to reform cancers after

their transplantation into immunodeficient animals (Golan et al.,

2018). CSCs were first defined as a subpopulation of cancer cells that

can expand the pool of CSCs and differentiate into progenitor cancer

cells via symmetric and asymmetric divisions (Baumann, Krause, &

Hill, 2008). Since their first identification in human acute myeloid

leukemia (AML), CSCs have been harvested from most of the solid

tumors and malignancies of hematopoietic origin (Dean, Fojo, &

Bates, 2005; D. Zhang, Tang, & Rycaj, 2018), and their tumorigenic

activity is attested in several cancers, including brain, liver, lung,

colon, breast, ovarian, pancreas, prostate, melanoma, head and neck,

and bladder (Takebe et al., 2011). The frequency of CSCs increases

upon tumor progression (D. Zhang et al., 2018) and is seemingly

different from one cancer to another (Visvader & Lindeman, 2008).

The concept of CSC derives from the fact that tumors are considered

as dysregulated tissue clones that their constant propagation is

vested in a distinct subset of cell types called CSCs (Nguyen, Vanner,
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Dirks, & Eaves, 2012). The term “cancer stem cell” is reflective of the

stem‐like features and the potential of the cells to sustain

tumorigenesis constantly (Visvader & Lindeman, 2008). Other terms

used for these cells (in addition to CSCs) from research studies are

“tumor rescuing units,” “tumor‐progenitor cells,” “functional tumor

stem cells,” “cancer‐stem‐like cells,” “tumor‐propagating cells” and

“tumor‐ or cancer‐initiating cells” (Baumann et al., 2008; Dianat‐
Moghadam et al., 2018). The term cancer‐initiating cells is used

because of the ability of the cells to generate a progressively growing

cancer that consists of cells resembling those in the original tumor

(Nguyen et al., 2012).

There are three implicit origins for CSCs: (a) (epi)genetic changes

like methylation, demethylation, mutations, and rearrangement in the

stem/progenitor cell pool (niche) or even in differentiated cells; (b)

spontaneous oncogenic reprogramming in somatic cells; and (c) tumor

microenvironment (TME) activation through providing extracellular

cues (Dianat‐Moghadam et al., 2018). CSCs usually share many of their

defining features with normal stem cells, including relative quiescence,

active DNA repair systems, aggressive proliferation, and drug resistance

(Batlle & Clevers, 2017; Dean et al., 2005; Lytle et al., 2018). Their

multipotent characteristic has also been identified for cancers, such as

glioblastoma (Gilbertson & Rich, 2007). These features are considered

as a possible reason for higher incidence of cancer development in

tissues enriched in stem cells (Jaeckel et al., 2018) in which mutation in

the stem‐like cells is more potent for generating cancers than mutations

in other more differentiated cell types, reported in colon cancer

(Jaeckel et al., 2018). Subventricular zone in the brain, for instance,

exhibits a high degree of cell proliferation, and it seems that this region

is one of the anatomical origins for brain CSCs (Vescovi, Galli, &

Reynolds, 2006). Functional properties of the stem cells during cancer

expansion and responses to the therapeutic approaches is defined by

TME (Lenos et al., 2018) that plays important roles in development and

progression of tumor (Goto et al., 2018).

The cellular transition between CSCs with cancer cells and other

non‐CSCs has received too much attention recently (Z. Liu et al.,

2018). Mutations in normal stem cells is responsible for dysregula-

tion of their self‐renewal and further transformation of the cells into

CSCs (Pardal, Clarke, & Morrison, 2003). These mutated CSCs have

increased proliferation, reduced apoptosis, and enhanced immune

evasion capacity resulting in expansion of the stem cell compartment,

which is a typical feature of malignant tumors (Dean et al., 2005). The

ongoing mutagenesis is responsible for the generation of diverse

phenotypes of cancer cells from CSCs (Pardal et al., 2003).

CSCs have the ability to xenograft cancer and differentiate into a

number of heterogeneous population of cells, which is for maintain-

ing and propagating cancers (Medema & Vermeulen, 2011; Nakano

et al., 2018). CSCs have extensive proliferative potential to

regenerate a tumor and form disseminated metastatic tumors,

whereas the cancer cells derived from them have limited proliferative

and regenerative capacity, thereby forming limited benign tumors

(Dean et al., 2005; Pardal et al., 2003). The diverse proliferative

capacity between the two cell types was the basis for proving the

existence of CSCs at first in the context of AML (Pardal et al., 2003).

CSC targeting for cancer therapy is considered as an interesting

area of current research, and killing of the cells is thought to be an

essential component of efficient antitumor therapies (Medema,

2017). CSCs are needed to be removed in order for cancer‐targeted
therapy to be curative. In fact, even a single CSC can theoretically

capable of reconstituting an entire tumor (Hermann & Sainz, 2018).

There are still too much complexities regarding the actual identity of

the cells, their precise location within a tumor and established ways

of targeting them. Improving the understanding about the character-

istics of CSCs and signaling mediated by them would help to develop

more compatible therapeutic approaches for targeting these cells. To

write this review, we intended to focus on CSCs and their implication

in the initiation and progression of tumor. CSCs are highly plastic

cells with diverse origins and are known as the leader cells

contributed to the failure of chemo/radiotherapy. The review

provides knowledge about CSC plasticity, identification, functioning,

cross‐talking, and related signaling. Then, we will place the knowl-

edge harvested from the review in the context of therapeutic

approaches. The primary aim of the therapeutic approaches is to

sensitize CSCs to respond to such strategies. Then, these protocols

are needed to be completed by targeting secondary intriguing factors

responsible for the enrichment of the CSCs within their niche.

PubMed database was searched to find relevant articles. The criteria

for article selection was based on the quality of journals, the novelty

of subjects and the number of citations per year for relevant articles.

More than 500 papers were scanned for this review by searching

the keywords “cancer stem cells” and “cancer,” among them

approximately 100 papers have pursued the criteria for further

interpretation.

2 | PLASTICITY OF CSCs (STEMNESS,
DIFFERENTIATION, AND
DEDIFFERENTIATION)

CSCs share features similar to tissue‐resident stem cells, including

self‐renewal, quiescence, and differentiation (D. Zhang et al., 2018).

Like tissue‐resident cells, CSCs follow two ways of divisions:

symmetric and asymmetric. In the symmetric division, every stem

cells divide invariably to create one daughter cell and one new stem

cell, whereas in the asymmetric division, the cells depending on the

space available in the niche can possibly create a diverse number of

new cells, may be zero, one, or two in number. Normally, there is a

balance between symmetric and asymmetric divisions, which is for

restricting cancer progression or for diverting tumors from high to

low grade. Upon tumorigenesis, however, there is a shift toward

enhanced symmetric division (renewal), leading to the expansion of

CSC fraction that subsequently drives a more vigorous and

undifferentiated state in cancers (progression from low to high‐
grade cancer). Therefore, an increase in the asymmetric division can

be served as an approach to halt the aggressive progression of cancer

(Batlle & Clevers, 2017; Lytle et al., 2018). The nearby committed

cells within the niche send signals to the stem cells to keep their
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stemness and to restrict their differentiation. The point here is that

both CSCs and the nearby non‐CSCs are plastic, and depending on

the environmental cues they receive, the two types of cells could

attain self‐renewal capacity and are able to be tumorigenic even

equally (Batlle & Clevers, 2017). The plasticity of CSCs is also

dependent on tumor type and cell context (Gao et al., 2018). The

importance of this point is for therapeutic designing strategies in

which a prolonged success will be expected only when both non‐
CSCs and CSCs are targeted, not just CSCs.

