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Optimal Placement of Distributed Energy Storage Systems in

Distribution Networks using Artificial Bee Colony Algorithm
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aSchool of Engineering, Edith Cowan University (ECU), 270 Joondalup Drive, Joondalup, Perth, WA
6027, Australia

bAustralian Maritime College, University of Tasmania (UTAS), Launceston, Tasmania 7250, Australia

Abstract

The deployment of utility-scale energy storage systems (ESSs) can be a significant avenue
for improving the performance of distribution networks. An optimally placed ESS can re-
duce power losses and line loading, mitigate peak network demand, improve voltage profile,
and in some cases contribute to the network fault level diagnosis. This paper proposes a
strategy for optimal placement of distributed ESSs in distribution networks to minimize
voltage deviation, line loading, and power losses. The optimal placement of distributed
ESSs is investigated in a medium voltage IEEE-33 bus distribution system, which is influ-
enced by a high penetration of renewable (solar and wind) distributed generation, for two
scenarios: (1) with a uniform ESS size and (2) with non-uniform ESS sizes. System models
for the proposed implementations are developed, analyzed, and tested using DIgSILENT
PowerFactory. The artificial bee colony optimization approach is employed to optimize the
objective function parameters through a Python script automating simulation events in
PowerFactory. The optimization results, obtained from the artificial bee colony approach,
are also compared with the use of a particle swarm optimization algorithm. The simulation
results suggest that the proposed ESS placement approach can successfully achieve the ob-
jectives of voltage profile improvement, line loading minimization, and power loss reduction,
and thereby significantly improve distribution network performance.

Keywords: Energy storage systems, energy storage system allocation, voltage profile
improvement, line loading reduction, power loss minimization, particle swarm
optimization.
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ηc ESS charging efficiency

ηd ESS discharging efficiency

γESS Weighting factor for ESS cost

ΓLL Line loading cost rate

γLL Weighting factor for line loading cost

Γloss Power loss cost rate

γPL Weighting factor for power losses cost

ΓV D Voltage deviation cost rate

γV D Weighting factor for voltage deviation cost

ζi Load weighting factor of ith bus

J (CFi) Objective function which is a function of cost

aP , bP , & cP Real power coefficients for phase a, b, & c

aQ, bQ, & cQ Reactive power coefficients for phase a, b, & c

C l
LL Cost for line loading

C l
PL Cost for power losses

Cn
V D Cost for voltage deviation

CS Colony size in ABC optimization

EESS−max Maximum ESS energy

EESS−min Minimum ESS energy

EESS ESS energy

Et+1
ESS ESS energy at time t+ 1

Et
ESS ESS energy at time t

Iij−max Current limit of line ij

I tij Current magnitude through line ij

Itmax Maximum number of iterations in ABC optimization

K Total number of active ESSs on the network

Ltrial Trial limit for improving a food source in ABC optimization

lb1 Lower boundary of decision variable SiESS

lb2 Lower boundary of decision variable λiESS

M Total number of lines
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N Total number of buses

ND Number of decision variables in ABC optimization

NFS Number of food sources in ABC optimization

PESS−max Maximum ESS power

PESS−min Minimum ESS power

PESS ESS power

P d
i→k Real power delivered from i to a neighbouring bus k

P c
i Real power consumed at bus i

P g
i Real power generated at bus i

P d
j→i Power delivered to i from a neighbouring bus j

P l
L−base Real power loss for base case (without ESS)

P l
L−ESS Real power loss with optimal ESS placement

PLT Total real power loss

PL(i, j) Real power loss of a line connecting two buses, i and j

P t
ESS,c ESS charging power at time t

P t
ESS,d ESS discharging power at time t

P t
ESS ESS power at time t

PLRIP Real power loss reduction index with optimal ESS placement

PLRIQ Reactive power loss reduction index with optimal ESS placement

PLRIT Total power loss reduction index with optimal ESS placement

Qd
i→k Reactive power delivered from i to a neighbouring bus k

Qc
i Reactive power consumed at bus i

Qg
i Reactive power generated at bus i

Qd
j→i Reactive power delivered to i from a neighbour bus j

Ql
L−base Reactive power loss for base case (without ESS)

Ql
L−ESS Reactive power loss with optimal ESS placement

QLT Total reactive power loss

QL(i, j) Reactive power loss of a line connecting two buses, i and j

RL(i, j) Resistance of a line connecting two buses, i and j

SESS−max Maximum ESS size
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SESS−min Mimimum ESS size

SLi Load at bus i in p.u.

Swind Total capacity (kVA) of wind DG

SLl−t Loading of line l

SLlbase Loading of line l without ESS placement

SLlESS Loading of line l after ESS placement

SLlmax Maximum loading of line l

SLlrated Rated ampacity of line l

SOCk
ESS State of charge of kth ESS

ub1 Upper boundary of decision variable SiESS

ub2 Upper boundary of decision variable λiESS

UUC Ultrabattery unit cost

Vbi Bus voltage of ith bus in per unit (p.u.)

