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Paul Baran, Network Theory, and the Past, Present, and Future of 
the Internet 

Christopher S. Yoo* 

Paul Baran’s seminal 1964 article “On Distributed Communications Networks” 
that first proposed packet switching also advanced an underappreciated vision of 
network architecture: a lattice-like, distributed network, in which each node of the 
Internet would be homogeneous and equal in status to all other nodes.  Scholars 
who have subsequently embraced the concept of a lattice-like network approach 
have largely overlooked the extent to which it is both inconsistent with network 
theory (associated with the work of Duncan Watts and Albert-László Barabási), 
which emphasizes the importance of short cuts and hubs in enabling networks to 
scale, and the actual way, the Internet initially deployed, which relied on a three-
tiered, hierarchical architecture that was actually what Baran called a 
decentralized network.  However, empirical studies reveal that the Internet’s 
architecture is changing: it is in the process of becoming flatter and less 
hierarchical, as large content providers build extensive wide area networks and 
undersea cables to connect directly to last-mile networks.  This change is making 
the network more centralized rather than becoming more distributed.  As a result, 
this article suggests that the standard reference model that places backbones at the 
center of the architecture should be replaced with a radically different vision:  a 
stack of centralized star networks, each centered on one of the leading content 
providers.  

INTRODUCTION 

 Paul Baran’s article “On Distributed Communications Networks”1 represents an 

underappreciated landmark in the history of the Internet.2  It articulated a bold new approach to 

                                                 

* John H. Chestnut Professor of Law, Communication, and Computer & Information Science and Founding 
Director of the Center for Technology, Innovation and Competition, University of Pennsylvania. 
1 Baran first presented his ideas to the Air Force in RAND Briefing B-265 in 1961.  He formalized his ideas 
in a paper in 1962.  Paul Baran, On Distributed Communications Networks (RAND Corp. Paper No. P-2626, Sept. 
1962), available at https://www.rand.org/pubs/papers/P2626.html [hereinafter Baran RAND Paper].  This initial 
paper was expanded into a series of eleven research memoranda detailing Baran’s proposed system.  The first 
research memorandum was published as Paul Baran, On Distributed Networks, IEEE TRANSACTIONS ON COMM. 
SYS., Mar. 1964, at 1.  All eleven research memoranda are available from the RAND Corporation’s website.  Paul 
Baran, RAND CORP., https://www.rand.org/pubs/authors/b/baran_paul.html.  
2 A Westlaw search reveals only fifteen citations to Baran’s article and research memoranda, mostly 
consisting of passing references or applications to other areas of the law.  I am aware of only two law review articles 
that reproduce Baran’s classic figure; of these, one applies the principles to securities law, and the other deletes the 
 



communications networking that would serve as one of the foundations for the Internet. Baran’s 

proposal was complex, but its essence can be distilled into three basic principles.  First, to make 

the system robust against physical attack, all nodes would be connected to the network by 

multiple links.3  Second, communications would be divided into individual packets that would 

travel independently through the network and be reassembled once they reached their 

destinations.4  Third, to take advantage of multiple links and to eliminate the vulnerability 

associated with a single centralized point of control, each node would route traffic independently 

on a simple store-and-forward basis.5 

 Though controversial when initially proposed, the second and third principles ultimately 

laid the basis for the packet switching method that would eventually become one of the Internet’s 

foundational technologies.6  The first principle, on the other hand, proved to be less influential:  

it was neither incorporated into the design of the Advanced Research Projects Agency Network 

(ARPANET) nor the subsequent Internet.7   

                                                 

decentralized network that ends up being the most important of the three network architectures.  See Patrick S. Ryan, 
Wireless Communications and Computing at a Crossroads:  New Paradigms and Their Impact on Theories 
Governing the Public’s Right to Spectrum Access, 3 J. ON TELECOMM. & HIGH TECH. L. 239, 262 fig.1 (2005); Will 
Schildknecht, Comment, Designing for Robustness:  Overcoming Systemic Risk in the Political Branches, 103 
CALIF. L. REV. 433, 440 fig.1 (2015).  Baran’s diagram is occasionally reproduced in histories of the Internet.  E.g., 
KATIE HAFNER & MATTHEW LYON, WHERE WIZARDS STAY UP LATE 58 (1996).  It also appears in leading books on 
network science.  E.g., ALBERT-LÁSZLÓ BARABÁSI, LINKED:  HOW EVERYTHING IS CONNECTED TO EVERYTHING 
ELSE AND WHAT IT MEANS FOR BUSINESS, SCIENCE, AND EVERYDAY LIFE 145 fig.11.1 (2002); MARK BUCHANAN, 
NEXUS:  SMALL WORLDS AND THE GROUNDBREAKING THEORY OF NETWORKS 79 fig.7 (2002). 
3 Baran RAND Paper, supra note 1, at 2. 
4 Id. at 23–27. 
5 Id. at 27–30. 
6 JANET ABBATE, INVENTING THE INTERNET 39, 226 n.38 (1999). 
7 Id. at 44, 195 39–40 (noting that elements of Baran’s system “that were specifically adapted to the Cold 
War Threat, including very high levels of redundancy” were not adopted by Davies or by the ARPANET, while 
other features, such as “adaptive routing, and efficient packet switching,” were); BARABÁSI, supra note 2, at 144, 
147 (noting that “the topology of today’s Internet has little to do with [Baran’s distributed] vision” and that 
“[i]ronically, the principles directing today’s Internet match Baran’s original vision in every respect except the 
guiding principle that motivated his work:  undercutting vulnerability to attacks”). 
 