In the context of cancer, there is a large and exclusive association

between plasticity mostly with CSCs, while in non‐CSCs this plastic

feature is considerably restricted. However, under some circum-

stances, non‐CSCs can replenish the CSC population (Hermann &

Sainz, 2018). CSCs have the capacity to differentiate into non‐CSCs
(Nakano et al., 2018). Dedifferentiation is a process by which non‐
CSCs even in a complete differentiated state can retain their tumor‐
initiating capacity by replacing the either lost CSCs or cancer cells

(Batlle & Clevers, 2017; Chaffer et al., 2011). For example, CSC‐like
properties of breast cancer cells is reported to be potentiated after

exposure of the cells to the adipsin derived from mammary‐adipose‐
derived stem cells (Goto et al., 2018). Stemness‐related genes can

also be activated in cancer cells to exhibit CSC‐like properties. Oct4,

sex determining region y‐box 2 (Sox2), Nanog, CD44 (also called

PGP1), CD133 (also called PROM1), and ABCG2 are examples of

these genes (Cao et al., 2018; Dianat‐Moghadam et al., 2018). For

example, upregulation of Sox2 in lung cancer cells could enhance

expression of pluripotent factors OCT4 and Nanog in the cells and

drives them toward a CSC‐like phenotype (Ooki et al., 2018).

Interleukin 6 (IL‐6) released from CSCs is responsible for keeping a

dynamic equilibrium between the cells with non‐CSCs, shown in

breast and prostate cancer (Iliopoulos, Hirsch, Wang, & Struhl, 2011).

Epithelial–mesenchymal transition (EMT) has been identified as

one of the important mechanisms controlling CSC biology (D. Zhang

et al., 2018). The importance of this is in a report that cells with

increased rates of EMT plasticity and mobility are known as CSCs

(Marquardt et al., 2018). EMT is also a mechanism for the acquisition

of a CSC‐like phenotype in non‐CSCs (C. Chen et al., 2018). During the

EMT, epithelial cells would lose their polarity and cell‐to‐cell contact to
acquire motility and invasiveness (Ji et al., 2018). TWIST1 and SNAI1

(Snail) are master regulators of EMT and the key genes for inducing

dedifferentiation of non‐CSCs toward a CSC‐like state (Batlle &

Clevers, 2017; Nakano et al., 2018). TWIST1 mediates this process in a

mechanism dependent or independent on EMT (Nakano et al., 2018).

ZEB1 is another key regulator of the EMT that its activation by

transforming growth factor‐β (TGF‐β) in non‐CSCs could switch them

to the CSC state (Chaffer et al., 2013). TGF‐β inducible effects on EMT

is also carried out by reduction of the rate for ferritin heavy chain

(FTH‐1) that is known as a negative regulator of CSC expansion and

EMT. Iron trafficking in CSCs has shown to be more robust than other

cells within a tumor, which is for the promotion of CSC enrichment (El

Hout, Dos Santos, Hamaï, & Mehrpour, 2018). CSCs like other stem

cells have mesenchymal‐like phenotype (Batlle & Clevers, 2017). This

phenotype can be reactivated in cancer cells through expression of

specific transmembrane proteins (ex, glycoprotein nmb) on the surface

of the cells (C. Chen et al., 2018) or induction of the EMT‐related
transcription factors. This reactivation can facilitate migratory and

invasiveness features of the CSC‐like cells. These migratory cells when

reached to the target metastatic organ probably reprogram again

toward their primary cells by silencing EMT mediators. This EMT

programming is apparently different in CSCs compared with stem cells

within the normal tissue (Batlle & Clevers, 2017). In Figure 1, the

plasticity of CSCs for differentiation and the capacity of non‐CSCs
like cancer cells for dedifferentiation toward attaining a CSC‐like
phenotype has been clarified.

3 | IDENTIFICATION OF CSCs

CSCs are highly plastic and hidden in tumors that hinder their easy

identification and eradication. Their identification is generally based on

cell surface marker expression (Dianat‐Moghadam et al., 2018).

Evaluation of the rate of expressions for related genes and protein

signature in CSCs is reflective of their density in patient’s tumor

tissues (Marquardt et al., 2018). CD24, CD26, CD44, CD133, CD166,

aldehyde dehydrogenase (ALDH) and Ep‐CAM (also called CD326 or

epithelial‐specific antigen/ESA) are examples of CSC‐specific surface

markers (Dianat‐Moghadam et al., 2018). CD24, CD34, CD44, CD166,

CD133, and ALDH1 are used to identify CSCs in solid tumors (da Silva‐
Diz, Lorenzo‐Sanz, Bernat‐Peguera, Lopez‐Cerda, & Muñoz, 2018).

One of the key functions of the CSC surface markers is to mediate

adhesion of the cells to their niche. Examples of such markers are

CD29 (β1‐integrin), CD44, CD133, CD166, and EpCAM (De Robertis,

Poeta, Signori, & Fazio, 2018). ALDH1 is a NAD(P)‐dependent enzyme

responsible for the oxidation of aldehydes in an intracellular milieu

into carboxylic acids, and it is related to the tumorigenic and

metastatic features in CSCs (Bai, Ni, Beretov, Graham, & Li, 2018).

Expression of the surface markers in the CSCs is different from

other cells within the tumor tissue (Batlle & Clevers, 2017). The

stem/progenitor cells are often the origins for cancer cells and would

pass on their phenotypical traits to the cancer cell population,

especially to the CSCs (Comoglio, Trusolino, & Boccaccio, 2018).

Thus, expression of stem cell specific markers in an unrelated organ

can be exploited for identifying the cells (Batlle & Clevers, 2017). For

example, B‐lymphoma moloney murine leukemia virus insertion

region‐1 (BMI1) is required for self‐renewal of both CSCs and

normal stem/progenitor cells (Goto et al., 2018). CD133+ CSCs are

found in cancers like glioblastoma, ependymoma, lung, and colorectal

cancer (CRC; Baumann et al., 2008; Cao et al., 2018; Gilbertson &

Rich, 2007), CD44+ CSCs are found in cancers like breast cancer

(Gilbertson & Rich, 2007). In the brain, CD133 is used as both a

marker for identifying normal neural precursors in human and for the

enrichment of CSCs (Vescovi et al., 2006). Oligodendrocyte lineage

transcription factor 2 (OLIG2) promotes proliferation of both CSCs

and neural progenitor cells in glioblastoma (Gilbertson & Rich, 2007).

A point is that although CSCs exhibit markers of normal stem cells on

their surface, the process of glycosylation of these cell surface
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markers is different in CSCs compared with that in normal stem cells

(De Robertis et al., 2018). Some markers are inherited in CSCs in

association with their tumorigenic potential. These are called

“oncogene inherited” markers. Tumors with active mutations of

RAS pathway often harbor the oncogenic drivers. An example of such

markers is MET, so the wide‐spread expression of such markers in

tumors can be interpreted as the expansion of CSCs with stem and/

or progenitor features (Comoglio et al., 2018). Markers identified for

CSCs has been described in Figure 2, and cancer‐dependent
expression of markers in CSCs has been shown in Table 1. The point

here is that some markers are specific for the cells and others are

not. This diversity is dependent on the type of tumor, so the

expression of one marker in a type of tumor may exceed the others.