V t
bi voltage magnitude at different times t in a day

V +
i Positive sequence voltage

V −i Negative sequence voltage

Vmax Upper voltage limit

Vmin Lower voltage limit

Vrated Rated voltage of the system in p.u.

Vref Reference bus voltage in p.u.

Vtarget Target voltage of the system

V UFmax Maximum VUF

XL(i, j) Reactance of a line connecting two buses, i and j

1. Introduction

Present power systems face a period of rapid change driven by various interrelated issues,
e.g., demand management [1], greenhouse gas (GHG) reduction targets [2], integration of
renewables [3, 4], power congestion [5], power quality requirements [6, 7], and network ex-
pansion [8] and reliability [6, 7]. For distribution networks, an energy storage system (ESS)
converts electrical energy from a power network, via an external interface, into a form that
can be stored and converted back to electrical energy when needed [9]. Depending on the
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demand or cost benefits, the ESS can store energy to produce and discharge electricity [10].
Consequently, ESSs are increasingly being embedded in distribution networks to offer techni-
cal, economic, and environmental advantages. These include mitigation of voltage deviation
[11, 12], facilitation of renewable energy source (RES) integration [13–15], distributed gen-
eration planning [16] and RES energy time-shifting [17], load shifting [18–21], load levelling
[22] and peak shaving [23], power quality improvement [5, 11, 24, 25], frequency regulation
[5, 26], network expansion [27, 28] and overall cost reduction [29, 30], operating reserves
[5, 31], GHG reduction [32–34], profit maximization [5, 35], and network reliability [36].

Unfortunately, misplacement or misuse of ESSs in distribution networks can adversely
affect network performance [37], voltage and frequency regulation, power quality, reliabil-
ity, and load controllability. Appropriate ESS placement can facilitate an optimal ESS
operation for voltage and power quality improvement [5, 12, 24, 25], peak demand miti-
gation [12], relief of distribution congestion [5, 25], power flow adjustment [5], power loss
reduction [12, 25], network reliability [36], overall network cost reduction [36, 38], RESs
integration [27, 39, 40], and system effectiveness [36, 41]. As the use of large-scale ESSs
in distribution networks involves substantial investment, placing ESSs optimally on the ba-
sis of performance expectations is challenging and has been addressed in several studies
[5, 11, 12, 24, 25, 27, 29, 30, 36, 38, 39, 41–51].

Asset management of distribution networks is an essential task of network service providers
to ensure safe and secure operation of the networks. However, this can be an expensive task
that also might result in a high network cost and thereby can significantly affect electric-
ity prices. This cost could include network reinforcement for thermal and voltage stability.
Therefore, the motivation of this work is to provide low cost solutions to distribution network
operators for a better asset management practice.

A comprehensive review, regarding ESS placement to mitigate the issues of distribution
networks, is presented in [9]. An optimal allocation and sizing of ESSs, for an IEEE-30
wind power distribution system, is accomplished in [24], while focusing on power system
cost minimization and voltage profile improvement. The authors employ a hybrid multi-
objective particle swarm optimization (PSO) incorporating a non-dominated sorting genetic
algorithm (NSGA-II), a probabilistic load flow technique, and a five-point estimation method
(5PEM).

In [42], a multi-objective ESS allocation is performed for both transmission and dis-
tribution networks. A detailed analysis, termed as sensitive analysis, is accomplished on
the transmission side using complex-valued neural networks, time domain power flow, and
economic dispatch to locate the ESSs. On distribution side, the optimal ESS size is es-
timated to address load curve smoothing and peak load shaving. [41] proposes optimal
distributed ESS planning (specifying locations and sizes) in soft open points-based distri-
bution networks embedding the reactive power capability of distributed generators (DGs)
and the network reconfiguration through a mixed-integer second order cone programming
(MISOCP) approach. [29] formulates an optimal ESS placement problem embedding net-
work reconfiguration in an RES-integrated distribution network to minimize overall system
costs, while employing a mixed-integer linear programming (MILP) approach.

Optimal ESS location and size are determined in [43] for load management, minimization
of net present value (NPV), and total cost while maximizing distribution system benefits.
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A genetic algorithm (GA) combined with a linear programming solver, a sequential Monte
Carlo simulation (MCS), and MATLAB optimization toolbox are used for different aspects
of the investigations. The same approaches are used in [36] and [30] to establish optimal
ESS allocations in different situations. [36] accomplishes optimal ESS allocation, targeting
minimization of interruption cost and annual cost, and improvement of distribution system
reliability. On the other hand, distribution network benefits are maximized in [30] by
reducing the cost of ESS installation, maintenance, interruptions, system upgrades, and
energy losses.

An optimal allocation of distributed community ESSs in distribution networks is pro-
posed in [27] to gain the benefits from peaking PV generation, energy arbitrage, energy loss
reduction, emission reduction, network upgrade deferral, and Var support. [38] proposes a
network-aware strategy for the planning and control of ESSs in an RES-penetrated distri-
bution network to minimize investment and operational costs. [44] analyzes the impact of
ESS location and configuration on power losses, voltage profiles, and ESS utilization within
a feeder of low voltage (LV) distribution networks.