 The misconception that Internet represents a lattice-like distributed network continues to 

resonate in many quarters.  It is sometimes erroneously presented as the architecture of the 

current Internet.8  More recently, the supposed historical provenance of the distributed 

architecture has sometimes been invoked as validation for wireless mesh networks and other 

technologies that employ similar topologies.9  Even more problematically, emerging research 

investigating whether the Internet’s architecture is flattening often mischaracterizes the networks 

as becoming more mesh-like.10 

 This Article attempts to give Baran’s first principle its proper due by acknowledging both 

its contributions and its limitations.  First, this Article rebuts claims that the Internet, at its 

inception, incorporated a distributed topology by placing those arguments in historical context.  

Second, this Article draws on burgeoning research in network science to explain the critical role 

that hierarchical network structures play in ensuring that the network can operate in a scalable 

manner.  Third, this Article reviews recent developments in the Internet’s architecture to 

demonstrate how the network is flattening.11  A careful analysis of the evidence about average 

path length reveals that the network is becoming increasingly centralized rather than more 

distributed. 

                                                 

8 See BARRIE SOSINSKY, NETWORKING BIBLE 456 (2009) (“The Internet was designed to be a highly 
redundant mesh structure that could survive any outages to a substantial portion of the network and still be 
operable.”); Ryan, supra note 2, at 264 (“On the right side of Figure 1, the ‘distributed’ graphic depicts the way in 
which the Internet operates today.”). 
9 See Yochai Benkler, Some Economics of Wireless Communications, 16 HARV. J.L. & TECH. 25, 75 (2002) 
(“The basic characteristic of the Internet’s robustness—its redundancy and decentralized architecture—is replicated 
in open wireless networks at the physical layer of the communications infrastructure”). 
10 See, e.g., Stanley M. Besen & Mark A. Israel, The Evolution of Internet Interconnection from Hierarchy to 
“Mesh”:  Implications of r Government Regulation, 25 INFO. ECON. & POL’Y 235 (2013); Amogh Dhamdhere & 
Constantine Dovrolis, The Internet Is Flat:  Modeling the Transition from a Transit Hierarchy to a Peering Mesh, 
PROC. ACM CONEXT art. 21, at 2 (2010), http://conferences.sigcomm.org/co-next/2010/CoNEXT_papers/21-
Dhamdhere.pdf. 
11 This analysis extends earlier research published in the predecessor of this journal.  Christopher S. Yoo, 
Innovations in the Internet’s Architecture that Challenge the Status Quo, 8 J. ON TELECOMM. & HIGH TECH. L. 79 
(2010). 



I. BARAN’S UNREALIZED VISION OF A DISTRIBUTED NETWORKS 

 This Part describes Baran’s innovative reconceptualization of how to design a 

communications network and analyzes the extent to which his ideas were received.  Section A 

lays out the motivation driving Baran’s vision and the principles underlying it.  Section B 

explains why those ideas were not incorporated into the actual Internet. 

A. Baran’s Vision of a Distributed Network 

 Baran’s motivation for creating his revolutionary approach to communications 

networking was driven by the dominant issue of the 1960s:  the Cold War and the overhanging 

threat of nuclear annihilation.12  America’s nuclear capability depended on maintaining what the 

strategic defense community called “minimum essential communication,” which was the amount 

of connectivity needed for the U.S. to credibly maintain the threat of mutually assured 

destruction, which most observers believed was essential to deterring the Soviet Union from 

attempting a preemptive strike.13  Unfortunately, the existing communications infrastructure in 

the U.S. was dangerously fragile.  Military leaders and analysts were concerned that an attack 

could cripple the country’s communications capabilities to the point where the President could 

not order a counterstrike.14 

                                                 

12 HAFNER & LYON, supra note 2, at 55, 56 (noting that Baran felt “the problem of building a more stable 
communications infrastructure . . . was the most important work he could be doing” and quoting Baran as saying 
that his work “was done in response to the most dangerous situation that ever existed”). 
13 Id. at 55. 
14 HAFNER & LYON, supra note 2, at 55. 
 



 Accordingly, Baran focused his efforts on improving the survivability of the 

communications network.15  His principal mechanism for doing so was redundancy.16  The 

choice, as Baran framed it, came down to three possible network architectures: a centralized 

network, a decentralized network, and a distributed network, as depicted in Figure 1.17  The 

centralized network is a classic star network, in which the peripheral nodes connect directly to a 

central node.18  The fact that destruction of the central node would disconnect every node in the 

system leaves this network extremely vulnerable to attack.19  The decentralized network is 

comprised of a number of smaller stars connected to form a larger star, with an added link 

connecting the two stars at the top of the graph to form a loop.20  This network architecture 

represents the then-current structure of the U.S. telephone network.21  Although more resilient 

than a centralized network to attack, a decentralized network can still be disabled by an attack on 

a small number of nodes.22  The distributed network, on the other hand, is more resilient.  It is a 

lattice-like architecture in which the nodes are undifferentiated—they are all functionally similar 

and have a similar number of links to other nodes.  Or, to use the language that will emerge later 

in this Article, the nodes have a similar enough number of connections to other nodes so that the 

network has a characteristic scale.23   

                                                 

15 ABBATE, supra note 67, at 10–11; HAFNER & LYON, supra note 2, at 54–57. 
16  
17 See Figure 1; interestingly, some discussions omit the intermediate decentralized example.  Ryan, supra 
note 2, at 262 fig.1. 
18 See graph (a) on the left-hand side of Figure 1. 
19 Baran RAND Paper, supra note 1, at 3. 
20 See graph (b) on the left-hand side of Figure 1.  
21 Juan D. Rogers, Internetworking and the Politics of Science: NSFNET in Internet History, 14 INFO. SOC’Y 
213, 219 (1998). 
22 Baran RAND Paper, supra note 1, at 3. 
23 BARABÁSI, supra note 2, at 70. 



FIGURE 1:  BARAN’S CENTRALIZED, DECENTRALIZED, AND DISTRIBUTED NETWORKS 

 

Source:  Baran RAND Paper, supra note 1, at 4 fig.1. 

