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ABSTRACT 

WILLIAM EVANS SISTRUNK: Histone Deacetylase Inhibitors and Breast Cancer 
Metastasis: A Review and Exploration of HDACi(s) and other Chemotherapeutic Agents 

(Under the direction of Dr. Yu-Dong Zhou and Dr. Dale G. Nagle) 

 

 The traditional perspective of Histone Deacetylase enzymes is focused around 

their inherent epigenetic modification characteristics. While it is true that the histone 

modification these enzymes exhibit play a role in cancer and related diseases, Histone 

Deacetylase has a variety of non-histone targets. The non-histone targets include 

microtubules and are of specific interest because of the microtubules’ role in cell line 

differentiation, replication, apoptosis, and cancer metastasis. Using a variety of Histone 

Deacetylase Inhibitors (HDACi) and other chemotherapeutic compounds, our research 

group explored the HDACi effect on breast cancer cell lines. Our goal was to indicate the 

presence of HDACi cell-line dependent cancer growth inhibition and to study the 

hypothesized non-histone mechanism of microtubule modification in HDACi(s). The 

experiment consisted of three parts: viability assay, clonogenic assay, and combination 

assay which analyzed HDACi(s) possible synergistic character with microtubule 

stabilizing compounds. The specific breast cancer cell lines used were MDA-MB-231 

clones LM-4175 and BOM-1833, and MCF7-BOM. The results of our experiments 

indicated that there was cell line dependent growth inhibition with the treatment of 

HDACi(s). Specifically, MCF7-BOM showed to be more susceptible to treatment, and 

this could be due to it being an estrogen receptor positive ER+ cell line. However, the 

growth inhibition never reached complete inhibition and was most prominent at the 

highest concentrations of HDACi(s). Higher concentrations of HDACi(s) also had the 

most prominent effect on colony growth inhibition in the clonogenic assay. The 
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combination assay had an interesting result indicating an antagonistic trend between 

microtubule stabilizers and HDACi(s).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

TABLE OF CONTENTS 

List of Figures…………………………………………………………………………...vi 

List of Abbreviations……………………………………………………………………vii 

Introduction…………………………………………………………………………….9 

Breast Cancer……………………………………………………………………9 

 Histone Deacetylase Inhibitors (HDACi)……………………………………….13 

Histone Deacetylase Inhibitor Experiment………………………………………17 

Materials and Methods…………………………………………………………………17 

Background Research……………………………………………………………17 

Compound Data………………………………………………………………….19 

Preparation of HDACi and Chemotherapy Agent Dilution Plate………………..20 

Breast Cancer Derived Cell Lines……………………………………………….22 

SRB Viability Assay…………………………………………………………….23 

Combination Assay……………………………………………………………..24 

Clonogenic Assay……………………………………………………………….25 

Results and Discussion…………………………………………………………………27 

 SRB Viability Assay Results……………………………………………………27 

 Clonogenic Assay Results………………………………………………………32  

 Combinations Assay Results……………………………………………………34 

Conclusion………………………………………………………………………………38 

References………………………………………………………………………………39 



6 

 

ACKNOWLEDGMENTS 

This thesis would not be possible without Dr. Yu-Dong Zhou and her willingness 

to accept me into her research lab. Her patience and optimism made this experience one I 

will never forget. I would also like to thank Dr. Dale G. Nagle whose expert advice and 

experience in cancer research taught me the essentials needed for this project. I cannot 

thank my research partner Mary Grace Stewart enough for her support through the ups 

and downs of the past two years. I also want to thank my research partner Henry Nguyen; 

whose hard work was a quintessential part of this entire process. I have learned the true 

meaning of being a citizen scholar through The Sally McDonnell Barksdale Honors 

College and am grateful for their support throughout college. Finally, I would like to 

thank my parents Will and Camille Sistrunk, my sisters Katherine and Ann Weston 

Sistrunk, and my girlfriend Anna Weaver for always believing in me and being there 

when I needed them most. 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

 

LIST OF FIGURES 

Figure 1 Histone Deacetylase Inhibitor Targets……………….……………………….14 

Figure 2 Chemotherapeutic Compound Data…………………………………………..19 

Figure 3 Molecular Structure ……………………………………………………….....20 

Figure 4 Serial Dilution Plate Example …………………………………………….....21 

Figure 5 Combination Dilution Plate………………………………………………….25 

Figure 6 Clonogenic Assay Compound Data……………………………………….....26 

Figure 7 Highest Inhibitory Concentration………………………………………........27 

Figure 8 BOM, LM, MCF7 BOM Viability……………………………………………28 

Figure 9 BOM Viability……………………………………………………………......30 

Figure 10 Clonogenic Assay……………….…………………………………………..32 

Figure 11 Combination Assay Panobinostat……………………………………...……34 

Figure 12 Combination Assay Ricolinostat…………………………………………….34 

Figure 13 Combination Assay Romidepsin…………………………………………….35 

 

 

 

 

 

 

 



8 

 

LIST OF ABBREVIATIONS 

BRCA1 - Breast Cancer gene 1 

BRCA2- Breast Cancer gene 2 

DMEM - Dulbecco’s modified Eagle’s media 

DMSO - Dimethylsulfoxide 

DNA - Deoxyribonucleic acid 

EpoB - Epothilone B 

ER+ - Estrogen receptor positive 

FBS - Fetal Bovine Serum 

HAT - Histone Acetylase 

HDAC - Histone deacetylase 

HDACi - Histone Deacetylase inhibitor 

HDACi(s)- Histone Deacetylase Inhibitors 

Her2+  - Human epidermal growth factor receptor 2-positive 

Hsp90 - Heat shock protein 90 

IC50 – Half maximal inhibitory concentration 

NCI - National Cancer Institute 

SAHA - Vorinostat 



9 

 

SRB - Sulforhodamine B 

Taxol - Paclitaxel 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



10 

 

 

 

 

Introduction: Breast Cancer 

 A profound statement that has resonated with me throughout my undergraduate 

research came from a newly diagnosed breast cancer patient named Carol. She described 

her first reaction like many of us would, “Why me?”; However, Carol’s next thought 

was, “Why not me?” (37). Unfortunately, Carol is correct in that the incidence of breast 

cancer does not discriminate among women. In other words, all have an absolute risk of 

developing the disease in their lifetime. Currently, one out of every eight women develop 

one of the many forms of breast cancer in their lifetime (15). That number is expected to 

increase as screening methods advance and progress throughout the world. Some experts 

predict that there will be 3.2 million new cases per year by 2050 compared to the 

1,384,155 new cases registered in 2008 (29).  