The mitigation of voltage deviations and improvement of supply quality, elimination of
load curtailment and line congestions, and minimization of distribution network costs and
electricity costs are achieved through the optimal placement and sizing of ESSs, while using
AC-optimal power flow (AC-OPF) and MISOCP approaches in [11]. In [45], a fuzzy PSO
(FPSO) approach is employed to mitigate the risk to distribution companies by optimizing
ESS allocation, while maximizing energy transaction profits and reducing operational costs.

In [5], a MILP model is proposed to maximize the net profit of distributed ESSs while
achieving distribution system congestion management, energy price arbitrage and energy
reserve, and a frequency regulation service via active and reactive power controls. In [39], the
ESS allocation is able to minimize the voltage fluctuation problems (due to PV integrations
in LV networks) by applying a GA-based strategy hybridized with simulated annealing,
while [46] employs a GA-based bi-level optimization approach to mitigate the same problem.
Again in [25], an alternating direction approach to multipliers is employed for allocation of
distributed ESSs to provide voltage support and to minimize both network losses and the
cost of energy in relation to external grid and congestion management.

In [47], optimal ESS placement and sizing is accomplished and validated through math-
ematical modeling and the OPF approach. A game-theoretic multi-agent approach is pro-
posed in [48] for optimal ESS allocation to mitigate the risk of energy transaction mech-
anisms for energy agents. In [49], optimal ESS allocation in LV distribution networks is
accomplished through multi-period OPF and clustering and sensitivity analysis approaches
to prevent under- and over-voltages and to minimize total network costs (in regard to ESS
and network losses).

A framework for optimal ESS placement in a wind-penetrated deregulated power sys-
tem is developed in [50] to maximize the utilization of wind power and minimize the hourly
social cost. Market-based probabilistic OPF, GA, and an energy arbitrage model are ap-
plied to optimize, evaluate, and analyze the system model. An auto-regression moving
average modeling technique, for optimal ESS placement in a wind-penetrated distribution
grid, is proposed to minimize the annual electricity cost without considering peak shaving
and reliability enhancement in [51]. [12] achieves optimally distributed ESS allocation and
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operation in order to improve load and generation hosting ability, while using a cost-based
multi-objective optimization strategy through MATLAB. As a result, power loss and peak
demand are reduced, with better voltage regulation.

Although various distribution network issues are addressed in the above literature, very
few studies [12] focus on line loading minimization, power loss reduction, and voltage profile
improvement. However, the operational costs of distribution networks are largely dependent
on these parameters which can be minimized through optimal distributed ESS placement.
For a large distribution network, distributed ESS placement provides more opportunities for
problem mitigation and greater flexibility than centralized placement [24, 50]. For instance,
this approach helps to fix the voltage deviation in buses promptly, which is done generally
with on-load tap changers, capacitors and voltage regulators [52]. In some research [30,
36, 43, 48] (as discussed above) the ESS types, such as lead-acid, vanadium redox (VR),
sodium sulfur (NaS), compressed air energy storage (CAES), and Li-ion, are specified. Other
research [11, 24, 25, 27, 39, 41] does not specify ESS types. However, in [12, 42, 44, 46] ESS
name is mentioned as battery ESS (BESS) rather than specifying the ESS technology, e.g.,
lead-acid, Li-ion or other.

The determination of optimal ESS locations in a distribution network involves one or
more optimization problems depending on the benefits targeted. Various optimization and
modeling techniques are employed for the optimal placement of ESSs in the above litera-
ture [5, 11, 12, 24, 25, 27, 29, 30, 36, 38, 39, 41–45, 47–51]. The research described in this
paper introduces artificial bee colony (ABC) meta-heuristic optimization for optimal ESS
placement. Being simple and robust, the ABC algorithm is capable of solving even complex
combinatorial and multi-dimensional optimization problems [53, 54]. The likelihood of find-
ing an optimum solution is enhanced by the algorithm’s triple search capability, which is
based on the search stages of three groups of bees [55, 56]. The robustness and efficiency of
the ABC algorithm in solving global optimization problems (both constrained and uncon-
strained) is demonstrated in various comparative studies that compare the ABC algorithm
to other well-known modern heuristic algorithms such as GA, DE, and PSO [55, 56].

In this paper, a comprehensive investigation is carried out for optimal ESS placement in
an IEEE-33 bus distribution network, in a distributed manner. DIgSILENT PowerFactory
provides useful solutions for distribution network problems such as system design, modeling
and optimization capabilities, grid interaction skills in a multi-user environment, and data
handling [57]. As a result, it is used as the main tool for system modeling and analysis.
Python programming language is used to control the system models developed in PowerFac-
tory and to facilitate the ABC optimization. Furthermore, a new form of lead-acid battery,
the Ultrabattery, is selected as the ESS technology and is used in this research.