An example of such markers is leucine‐rich repeat‐containing G

protein‐coupled receptor 5 (Lgr5). Lgr5 is an intestinal stem cell

marker that is expressed in CSCs harvested from patients with colon

cancer and animal models (Lenos et al., 2018; Medema, 2017), and its

expression is associated with the clonogenic features (Lenos et al.,

2018) and production of progeny that undergo progressive differ-

entiation but with slower kinetics compared with their nontrans-

formed counterparts. This marker, however, is not so detrimental for

CSC identification, as it has been reported that only a small number

of adenoma cells that stained positive for this marker act as CSCs

(Batlle & Clevers, 2017). Flow cytometry‐dependent functional

F IGURE 1 Cancer stem cell (CSC) plasticity. CSCs can be differentiated into cancer cells. Cancer cells, in turn, receive signals from tumor

microenvironment (TME) to dedifferentiate into CSCs. Cancer‐associated fibroblasts (CAFs) are the key cells in directing CSC plasticity through
promoting cancer cell dedifferentiation and providing a supportive niche (constructed from fibrillary collagens) for their colonization and
chemoresistance features. This niche also contains vascular bed constructed by a cooperation work between CSCs and CAFs. Hepatocyte
growth factor (HGF) derived from CAFs stimulates WNT signaling in cancer cells for further promotion of their dedifferentiation. CSCs release

interleukin (IL)‐6 to keep a dynamic equilibrium between differentiation and dedifferentiation of the cells. The release of transforming growth
factor‐β (TGF‐β) and fibroblast growth factor 5 (FGF5) from CAFs induces myofibroblast reprogramming in the CSCs for metastatic purposes.
From these myofibroblastic cells, fibronectin (FN) is released to sustain the reprogramming process. CXCL12: CXC motif ligand 12; EMT:

epithelial–mesenchymal transition; VEGF: vascular endothelial growth factor

F IGURE 2 Cancer stem cell (CSC) identity. CSCs can be
recognized through the expression of markers on their surface.

Expression of the markers can be specific for one type of cancer but
not for others. Leucine‐rich repeat‐containing G protein‐coupled
receptor 5 (Lgr5) is an example of these markers that is specific for
intestinal cancers. BMI1: B‐lymphoma moloney murine leukemia

virus insertion region‐1; Sox2: sex determining region y‐box 2
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assays can be applied as an alternative approach for the identification

of CSCs (Takebe et al., 2011). For example, flow cytometry tracing of

the enzymatic activity for ALDH1 can be used as a specific marker

for identification and isolation of colon CSCs, as this marker directs

their maintenance and propagation (Dianat‐Moghadam et al., 2018;

E.H. Huang et al., 2009).

4 | CSC‐RELATED SIGNALING

CSCs utilize many of the same signaling pathways found in normal stem

cells that are called developmental signaling, including WNT, Notch, and

Hedgehog (Hh; Marquardt et al., 2018; Takebe et al., 2011). TGF‐β along

with phosphoinositide 3 kinase (PI3K)/AKT, STAT or EGFR are oncogenic

cascades in CSCs (Marquardt et al., 2018). In Figure 3, a concise overlook

toward signaling related to CSC tumorigenic features has been shown.

Below a number of the key signaling pathways are presented.

4.1 | Transforming growth factor‐β

TGF‐β is a differentiation signal, and the general concept may

possibly be that this growth factor is downregulated in stem cells

within their niche (Batlle & Clevers, 2017). TGF‐β through activation

of EMT‐inducing transcription factors could promote conversion of

cancer cells toward a CSC‐like state. This activation occurs through

TGF‐β inducible effects on other signaling including ERK and

PI3K/AKT (Mortezaee, 2018; Najafi, Salehi et al., 2018; Nakano

et al., 2018). TGF‐β is also important for sustained expression of

master stem cell state regulators, namely blocker of DNA binding (ID)

regulators (Comoglio et al., 2018). ID regulators are transcriptional

regulators that are frequently regulated in most of the human

cancers. Accumulation of ID4 is contributed to stemness phenotype

in breast cancer, and knockdown of ID1, ID2, and ID4 in mice glioma

is associated with impaired CSC properties (Lasorella, Benezra, &

Iavarone, 2014).

TABLE 1 Cancer stem cell (CSC) markers in various cancers

Type of cancer Markers References

Breast CD44 and CD133 Bai et al. (2018)

CRC CD24, CD29, CD44, CD51, CD133, CD166,

Lrg5, Sox2, EpCAM, and BMI1

De Robertis et al. (2018); Medema and Vermeulen (2011); Sui et al. (2018);

Visvader and Lindeman (2008); Wang, Fu, Sun, Guo, & DuBois (2015)

Glioblastoma CD133, nestin, and A2B5 Gilbertson and Rich (2007); Haspels et al. (2018)

Lung CD44, CD133, CD166, and EpCAM Cao et al. (2018); Visvader and Lindeman (2008); Zakaria, Mohd Yusoff, Zakaria,

Widera, & Yahaya (2018)

Ovary CD44 and CD133 C. Liu et al. (2011); Xiang et al. (2015)

Pancreas CD44 and CD133 C. Liu et al. (2011); Visvader and Lindeman (2008))

Prostate CD44, CD51, and CD133 Sui et al. (2018); Visvader and Lindeman (2008)

Ependymoma CD133 and nestin Gilbertson and Rich (2007)

AML CD34 Nguyen et al. (2012)

Skin CD34 Malanchi et al. (2008)

HCC CD44, CD90, CD133, and EpCAM Gao et al. (2018); Visvader and Lindeman (2008); Yoshida (2018)

Bladder CD44 C. Liu et al. (2011)

Gastric CD44 Ji et al. (2018)

Note. AML: acute myeloid leukemia; CRC: colorectal cancer; HCC: hepatocellular carcinoma; Sox2: sex determining region y‐box 2.

F IGURE 3 Cancer stem cell (CSC)

related signaling. Transforming growth
factor‐β (TGF‐β), Hedgehog (Hh), Notch,
and WNT/β‐catenin are dominant signaling
in promoting stemness of CSCs. EGF:

epidermal growth factor; FGF: fibroblast
growth factor; FGFR, fibroblast growth
factor receptor; MEK, mitogen‐activated
protein kinase kinase
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4.2 | WNT/β‐catenin

WNT signaling is for keeping self‐renewal in both CSCs and non‐CSCs
maintaining them in an undifferentiated state, so activation of WNT

signaling is associated with the initiation of cancer (Batlle & Clevers,

2017). WNT/β‐catenin along with Notch pathway is activated by

activating protein‐4 (AP4) for increasing the number of CSCs and

regulating their homeostasis, as shown for colon cancer (Jaeckel et al.,

2018). β‐catenin signaling is important for maintaining the CSC

phenotype, as reported in skin cancer (Malanchi et al., 2008), and

stemness (Wu et al., 2018). Overexpression of Rap1 interacting factor

1 (RIF1) (a positive regulator of the WNT/β‐catenin pathway) induces

cell cycle progression to exhibit CSC‐like properties in lung cancer

cells (Mei, Liu, Cao, Tian, & Zhou, 2018). Mechanism of action of other

factors like Forkhead box C1 (FOXC1) for inducing CSC‐like proper-

ties is through upregulation of β‐catenin in lung cancer cells (Cao et al.,

2018). β‐catenin is also the main contributor of high metastatic

capacity, a characteristic of CSCs (Cao et al., 2018). A switch in the

WNT to Hh is associated with progression of CSCs toward metastasis

(Medema & Vermeulen, 2011). In addition, activation of the WNT

signaling in cancer cells mediated by hepatocyte growth factor (HGF)

released from cancer‐associated fibroblasts (CAFs) is contributed to

the promotion of cancer cell dedifferention into CSCs (Comoglio et al.,

2018; Medema & Vermeulen, 2011).