 For Baran, distributed networks rely on redundancy to increase the likelihood that two 

particular nodes could maintain contact with one another should other nodes in the network 

fail.24  Baran’s model indicates that connecting each node to only three or four others would be 

sufficient for a distributed network to approach the maximum theoretical level of survivability.25 

 Baran’s other principles followed as corollaries from his basic commitment to 

redundancy.  For example, the fact that communications in a distributed network has to traverse 

an arbitrary number of hops meant that the network must necessarily be digital, since analog 

                                                 

24 Baran RAND Paper, supra note 1, at 3–14. 
25 Id. at 3. 
 



signals degrade every time they pass from one link to another.26  Furthermore, redundant links 

would not make the network more resilient unless each of the nodes were able to make 

independent routing decisions and reroute traffic autonomously in the face of partial network 

failure.27  That his design depended on nodes having sufficient intelligence to make their own 

routing decision meant that each would have to consist of a low-cost, unmanned computer.28 

 Baran’s was not the first design to use a distributed architecture to increase survivability, 

but it was the first to use both unmanned, decentralized switching and an all-digital network with 

substantial intelligence concentrated in the nodes.29  Rather than attempting to maximize the 

reliability of each network element, Baran’s design relied on redundancy to compensate for any 

failures. Specifically, it used a large number of cheap, autonomous nodes to reinforce network 

survivability.30 

 Baran’s design represented a radical departure from the traditional approach to 

networking, which relied on centralized control and hardening of key locations to ensure 

reliability and survivability.31  In the words of RAND’s history commemorating its work with 

the Air Force, Baran’s network was “unusual” in that each node had “equal status” and was 

capable of receiving, routing, and transmitting information autonomously.32   

                                                 

26 ABBATE, supra note 6, at 16; HAFNER & LYON, supra note 2, at 57. 
27 ABBATE, supra note 6, at 13. 
28 Id. at 16; HAFNER & LYON, supra note 2, at 61. 
29 ABBATE, supra note 6, at 15. 
30 Id. at 17. 
31 Id. 
32 RAND CORP., 50TH PROJECT AIR FORCE 1946–1996, at 37 (1996), available at 
https://www.rand.org/content/dam/rand/www/external/publications/PAFbook.pdf (section on “RAND and the 
Origins of the Internet”). 
 



 Although Baran’s proposal yielded substantial economic benefits, enhancing 

survivability represented the heart of his approach.33  Indeed, other aspects of Baran’s design 

underscore his preference for survivability over economic benefits.  For example, Baran 

proposed that the nodes be located far away from population centers and be built with substantial 

excess capacity.34  He also advocated that the network incorporate both cryptography to ensure 

security, and a priority system to allow messages from high-level users to take precedence over 

those from lower-level users.35 

B. The Partial Reception of Baran’s Vision 

 Despite Baran’s best efforts, his network was never built.  Although in August 1965 he 

convinced the Air Force to construct a system along the lines he proposed, the Department of 

Defense (DOD) reassigned responsibility for building and running the network to the Defense 

Communications Agency, which lacked any expertise in digital technology.36  Rather than see 

such inexperienced hands mismanage the network, Baran and his Air Force supporters opted to 

kill the project, and Baran moved on to other matters. The eventual construction of a network 

based Baran’s principles would have to wait until 1969, when the DOD created the 

ARPANET.37  

Meanwhile, across the Atlantic, UK researcher Donald Davies independently developed 

the idea of packet switching shortly after Baran. Although Davies retrospectively acknowledged 

                                                 

33 ABBATE, supra note 6, at 18. 
34 Id. at 11. 
35 Id. 
36 Id. at 20. 
37 Id. at 20–21; HAFNER & LYON, supra note 2, at 64. 
 



Baran’s contributions, 38 his primary motivation differed from Baran’s.  Indeed, Davies sought to 

improve the economic efficiency of the network, not enhance its survivability in the face of a 

nuclear attack.39  Toward that end, he rejected the high levels of redundancy that Baran 

envisioned in favor of a more modest approach that integrated, among other things, a time-

sharing principle.40   

Although Davies’s attempt to construct his network also failed for lack of funding,41 he 

was able to introduce both his and Baran’s work to Lawrence Roberts, who was in charge of 

building the ARPANET and had the budget to construct a network that incorporated new 

principles.42  However, Roberts’s goals, like Davies’s, differed from Baran’s, which caused him 

to adopt only part of Baran’s design.43  Most importantly, Roberts, like Davies, did not share 

Baran’s focus on survivability,44 as that was much less of a concern in nonmilitary contexts, such 

as research and commercial deployment.45  Instead, Roberts’s primary goal was to interconnect 

the several major research computing centers and the time-sharing computers that the Advanced 

Research Projects Agency (ARPA) was funding.  Thus, Baran’s ideas about survivability “were 

                                                 

38 ABBATE, supra note 6, at 27; HAFNER & LYON, supra note 2, at 65, 77.  Interestingly, it was Davies who 
coined the terms packets and packet switching.  Baran instead referred to message blocks and distributed adaptive 
message block switching.  Davies would later say to Baran, “Well, you may have got there first, but I got the name.”  
HAFNER & LYON, supra note 2, at 67. 
39 HAFNER & LYON, supra note 2, at 66. 
40 ABBATE, supra note 6, at 27–29. 
41 Id. at 29–33. 
42 Id. at 37, 39, 41. 
43 HAFNER & LYON, supra note 2, at 76. 
44 Id. at 77. 
45 David D. Clark, The Design Philosophy of the DARPA Internet Protocols, ACM SIGCOMM COMPUTER 
COMM. REV. Aug. 1988, at 105, 106. 
 



all but ignored by the military” and “the topology of today’s Internet has little to do with his 

vision.”46 

 Although Roberts rejected the high levels of redundancy, reliability, and excess capacity 

that Baran’s distributed network required, he did adopt Baran’s emphasis on decentralized 

autonomous routing and packet switching.47  Indeed, the primary goals underlying the 