 The emergence of cancer is simply a misprint of DNA. Imagine a cell as a 

factory containing thousands of printing presses. The assembly of pages (DNA) copied 

from the press (template strand DNA) is essentially the same process in which the body 

replicates DNA. However, that is just one factory; the body has an estimated 10^13 or 

thirty trillion cells in the body (17). Therefore, it is a question of when, not if, 

cancerous errors will occur. The human body has complex mechanisms known and 

unknown to correct these errors or apoptosis (self-terminate) corrupted cells. Despite 

this, an accumulation of errors ranging from single digits to thousands of misprints can 

develop into cancer. In the case of breast cancer, there are specific factors both non-
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modifiable and modifiable that can increase the risk of developing the disease (15). 

Non-modifiable factors or factors that cannot be controlled include age, race, genes, age 

of menopause, breast density, body height, hormones, and prior history of breast biopsy 

or benign tumors. Before the age of 30, women have a very small chance of developing 

breast cancer. However, from the ages of 30 to 50 years of age, there is a dramatic 

increase of disease incidence that remains elevated after the age of 50 (15). Race and 

genetic factors are especially critical in addressing an individual’s chances of breast 

cancer. Caucasian women over the age of 50 have an incidence rate of 351.9 per 

100,000-compared to 292.2 per 100,000 African American women in the same age range 

(15). One of the most well-known breast cancer genetic mutations is BRCA 1 and BRCA 

2. According to the Center for Disease Control, 50 out of 100 women with these 

mutations will develop breast cancer by the age of 70 (CDC). Thus, preemptive measures 

such as Mastectomy (removal of breast tissue) become a desirable choice in these hyper-

predisposed women. Physical and chemical characteristics of an individual such as breast 

density, hormone levels, age of menopause, etc. can cause variability in breast cancer 

incidence. For instance, research suggests that the delay in menopause results in a 3% 

increase of breast cancer for every year of absence (15). 

 Unlike non-modifiable factors that are uncontrollable, modifiable factors such as 

smoking, diet and exercise, environment, and hormone therapies can be controlled to 

reduce the breast cancer risk. High alcohol consumption in an individual’s diet is the 

most heavily correlated lifestyle factor associated with the risk of breast cancer (15). 

According to one study, alcohol consumption is the primary cause in 4% of new breast 

cancer diagnoses (27). Overall, modifiable risks other than alcohol consumption have a 
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marginal increase in breast cancer incidence. However, it is important to consider that 

avoiding known harmful modifiable factors can prevent a significant proportion of 

postmenopausal breast cancer cases (28).  

Although breast cancer is unfortunately common among women, the prognosis 

is very heterogenous as each diagnosis depends on certain conditions. Tumor 

morphology, genetic typing, and histological grade coalesce in outcomes ranging from 

treatable to extremely malignant (29). Cancerous breast tumors are divided into several 

categories including infiltrating ductal carcinoma, infiltrating lobular carcinoma, 

tubular, mucinous, medullary, adenoid cystic carcinoma, and many other types (29). 

Each type of breast cancer has unique characteristics determining prognosis. For 

example, smaller tubular carcinomas are associated with a less advanced stage or 

progression at presentation of disease compared to infiltrating ductal carcinomas (29). 

The presence of estrogen receptors (ER positive) in a cancerous cell morphology 

indicates favorable outcomes (1). Also, the presence of genes that code for proteins 

such as HER2 (Human Epidermal Growth Factor Receptor 2) in tumor cells adds 

another trait in which physicians and scientists must consider for treatment. In contrast 

with ER positive breast cancer, Triple-Negative breast cancer (TNBC) is characterized 

with poor outcomes and high rates of relapse (8). The TNBC cells lack HER2 protein 

receptors, estrogen receptors, and progesterone receptors. In essence, the most effective 

way to destroy tumors is to consider them unique individuals through personalized 

medicine. This ideology centers around the mantra that there is both inter-heterogeneity 

among tumor types and intra-heterogeneity within the tumor itself (4). Ultimately, the 
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goal is to identify the breast cancer type and best course of treatment before the disease 

is in its final stage.  

What is final stage breast cancer? What aspect of the disease ultimately causes 

death? These were two of my very first questions in the initial segment of research. The 

simple answer is that metastasis or M-stage is the final progression of breast cancer. 

Metastasis is the process in which cancerous cells spread to other parts of the body 

through the blood or lymph circulatory systems. Furthermore, the new tumor formed is 

of the same type as the primary tumor. For example, if cancerous cells spread from a 

breast tumor to the brain, these cancerous cells are still breast tissue (26). Distant 

metastases such as mentioned above (breast to brain) is the main cause of death in 

breast cancer patients (5).  

Metastatic or malignant tumors can cause death in a variety of ways depending 

on where the secondary tumors form. For example, malignant tumors are highly 

metabolic and can not only become strenuous to maintain but consume surrounding 

normal cells to strengthen their viability. Metastasis also causes terminal complications 

by interfering with bodily functions such as the immune system and circulatory system. 

Secondary infections, strokes, and other serious medical conditions resulting from the 

secondary tumor interference are the ultimate cause of death (30). Under these 

circumstances, a patient that has progressed to M-stage breast cancer is at a much 

higher risk than previous stages. Consequently, preventing the malignant 

transformation of a primary tumor is a promising target for therapy. Under the guidance 

of Dr. Yu-Dong Zhou and Dr. Dale G. Nagle, I along with my collaborators Mary 



14 

 

Grace Stewart and Henry Nguyen have pursued drug therapies using Histone 

Deacetylase Inhibitor (HDACi) class compounds to prevent malignant breast cancer.  

 

Histone Deacetylase Inhibitors (HDACi) 

 The Human Genome Project represents a new era in the advancement of medicine. 

Using the combined resources of collaborators from around the world, in 2003 the 

entirety of the Human Genome was sequenced (25). In essence, the instruction manual 

of every cell in the human body is now available to be studied and perhaps manipulated. 

However, it is important to note that while some genes are constantly transcribed, many 

remain silent depending on the cellular environment and cell type. The gatekeepers of 

transcription are the histone proteins (3). Histones are proteins that have between 145-

147 DNA base pairs wrapped around the core histone protein. Each core histone protein 

is globular in structure and consists of two histone protein subunits: H2A, H2B, H3, and 

H4 (3). The histone is designed to be post-translationally modified by the acetylation of 

lysine residues by histone acetylases (HATS). This function allows the histone to loosen 

the DNA tightly wrapped around the core protein and enable transcription to occur (3). 

 Imagine being able to control the acetylation of histones and eventually 

manipulate the phenotype of a cell without changing its inherent genotype. In 1977, 

scientists were able to complete such a feat by converting a cancerous erythroleukemia 

cell line into a non-dividing hemoglobin synthesizing cell using butyric acid, a histone 

deacetylase inhibitor (HDACi) (11). In order to change the cell in such a drastic way, the 

histone proteins must be denied the ability to be deacylated, which is the exact goal of 
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histone deacetylase inhibitors. The mechanism of HDACi consists of inhibiting the 

histone deacetylase enzyme’s function of removing the acetyl group from lysine residues. 