4.2.1 | MEK

RAS mediated activation of Raf–MEK–ERK is cardinal for promoting

CSC proliferation. CD276 (B7‐H3) is a tumor‐promoting glycoprotein

overexpressed in CSCs. CD276 through activation of MEK can

increase the size of CSC pool (Z. Liu et al., 2018).

4.3 | Notch

As mentioned, Notch pathway is related to the sustained self‐renewal

capacity of CSCs. Notch is activated by factors like IL‐6 released by

both CSCs and CAFs (Bai et al., 2018), and its suppression using

antibody against its ligand delta‐like ligand 4 (Dll4) in CRC has shown a

reduction in the frequency of CSCs, a delay in tumor recurrence, and

a decrease in the rate of metastasis (Hoey et al., 2009). Notch is also a

promoter of CSC survival approved for breast cancer (Shah et al.,

2018). Notch inhibitory effect on phosphatase and tensin homologue

(PTEN) is necessary for the promotion of survival in such cancer. In

addition, Notch promotes apoptotic resistance in CSCs possibly

through activation of nuclear factor of κB (NF‐κB) (Baker et al., 2018).

4.4 | Hedgehog

The Hh signaling is related to stem cell maintenance during

embryonic development, and its hyperactivation can cause tumor-

igenesis in a variety of organs (Takebe et al., 2011). BMI1 as a self‐
renewal marker of CSCs (Goto et al., 2018) is a downstream target of

the Hh signaling (Takebe et al., 2011).

Presentation of the signaling mentioned above is not mean that

the other signaling pathways activated in CSCs are not important for

influencing their tumorigenesis. We just presented signaling path-

ways that are more general for most of the cancer types. It is

important to take into account other important signaling pathways in

relation to cancer, such as EGFR, STAT, NF‐κB, and PI3K/AKT. For

example, The PI3K/AKT and its engagement with mammalian target

of rapamycin (mTOR) is reported to be in association with enhanced

EMT/CSC phenotype (Chang et al., 2013) important for shaping a

metastatic feature in the newly formed CSCs. Activation of NF‐κB
signaling in lung cancer is reported to induce apoptotic resistance

and EMT in CSCs (Zakaria et al. , 2018).

5 | CSC FUNCTIONING AND
CROSS ‐TALKING WITHIN THE TME

CSCs are reported to be responsible for sustained long‐term tumor

growth (Batlle & Clevers, 2017), metastasis to distant organs (Cazet

et al., 2018), and an inevitable recurrence of cancer after chemo‐
and/or radiotherapy (Batlle & Clevers, 2017). CSCs express gene

signature related to EMT, so the capacity of cancer to propagate and

migrate into distant sites is considered as a silent feature of CSCs

(Lytle et al., 2018). In addition, DNA mutations and TME factors

possibly drive CSCs toward a metastatic phenotype (Takebe

et al., 2011).

Recent progress in the recognition of the CSC phenotypic and

molecular features and their cross‐talking with the TME could

provide a huge benefit for the development of CSC‐based therapies

and radical improvement in prevention of metastasis and prognosis

of patients with cancer (Marquardt et al., 2018). There is no doubt

that TME can spatially and temporally influence cancer cells and

CSCs through complex cross‐talking in a form of cell‐to‐cell contacts
and secreted factors. Differentiated cancer cells upon exposure to

the right microenvironment can retain characteristics of CSCs

(Medema & Vermeulen, 2011). Cross‐talking between CSCs with

cells within the TME is dynamic and complex and encompass

interactions between CSCs with tumor stromal cells and other non‐
CSCs. It is believed that CSCs reside in a smaller specialized TME

subcompartment niche called CSC niche. This niche basically contains

cellular and noncellular components similar to that present within

the TME, including CAFs, endothelial cells (ECs), immune cells, such

as tumor‐associated macrophages (TAMs) as well as ECM. The TME

and its CSC niche are different in each tumor type (Hermann & Sainz,

2018; D. Zhang et al., 2018). CSCs can alter cellular activity within a

hypoxic TME for tumorigenic purposes. Interactions between CSCs

with other stromal cells can be determined using three‐dimensional

culture systems (Goto et al., 2018).

5.1 | Cancer‐associated fibroblast

CAFs are the main actors for shaping cancer biology, and high

number of cells within a tumor is related to weak prognosis and
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therapy resistance (Cazet et al., 2018). CSCs reside predominantly at

the tumor edge in the close proximity to the CAFs (Lenos et al.,

2018). CAFs are involved in dedifferentiation of cancer cells. This is

possibly occurring through secretion of TGF‐β from the cells. CAFs

provide a mechanical supportive niche for the newly formed CSCs

(from cancer cell dedifferentiation), which is for protecting the cells

from outside influences, and thereby acquisition of a chemoresis-

tance feature in the cells (Figure 1). To do this, CAFs would respond

to Hh ligand produced by cancer cells for expression of fibroblast

growth factor 5 (FGF5) and formation of fibrillary collagen. Increase

in collagen content within the stroma is also correlated to the

stemness and CSC properties of cancer cells. The FGF5 ligand

expressed by CAFs interacts with FGFR in CSCs for mediating their

stemness and chemoresistance (Cazet et al., 2018). Interestingly,

CSCs have the capacity to transform into CAFs, which is for

mimicking CSC niche formation. This transformation is mediated by

TGF‐β released from CAFs (Dianat‐Moghadam et al., 2018). Activa-

tion of the FGFR signaling in CSCs initiates myofibroblast repro-

gramming of the cells. The reprogrammed cells could promote CSC

metastatic features, and they release fibronectin to sustain the

fibrogenic reprogramming of the CSCs (W. Zhang et al., 2018). CAFs

also release HGF to replace FGF in sustaining long‐term propagation

of CSCs (Comoglio et al., 2018; Figure 1). In addition, CAFs secrete

factors such as osteopontin (OPN) for regulation of CSC clonogeni-

city (Lenos et al., 2018). Moreover, CAFs release CXC motif ligand

12 (CXCL12; also called Stromal‐cell‐derived factor‐1) that through
interaction with its receptor CXCR4 expressed on the surface of

CSCs could facilitate migration of CSCs to the metastatic sites (Bai

et al., 2018; Farhood, Najafi, & Mortezaee, 2018). IL‐6 is produced by

both CAFs and CSCs acting in the promotion of CSC stemness,

expansion, and survival (Lytle et al., 2018). IL‐6 release to the TME

also favors CAF growth (Bai et al., 2018).