ARPANET’s design were to keep average delay time below 0.2 seconds and decrease cost; 

reliability, along with flexibility and expandability, were secondary concerns.48  In addition, 

under the ARPANET’s design, reliability was defined as requiring at just two nodes to fail 

before the network would become disconnected—a stark contrast to Baran’s focus on designing 

a network that could continue to operate even if as many as half of its nodes were destroyed.49 

 Figure 2 depicts the manifestation Roberts’s work: a historical representation of the 

ARPANET design from 1969 to 1977, when it had reached maturity.50  A casual look at Figure 2 

shows that the vast majority of nodes were connected by only two links,51 and a more in depth  

historical analysis confirms that between 1969 and 1977, the average number of links connected 

to the ARPANET nodes ranged from only 2.00 to 2.46,52 a far cry from Baran’s vision of highly 

redundant connections that would permit the network to operate effectively, even if it lost as 

many as half of its nodes.53 

                                                 

46 BARABÁSI, supra note 2, at 144; accord CHRISTOS J.P. MOSCHOVITIS ET AL., HISTORY OF THE INTERNET:  A 
CHRONOLOGY, 1843 TO THE PRESENT 35 (1999) (“Although Baran’s work was extremely influential on the 
ARPAnet founders, his imagined network never came to fruition.”). 
47 ABBATE, supra note 6, at 39, 226 n.38. 
48 H. Frank et al., Topological Considerations in the Design of the ARPA Computer Network, 36 AFIPS 
CONF. PROC.:  1970 JOINT COMPUTER CONF. 581, 581 (1970). 
49 Id.; see also ABBATE, supra note 6, at 57–58. 
50 See Figure 2 
5151 See Figure 2 
52 F. Heart et al., ARPANET Completion Report – A History of the ARPANET:  The First Decade III-91 fig.16 
(1978) (also published in 1981 as BBN Rep. No. 4799 Apr. 1978, available at http://www.walden-
family.com/bbn/arpanet-completion-report.pdf). 
53 Baran, supra note 1, at 3. 



FIGURE 2:  TOPOLOGY OF THE ARPANET 

 

Source:  Heart et al., supra note 52, at III-79 fig.5, III-81 fig.7, III-84 fig.10, III-
89 fig.15. 

 In 1986, the National Science Foundation (NSF) began to deploy the NSFNET in order to 

provide remote access to supercomputing centers.54  This time, however, the federal government 

funded the project to fend off the danger of losing out to Japan in supercomputing leadership.55  

By the end of 1989, the NSFNET had replaced the ARPANET.56 

                                                 

54 Rogers, supra note 21, at 217. 
55 Id. 
56 HAFNER & LYON, supra note 2, at 255–56. 



FIGURE 3:  THE TOPOLOGY OF THE NSFNET BACKBONE 

 

Source:  Yoo, supra note 11, at 82 fig.1. 

Unlike the ARPANET, university consortia or state-university partnerships often helped operate 

the NSFNET’s network through regional connections, which provided connectivity from distant 

locations to the NSFNET backbone’s interconnection points.57 In addition to being linked 

together, each of the supercomputing centers became the hub for a web connecting local campus 

networks to other universities.58  Notwithstanding the operational differences, however, the 

topology the NSFNET’s network ultimately looked similar to that of the ARPANET’s.59 The 

average number of links connected to each supercomputer center was only 2.38.60 Furthermore, 

the NSFNET backbone, portrayed in Figure 3, is functionally equivalent  to the network of nodes 

connected by thicker white lines that appear at the top of Figure 4; the main difference is that 

                                                 

57 CHRISTOPHER S. YOO, THE DYNAMIC INTERNET:  HOW TECHNOLOGY, USERS, AND BUSINESSES ARE 
TRANSFORMING THE NETWORK 57 (2012). 
58 See Figure 4 
59 See Figure 3. 
60 Calculated from Figure 3. 
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they are placed with only a slight slant backwards.  The links to local campuses are depicted by 

the thinner white lines emanating from each of those nodes. 

FIGURE 4:  THE TOPOLOGY OF THE NSFNET’S REGIONAL NETWORKS 

 

Source:  KAREN D. FRAZER, NSFNET: A PARTNERSHIP FOR HIGH-SPEED 
NETWORKING, FINAL REPORT 1987–1995, at 4 fig.1 (1996), available at 
http://www.merit.edu/documents/pdf/nsfnet/nsfnet_report.pdf. 

 The NSFNET’s topology required every packet traveling through the network to traverse 

a series of three-level hierarchies.61. Specifically, a campus network would hand off the traffic it 

was originating to its regional network.62  The regional network would then hand the traffic off 

to the NSFNET backbone.63  The backbone would then route the traffic to the appropriate 

                                                 

61 See Figure 5 
62 YOO, supra note 57, at 57. 
63 Id. 
 



regional network.64  That regional network would then pass the packets along to the campus 

network that was the ultimate destination.65  This routing architecture permitted each campus 

network to connect to only a single regional network.66 

FIGURE 5:  THE NSFNET THREE-TIERED NETWORK ARCHITECTURE 
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Source:  Yoo, supra note 11, at 83 fig.2. 

 The federal government retained this three-tiered hierarchy when it privatized the 

NSFNET in 1995.67  The result: the NSFNET backbone was replaced by a group of Tier-1 

Internet Service Providers (ISPs)—also called backbones—interconnecting four network access 

points.  The regional networks were replaced by Tier-2 ISPs—also called regional ISPs.68  The 

                                                 

64 Id. 
65 Id. 
66 Id. 
67 Id. at 58. 
68 Id. at 58–59. 
 



campus networks were replaced by Tier-3 ISPs—also called last-mile providers.69  Figure 6 

shows that the privatized network can more effectively be illustrated through concentric circles, 

where the core of the network is an amalgamation of interconnected backbones, rather than 

though the more vertical configuration that represented the NSFNET’s three-tiered network, as 

depicted in Figure 5.   