The main contributions of this paper are summarized as follows:

• The optimal placement of ESSs is investigated focusing on line loading reduction, real
and reactive power loss minimization, voltage profile improvement, and ultimately cost
minimization. All of the parameters, incorporated in the objective function, are related
to costs of distribution network reinforcement for thermal and voltage stability, and
lower asset management. These parameters have not been widely considered together
for optimal ESS placement by other studies such as [24, 25, 44, 49]. Furthermore,
some important constraints which are rarely used by earlier works such as voltage
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unbalance factor (VUF) and line loading constraints are imposed in this study.

• The overall investigation for optimal ESS placement is conducted in two different
categories: (1) with a uniform ESS size, and (2) with non-uniform ESS sizes. These
type of investigations have not been conducted by earlier works such as [11, 12, 25,
44, 45, 48, 50, 51]. The results from these investigations are analyzed and compared.
Although the ABC approach is used for these investigations, PSO algorithm is also
applied to justify the optimality of results obtained from ABC optimization technique.

• The performance indices are evaluated and a cost comparison for various case studies is
presented. These performance indices assist to follow-up the performance improvement
after ESS allocation in a distribution network, which are not evaluated by related
studies in the literature.

The remainder of this paper is organized as follows: the overall system modeling includ-
ing ESS selection, and ESS and distribution network modeling are presented in Section II.
The problem is formulated in Section III and the optimization and proposed approach are
discussed in Section IV. Section V discusses the testing and performance measurement. The
results are presented and discussed in Section VI. The paper concludes with Section VII.

2. System modeling

2.1. ESS selection and modeling

The appropriate selection of grid-scale ESSs depends on various factors such as required
system performance, system capacity, type of application, and ESS cost and reliability
[9, 58, 59]. Various ESS options for distribution networks, to be explored in terms of
technical characteristics and application benefits, are discussed in [9, 60, 61]. A recent
ESS, namely Ultrabattery (also known as an advanced lead-acid battery), is frequently
being incorporated in grid-scale applications in the U.S. and Australia, due to its improved
performance and lower cost in comparison with other electrochemical ESSs (e.g., lead-acid)
[62, 63]. The lead sulfate accumulation problem of lead-acid batteries is reduced in the
Ultrabattery by incorporating carbons and forming a supercapacitor. Given the above
considerations, Ultrabatteries are chosen as ESSs in this research.

Although the Ultrabattery is chosen as the ESS technology in this research, the ESS
model is considered as generic and can be applied to other ESS technologies. The ESS
model should be subjected to the following conditions:

• If state of charge (SOCk
ESS) = 1, the ESS is fully charged and if SOCk

ESS = 0, the
ESS is fully discharged.

• The ESS should be able to control the active power in both ways and the SOCk
ESS is

subject to following constraint [64]:

0.2 6SOCk
ESS60.9 (1)
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• A priority for the active and reactive power (P and Q) is needed to satisfy the apparent
rated power, Sapp =

√
P 2 +Q2.

Additionally, the proposed ESS should fulfill boundary conditions from (1) to (6) in time
t (indexed 1, ...., NT ) [12, 65]. The charging and discharging rates are determined by (1)
and (2), respectively, by applying the generator convention (the charging power is positive
i.e. P t

ESS,c > 0 and the discharging power is negative i.e. P t
ESS,d < 0) [66]. The energy

storing process and charging power of the ESS are restricted by (3) and (4) respectively.
Moreover, the limitations of released energy from the ESS and power discharged by the ESS
are demonstrated by (5) and (6) respectively.

P t
ESS,c = max

{
PESS−min,

(Et
ESS −SESS−max)

ηc ·∆t

}
(2)

P t
ESS,d = min

{
PESS−max,

(Et
ESS −SESS−min) ηd

∆t

}
(3)

Charging mode:

Et+1
ESS = min

{(
Et
ESS − ∆t P t

ESS,c ηc
)
, SESS−max

}
(4)

P t
ESS,c 6P

t
ESS6P

t
ESS,d (5)

Discharging mode:

Et+1
ESS = max

{(
Et
ESS − ∆t

P t
ESS,d

ηd

)
, SESS−min

}
(6)

P t
ESS,c 6P

t
ESS6P

t
ESS,d (7)

2.2. Distribution network model

The modeling of the proposed medium voltage (MV) distribution network is accomplished
in DIgSILENT PowerFactory. The single line diagram of the proposed system (for the case
of optimal ESS placement with a uniform ESS size) is depicted in Fig. 1, where the IEEE-33
bus radial distribution system is used to model the overall system. The buses and lines are
denoted by the letters B and L, respectively. The loads, solar DGs, and wind DGs are
modeled using built-in templates of PowerFactory and configured according to system data
found in [12, 67]. The ESS model, described in Section II(A), is placed on the network
in a distributed manner. The chosen base MVA and substation voltage are 10 MVA and
12.66 kV, respectively, and the power factor is considered as unity. Among 37 lines, L33
to L37 are represented as tie lines [67]. In this model, a high renewable DG penetration
scenario is created by installing seven solar DGs and two wind DGs. The three solar DGs of
400kVA capacity each (PV1, PV2, and PV3) are allocated to B05, B21, and B31, while the
other four of 500kVA capacity (PV4, PV5, PV6, and PV7) are installed on B08, B12, B28,
and B33, respectively. All other system data are taken from [67]. The wind DGs of 1MW
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capacity (WDG1 and WDG2) are placed on B18 and B24 [12]. B01 is defined as the feeder
of the whole system and peak active and reactive power input to feeder are 3.715 MW and
2.3 MVar, respectively.