5.2 | Endothelial cells

CSCs possibly have strong angiogenic features and are contributed to

the recruitment of vessels during tumorigenesis (Gilbertson & Rich,

2007). CSCs anchored to their niche receive supportive signals via cell‐
to‐cell contacts with ECs within the blood vessels (Lasorella et al.,

2014). Glioblastoma CSCs under the influence of TGF‐β are able to

give rise to pericytes for supporting neovascularization and cancer

growth (Cheng et al., 2013). CSCs secrete angiogenic factors vascular

endothelial growth factor (VEGF) and CXCL12 to accelerate angiogen-

esis in ECs (Dianat‐Moghadam et al., 2018). ECs, in turn, secrete

factors such as nitric oxide (NO) and the CD44 ligand OPN for

maintaining stem cell traits (stemness) in CSCs. NO can promote

Notch signaling in the cells. Interestingly, inhibition of ECs using anti‐
VEGF therapy can also be tumorigenic. A possible reason is that the

anti‐VEGF therapy can induce hypoxia within the TME that surpris-

ingly induce VEGF within the TME in a negative feedback loop

(Gilbertson & Rich, 2007; Lytle et al., 2018). This hypoxic milieu can

also block CSC differentiation (Lytle et al., 2018), increase therapy

resistance of the cells (Baumann et al., 2008), and promote stem‐like

features in non‐CSCs (Lytle et al., 2018). In addition, ECs upregulate

transmembrane protein capillary morphogenesis gene 2 (CMG2) to

promote stemness, invasion and metastasis of CSCs by activation of

the WNT/β‐catenin pathway shown in gastric cancer (Ji et al., 2018).

There are other cells within the TME taking important cross‐
talking with CSCs for progression of their tumorigenicity. There is a

positive feedback loop of interaction between CSCs with M2 cells in

which CSCs secrete TGF‐β to stimulate M2 cells for secreting IL‐37
that, in turn, potentiates self‐renewal, pluripotency, and invasive

features of CSCs, as shown in pancreatic cancer (Sainz et al., 2015).

Likewise, CSCs secrete interferon‐β to stimulate M2 cells for secretion

of interferon‐stimulated gene 15 (ISG15) that, in turn, reinforces self‐
renewal and invasiveness features of CSCs (Sainz, Martín, Tatari,

Heeschen, & Guerra, 2014). CSCs also promote the education of

monocytes and/or macrophages toward TAMs. The IL‐6/signal
transducer and activator of transcription 3 (STAT3) signaling facilitates

cross‐talking between CSCs and TAMs (H. Huang et al., 2018).

Natural killer (NK) cells are the key immune cells for killing CSCs

by targeting the cells showing no or low rate of expression for major

histocompatibility complex class I (Anja, Anahid, & Janko, 2018).

CSCs are possibly more sensitive to the NK‐mediated lysis than

differentiated cells, evidenced for glioblastoma (Haspels, Rahman,

Jospeh, Navarro, & Chekenya, 2018). NK cells also limit the

expansion of regulatory T lymphocytes (Tregs; Anja et al., 2018).

Tregs have essential bidirectional cross‐talking with CSCs for the

promotion of an aggressive behavior in tumors. Upregulation of IL‐4
in CSCs favors release of TGF‐β to the TME for promoting Treg and

myeloid‐derived suppressor cell generation. IL‐4 could directly impair

the activity of cytotoxic T lymphocytes (CTLs; D. Zhang et al., 2018)

and induce M2 polarization (Tzeng et al., 2018). In addition, IL‐6
release from CSCs is important not only for sustaining their stemness

(self‐renewal) but also for activating Tregs, inactivating CTLs and

inducing macrophage polarity toward a protumor M2‐like phenotype

(L. Chen et al., 2018; Kato et al., 2018; Lytle et al., 2018; Su et al.,

2018). A hypoxic TME facilitates IL‐6 release from CSCs by

increasing the rate of expression for adenosine within the TME

(Lan et al., 2018). Adenosine has been identified as a potent

proinvasive factor (Siriwon et al., 2018), and it is a strong stimulator

of Treg immunosuppressive activity (Ghalamfarsa et al., 2018) and a

suppressor of CTLs (Y. Liu et al., 2018). Cross‐talking between CSCs

with other cells within TME has been shown in Figure 4.

6 | CSC TARGETING IN CANCER THERAPY

6.1 | CSC resistance to chemo/radiotherapy

CSCs are essentially account for tumor relapse (recurrence), drug

resistance, and metastasis to standard chemo/radiotherapy (Batlle &

Clevers, 2017), which are the principal causes of poor survival in

affected patients (Z. Liu et al., 2018). The first two features are

common among CSCs harvested from tissues of diverse origins (Anja

et al., 2018). The preferential targets for chemo/radiotherapy are non‐
CSCs that make up the bulk of cancer exhibiting transient (limited)

NAJAFI ET AL. | 7



proliferative rates and are not responsible for long‐term tumor growth

(Batlle & Clevers, 2017; Hermann & Sainz, 2018). There is evidence

that residual tumors are frequently enriched with CSCs, so the cells

are essentially responsible for tumor rebound after therapy (Cazet

et al., 2018). CSCs remain in a quiescent state under treatment (Bai

et al., 2018), which is a possible reason for more resistant nature of

these cells to the targeted therapy (Visvader & Lindeman, 2008). CSCs

usually reside far from cancer vessels, so the cells are not easily

targeted using nanoparticle delivery of drug agents (Zuo et al., 2016).

Even they are under exposure to drugs, they have efficient modalities

to take less influential from these agents. CSCs express ATP‐binding
cassette (ABC) transporters acting as unidirectional cellular pumps

that at high levels could cause resistance of the cells to chemother-

apeutic drugs through increasing drug efflux, and thereby attenuating

the amount of drugs accumulated within the cells (Dean et al., 2005;

Dianat‐Moghadam et al., 2018; Takebe et al., 2011). ABCG2 is an

example of the ABC transporters expressed in CSCs, and it could be

considered as an independent marker for isolation of CSCs (Bai et al.,

2018). CSCs highly express antiapoptotic genes, such as BAX, BCL‐2
and BIRC5, that cause resistance of these cells to apoptotic signals

(Zakaria et al., 2018). The phenotypic transition may also occur in

CSCs. This transition could cause changeable signaling patterns and

markers in the cells reducing the efficacy of therapy (Bai et al., 2018).

The resistance of CSCs to radiation therapy is another concern. The

rate of resistance is differing from one tumor to another, thereby

influencing radiocurability of tumors (Baumann et al., 2008). CSCs

express high levels of free‐radical scavengers to reduce intracellular

reactive oxygen species levels generated after radiotherapy (Takebe

et al., 2011), thereby high doses of radiation are possibly required for

targeting the cells (Baumann et al., 2008). The high rate of expression

for ALDH and resistance‐associated proteins, and uncontrolled activity

of DNA repairing are other reasons for CSC resistance to treatment

(Bai et al., 2018; Dianat‐Moghadam et al., 2018). Constitutive

activation of DNA damage response in CSCs could cause resistance

to radiotherapy (Carruthers et al., 2018). Taken together, this

information indicates that by application of the conventional

chemo/radiotherapy we could not expect to observe a curable tumor

demanding a combination of other approaches for targeting CSCs in

more specific ways. Mechanisms of CSC resistance to therapy is

summarized in Figure 5. An anticancer approach can cure cancer only

if all CSCs are killed (Baumann et al., 2008). This is not applicable

unless exploiting a combination of agents that have selective toxicity

to CSCs with agents suppressing the bulk non‐CSC populations or

blocking conversion of non‐CSCs to CSCs. This combination is

important because (as aforementioned) after cessation of therapy,

non‐CSCs (if they are not eradicated) can regenerate CSCs and renew

the growth of tumor (Gupta et al., 2011). Normal stem cells can be

engineered genetically for delivery of therapeutically relevant

molecules effective for targeting CSCs. For example, neural stem cells

can be engineered for secretion of IL‐4 for targeting CSCs and,

therefore, regressing the progression of tumors (Vescovi et al., 2006).