With the HDAC inhibited by the HDACi, the histone acetylases can freely function to 

stimulate the transcription of DNA through the unwinding effect of the histone. Also, it 

is especially important to note that HAT and HDAC enzymes have non-histone targets 

in the cell. When HDACi(s) are introduced into the cell, the effects on both the histone 

and non-histone proteins coalesce into increased cell apoptosis, decreased migration, 

decreased proliferation, and cellular differentiation (32). 

  

Figure 1 (20) 

 One pivotal question regarding the HDACi mechanism is: How do 

noncancerous cells (and some cancerous) survive the hyperacetylation of histones that 

cause the destruction/differentiation of many forms of cancer cells? While a concrete 

answer is unknown, one study suggests that body cells have an innate response to 
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downregulate histone acetylases during a period of hyperacetylation caused by HDACi 

(12). This theory is supported by histone acetylation falling dramatically after cells 

were removed from a HDACi rich environment. In other terms, the lack of HDACi 

induced hyperacetylation in the new environment post-HDACi caused an 

overcompensation of the innate cellular defense. How did this innate defense arise? 

Interestingly, HDACi activity is observed in many natural products produced by 

bacteria. Eukaryotic cells that were in the presence of these bacteria and thus the 

HDACi developed this innate response over thousands of generations in order to 

survive. The human body even has HDACi activity present in the large intestine where 

bacteria are believed to act as a weapon against eukaryotic organisms competing for the 

same resources (12).  

 Histone Deacetylase enzymes are a very diverse group of molecules affecting 

many components of the cell and body. In fact, there are four classes each representing 

numerous subtypes: HDAC class I, consisting of HDAC 1,2,3,8. HDAC class II(a), 

consisting of HDAC 4,5,6, and 7. HDAC class II(b), consisting of HDAC 6 and 10. 

HDAC class IV, contains HDAC 11 (10). While each HDAC subtype has many 

functions, the most crucial to my research are HDAC 1, 2, and 6. HDAC 1 and 2 are 

intricate in the processes of cell proliferation and apoptosis. The overexpression of 

HDAC 1 and 2 are associated with many forms of cancer including breast, lung, and 

classical Hodgkin’s lymphoma (2). HDAC 6 is mostly present in the cytoplasm and is a 

target of α-tubulin. The HDAC 6 mechanism with chaperon protein Hsp90 is known to 

increase the growth of some forms of prostate and breast cancer. HDAC 6 is also 
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associated with oral squamous cell carcinoma and expression increases in advanced stage 

cancers in comparison to early stage (2).  

 One of the non-histone targets of HDAC 6—as mentioned previously—is alpha-

tubulin. Microtubules have a complex mechanism of elongation and degradation that 

enable cells to be motile in their external and internal environment. The acetylation of α-

tubulin has a stabilizing effect that leads to long lived, less motile, and less dynamic 

microtubules (6). In contrast, HDAC 6 upregulation causes the deacetylation of 

microtubules that is associated with cell invasion and metastasis. Therefore, compounds 

inhibiting HDAC 6 are promising potential therapeutic agents for preventing metastasis 

in late stage cancers (6).  

 What is the current state of HDACi(s) in the clinical treatment of cancer? Four 

HDACi compounds have been FDA approved: Vorinostat (SAHA), Romidepsin, 

Panobinostat, and Belinostat. Vorinostat inhibits class I, II, and IV HDAC molecules and 

is approved for treatment of Cutaneous T-cell Lymphoma (CTCL). Romidepsin inhibits 

class I HDAC molecules and is approved for treatment of CTCL. Panobinostat inhibits 

class I, II, and IV HDAC molecules and is approved for treatment of CTCL and multiple 

Myeloma. Lastly, Belinostat inhibits class I, II, and IV HDAC molecules and is approved 

for treatment of Peripheral T-cell Lymphoma (PTCL) (17). The common denominator for 

each FDA approved HDACi(s) is that they are effective in the treatment of non-solid 

tumors (Myeloma, Lymphoma). While this clinical use is promising, one of the most 

exciting characteristics of HDACi(s) is its ability to work synergistically with other 

chemotherapeutic agents (7). HDACi(s) in combination with other epigenetic modifiers, 

reactive oxygen species, protease inhibitors, DNA damaging agents, and microtubule 
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stabilizers have increased chemotherapeutic effects. While numerous studies support the 

synergistic effect, the mechanism is generally unknown (7).  

 In the experiments the research group conducted, we examined the relationship of 

Histone Deacetylase Inhibitors and other chemotherapy agents on multiple breast cancer 

cell lines. The purpose of the viability, combination, and other cell assays was to replicate 

and further understand the therapeutic effect of HDACi(s) on breast cancer.  

 

Histone Deacetylase Inhibitor Experiment 

  The experimental timeline and progression that has encompassed over two years 

began in the fall of 2016 under the direction of Dr. Nagle and Dr. Zhou. The first section 

was a seminar class that introduced new researchers to the many intricacies of breast 

cancer and beyond. The second section was devising a research plan in order to 

understand the effects of Histone Deacetylase Inhibitors on specific breast cancer cell 

lines. The HDACi research plan consisted of background research, viability assay, 

combination assay, and clonogenic assay. While it was a general goal to study all 

HDACi(s), HDAC 6 inhibitors were of specific interest because of the non-histone 

microtubule targets it influences. Therefore, microtubule stabilizers and destabilizers 

were used in viability studies as well as in combination with HDACi(s) to study this 

effect. Our general hypothesis stated HDACi(s) may exhibit cell-line dependent 

inhibitory activity against breast cancer cells.  
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MATERIALS AND METHODS 

Background Research 

 In the spring of 2017, after the decision to pursue HDACi(s) with a concentration 

of the anticancer effects of HDAC 6 inhibitors, the initial plan of research was to conduct 

a background review on the topic. This process was completed in three steps: literature 

review, survey known HDACi/chemotherapy compound data, and selection of cell 

lines/compounds. Dr. Zhou emphasized the importance of literature review before 

conducting our experiment in order to maximize our chances of originality in the field. 

While it is difficult to produce new data because of the constant global competition, 

literature review was helpful because we could determine what had been researched and 

use that knowledge to focus on the selection of our topic. We learned that the role of 

HDAC 1, 2, and 3 and the inhibition of these HDACs in the treatment of breast cancer 

have been researched frequently in studies conducted over five years ago (22). However, 

we also learned more about HDAC 6 and the HDAC 6 inhibitor’s role in microtubule 

stability (6). Since HDAC 6 interacts with microtubules, Dr. Zhou suggested using an 

HDAC 6 inhibitor in conjunction with paclitaxel and other microtubule stabilizers and 

destabilizers. In essence, there could be a synergistic property associated with the 

addition of HDAC 6 inhibitors with classic chemotherapy agents such as paclitaxel. 