The power flow equations of the model are given in [24, 68], which are solved using the
Newton-Raphson method.

3. Problem formulation

3.1. Objective function

The objective function (8) is formulated to solve the optimal distributed ESS placement
problem using (9) to (15) [12, 69]. The cost function includes the costs regarding network
reinforcement for thermal and voltage stability, and lower asset management of distribution
networks. Overall cost minimization is achieved by minimizing the sum of cost factors, e.g.,
performance costs (Cn

V D, C l
PL, and C l

LL) and ESS cost (CUT
ESS), while satisfying the necessary

constraints. The cost factors are weighted equally with γV D=γPL=γLL=γESS=1.

J (CFi) = minimize

{(
γV D ·Cn

V D + γPL ·C l
PL+ γLL ·C l

LL

)︸ ︷︷ ︸
Cperformance

+
(
γESS · CUT

ESS

)}
(8)

where,

Cn
V D =

(
N∑
n=1

|Vtarget−Vbi(Si
ESS ,λ

i
ESS)|

)
· ΓV D (9)

C l
PL =

(√
{PLT (Si

ESS ,λ
i
ESS)}2 + {QLT (Si

ESS ,λ
i
ESS)}2

)
· Γloss (10)

PLT (SiESS, λ
i
ESS) =

M∑
l=1

PL(i, j) =
M∑
l=1

(
RL(i, j) · P 2

i +Q2
i

| { Vbi(Si
ESS ,λ

i
ESS)}2|

)
(11)

QLT (SiESS, λ
i
ESS) =

M∑
l=1

QL(i, j) =
M∑
l=1

(
XL(i, j) · P 2

i +Q2
i

| { Vbi(Si
ESS ,λ

i
ESS)}2|

)
(12)

C l
LL =

M∑
l=1

(
% LLESS(Si

ESS ,λ
i
ESS)

)
· ΓLL (13)

% LLESS(Si
ESS ,λ

i
ESS)=

(
SLlESS
SLlrated

)
× 100 (14)

The total ESS unit cost is calculated as follows [70]:.

CUT
ESS =

K∑
i=1

SiESS · UUC (15)

In the above equations, ΓV D = 0.142 $ p.u. [12], Γloss = 0.265 $/kWh [71], ΓLL = 0.503 $
p.u. [71], and Vtarget = 1 p.u.. In addition, the UUC for commercial and industrial energy
management applications is considered as 460 $/kWh [72].
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3.2. Objective function constraints

The objective function of (8) is subject to (16) to (27) together with ESS modeling equations
as given in (1) to (7):

P g
i +

∑
j∈J+

(
P d
j→i
)

= P c
i +

∑
k∈J−

(
P d
i→k
)

(16)

Qg
i +

∑
j∈J+

(
Qd
j→i
)

= Qc
i +

∑
k∈J−

(
Qd
i→k
)

(17)

Vmin < |V t
bi|<Vmax (18)

V UF <V UFmax (19)

V UF =
n∑
i=1

V +
i

V −i
× 100 (20)

I tij <Iij−max (21)

SLl−t <SLlmax (22)

λiESS=

{
0, if the ESS is active

1, otherwise
(23)

SiESS =

{
Assign, if λiESS= 0

0, if λiESS= 1
(24)

PESS−min <PESS < PESS−max (25)

P t
ESS,c ≤P t

ESS ≤ P t
ESS,d (26)

EESS−min <EESS <EESS−max (27)

where,

• (16) and (17) denote that the real and reactive power delivered to and from a bus i
must be balanced [73].

• (18) indicates the voltage magnitude constraint of each node. (19) denotes a constraint
for voltage unbalanced factor (V UF ) as defined in (20) to avoid any voltage imbalance
due to voltage fluctuations. The V UF = 0 indicates perfectly balanced voltages in a
distribution system and generally V UFmax = 1 [12].

• (22) ensures that the line loading of a line l should not exceed the maximum limit
SLlmax to ensure the cable’s thermal stability. By referring to industry practices of
planning, the operation of distribution networks should not exceed 80% loading on
the substation exit cables [74]. Hence, an 80% maximum loading target of a line l
is imposed in the algorithm. This also ensures that there is sufficient spare capacity
among feeders to back each other during outages.
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• (23) and (24) represent the ESS allocation constraints.

• (25) to (27) ensures that the power or energy of ESSs should not exceed their boundary
limits during charging and discharging [12]. In addition, (1) to (7) ensure the ESS
operation within the SOC limit.