6.2 | Modalities to overcome chemo‐ and/or
radioresistance of CSCs

There are some modalities to make CSCs sensitive to

chemo/radiotherapy. First, targeting CSC extrinsic factors, including

suppression of extrinsic signaling pathways, disruption of the TME or

F IGURE 4 Cross‐talking between cancer stem cells (CSCs) with other cells within the tumor microenvironment (TME). CSCs have positive
interactions with adipose‐derived stem cells (ADSCs), cancer‐associated fibroblasts (CAFs), macrophage type 2 (M2) cells, regulatory T cells
(Tregs), T helper (Th)17 and endothelial cells (ECs), while they have negative cross‐talking with cytotoxic T lymphocytes (CTLs). COX2:

cyclooxygenase 2; CXCL12: CXC motif ligand 12; FGF: fibroblast growth factor; HGF: hepatocyte growth factor; IFN: interferon; ISG:
interferon‐stimulated gene; NO: nitric oxide; OPN: osteopontin; PGE2: prostaglandin E2; TGF‐β: transforming growth factor‐β; VEGF: vascular
endothelial growth factor
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the CSC niche within the TME is one of the promising approaches for

elimination of the cells. Targeting dominant tumorigenic signaling

within the TME is critical to control therapy resistance in CSCs (Lytle

et al., 2018). This is because of the crucial implication of the

environmental cues derived from TME in the stemness of CSCs (Ex,

IL‐17; Xiang et al., 2015), reinstatement (dedifferentiation) of non‐
CSCs into CSCs (Ex, TGF‐β), resistance of CSCs (Cazet et al., 2018;

Medema, 2017) and in the metastasis of the cells (Ex, cyclooxygenase

2 [COX2]/prostaglandin E2 [PGE2]; Wang et al., 2015). To reach this

purpose, one or more of three available modalities can be pursued for

dampening the activity of tumorigenic cells within the tumor stroma:

their recruitment, activation, and cross‐talking. For example, inhibi-

tion of Hh signaling can suppress CAF activation, followed by

increased sensitivity of CSCs to chemotherapeutic drugs, as shown in

patients with breast cancer. CAFs, unlike cancer cells, have no

genomic instability, so they are less likely to acquire drug resistance

over time, making the cells proper targets for cancer combination

therapy (Cazet et al., 2018). CAFs secrete OPN (Lenos et al., 2018)

that is accumulated in CSCs, and there is evidence in hepatocellular

carcinoma (HCC) that CSCs with high OPN levels are more sensitive

to inhibitors of DNA methylation like 5‐azacytidine (Gao et al., 2018).

CAFs also secrete high amount of TGF‐β to the TME (Farhood et al.,

2018). Inhibition of TGF‐β signaling using LY364947 is reported to

increase the rate of CSC penetration to nanoparticles facilitating CSC

therapy (Zuo et al., 2016). Another example is that interaction

between M2 cells (another key cells within the TME) favors release

of STAT3 to the TME (Najafi, Hashemi Goradel et al., 2018) that

further renders CSC immunosuppressive profile (D. Zhang et al.,

2018) and induces radioresistance in the cells (Y. Shi et al., 2018).

Therefore, modalities within the TME could cause optimistic out-

comes in increasing the rate of responsiveness to the chemo/

radiotherapy and thereby reducing tumor burden, increasing patient

survival and possibly abolishing a chance of tumor recurrence.

Hypoxia is known as a common feature of the TME (Lan et al.,

2018) that is induced diversely after treatment with chemo/radio-

therapy (Dianat‐Moghadam et al., 2018). Hypoxia is associated with

F IGURE 5 Targeting cancer stem cells (CSCs) for cancer therapies. There are a number of approaches for addressing CSCs, including
targeting extrinsic factors, intrinsic factors, and control of CSC cell division. For extrinsic factors, making a control over cellular recruitment,

activation or cross‐talking within the tumor microenvironment (TME), or controlling hypoxia in this milieu is beneficial for reducing the number
of CSCs and their stemness. For intrinsic factors, suppression of oncogene inherited markers such MET or silencing DNA binding (ID)
transcriptional regulators can offer effective strategies for targeting CSCs. In addition, because heterogeneity in the CSC number per tumor is
considered as an essential determinant of cancer control after therapy, switching CSCs division toward an asymmetric manner using inhibitor of

related mediators, such as insulin‐like growth factor 1 (IGF1) could increase the efficacy of therapy. ABC: ATP‐binding cassette; ALDH:
aldehyde dehydrogenase; miRNAs: microRNAs; TGF‐β: transforming growth factor‐β
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therapy resistance in CSCs through activation of EMT genes (Lytle

et al., 2018) and autophagy process (Dianat‐Moghadam et al., 2018).

There is a direct relation between hypoxia and ECM composition,

which plays a key function in the emergence of CSCs (Marquardt

et al., 2018). Hypoxia‐inducible factor 1 (HIF‐1) and HIF‐2α are main

of hypoxia response in cancers. Activation of HIF‐1α by PI3K/AKT is

contributed to the expression of the EMT modulator TWIST1. HIF2α

functions as an activator of stemness genes Sox2, OCT4 and CD44,

among other (El Hout et al., 2018). CSCs have protective autophagy in

which they have a controlled range of autophagy required for

promoting their survival (Talukdar et al., 2018b). Hypoxia through

activation of autophagy process in CSCs is able to compensate ATP

deficiency, to provide metabolic nutrients, to promote survival in

CSCs, and to upregulate stemness genes (Dianat‐Moghadam et al.,

2018). The protective autophagy process in CSCs is for promoting

their resistance to anoikis that is considered as a form of programmed

cell death occurring after detachment of anchorage‐dependent cells
from the ECM (Talukdar et al., 2018a). Autophagy in CSCs can be

targeted by either inhibition of this process (Baquero et al., 2018) or

by its overactivation (Talukdar et al., 2018b). There is compelling

evidence for the efficacy of autophagy inhibitors for suppression of

CSCs in tumors like leukemia (Baquero et al., 2018). Overactivation

of autophagy can initiate a toxic autophagy process reducing the rate

of survival in CSCs (Talukdar et al., 2018b). Hypoxia‐inducible effect

on autophagy and further replenishing for ATP is related to the efflux

of drugs from CSCs, as mentioned before. It is also important to note

that chemotherapeutic agent when encounter a hypoxic condition

could diversely cause CSC enrichment through regulation mitogen‐
activated protein kinase signaling. This regulation is mediated by the

inhibition of ERK and activation of p38 signaling for respective

induction and stabilization of pluripotency factors in the CSCs (Lu

et al., 2018). Radiotherapy also indirectly induces expression of HIF‐
1α (X. Chen et al., 2018). Therefore, it is suggested to apply a

reoxygenation strategy or using HIF‐1 inhibitors in combination with

chemotherapy or radiotherapy to induce chemo/radio sensitization

and abolish CSC enrichment (X. Chen et al., 2018; Lu et al., 2018). The

reoxygenation possibly allows differentiation of CSCs. When the cells

are committed to differentiation, they cannot initiate tumor growth

because the cells in the stem cell state can fuel tumor growth (not

after differentiation) (Baumann et al., 2008; Medema, 2017). In

addition, when committed to differentiation, CSCs would take out of

their stem cell pool and thereby will be prone to be killed by the

application of therapeutic approaches (Baumann et al., 2008).