 The next step of the background review was to survey known chemotherapy 

compounds and their inhibitory effects on each cell line. This procedure was completed 

using the National Cancer Institute Developmental Therapeutic Program named NCI-60 
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Human Tumor Cell Line Screen. The NCI-60 cell line assay results function as a 

database for the compound concentration needed to reach LC50 (LC50 is the lethal dose 

in which 50% of cells are destroyed in a given amount of time) in a particular cell line. In 

each compound our group was interested in, we would use the NCI-60 panel data to 

determine the general concentrations needed to reach LC50 and in turn determine a 

general guideline for the quantity of compound needed in our experiment.  

 Compounds were selected to fill five classes of HDACi(s) and microtubule 

stabilizers/destabilizers: HDAC 1 and 2 inhibitors, HDAC 6 inhibitors, microtubule 

stabilizers, microtubule destabilizers, and pan-HDAC inhibitors. Among the compounds 

selected to fulfill these categories, further selections were based on logistics and 

availability of the compound.  

Compound Data 

Drug Classification Compound Name Purchased from Solubility/stock solution 

HDACi 1 and 2 Romidepsin Cayman 100 µM 

HDACi 6 Ricolinostat Selleck 10 mM 

MT Stabilizer Paclitaxel Sigma 10 mM 

 Epothilone B Selleck 10 mM 

MT Destabilizer Colchicine Sigma 100 µM 

 Vinblastine Sigma 100 µM 

Pan-HDACi Vorinostat (SAHA) Cayman 10 mM 

 Panobinostat Cayman 100 µM 

Figure 2 
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Molecular Structure  

 

Romidepsin 

 

Ricolinostat 

 

Paclitaxel 

 

Epothilone B 

 

Colchicine 

 

Vinblastine 
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Vorinostat (SAHA) 

 

Panobinostat 

Figure 3 

Preparation of HDACi and Chemotherapy Agent Dilution Plate 

The chemotherapeutic agents were purchased from Cayman Chemical, Sigma-

Aldrich, or Selleck Chemical. For our experiments, we set the stock solution 

concentration of 10 mM or 100 µM for each compound. Specific amounts of DMSO 

were added to each chemotherapeutic agent in order to configure the stock solution 

concentrations from the variable factory purchased compound concentrations. Serum free 

media was used to dilute the stock solutions to the highest tested concentration, and this 

was set at 2x the final concentration of the mother plate. The mother plate was prepared 

at 3.5x volume (of a single dose) because it was to be used on three SRB viability 96-well 

plates. A 1:10 serial dilution was performed creating a dilution pattern as seen in the table 

below (Top 10,3,1,.3,.1,.03,.01 μM Bottom). This process was completed in a stepwise 

pattern. For example, in one dilution we siphoned 35 μL of 0.1 μM solution into a well of 

315 μL of serum free medium which created 350 μL of diluted solution at 0.01 μM. Each 
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dilution was calculated to have 350 μL of end product in each well.

 

Figure 4: Serial Dilution Example 96-Well Plate 
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Breast Cancer Derived Cell Lines 

 The human breast cancer cell lines used in experimentation was MDA-MB-231, 

MDA-MB-231 subtypes BOM clone 1833 (bone metastasis) and LM clone 4173 (lung 

metastasis), and MCF7-BOM. MDA-MB-231 is a triple negative breast cancer that was 

derived from a pleural effusion in a 51-year-old Caucasian female in the 1970’s (18). 

MDA-MB-231 is an aggressive tumor with poor prognosis which commonly metastasizes 

to the lung and bone to form secondary tumors. MDA-MB-231 BOM and LM are cell 

lines derived from these secondary tumors and were first generated by Dr. J Massagué at 

the Sloan Kettering Cancer Center (21). Our experiments acquired the specific MDA-

MB-231 clones BOM 1833 and LM 4175 from Dr. Konosuke Watabe at Wake Forest 

University. MCF7 is an ER-positive breast cancer cell line that was originally derived 

from a 69-year-old Caucasian female in the 1970’s (18). The MCF7-BOM cells that were 

used in our experimentation are another product of bone secondary metastasis generated 

in Dr. J Massagué’s lab at the Sloan Kettering Cancer Center (23). Our lab acquired 

MCF7-BOM cells from Dr. Konosuke Watabe at Wake Forest University.  

 The MDA-MB-231 (BOM and LM) and MCF7-BOM cell lines were sustained in 

DMEM/F12 media containing L-glutamine (Mediatech, Manassas, VA), enriched with 

10% fetal bovine serum (FBS) (Hyclone, Logan, UT),50 units/mL of penicillin and 50 

µg/mL streptomycin (Gibco, Grand Island, NY) were added, and the cells were 

temperature controlled at 37 °C in an environment of 95% air/5% CO2 (34).  
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Sulforhodamine B (SRB) Viability Assay 

 The SRB viability assay procedure started after the 96-well master dilution plate 

was created and the specific cell lines developed to the desired density. The SRB viability 

assays are a rapid, relatively inexpensive, and reliable test to study the effects of 

particular compounds on cell line proliferation (24). The first step of the process was to 

trypsonize the cell cultures using 1 mL (Trypsin) and then wash the cells with 10 mL of 

10% fetal bovine serum (FBS) media. The cells were then diluted with additional 10% 

FBS media until a density of 3 million cells per mL of 10% FBS was reached using a 

hemocytometer. Next, 100 µL of cell solution and 100 µL of media were seeded to each 

well in the desired number of 96-well plates (depending on the specific trial 

requirements) at a concentration of 30,000 cells per well. The plates were cultured at 37° 

C within a humid environment of 95% air and 5% C02. The 96-well cell containing plates 

were then infused with a specific amount of chemotherapy agent in the 96-well master 

dilution plate. The combination chemotherapy agent/cell plates were incubated for 48 

hours. After the incubation process was complete, 100 µL of media was withdrawn from 

each well. The wells began the fixation process with the addition of 100 µL of 20% 

trichloroacetic acid (TCA) and 1% PBS solution to each well. The fixed plates were 

placed in the refrigerator for one hour at 4°C. After removal from the refrigerator, the 

plates were washed with tap water four times and set aside to dry. Each well was then 

stained using 100 µL of .4% SRB (w/v, 1% acetic acid) for 10 minutes at room 

temperature. The plates were further washed with 1% acetic acid four times and set aside 

to dry. Tris Base (100 µL of 10 mM) was added to each of the stained wells, and the 

plates were lightly shaken for 10 minutes using the microplate genie. The plates were 
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then read using the SpectaFlour plate and Magellen software at an absorbance range of 

496-620 nm. The SRB dye binds to the basic amino acids present in the cell proteins 

allowing for Magellan software to calculate the inhibition value. This inhibition value 

was generated by the software using the total protein mass per well (flagged by the 

SRB dye) which is proportional to the cell density of that cell.  