FIGURE 6:  THE NETWORK HIERARCHY DEPICTED AS A SERIES OF CONCENTRIC RINGS 
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Source:  Yoo, supra note Error! Bookmark not defined., at 59 fig.4-4. 

 Comparing the concentric network in Figure 6 to the three networks that Baran laid out—

see Figure 1—demonstrates that the architecture of the NSFNET’s privatized network bears 

greater similarity to the decentralized network that Baran disfavored rather than the distributed 

                                                 

69 See Figure 6  
 



network that he preferred.70  This three-tiered hierarchy has become the standard reference 

model taught in every computer networking textbook.71  

II. NETWORK SCIENCE’S INSIGHTS INTO THE BENEFITS OF NETWORKS 

 As a historical matter, neither the ARPANET nor the NSFNET embraced Baran’s vision 

of a distributed, lattice-like network.72  Consequently, neither did the Internet.73  Far from being 

a mere matter of path dependence, the burgeoning field of network science, pioneered by 

scholars such as Duncan Watts, Albert-László Barabási, and others, has instead provided a 

present-day justification for adopting the decentralized, hierarchical Internet structure.  

                                                 

70 Compare Figure 6 and Figure 1(b) 
71 Dhamdhere & Dovrolis, supra note 10, at 1. 
72 See supra notes 39–40, 43–45 and accompanying text. 
73 See supra notes 67–71 and accompanying text 
 



A. Duncan Watts and Small-World Networks 

 One of the most enigmatic principles in network science is commonly known as the 

small-world phenomenon.74 Specifically, common sense would suggest that as the size of a 

network increases, the number of links that one would need to traverse in order to connect two 

arbitrary nodes should increase as well.  However, the works of Stanley Milgram and others have 

suggested otherwise.  In his famous study, Milgram tested how many links were necessary to 

connect a randomly selected person—or “node”—in Kansas or Nebraska to a specific person in 

the Boston area.75  Despite speculation that such a connection might require 100 or more links,76 

Milgram found that the chains connecting these two people traversed an average of only 5.7 

links,77 a finding that was later popularized by the play, Six Degrees of Separation, which 

explored the notion that any two people in the world can be connected through fewer than six 

other people.78 In addition, Milgram found that certain key intermediaries—most notably in the 

case of one study a clothing merchant, [example of intermediaries]—played an outsized role in 

establishing the connection between Nebraska and Boston.79 

 Duncan Watts, initially with Steven Strogatz in their landmark article, Nature, and later 

in his book, Six Degrees, sought to further synthesize the principles underlying the small-world 

phenomenon by providing an explanation of how the random introduction of a small number of 

                                                 

74 Stanley Milgram, The Small-World Problem, PSYCH. TODAY, May 1967, at 61. 
75 Milgram’s initial experiment measured how many links it took to connect volunteers in Wichita, Kansas, to 
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conducted with Jeffrey Travers, measured how many inks it too to connect volunteers in Omaha, Nebraska, to a 
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Experimental Study of the Small World Problem, 32 SOCIOMETRY 425, 429–30 (1969). 
76 Milgram, supra note 74, at 65. 
77 Travers & Milgram, supra note 75, at 436–38 & tbl.2. 
78 See generally JOHN GUARE, SIX DEGREES OF SEPARATION:  A PLAY (1991). 
79 Milgram, supra note 74, at 66; Travers & Milgram, supra note 75, at 436–39. 
 



long distance connections can allow highly clustered networks to still retain short path lengths.80  

Taking a cue from Paul Erdös and Alfred Rényi, Watts considered at one extreme those networks 

where the links between the nodes are completely random.81  Random networks are 

characterized by two notable qualities.  First, because long distance and short distance links 

appear with the same probability, random networks exhibit very low levels of local clustering.82  

Second, the presence of long-distance links means that the typical path will grow relatively 

slowly with the size of the network, with the average path length rising logarithmically with the 

number of nodes.83   

 These random networks stand in stark contrast to both Baran’s distributed network and 

other lattice-like networks, in which every node is connected to each of its immediate neighbors. 

Indeed, highly ordered, lattice-like networks exhibit different qualities than random networks.  

First, because their nodes are connected exclusively by short distance links to their immediate 

neighbors, traditional lattice-like networks exhibit a high level of clustering.84  Second, the 

absence of long-distance links means that the average path length will grow linearly with the size 

of the network, which is much faster than logarithmic growth.85  Finally, the longer average path 

length associated makes lattice-like networks inherently large-world networks; specifically, the 

number of links needed to travel between two randomly chosen nodes in the network tends to be 

rather large.  The shorter path length associated with random networks, in contrast, makes them 

                                                 

80 Duncan J. Watts & Steven H. Strogatz, Collective Dynamics of “Small-World” Networks, 393 NATURE 440 
(1998); DUNCAN J. WATTS, SIX DEGREES:  THE SCIENCE OF A CONNECTED AGE (2003). 
81 Paul Erdös & Alfred Rényi, On Random Graphs I, 6 PUBLICATIONES MATHEMATICAE 290 (1959); P. Erdös 
and A. Rényi, On the Evolution of Random Graphs, 5 PUBLC’NS MATH. INST. HUNGARIAN ACAD. SCI. 17 (1960).. 
82 Watts & Strogatz, supra note 80, at 440. 
83 Id. 
84 Id. 
85 Id. 
 



inherently small-world networks, in that the number of links needed to travel between two 

randomly selected nodes tends to somewhat small.86 

 To demonstrate this difference, Watts and Strogatz compared the behavior of a lattice-

like network with the that of a random network.87  To avoid complications created by nodes 

located on the boundary of the graph, which necessarily have fewer interactions than other 

nodes,, Watts and Strogatz modeled the lattice-like network as a circle, with each node 

connected to its two nearest neighbors and not to any distant nodes.88 To be sure, this conception 

of the lattice-like network differs from Baran’s distributed network, in which each node should 

be connected to four neighboring nodes.89  Watts and Strogatz then ran an experiment where 

each link could be reassigned with probability p to another randomly chosen node in the circle.90  