It seems that targeting TME would offer optimistic outcomes for

suppressing both CSCs and non‐CSCs and their interplay. Targeting

both of the cell types is important for effective therapeutic purposes

because there is evidence for the niche refilling by new CSCs derived

from cancer cells after the killing of preexisting CSCs in colon cancer

(Shimokawa et al., 2017). Modulation within the TME would hamper

non‐CSC‐to‐CSC conversion that probably provides a proper

combination with drugs sensitizes CSCs. The niche containing CSCs

and the vascular bed can be disrupted to expose both CSCs and

cancer cells to the cytotoxic effects of conventional chemotherapy

(Gilbertson & Rich, 2007). Increase in the sensitivity of CSCs to

chemotherapeutic drugs can be pursued using nonsteroid anti‐
inflammatory drugs (NSAIDs) like aspirin. Aspirin induces the fas

ligand (FasL) pathway of apoptosis in CSCs of patients with CRC

without affecting non‐CSCs, so NSAIDs can possibly be served as

effective adjuvant therapy for cancer (Z. Chen et al., 2018). Although

efficacy of NSAIDs in tumor‐targeted therapies has been approved,

for potentiating the effectiveness of cancer combination therapies

choosing proper chemotherapeutic drugs that are specific for a

tumor type is a preferred option.

CSC niche is a nutrient‐deprived milieu causing high dependency

of CSCs to mitochondrial oxidative phosphorylation (OXPHOS) to

meet the energy requirement of the cells (Hermann & Sainz, 2018).

CSCs highly rely on lipid metabolism to satisfy their energy demands

(Yi et al., 2018), so metabolic reprogramming of the TME or CSC

niche may be another strategy for reducing the number of these cells

(Hermann & Sainz, 2018). In addition, circadian clock in the TME

would make a control over the circadian dynamics of CSCs. This

regulation is probably important for inhibition of CSC overproduc-

tion. The CSC circadian dynamic explains presumable variations in

efficacy of anticancer drugs (Matsunaga et al., 2018). Therefore, to

make a regulation over TME and suppress cancer progression, it is

important to re‐establish circadian rhythm within this milieu

(Alvarez‐García, González, Alonso‐González, Martínez‐Campa &

Cos, 2013; Mortezaee, 2018).

Second, direct target of CSC intrinsic factors is another way to

overcome therapy resistance (Lytle et al., 2018). For example, MET

signaling can be targeted in CSCs to control their clonogenic features

by transforming them toward radiosensitive nonstem cells. MET

initiates signaling pathways in CSCs resulting in their increased DNA

repair and survival, and thereby fostering their radioresistance

(Comoglio et al., 2018; Lenos et al., 2018). Targeting Notch as a

factor for promoting self‐renewal and survival in CSCs is another

promising strategy to remove drug resistance in the cells (Shah et al.,

2018). Mutations in the p53 gene can bear a CSC phenotypic feature

in normal stem cells within tissues and organs, so knockdown of this

mutant p53 can reduce the frequency of the tumorigenic cells

(Koifman et al., 2018). For example, mutations in p53 may cause high

expression of CD44 in breast CSCs for the promotion of survival in

the cells (Bai et al., 2018). Developing monoclonal antibodies against

CD44 could be used as a promising strategy for the selective

elimination of self‐renewal potential in CSCs (Marquardt et al., 2018).

In prostate cancer, p53 is reported to contribute to suppression of

stemness and metastasis in CSCs via downregulation of CD51 in the

cells, so activation of CD51 could be a therapeutic target for

restricting progression of prostate cancer (Sui et al., 2018).

Targeting CSC markers by inserting apoptotic‐related genes to

the gene locus of the markers can also be hopeful. For example,

version of the suicide‐gene caspase‐9 can be inserted into the Lgr5

locus for elimination of Lgr5+ CSCs in human CRC (Hermann & Sainz,

2018). The next target could be on cysteine cathepsins that are

lysosomal peptidases upregulated in CSCs and are considered as

mediators of CSC resistance to apoptotic signals (Anja et al., 2018).
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Another approach to overcome CSC resistance to therapy is by

targeting MEK signaling through blocking its activators, such as B7‐
H3, a tumor‐promoting glycoprotein overexpressed in various types

of cancers and is related to drug resistance through enrichment of

CSC population (Z. Liu et al., 2018). Stemness markers can be a target

for hormonal therapy like melatonin, a potent oxidative/antioxidative

hormone with known anticancer properties (J.H. Lee et al., 2018;

Mortezaee & Khanlarkhani, 2018). Melatonin through activation of

melatonin receptor 1 (MT1) receptor can suppress stemness and

promote sensitivity of CSCs to chemotherapy, as reported in brain

cancer (H. Lee, Lee, Jung, Shin, & Kim, 2018). The stemness markers

can be activated in cancer cells after exposure to environmental

insults. For example, it has been proven in pancreatic cancer that

exposure to nicotine could activate RAF1 in cancer cells for the

promotion of their stemness (Nimmakayala et al., 2018), so it is

suggestive to avoid exposure to environmental hazards to prevent

the progression of cancer in affected patients. β‐catenin signaling can

be suppressed in CSCs using inhibitors for increasing the efficacy of

chemotherapeutic drugs. For example, suppression of β‐catenin using

inhibitors for cyclin‐dependent kinase 1 (CDK1; a protein kinase

important for cellular transitions of G1/S and G2/M phases) is

reported to overcome the resistance of CSCs to sorafenib in HCC

(Wu et al., 2018). A point to consider is that the β‐catenin pathway is

indirectly reactivated after prolong application of PI3K inhibitors for

patients with cancer (evidenced in HCC), so percussion is necessary

for the administration of such therapies (F. Liu, Wu, Jiang, Qian, &

Gao, 2018). Moreover, microRNA (miRNA) contribution to the

regulation of CSC biology is needed to be under consideration.

MiRNAs mediate aberrant epigenetic regulation over CSCs and play

important roles in CSC‐related EMT, metastasis, angiogenesis, and

drug resistance. To do these functions, miRNAs regulate p53 gene

expression profile, and that they have interactions with the key

signaling pathways in CSC tumorigenesis such as WNT, TGF‐β, and
PI3K/AKT. Identifying these miRNAs in cancers and targeting them is

important not only for designing therapeutic protocols but also for

diagnosis of cancer. For example, miRNA‐21 has been identified as a

biomarker for the diagnosis of CRC (De Robertis et al., 2018), and

enforced expression of miR‐34a (a p53 target) in prostate cancer can

inhibit clonogenic expression of CSCs and suppression of their

regeneration and related metastasis (C. Liu et al., 2011). Small

interfering RNA could also be applied. For example, siAKT2 is

reported to be effective in impairing CSC‐mediated breast tumor

recurrence (Rafael et al., 2018).