 

Combination Assay 

 One of the main objectives of these series of experiments was to explore the 

synergistic or possibly antagonistic effects of HDACi(s) and other chemotherapeutic 

compounds. Therefore, a combination assay was conducted using a cross of HDACi 

compounds and microtubule stabilizing chemotherapeutic agents’ paclitaxel and 

epothilone B. The procedure of the combination assay was very similar to the viability 

assays performed. The difference was the bidirectional compound addition where the 

microtubule stabilizers (Taxol and epothilone) were added from left to right and the 

HDACi(s) (romidepsin, ricolinostat, panobinostat) were added from top to bottom. The 

specific HDACi(s) tested were chosen based on the range of HDACi activity they 

exhibit. Romidepsin is a class 1 HDACi that showed strong and consistent activity in 

our viability screening. Ricolinostat is a class 6 HDAC inhibitor and was selected 

because of our interest in its specific effect on microtubule stabilization and 

destabilization. Panobinostat was selected because it is a pan-HDACi, meaning it 

inhibits all classes of HDAC. The concentration ranges for both HDACi(s) and 

microtubule stabilizers were determined based on concentrations used in the National 

Cancer Institute Database of both experimental and physiological relevance.  
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Combination 

Assay 

Romidepsin 

    V             V           V 

    V             V           V 

Ricolinostat 

  V         V          V 

  V         V          V 

Panobinostat 

    V        V             V           V 

    V        V            V           V 

Taxol 0 

nM   ===> 
0.001 µM 0.01 

µM 
0.1 

µM 
0.1 

µM 
1 

µM 
10 µM 0.0001 

µM 
0.001 

µM 
0.01 

µM 
0.1 µM 

Taxol 10 

nM     ===> 
0.001 µM 0.01 

µM 
0.1 

µM 
0.1 

µM 
1 

µM 
10 µM 0.0001 

µM 
0.001 

µM 
0.01 

µM 
0.1 µM 

Taxol 
100 nM   ===> 

0.001 µM 0.01 

µM 
0.1 

µM 
0.1 

µM 
1 

µM 
10 µM 0.0001 

µM 
0.001 

µM 
0.01 

µM 
0.1 µM 

Taxol 1 

µM       ===> 
0.001 µM 0.01 

µM 
0.1 

µM 
0.1 

µM 
1 
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Figure 5: Combination Dilution 96-Well Plate  

Clonogenic Assay 

The Clonogenic assay is used in assessing the survivability of a cell line in the 

presence of a cytotoxic agent. Essentially, the ability for a single cell to grow into a 

colony under cytotoxic conditions (9). The number of six-well plates used was a total of 

six: three for the BOM and three for MCF7-BOM cell lines. The first plate in each cell 

line had two media control wells and four chemotherapeutic compound wells. The second 

and third plates of each cell line had all six wells containing chemotherapeutic 

compounds. The concentrations of the chemotherapeutic agents were based on 

physiological relevance (low concentration) and cytotoxic potential (high concentration). 
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Chemotherapeutic  

Compound 

Cytotoxic Potential Physiological  

Relevance  

Vorinostat (SAHA) 10 µM 1.0 µM 

Ricolinostat 10 µM 1.0 µM 

Romidepsin 0.01 µM 0.001 µM 

Panobinostat 0.1 µM 0.01 µM 

Paclitaxel 1.0 µM 0.1 µM 

Epothilone B 0.01 µM 0.001 µM 

Colchicine 0.1 µM 0.01 µM 

Vinblastine 0.1 µM 0.01 µM 

Figure 6 

The cells were seeded in a density of 3,000 cells per well, and six-well plates 

were incubated for four hours at 37°C allowing the cells to adhere. After a period of 24 

hours, the media solution was replenished with fresh FBS (10%) with antibiotics. This 

incubation process was then conducted over ten days with fresh medium replenished 

every five days. After the incubation period, the cells were fixed with methanol and 

stained using crystal violet solution (1 mg/mL in 20% ethanol). Pictures of the final 

Clonogenic assay product were taken on an iPhone XR.  
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Results and Discussion 

SRB Viability Assay 

 The results of the Sulforhodamine B viability assay reflect the percent inhibition 

values of the chemotherapeutic agents tested on MDA-MB-231 BOM, MDA-MB-231 

LM, and MCF7-BOM cell lines. The initial goal of viability testing was to acquire an 

IC50 value (drug concentration where cell growth is inhibited by half of total inhibition). 

However, while our results had significant inhibition, they never reached this value. 

Instead, our group categorized each chemotherapeutic drug into a highest inhibitory 

concentration category under the parameters of cell line, percent inhibition, and drug 

concentration of highest inhibition. The highest inhibitory concentration results and 

trends of the viability tests are located in the figures below. The graphs were configured 

using prism GraphPad 8.  

 

Highest Inhibitory Concentration  

Chemotherapeutic 

Agent  

LM BOM MCF7-BOM 

Con [ ] % Inhibit Con [ ] % Inhibit Con [ ] % Inhibit 

Vorinostat (SAHA) 10 µM 58 3 µM 24 10 µM 48 

Ricolinostat 10 µM 51 10 µM 29 10 µM 42 

Panobinostat 0.1 µM 52 0.1 µM 34 0.1 µM 29 

Romidepsin 0.1 µM 50 0.1 µM 36 0.1 µM 46 

Vinblastine  0.1 µM 38 0.1 µM 28 0.1 µM 16 

Colchicine 0.1 µM 30 0.1 µM 22 0.1 µM 44 

Epothilone B 0.1 µM 39 0.1 µM 31 0.1 µM 41 

Paclitaxel  10 µM 47 10 µM 33 10 µM 47 

Figure 7 
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Figure 8 
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 In the Highest Inhibitory Concentration table, the cells that were highlighted 

represent values in which the greatest growth inhibition was not at the highest 

concentration of chemotherapeutic agent tested. However, in the case of epothilone B, 

inhibition was relatively similar across all cell lines from the lowest to highest 

concentration. The results were conflicting in the MDA-MB-231 BOM vorinostat 

(SAHA) data. The first and second highest concentrations tested were relatively similar, 

possibly indicating a plateau in inhibitory effect at these concentrations. Further testing 

for both MDA-MB-231 BOM vorinostat (SAHA) and epothilone B SRB viability would 

be ideal to further specify the data.  