4. Optimization and proposed approach

4.1. ABC optimization approach

In this paper, the ABC algorithm is employed for optimizing the grid-connected ESS al-
location problem. The ABC algorithm is a relatively new bio-inspired swarm intelligence
approach and one of the recent metaheuristic search techniques proposed by Karaboga in
2005 [75]. This algorithm is proposed to simulate the intelligent foraging behaviour of honey
bees. This has the advantage of using fewer control parameters [54, 76]. The colony consists
of three types of bees in the ABC algorithm: employed bees, onlooker bees, and scout bees.
Specifically, its robust searching ability encompasses the exploitation and exploration of the
search space [75]. This exploitation process is performed during the employed and onlooker
bee phase, while during the scout bee phase the exploration process is accomplished. The
overall ABC optimization process is illustrated by the flow chart given in Fig. 2.

There is only one employed bee for every food source. By using the following expression,
each employed bee moves from one old location xij to a new candidate location vij:

vij = xij + φij (xij −xkj) (28)

In (28), k ∈ 1, 2, .., SN and j ∈ 1, 2, .., D are randomly chosen and k has to be different from
i, where, SN = the number of food sources, D = problem dimension, and φij = uniform
random number in the range [-1, 1]. If the new location value vij is better than xij, then
xij is updated and replaced with vij, otherwise xij is kept unchanged. Depending on the
probability value, the onlooker bee selects a food source by using a roulette wheel selection
method and this new position is then determined by (29), where, ωi = weight coefficient of
employed bee information.

vij = xij + ωiφij (xij −xkj) (29)

The food source probability (pi) and the fitness values of the food sources of employed
bees (fit) are calculated according to (30) and (31), respectively, where, f(xi) denotes the
number of objective function values to be optimized.

pi =
fiti∑SN
j=1 fitj

(30)

fiti =

{
1

1+f(xi)
, f(xi)≥ 0

1 +|f(xi)|, f(xi) < 0
(31)
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4.2. Proposed approach

The proposed methodology for resolving the optimal distributed ESS placement problem is
represented in Fig. 3. The optimization parameters and variables are summarized in Table
1. After modeling, configuring, and placing all required components in the distribution
system of Fig. 1, all the essential system data are entered in the corresponding components
and the ABC parameters are initialized. The total active and reactive powers for the feeder
(PTF & QTF ) are entered for feeder load scaling and the operational capacity of solar DGs
(Spv−op) is considered as 85% of rated capacity (Spv−max) [77]. Subsequently, the loads,
solar, and wind DGs are characterized by applying time-variant characteristics [12]. The
feeder loads are scaled by creating voltage dependency. Then the problem is formulated to
minimize the total of Cn

V D, C l
PL, C l

LL, and CUT
ESS.

The investigations are accomplished in two phases- (1) Investigation type-I: with a uni-
form ESS size and (2) Investigation type-II: with non-uniform ESS sizes. The ESS size
(SiESS) and positions (λiESS) are generated randomly and applied to the system. The SiESS
is generated in such a way that the maximum number of ESSs with lower capacity (within
the range 0.1 MVA to 2 MVA) can be distributed in the network. The initial values are
selected randomly by relying on the nominated range of sizes to be tested on the network.
The ESS size nomination is subject to lb1, ub1, lb2, ub2, transformer size, DC and AC bus
size, inverter specifications, and ESS string size. Finally, the ABC optimization process
finds the optimal values of SiESS and λiESS by satisfying the objective function constraints.

In this paper, the sizing approach considers a unity power factor applied on the dispatch
of ESSs. This is based on common industry practices that distribution network operators
will not rely on the distributed generators to solve the network voltage problem, but rather
rely on the substation automatic voltage controllers and distributed capacitors to control
the MVars. Hence, the ESS size and locations are determined based on using the multi-
functionality of ESSs in providing the MW required to minimize line losses and loading, and
support the voltage controllers on the network. This approach maintains the voltage at the
desired levels proposed by operation requirements.

5. Testing and performance measurement

This section describes the application of necessary factors of load model and RES generation,
feeder load scaling, and voltage dependency in the proposed distribution network model.
Furthermore, it states the essential indices to measure the performance improvement of the
system.

5.1. Assignment of factors and dependency

Feeder load scaling and voltage dependency: Considering the scaling factor, the load
is calculated according to (32) and (33) [78]. The load scaling of a distribution feeder,
consisting of loads Loadi, is presented in Fig. 4. The Ψscale is adjusted so that the total
real and reactive powers are calculated as (34) and (35), respectively [78].

P = Ψscale · P0 (32)
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Q = Ψscale · Q0 (33)

(34)P = Ψscale · P10 + Ψscale · P20 + Ψscale · P30 +
. . . . . . + Ψscale · Pn0

(35)Q = Ψscale · Q10 + Ψscale · Q20 + Ψscale · Q30 +
. . . . . . + Ψscale · Qn0

Taking into account the voltage dependency of loads, (32) and (33) are converted to (36)
and (37), respectively, where, (1− aP − bP ) = cP and (1− aQ− bQ) = cQ.