Third, as it has been discussed before, disruption of asymmetric

division in CSCs occur upon tumor progression, which is for

expanding the number of the cells within a tumor (Lytle et al.,

2018). Heterogeneity in the CSC number per tumor is an essential

determinant of cancer control following therapy (Baumann et al.,

2008). Therefore, increase in the asymmetric division can be served

as an approach to halt the aggressive progression of cancer (Lytle

et al., 2018). For example, for mouse lung cancer, the relevance

between high insulin‐like growth factor 1 with the initiation of CSC

TABLE 2 Cancer type dependent therapeutic targeting against cancer stem cells (CSCs) harvested from human cancerous tissues

Agent type Mechanism Cancer type References

MiR‐4319 Regulation of CSC tumorigenesis and self‐renewal Breast Chu et al. (2018)

MiR‐141 Suppression of prometastatic genes in CSCs Prostate C. Liu, Liu

et al. (2017)

Luteolin Luteolin is a common dietary flavonoid that acts through inhibition of WNT

signaling by upregulation of FZD6 transcription

Prostate Han et al. (2018)

MiR‐34a Direct repression of CD44 in CSCs Prostate C. Liu et al. (2011)

MiR‐18a‐5p Downregulation of HIF‐1α Lung X. Chen et al. (2018)

USP22 block Downregulation of ALDH1 Lung Yun et al. (2018)

BMS‐345541 BMS‐345541 is an NF‐κB inhibitor that suppresses EMT and apoptotic

resistance in CSCs

Lung Zakaria et al. (2018)

Regorafenib Potentiating the activity of the tumor suppressor miR‐34a Colon Cai et al. (2018)

MiR‐195‐5p Suppression of CSC stemness CRC Jin et al. (2018)

Ibrutinib Inactivation of BMX–STAT3 Glioma Y. Shi et al. (2018)

AMG232 MDM2 inhibitor. MDM2 is an E3 ubiquitin ligase that is responsible for

destabilization and negatively regulation of the p53 protein

Glioblastoma Her et al. (2018)

Anti‐ABCG2 ABCG2 is a transmembrane protein acting as ABC transporters for

unidirectional efflux of chemotherapeutic drugs

MM F. Shi et al. (2018)

WYC‐209 WYC‐209 is a synthetic retinoid that induces apoptosis in CSCs Melanoma, lung, and

breast

J. Chen et al. (2018)

ACR Suppression of the WNT/β‐catenin pathway in CSCs HCC Qin et al. (2018)

Note. ABC: ATP‐binding cassette; ACR: acyclic retinoid; ALDH: aldehyde dehydrogenase; BMX: bone marrow and X‐linked; CRC: colorectal cancer; CSC:
cancer stem cell; EMT: epithelial–mesenchymal transition; FZD6: frizzled class receptor 6; HCC: hepatocellular carcinoma; HIF‐1α: hypoxia‐inducible
factor‐1; MDM2: murine double minute 2 gene; MM: multiple myeloma; NF‐κB: nuclear factor of κB; STAT3: signal transducer and activator of

transcription 3; USP22: ubiquitin specific peptidase 22.
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self‐renewal from asymmetry to symmetry through activation of the

PI3K/AKT/β‐catenin and the subsequent recurrence of the tumor has

been elucidated (Li et al., 2018). So, acknowledging the roles of such

mediators or related pathways for cancers can provide a promising

approach for reducing the risk of tumor relapse.

Fourth, CSCs can be targeted by immunotherapeutic approaches

including immune checkpoint blockade (ICB), monoclonal antibodies,

vaccination, T cell therapy, and activation of innate immune responses,

such as NK cells (D. Zhang et al., 2018). CSCs have developed a myriad

of ways to circumvent a possible attack from the immune system,

including loss of cancer antigen expression, activation of oncolytic

pathways, and promotion of an immunosuppressive milieu and (epi)

genetic alterations that cause their reduced recognition by the

immune system (D. Zhang et al., 2018). These immunotherapeutic

approaches con offer a potential targeting for increasing the sensitivity

of CSCs to chemo‐ and/or radiotherapy. ICB approaches, for example,

can revoke the activity of CSCs and other immunosuppressive cells

within the TME. CSCs (Dianat‐Moghadam et al., 2018) and cancer cells

(Mortezaee, 2018) produce programmed death‐1 ligand (PD‐L1), and
its receptor PD‐1 is expressed by Tregs (Zappasodi et al., 2018). CSCs

also release PD‐1 to their niche (D. Zhang et al., 2018). PD‐L1 could

cause exhaustion and dysfunction of effector T cells (Du et al., 2018)

and restriction of CSC immune escaping. A point here is to apply

immunotherapeutic approaches for unique CSC markers and antigens

preferentially expressed by the cells (D. Zhang et al., 2018). In Table 2,

agents used for targeting CSCs in various human cancers has been

described focusing on the mechanisms involved in exerting their

therapeutic efficacy, and in Figure 6, strategies for targeting CSCs are

summarized.

7 | CONCLUSION AND PERSPECTIVE

The information provided in this review is mostly from the evaluation

of CSCs in vitro and from xenograft data, and it followed a rather

holistic overview toward cancer, so it has not pertained to all types of

cancers. Human tumoral tissues engrafted to the immune compro-

mised animals may experience different responses to the environ-

mental cues from animals, and that the level of functionality of CSCs

is possibly differ from one cancer to another, or even the grade of

one specific tumor may cause a noticeable effect on CSC function-

ality. In fact, tumors at early stages have lower genetic aberrations,

lower TME potential to influence CSCs, and possibly fewer number of

the cells compared with the established tumors. CSCs from different

tissue origins exhibit different cell surface glycoproteins and have

diverse requirements for their growth and maintenance (Anja et al.,

2018). For targeting cancer in the clinic, there is an urgent need for

cancer type basis of CSC identification and sensitivity and selective

killing of the cells to expect more accurate responses, and due to the

existence of different population of CSCs within a type of tumor (da

Silva‐Diz et al., 2018), isolation of the cells must be carried out by

targeting different markers for the cells (not just one marker).

It is still unclear whether a CSC that can cause tumor initiation is

the same as a CSC that can cause tumor relapse after chemo/

radiotherapy. There are also burning issues regarding the density of

the cells and their spatial distribution. Although it has been reported

a high amount of the CSCs remained in residual tumors (Cazet et al.,

2018), the frequency of these cells for many tumors is low (almost

1/1,000 cells) demanding power purification approaches (that are not

yet extensively available) for isolation of the cells (Nguyen et al.,

2012), thereby limiting development of drugs and treatment

strategies (Takebe et al., 2011). In addition, it is unknown whether

markers discussed before have the properties of bona fide CSCs, and

that their specificity and the stability of expression in the CSCs over

time of exhibiting their stem‐like properties is another issue needing

further research to design therapeutic protocols more specifically on

the cells, as it is approved that inactivation of all CSCs is required for

permanent local cancer control (Baumann et al., 2008).
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