 An interesting aspect of our results was the sensitivity of the MCF7-BOM cell 

line compared to the MDA-MB-231 BOM and LM cell lines. There was a consistent 

trend of MCF7-BOM being the most susceptible or a close second in every trial. This 

could be due to the MCF7-BOM cell lines being estrogen receptor positive (ER+) 

compared to the triple-negative cell lines of MDA-MB-231 BOM and LM. One previous 

study found that HDACi enhances ER(+)-stress mediated cell death in some cancers (14). 

That being said, one of the highest percent inhibition values was romidepsin, a HDAC 1 

and 2 inhibitor, at 74% inhibition in the MCF-7 BOM cell line. Interestingly, the HDAC 

6 inhibitor ricolinostat had the most effect on the MCF-7 BOM cell line with a sharp 

slope. This finding could be promising as a higher drug concentration could lead to 

increased cell growth inhibition. Overall, there is a clear (though somewhat small) 

inhibitory effect of HDACi(s) on these specific breast cancer cell lines.  
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There was a second round of SRB viability testing conducted on the MDA-MB-

231 BOM cell line in order to replicate our findings in the first viability experiment and 

to fine tune our laboratory skills in the viability procedure.  In general, our results were 

very similar to the original MDA-MG-231 BOM viability assay. The epothilone B assay 

exhibited a high inhibition at both low and high concentrations, and the other drug assays 

exhibited similar inhibitory effects. However, there were a few differences that are 

noteworthy. First, the percent inhibition values were larger in general. These numbers 

could be caused from a variety of reasons including the cell line being weakened 

(stressed) to begin with and/or our lab technique was slightly superior in delivering the 

chemotherapeutic agents. Second, romidepsin and panobinostat exhibited around 0% 

inhibition at their highest concentration. This finding directly contradicts the first 

viability experiment and is most likely an error in the lab. More testing is required to 

clarify the contradiction of results.  
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Clonogenic Assay 

               BOM                                               MCF-7 BOM 

  

   

   

Figure 10 
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 The figures above represent two three-plate clonogenic assays on the MDA-MB-

231 BOM cell line and MCF-7 BOM. In a general visual comparision of the two plates, 

relativly similar clonogenic inhibition occurred between the two cell lines. This tends to 

suggest that there is relativly little cell line dependence in clonogenic inhibition between 

the two cell lines. What is interesting is the difference between the physiologically 

relevent concentration inhibition of HDACi(s) and the cytotoxic potential. In every 

HDACi physiological (lower) concentration well, there was some form of colony growth. 

On the other hand, cytotoxic potential concentrations of HDACi exhibited virtually 

complete colony growth inhibition. The only other chemotherapuetic compounds that had 

such inhibition were the microtubule stabilizers paclitaxel and epothilone B at both 

physiological and cytotoxic relevence. This HDACi concentration dependent colony 

growth inhibition could be due to the microtubule stabilizing or destabilizing effect 

taking place at the cytotoxic potential concentration. In essence, the microtubule effect of 

HDACi(s) (as suggested by previous studies) could be exhibiting the same properties as 

epothilone B and paclitaxel (6). Overall, the clonogenic assay provided further evidence 

of the inhibitory effects that HDACi(s) have on breast cancer cell lines. It also suggests 

further avenues of research regarding HDACi(s) effect on microtubule destabilization or 

stabilization.  
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Combination Assay 
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Figure 11, 12, 13 

 The goal of the combination assays conducted was to determine the possible 

synergistic or antagonistic effects associated with the combination of these 

chemotherapeutic compounds. The results obtained were then compared to the US 

National Cancer Institute’s Combination Almanac. This reference system provides 

previous crosses of the compounds of interest in a variety of cell lines. However, the 

crosses in the almanac are not necessarily the same as our experiment. Therefore, some 

direct comparisons are not possible.  

The combination assay represented in figure 11 is a cross between panobinostat 

(pan-HDAC inhibitor), epothilone B, and paclitaxel in two different cell lines: MDA-

MB-231 BOM and MCF7-BOM. In comparing the two cell lines, there also was 
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relatively little cell line dependent inhibition. There was only a slight variation in 

magnitude where every trend is the same.  

In both cell lines, the panobinostat-paclitaxel cross and the panobinostat-epothilone B 

inhibition cross percent inhibition values were highest when panobinostat was at 0.001 

µM across all ranges of microtubule stabilizer concentrations. In regard to the 

synergistic or antagonistic characters of these compounds in combination, there is an 

antagonistic relationship between panobinostat-paclitaxel and panobinostat-epothilone 

B. This is evident because of the decrease in percent inhibition as the microtubule 

stabilizer concentration increased along with the increase in concentration of HDACi.  

 The combination Assay represented in figure 12 is a cross between ricolinostat 

(HDAC 6 Inhibitor), epothilone B, and paclitaxel. The same cell lines were used in 

figure 12 as figure 11. In comparison between MDA-MB-231 BOM and MCF7-BOM, 

there is no evidence of cell line dependent inhibition. After discussion within the 

research group, we concluded that the graphs represented are abnormal. In both 

paclitaxel-ricolinostat and epothilone B-ricolinostat crosses, the results at high 

combination are sporadic and vary. This could be due to cell line stress, human lab 

error, or an unknown factor. However, a general antagonistic trend can be seen in both 

crosses as the microtubule stabilizer concentration increases and HDACi concentration 

increases.  

 The combination assay represented in figure 13 is a cross between romidepsin 

(HDAC 1 and 2 Inhibitor), epothilone B, and paclitaxel. The same cell lines were used 

in figure 13 as figures 11 and 12. There is also a similar effect as seen in figures 11 

and 12 in that there is no cell line dependent inhibition between MDA-MB-231 BOM 
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and MCF7-BOM. In the paclitaxel-romidepsin cross, the highest inhibiting 

combination of compounds were present at 0.001 µM across all ranges of paclitaxel. 

There was also a strong antagonistic trend that increased when paclitaxel 

concentrations were elevated and romidepsin concentrations were elevated. In this 

particular cross, there had been previous data on the NCI Almanac reference tool. 

According to the reference, both MCF7 and MDA-MB-231 cell lines showed an 

antagonistic relationship (NCI). This provided some validation to our group as we 

were able to compare similar research to our own data. The epothilone B-romidepsin 

cross had the highest inhibition values at 0 µM romidepsin in high concentrations of 

epothilone. It appeared that romidepsin and epothilone B had an antagonistic 

relationship similar to previous trends of the other compound combinations. However, 

these were some of the most antagonistic as there was a sharp decline in inhibition at 

the highest concentrations of epothilone B and romidepsin.  