(36)
P = Ψscale · P0

[
aP ·

(
Vbi
Vref

)eaP
+ bP ·

(
Vbi
Vref

)ebP
+ (1 −aP−bP ) ·

(
Vbi
Vref

)ecP ]

(37)
Q = Ψscale · Q0

[
aQ ·

(
Vbi
Vref

)eaQ
+ bQ ·

(
Vbi
Vref

)ebQ
+ (1 −aQ−bQ) ·

(
Vbi
Vref

)ecQ]
Load and generation scaling factors: The loads of the distribution network follow

the IEEE-RTS model as depicted in Fig. 5 and the load coefficients are set to aP = aQ = 0.4,
bP = bQ = 0.3, and cP = cQ = 0.3 [12]. The exponents are assigned to eaP = eaQ = 0,
ebP = ebQ = 1, and ecP = ecQ = 2 to model the load behaviour as constant power, constant
current, and constant impedance, respectively, for corresponding load coefficients [78]. The
generation outputs of solar PV and wind DGs are scaled according to the curves of Fig. 5
[12].

5.2. System performance indices

Voltage deviation and profile improvement indices: As the minimization of voltage
fluctuations is crucial for the operation of the power systems, the permissible voltage devia-
tion limit is considered as ±5% in this research. The voltage deviation index (VDI) of (38),
expressed as a percentage, represents the system voltage deviation [79].

% VDI=
N∑
i=1

(
|Vrated − Vbi|

Vrated

)
× 100 (38)

The voltage profile of ith bus of the system can be defined as (39) [80]. The Vmax and Vmin
for ith bus are determined by the voltage violation limit (±5%).

V Pi = Vbi SLi ζi (39)

The incorporation of a load weighting factor (ζi) has considerable impact on the voltage
profile improvement index (VPII), which allows the possibility of a low load bus with
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voltage sensitive loads. Generally, these factors are assigned based on the criticality or
importance of the load at each bus. It is assumed that all the loads of the proposed system
have equal importance. For the overall network, the total of all factors ζi is defined as (40).

N∑
i=1

ζi = 1 (40)

Hence, the overall voltage profile of the system can be expressed as (41).

V P =
N∑
i=1

V Pi (41)

The VPII, a measure of the improved voltage profile of the proposed distribution system,
can be defined as (42) [80].

V PII =
V Pw−ESS
V Pwo−ESS

(42)

Power loss reduction indices: The real, reactive, and total power loss reduction
indices (PLRIP , PLRIQ, and PLRIT ) are defined by (43), (44), and (45), respectively
[79, 80].

PLRIP =

∑M
l=1 P

l
L−ESS∑M

l=1 P
l
L−base

(43)

PLRIQ =

∑M
l=1 Q

l
L−ESS∑M

l=1 Q
l
L−base

(44)

PLRIT =

∑M
l=1

√(
P l
L−ESS

)2
+
(
Ql
L−ESS

)2
∑M

l=1

√(
P l
L−base

)2
+
(
Ql
L−base

)2 (45)

Line loading index: The line loading index (LLI) refers to the loading level or demand
of the distribution system lines. Minimizing line loading through optimally placed ESSs may
be an effective way of deferring distribution investment. In other words, the distribution
network peak demand can be reduced by minimizing the LLI. This may also minimize the
investment costs for distribution network expansion. This is necessary in order to increase
the system’s tolerance of load growth. In this research, the percent line loading (%LL) for a
specific line, total percent line loading (%LLT ) (before and after ESS placement), and the
overall LLI are formulated by (14) and (46) to (49).

% LLbase=

(
SLlbase
SLlrated

)
× 100 (46)

% LLTw−ESS=
M∑
l=1

% LLESS (47)

% LLTwo−ESS=
M∑
l=1

% LLbase (48)

LLI =
% LLTw−ESS
% LLTwo−ESS

(49)
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6. Results and discussion

After optimization and testing, the system performance is analyzed in three different case
studies. Optimal ESS locations are determined while minimizing the cost function at peak
load condition. This section describes the impact of optimal distributed ESS allocation in the
proposed distribution system. The ESSs only inject P (MW) to the network and the power
factor is unity. The system results are categorized for three cases: base case (without ESS),
ESS placement while considering a uniform ESS size, and non-uniform ESS sizes. These
are presented in Table 2. Case 2 and Case 3 are investigated in two different subcategories
based on the weighting factor selection of J (CFi) as given in Table 2. Although the factors
in (8) are equally weighted (Case 2(I) and Case 3(I)), γV D is changed to 100 along with
γPL=γLL=γESS=1 in Case 2(II) and Case 3(II) to give more importance to Cn

V D than other
parameters. This comparison is presented targeting better realization of the optimization
results. It is assumed that the ESS power rating (MVA) is constant over one hour.

6.1. Case study 1- Base case without ESSs

The results of parameter %VDI, %LLT , PT , and QT for base case analysis (without the
placement of ESSs), tabulated in Table 2 represent the reference values which are targeted
to be optimized. Although the Vbi is within maximum and minimum voltage limits, the
voltage profile needs improvement. Similar results are observed for other parameter values.