If the probability was zero, no links would ever be reassigned. Under that condition, the network 

should remain both a strict lattice and a large-world.91  If the probability was 100 percent, all 

links would be reassigned, and the network should become both an Erdös-type random network 

and a small-world network.92 
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88 WATTS, supra note 80, at 84; see the left-hand graph in Figure 7 
89 See supra note 25 and accompanying text. 
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FIGURE 7:  WATTS AND STROGATZ ON HOW RANDOM LINKS CAN CREATE SMALL WORLDS 

 

Source:  Watts & Strogatz, supra note 80, at 441 fig.1. 

  A relevant takeaway from Watts and Strogatz’ work is what happens when only a small 

number of links is reassigned, as depicted in the middle graph of Figure 7.  Specifically, Watts 

and Strogatz found that introducing a small number of long distance links into the network 

radically reduced the average path length, while still retaining a highly clustered structure.93  

This showed how short cuts, as Watts and Strogatz called them, can allow networks to be both 

highly clustered and small-world networks.94  Indeed, the introduction of five such short cuts 

reduced the average path length by half.95  The effect does decay rather rapidly, however.  A 

further 50 percent reduction in path length would require introducing an additional 50 short 

cuts.96  Watts and Strogatz found short cuts to be empirically present in a wide range of 
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networks, including those of film actors, the electrical power grid, and the neural network of a 

particular nematode worm.97 

 The implications of these findings are profound.  Watts and Strogatz showed that adding 

a limited number of random shortcuts to a strict lattice-like structure can play a key role in 

permitting Baran’s distributed networks to scale.98  Under this model, each node is no longer 

undifferentiated in terms of connectivity.  Instead, there are a handful of nodes with more 

important levels of connectivity that keep the network small-world, which enables the network to 

scale, a characteristic that had eluded Baran’s distributed network. A notable caveat, however, is 

that these nodes start to increasingly resemble the centers of the smaller stars in Baran’s 

decentralized network.   

B. Albert-László Barabási and Scale-Free Networks 

 Watts’s work was extended by Albert-László Barabási, who noted that all of the nodes in 

the random networks in the Erdös-Rényi and Watts-Strogatz studies had a functionally 

equivalent number of links.99  In other words, the number of links connected to the typical node 

in a random network has a given scale, a specific characteristic that is represented across all 

nodes in the network.100  In random networks, the number of links associated with each node 

should thus follow a Poisson distribution, which should occur when all nodes have roughly the 

                                                 

97 Watts & Strogatz, supra note 80, at 441 & tbl.1. 
98 See supra note 93–94 and accompanying text. 
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same number of links.101 However, Barabási observed that the Internet evinced a very different 

pattern.  Instead of following a Poisson distribution, the empirical literature indicated the number 

of links connected to each node exhibited a power-law distribution, which occurs when there are 

a small number of nodes with a disproportionately large number of links.102  The heterogeneity 

in the number of links attached to each node in such networks meant that the network did not 

have an inherent characteristic of scale in terms of number of links.  As such, Barabási called 

such networks scale-free networks.103 

 Barabási proceeded to develop a dynamic theory to explain why scale-free networks 

would develop under the Watts-Strogatz and other similar models.  Specifically, Barabási 

observed that those models assumed that the number of nodes in a given network is static, and 

network connections form randomly among nodes.104  With that observation, Barabási created a 

model with a dynamic network, where new nodes would be free to decide where to attach to the 

network.105  Under Barabási’s model, these nodes would follow the practice of preferential 

attachment:  they would be more likely to attach to nodes that were already highly connected.106  

                                                 

101 Albert-László Barabási & Reka Albert, Emergence of Scaling in Random Networks, 286 SCI. 509, 510–11 
(1999). 
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Dynamical Properties of the Internet. 65 PHYS. REV. E 066130 (2002); S.H. Yook et al., Weighted Evolving 
Network, 86 PHYS. REV. LETTERS 5835 (2001)); H. Jeong, Z. Néda, & A.L. Barabási, Measuring Preferential 
Attachment in Evolving Networks, 61 EUROPHYSICS LETTERS 567 (2003). 
103 Barabási & Albert, supra note 101, at 511. 
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Barabási’s result: a network where the majority of nodes have only one or two links while a 

handful of other nodes—those that attracted the new nodes—have a large number of links.107 

 The presence of these hubs radically reduces the shortest path between two nodes.108  

Moreover, in a random network the average path length should grow linearly with the number of 

nodes in the network, but Barabási’s work suggested that the average path length would grow 

logarithmically—and thus considerably slower—in scale-free networks.109  He noted that a wide 

range of networks had empirically followed this pattern, including the Internet, the World Wide 

Web, film actor collaborations, scientific collaborations, human sexual contacts, cellular 

networks, ecological networks, phone call networks, citation networks, linguistic networks, 

power networks, neural networks, and protein folding.110  Later empirical studies refined 

Barabási’s, particularly as it applied to the Internet.  Specifically, these studies found that the 

Internet’s architecture did not resemble a lattice-like grid and that the preferential attachment 

rates fell slightly below that identified in Barabási’s hypothesis.111 Other studies also found 

preferential attachment, but concluded that preferential attachment occurred at rates above those 

Barabási predicted.112 

 Germane to Baran’s work, Barabási pointed out that decentralized networks with a 

limited number of hubs are actually more resilient against incidental node and link failures; 

indeed, random failure are almost certainly likely to affect small nodes, which have little to no 
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impact on the network’s overall connectivity.113  He did note, however, that the presence of key 

focal points makes decentralized networks more vulnerable to deliberate attacks, which would 

undoubtedly target the hubs.114 

C. Implications for the Distributed Network 

 The developments in network theory provide insight into why the Internet did not 

incorporate the topology that Baran envisioned.  The fact that average path length in traditional 

lattice-like networks grows linearly with the number of nodes means that such networks are 

difficult to scale.115  The introduction of long-distance short cuts and hubs allows average path 

length to grow at a slower, logarithmic rate, as depicted in Figure 8.   