 Overall, there was an antagonistic trend with the increased concentrations of 

microtubule stabilizers and HDACi(s). This was also supported by relevant data at the 

NCI Combination Almanac. However, our data should be supplemented in the future 

by a replicate number of n=3 compared to our n=2. There could be many possible 

answers to why this antagonistic trend occurs. One answer could be a microtubule 

destabilizing effect that is present in HDACi competing with the microtubule 

stabilizing compounds. In order to answer this question, further research must be 

conducted on HDACi(s) effect on microtubules.  
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Conclusion 

 In reflecting on the analysis of the SRB viability assays, clonogenic assays, and 

combination assays across a variety of cell lines, our hypothesis that histone 

deacetylase inhibitors have cell line-dependent inhibition is supported. In the MDA-

MB-231 clones BOM-1833 and LM-4175 as well as MCF7-BOM breast cancer cell 

lines, there was a variation in inhibitory effects in SRB viability testing. This could be 

due to the presence of ER receptors. However, more research must be conducted and 

higher concentrations should be tested in order to find the IC50 values of the 

HDACi(s) tested. The clonogenic assay also provided evidence of HDACi tumor 

growth inhibition. At the cytotoxic potential or highest concentration, HDACi(s) had a 

great degree of colony growth inhibition. However, at physiologically relevant 

concentrations, there was only mild inhibition. When HDACi(s) were combined with 

the microtubule stabilizers epothilone B and paclitaxel, an antagonistic trend was 

observed. Therefore, this combination may not be desired for chemotherapeutic 

therapy. However, this evidence provides another step in understanding the non-

histone targets of HDACi(s) and their role in microtubule stabilization and 

destabilization. In order to further this experiment, fluorescent labeling of 

microtubules and other structure proteins would benefit the understanding of this 

potential mechanism.  

 

 

 



41 

 

LIST OF REFERENCES 

1. Anderson, W. F., Chatterjee, N., Ershler, W. B., & Brawley, O. W. (2002). 

Estrogen Receptor Breast Cancer Phenotypes in the Surveillance, Epidemiology, 

and End Results Database. Breast Cancer Research and Treatment, 76(1), 27–36. 

https://doi.org/10.1023/A:1020299707510 

2. Barneda-Zahonero, B., & Parra, M. (2012). Histone deacetylases and cancer. 

Molecular Oncology, 6(6), 579–589. 

https://doi.org/10.1016/j.molonc.2012.07.003 

3. Biel, M., Wascholowski, V., & Giannis, A. (2005). Epigenetics—An Epicenter of 

Gene Regulation: Histones and Histone-Modifying Enzymes. Angewandte 

Chemie International Edition, 44(21), 3186–3216. 

https://doi.org/10.1002/anie.200461346 

4. Buckley, N. E., Forde, C., McArt, D. G., Boyle, D. P., Mullan, P. B., James, J. A., 

… Salto-Tellez, M. (2016). Quantification of HER2 heterogeneity in breast 

cancer–implications for identification of sub-dominant clones for personalised 

treatment. Scientific Reports, 6, 23383. https://doi.org/10.1038/srep23383 

5. Chuang, H.-Y., Lee, E., Liu, Y.-T., Lee, D., & Ideker, T. (2007). Network‐based 

classification of breast cancer metastasis. Molecular Systems Biology, 3(1), 140. 

https://doi.org/10.1038/msb4100180 

6. Deakin, N. O., & Turner, C. E. (2014). Paxillin inhibits HDAC6 to regulate 

microtubule acetylation, Golgi structure, and polarized migration. The Journal of 

Cell Biology, 206(3), 395–413. https://doi.org/10.1083/jcb.201403039 

https://doi.org/10.1023/A:1020299707510
https://doi.org/10.1016/j.molonc.2012.07.003
https://doi.org/10.1002/anie.200461346
https://doi.org/10.1038/srep23383
https://doi.org/10.1038/msb4100180
https://doi.org/10.1083/jcb.201403039


42 

 

7. Eckschlager, T., Plch, J., Stiborova, M., & Hrabeta, J. (2017). Histone 

Deacetylase Inhibitors as Anticancer Drugs. International Journal of Molecular 

Sciences, 18(7), 1414. https://doi.org/10.3390/ijms18071414 

8. Fedele, P., Orlando, L., & Cinieri, S. (2017). Targeting triple negative breast 

cancer with histone deacetylase inhibitors. Expert Opinion on Investigational 

Drugs, 26(11), 1199–1206. https://doi.org/10.1080/13543784.2017.1386172 

9. Franken, N. A. P., Rodermond, H. M., Stap, J., Haveman, J., & van Bree, C. 

(2006). Clonogenic assay of cells in vitro. Nature Protocols, 1(5), 2315–2319. 

10. Haberland, M., Montgomery, R. L., & Olson, E. N. (2009). The many roles of 

histone deacetylases in development and physiology: implications for disease and 

therapy. Nature Reviews. Genetics, 10(1), 32–42. https://doi.org/10.1038/nrg2485 

11. Halsall, J. A., & Turner, B. M. (2016). Histone deacetylase inhibitors for cancer 

therapy: An evolutionarily ancient resistance response may explain their limited 

success. BioEssays, 38(11), 1102–1110. https://doi.org/10.1002/bies.201600070 

12. Halsall, J. A., Turan, N., Wiersma, M., & Turner, B. M. (2015). Cells adapt to the 

epigenomic disruption caused by histone deacetylase inhibitors through a 

coordinated, chromatin-mediated transcriptional response. Epigenetics & 

Chromatin, 8(1), 29. https://doi.org/10.1186/s13072-015-0021-9 

13. Harbeck, N., & Gnant, M. (2017). Breast cancer. The Lancet, 389(10074), 1134–

1150. https://doi.org/10.1016/S0140-6736(16)31891-8 

14. Kikuchi, S., Suzuki, R., Ohguchi, H., Yoshida, Y., Lu, D., Cottini, F., … 

Anderson, K. C. (2015). Class IIa HDAC inhibition enhances ER stress-mediated 

https://doi.org/10.3390/ijms18071414
https://doi.org/10.1080/13543784.2017.1386172
https://doi.org/10.1038/nrg2485
https://doi.org/10.1002/bies.201600070
https://doi.org/10.1186/s13072-015-0021-9
https://doi.org/10.1016/S0140-6736(16)31891-8


43 

 

cell death in multiple myeloma. Leukemia (08876924), 29(9), 1918–1927. 

Retrieved from aph. 

15. Kluttig, A., & Schmidt-Pokrzywniak, A. (2009). Established and Suspected Risk 

Factors in Breast Cancer Aetiology. Breast Care (Basel, Switzerland), 4(2), 82–

87. https://doi.org/10.1159/000211368 

16. Li, T., Zhang, C., Hassan, S., Liu, X., Song, F., Chen, K., … Yang, J. (2018). 

Histone deacetylase 6 in cancer. Journal of Hematology & Oncology, 11(1), 111. 

https://doi.org/10.1186/s13045-018-0654-9 

17. Li, Y., & Seto, E. (2016). HDACs and HDAC Inhibitors in Cancer Development 

and Therapy. Cold Spring Harbor Perspectives in Medicine, 6(10), a026831. 

https://doi.org/10.1101/cshperspect.a026831 

18. mda-mb-231-cell-line-profile.pdf. (n.d.-a). Retrieved from https://www.phe-

culturecollections.org.uk/media/133182/mda-mb-231-cell-line-profile.pdf 

19. mda-mb-231-cell-line-profile.pdf. (n.d.-b). Retrieved from https://www.phe-

culturecollections.org.uk/media/133182/mda-mb-231-cell-line-profile.pdf 

20. Mechanism IMAGE. (n.d.). HDAC inhibitors promote the acetylation of histones 

and | Open-i. Retrieved February 13, 2019, from 

https://openi.nlm.nih.gov/detailedresult.php?img=PMC3584656_btt-7-

047Fig1&req=4 

21. Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Weiping Shu, Giri, D. D., … 

Massagué, J. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 

436(7050), 518–524. Retrieved from aph. 

https://doi.org/10.1159/000211368
https://doi.org/10.1186/s13045-018-0654-9
https://doi.org/10.1101/cshperspect.a026831
https://www.phe-culturecollections.org.uk/media/133182/mda-mb-231-cell-line-profile.pdf
https://www.phe-culturecollections.org.uk/media/133182/mda-mb-231-cell-line-profile.pdf
https://www.phe-culturecollections.org.uk/media/133182/mda-mb-231-cell-line-profile.pdf
https://www.phe-culturecollections.org.uk/media/133182/mda-mb-231-cell-line-profile.pdf
https://openi.nlm.nih.gov/detailedresult.php?img=PMC3584656_btt-7-047Fig1&req=4
https://openi.nlm.nih.gov/detailedresult.php?img=PMC3584656_btt-7-047Fig1&req=4


44 

 

22. Müller, B. M., Jana, L., Kasajima, A., Lehmann, A., Prinzler, J., Budczies, J., … 

Denkert, C. (2013). Differential expression of histone deacetylases HDAC1, 2 and 

3 in human breast cancer - overexpression of HDAC2 and HDAC3 is associated 

with clinicopathological indicators of disease progression. BMC Cancer, 13(1), 1–

8. Retrieved from aph. 

23. Okuda, H., Xing, F., Pandey, P. R., Sharma, S., Watabe, M., Pai, S. K., … 

Watabe, K. (2013). miR-7 Suppresses Brain Metastasis of Breast Cancer Stem-

Like Cells By Modulating KLF4. Cancer Research, 73(4), 1434. 

https://doi.org/10.1158/0008-5472.CAN-12-2037 

24. Orellana, E. A., & Kasinski, A. L. (2016). Sulforhodamine B (SRB) Assay in Cell 

Culture to Investigate Cell Proliferation. Bio-Protocol, 6(21), e1984. 

https://doi.org/10.21769/BioProtoc.1984 

25. Reference, G. H. (n.d.). What was the Human Genome Project and why has it 

been important? Retrieved February 12, 2019, from Genetics Home Reference 

website: https://ghr.nlm.nih.gov/primer/hgp/description 

26. Scully, O. J., Bay, B.-H., Yip, G., & Yu, Y. (2012). Breast cancer metastasis. 

Cancer Genomics & Proteomics, 9(5), 311–320. 

27. Seitz, H. K., & Becker, P. (2007). Alcohol Metabolism and Cancer Risk. Alcohol 

Research & Health, 30(1), 38–47. 

28. Sprague, B. L., Trentham-Dietz, A., Egan, K. M., Titus-Ernstoff, L., Hampton, J. 

M., & Newcomb, P. A. (2008). Proportion of Invasive Breast Cancer Attributable 

to Risk Factors Modifiable after Menopause. American Journal of Epidemiology, 

168(4), 404–411. https://doi.org/10.1093/aje/kwn143 

https://doi.org/10.1158/0008-5472.CAN-12-2037
https://doi.org/10.21769/BioProtoc.1984
https://ghr.nlm.nih.gov/primer/hgp/description
https://doi.org/10.1093/aje/kwn143


45 

 

29. Tao, Z., Shi, A., Lu, C., Song, T., Zhang, Z., & Zhao, J. (2015). Breast Cancer: 

Epidemiology and Etiology. Cell Biochemistry and Biophysics, 72(2), 333–338. 

https://doi.org/10.1007/s12013-014-0459-6 

30. UCSB Science Line. (n.d.). Retrieved February 4, 2019, from 

http://scienceline.ucsb.edu/getkey.php?key=989 

31. USCS Data Visualizations. (n.d.). Retrieved January 3, 2019, from 

https://gis.cdc.gov/grasp/USCS/DataViz.html 

32. Ververis, K., Hiong, A., Karagiannis, T. C., & Licciardi, P. V. (2013). Histone 

deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics : 

Targets & Therapy, 7, 47–60. https://doi.org/10.2147/BTT.S29965 

33. Xiang Li, Y. B. (n.d.). <strong>How Many Human and Bacteria Cells Are in the 

Human Body?</strong>. Infectious Diseases and Translational Medicine, 3(1), 

1–2. https://doi.org/10.11979/idtm.201701001 

34. Zhou, Y.-D., Li, J., Du, L., Mahdi, F., Le, P. T., Chen, W.-L., … Nagle, D. G. 

(2018). Biochemical and Anti-Triple Negative Metastatic Breast Tumor Cell 

Properties of Psammaplins. Marine Drugs, 16(11). 

https://doi.org/10.3390/md16110442 

35. Zurrida, S., & Veronesi, U. (2015). Milestones in Breast Cancer Treatment. The 

Breast Journal, 21(1), 3–12. https://doi.org/10.1111/tbj.12361 

36. (11) HDAC inhibitors: What do we know and where do we go? - Wm. Keving 

Kelly - YouTube. (n.d.). Retrieved February 17, 2019, from 

https://www.youtube.com/watch?v=Tn9eFRuvQ3A&t=43s 

https://doi.org/10.1007/s12013-014-0459-6
http://scienceline.ucsb.edu/getkey.php?key=989
https://gis.cdc.gov/grasp/USCS/DataViz.html
https://doi.org/10.2147/BTT.S29965
https://doi.org/10.11979/idtm.201701001
https://doi.org/10.3390/md16110442
https://doi.org/10.1111/tbj.12361
https://www.youtube.com/watch?v=Tn9eFRuvQ3A&t=43s


46 

 

37. UPMC. “Understanding Breast Cancer.” YouTube, YouTube, 16 June 2010, 

www.youtube.com/watch?v=P3wJfzRicR0&t=266s. 

 

 

 

 

 

  

 