FIGURE 8:  AVERAGE PATH LENGTH GROWTH FOR DISTRIBUTED AND DECENTRALIZED NETWORKS 
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 Hubs thus enable shortcuts to play a critical role in giving networks the small-world 

characteristics in which average path length remains intact as the network grows.  These features 

deviate from Baran’s distributed structure—in which all nodes are undifferentiated and of equal 

importance—and instead make certain nodes more important.  Network theory thus provides an 

explanation of why the Internet mimicked a more decentralized structure of satellite hubs instead 

of Baran’s distributed structure.  Some commentators have raised the concern that the increased 

importance of some hubs may give them a competitive advantage.116  But such concerns can be 

alleviated by adding competition from new hubs so long as the costs of network reconfiguration 

are manageable. 
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III. THE EVOLUTION OF THE MODERN INTERNET 

 The conventional wisdom that the Internet’s foundational topology adhered to a three-tier 

hierarchy was so well established that it served as the reference model in every textbook on 

computer networking.117  As noted above, the resulting architecture bore a far stronger 

resemblance to what Baran called a decentralized network than it did to his distributed network. 

 More recently, two forces have pushed the network even further away from Baran’s 

distributed model.  The first is the triumph of the client-server architecture over the peer-to-peer 

model, as discussed in Part A.  The second is the emergence of topologies that deviate from the 

three-tiered hierarchical model, as discussed in Part B.  Although changes such as secondary 

peering and multihoming may make the network more mesh-like, other features make the 

hierarchy even flatter (such as content delivery networks and direct interconnection between 

content providers and last-mile networks).  Interestingly, these changes have made the 

architecture begin to resemble the star-like network that Baran described as centralized. 

A. The Rise of the Client-Server Architecture and the Decline of Peer-to-Peer 

 During the Internet’s early days, before it became a mass market phenomenon in the mid-

1990s, it was used primarily by tech-savvy researchers to send email, share files, and view 

bulletin boards.118 When that was the case, the network could be characterized as a “peer-to-peer 

any-to-any flat mesh” in which nodes would typically request and send data.119  Using the early 
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network in that way was consistent with the assumption of Baran’s distributed network that 

nodes were generally homogeneous and of equal status. 

 The advent of the World Wide Web during the mid-1990s upended this dynamic.120  The 

Internet began to embrace a client-server architecture, which was inherently asymmetric: nodes 

were divided into the end users who requested content and the content providers who furnished 

it.121  Although file sharing slowed this transformation for a time, peer-to-peer traffic has been 

more or less steadily declining as a percentage of traffic since at least 2005,122 and has been 

declining in absolute terms since 2012.123  Cisco forecasts that it will continue to decline, sinking 

to a mere 2% by 2021.124 

FIGURE 9:  PEER-TO-PEER TRAFFIC AS A PERCENTAGE OF CONSUMER INTERNET TRAFFIC 
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122 See Figure 9; YOO, supra note 57, at 30–31. 
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Sources:  Yoo, supra note 123, at 379 fig.6; Cisco Sys., Inc., Cisco Visual 
Networking Index: Forecast and Methodology, 2013–2018, at 10 tbl.10 (2014); 
Cisco Sys., Inc., Cisco Visual Networking Index: Forecast and Methodology, 
2014–2019, at 9 tbl.10 (2015); Cisco Sys., Inc., Cisco Visual Networking Index: 
Forecast and Methodology, 2015–2020, at 14 tbl. (2016); Cisco Sys., supra note 
124, at 10 tbl.8 (2017). 

 The asymmetry inherent in the client-server architecture is inconsistent with Baran’s 

vision of a distributed model with homogeneous nodes.125   The effect of this asymmetric 

architecture has been compounded as traffic has become increasingly concentrated among a 

small number of content providers.126  In such an environment, it no longer makes business sense 

for content providers to reside at the edge of the network and rely on a series of public networks 

to transmit their data to end users, particularly when there are delays associated with DNS 

resolution, TCP and TLS handshakes, and long round-trip times.127  In addition, content 

providers can avoid the uncertainties inherent in sharing bandwidth with others, and the 

concomitant possibilities of delay and security risks, by building their own private networks out 

to local caches.128  When that is the case, it makes sense for content providers to bypass the 

network and host their content as close to the end users as possible.129   

 This dynamic explains why large content providers have begun to connect directly to 

last-mile providers.  Indeed, in 2008 Google had already begun to construct a wide area network 

that covered most of the U.S. and connected to Europe, Asia, and South America.130 Yahoo! and 
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Microsoft were likewise constructing wide area works covering the U.S.131  More recent press 

reports have covered how that Google, Facebook, Microsoft, and Amazon are currently 

constructing large networks of undersea cables to interconnect proprietary data centers located 

ever closer to end users.132  In fact, the international capacity of these companies increased 

tenfold from 2013 to 2017.133  The upshot: rather than waiting for users to reach out for content, 

content providers are increasingly bringing content directly to end users. 

B. The Flattening of the Network Architecture 

The architecture has evolved considerably over the past three decades.134  In the words of 

the emerging empirical literature, the Internet’s architecture has become flatter; traffic is no 

longer passing through all three layers of the Internet’s traditional three-layer hierarchy.135 

 This flattening of the architecture may be the result of different causes.  First, it may be 

from increased density of connections in the core, either from Tier 3 ISPs bypassing Tier 2 ISPs 

and connecting directly to Tier 1 ISPs or from Tier 2 ISPs bypassing Tier 1 ISPs by engaging in 

secondary peering.136 If this is the case, the network can be said to be becoming more mesh like.  

Alternatively, large content providers could be bypassing both Tier 1 and Tier 2 ISPs altogether 
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and using content distribution networks and data centers to connect directly to Tier 3 ISPs.  If 

this is the case, the network is more properly described as becoming more centralized. 

 A key indicator of a network’s true underlying architecture is the rate of change in the 

average path length over time.137  Specifically, and as noted earlier, if the network is distributed, 

average path length should grow linearly with the number of nodes.138  If the network is 

decentralized, average path length should grow logarithmically with the number of nodes.139  

`associated with centralized networks.  In the limit, the average path length of a centralized star 

network is two. 

Empirical studies of changes in the average path length thus provide important insights 

into how the architecture is changing.  If the network is decentralized or distributed, the fact that 

the number of nodes in the network has been constantly increasing implies that the average path 

length should be growing.  However, and somewhat surprisingly, empirical studies have found 

the contrary: the average path length in the Internet has been either flat140 or decreasing,141 

despite the growth in the number of nodes.  This phenomenon suggests that the network is not 

becoming more mesh like; it is instead becoming more centralized.  Under this scenario, the 

flattening of the Internet’s architecture is more associated with content providers connecting 

directly with Tier 3 ISPs on the edge of the network rather than the result of denser peering 
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relationships in the core of the network.  In other words, the flattening of the architecture begins 

to more closely reflect Baran’s centralized network, where the average path length is 1.  

Studies have attempted to move beyond merely studying average path length by 

examining directly whether the flattening of the network is associated more with the 

densification of the core or with the ISP’s bypassing the core altogether.  The earliest studies 

observed that traffic from the largest content providers traversed fewer hops on Tier 1 networks 

than did traffic from smaller content providers.142  Although a 2011 study found it plausible that 

an increase in multihoming, rather than content providers bypassing Tier 1 ISPs,143 was the cause 

of the lack of growth in average path length, a different 2011 study—one that actually evaluated 

the network empirically—found otherwise; the latter reinforced the conclusion in the earlier 

studies: the flattening of the network has stemmed from content provider forging routes that 

bypass Tier 1 ISPs rather than form multihoming.144  What is more, a 2012 study implicitly 

minimized the impact of increased connectivity among Tier 1 and Tier 2 ISPs when it concluded 

that although the core of the network was densifying, the interconnectedness of the overall 

network remained unchanged.145 

 Together these studies contradict suggestions that the flattening of the Internet means that 

the network is becoming more mesh like, and instead indicate that content providers are 

increasingly bypassing the other tiers and connecting directly to last-mile ISPs.  This in turn 

suggests the possibility that the standard reference model should be replaced with a radically 

different vision:  a stack of star networks as depicted in Figure 10, each centered on one of the 
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leading content providers and connecting by private links (represented by dotted lines) to the 

same public locations at the edge (represented by solid lines).  Rather than resembling a mesh 

network, this emerging architecture bears greater similarity to Baran’s centralized network. 

FIGURE 10:  NETWORK ARCHITECTURE RECONCEPTUALIZED AS A STACK OF STARS CENTERED ON 
CONTENT PROVIDERS 

 

 This reconceptualization has profound implications.  Investment in network capacity 

helps meet users’ ever-growing demand for bandwidth.  Moreover, content providers and their 

customers can benefit from improved risk management and cost control, support for the 

deployment of new applications, and improvements in quality of service.146  At the same time, as 

Geoff Huston has noted, the resulting topology would resemble the historical broadcast 

television network, in which local distribution networks that carried content from multiple 
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sources were fed by proprietary satellite networks.147  The resulting diversion of long-haul traffic 

from public to private networks may make backbones more difficult to sustain, which in turn 

may adversely affect smaller content providers that are unable to pursue the same strategy.  

Increasing centralization may increase the ability for some actors to serve as gatekeepers. 

CONCLUSION 

 The seminal work of Paul Baran has never received its full due.  Although his 

breakthrough research established the foundation upon which modern packet switching was 

built, Baran’s three-part taxonomy of centralized, decentralized, and distributed networks has 

been overlooked—the reception of his ideas remains incomplete.  Specifically, the early Internet 

architects were less concerned with survivability than was Baran while network theorists such as 

Watts and Barabási showed hubs, shortcuts, and other modifications to the distributed 

architecture can allow networks to scale.  The result was a three-tiered hierarchy of ISPs that 

formed what Baran would define as a decentralized network, not the distributed network that he 

preferred.  

 The dramatic changes to the network hierarchy over recent years suggests that we should 

reconceptualize the architecture still further.  Specifically, the fact that the average path length is 

shrinking while routes are increasingly bypassing Tier 1 ISPS to connect directly to the last mile 

compels us to consider whether the standard reference model should be replaced with a radically 

                                                 

147 Geoff Huston, The Death of Transit and Beyond, Remarks at the Asia Pacific Regional Conference on 
Operational Technologies (APRICOT 2017) 22 (Feb. 28, 2017), https://2017.apricot.net/assets/files/APIC674/2017-
02-28-death-of-transit_1488193223.pdf. 



different vision:  a stack of star networks, each centered on one of the leading content providers, 

which would functionally bear a stronger resemblance to Baran’s centralized network.  

 The expansion of content providers into wide area networking may yield a number of 

substantial benefits.  Greater investment in transmission capacity is essential to meet users’ ever-

growing demand for bandwidth.  However, the shift from public to private backbones may 

certain implications that need to be thought out.    Such concerns must be analyzed in light of the 

full range of options instead of being simply asserted.  The full impact of the change can only be 

understood once the full choice set is endogenized, including multihoming, the creation of 

alternative hubs, cooperative investments in competing technology, and other institutional forms, 

to name a just few. 
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