6.2. Case study 2- ESS allocation for a uniform ESS size

Case 2, optimal ESS placement for a uniform SiESS, is divided in two different categories
with two different combinations of SiESS and λiESS. The SiESS and λiESS can be identified
in Table 2 by the ESS MVA and ESS number, respectively: e.g., ESS9 = 0.724 represents
that the ESS of size 0.724 MVA is connected to bus9. It is noticeable that all Case 2(I)
parameters (%VDI, %LLT , PT , and QT ) are minimized compared to Case 1. Although
Case 2(II) minimizes the Cn

V D − i.e. improves the voltage profile (%VDI = 32.238) − the
%LLT , PT , and QT exceed the corresponding values for Case 1. Furthermore, the total
ESS size is 23.689 MWh, which represents a higher distribution system investment cost
and hence is unacceptable. For Case 2(I), the required number of optimally placed ESSs
in the network is 8 with SiESS = 0.724 MVA, while it is 12 with SiESS = 1.974 MVA for
Case2(II). Hence, considering the optimal performance as well as costs and a negotiation of
%VDI, Case 2(I) is the required optimal solution with minimum ESS size (5.793 MWh) for
Investigation type-I.

6.3. Case study 3- ESS allocation for non-uniform ESS sizes

The impact of optimal distributed ESS allocation with non-uniform SiESS is analyzed and
the results are listed in Table 2. Case 3(I) shows the optimization results with minimum
J (CFi), while Case 3(II) represents the outcome for minimum Cn

V D. A very noticeable point
is that all the parameters (%VDI, %LLT , PT , and QT ) are further reduced compared to
Case 2(I). However, for Case 3(I), the required number of optimally placed ESSs is 11 and
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total ESS size is 7.195 MWh, which represents an increment in cost over Case 2(I). The
total ESS size is further increased to 18.425 MWh while minimizing Cn

V D (41.520) in Case
3(II). For this case, the other parameters (%LLT , PT , and QT ) are higher compared to Case
2(I) and Case 3(I).

6.4. Overall result comparison and analysis

Comparison of voltage profiles: The voltage profiles for various cases are depicted in
Fig. 6. The feeder voltage profiles (p.u. voltage vs km) after ESS placement, i.e. for Case
2 and Case 3 of Table 2, are illustrated in Fig. 7 to Fig. 10, where various sections in terms
of feeder length are marked with different colors. In the distribution network model, all
the lines have the same length (1km). At some buses, the p.u. voltages for the particular
feeder length are illustrated. According to Fig. 7 and Fig. 6, the bus voltages vary within
1 p.u. to 0.967 p.u. for Case 2(I), while the lowest voltage value (0.967 p.u.) is observed
at B30. B18 and B33 have about the same voltage of 0.973 p.u, while the similar voltage
value of around 0.972 p.u. is obtained at B16 and B31. Case 3(I) has a better feeder voltage
profile compared to Case 2(I) as presented in Fig. 9 and Fig. 6. The voltages at various bus
during Case 3(I) are improved, e.g., at B16 (Case 3(I)=0.976 p.u., Case 2(I)=0.972 p.u.),
at B31 & B32 (Case 3(I)=0.975 p.u., Case 2(I)=0.972 p.u.), and at B33 (Case 3(I)=0.976
p.u., Case 2(I)=0.973 p.u.). The Case 2(II) provides the best voltage profile compared to
other cases as per Fig. 6 to Fig. 10. During this case, most of the bus voltages vary around
the target voltage 1 p.u. as presented in Fig. 8, while the lowest voltage of 0.97 p.u. is
observed at B24. The voltages at some buses, e.g., B09, B15, and B14 are above the Vtarget.
On the other hand, Case 3(II) also provides an improver voltage profile than Case 2(I)
and Case 3(I). However, there are higher voltage drops at some buses compared to Case
2(II) such as at B6 (Case 3(II)=0.978 p.u., Case 2(II)=0.981 p.u.), B8 (Case 3(II)=0.980
p.u., Case 2(II)=0.987 p.u.), B12 (Case 3(II)=0.985 p.u., Case 2(II)=0.997 p.u.), B20 (Case
3(II)=0.986 p.u., Case 2(II)=0.992 p.u.), B21(Case 3(II)=0.985 p.u., Case 2(II)=0.993 p.u.),
and B27 (Case 3(II)=0.981 p.u., Case 2(II)=0.985 p.u.). There are also improvements on
voltages at some buses in Case 3(II) compared to Case 2(II), for instance, at B17 (Case
3(II)=1.002 p.u., Case 2(II)=0.997 p.u.), B18 (Case 3(II)=1.001 p.u., Case 2(II)=0.999
p.u.), B25 (Case 3(II)=0.983 p.u., Case 2(II)=0.976 p.u.), and B33 (Case 3(II)=1.001 p.u.,
Case 2(II)=0.998 p.u.).

It may also be noted that the voltage drop in the feeder section numbered L02-L22-
L23-L24-L37-L29-L30 is higher for Case 2(I), Case 2(II), and Case 3(I) compared to other
sections of Fig. 1, and there is an improvement in this characteristic for Case 3(II). In
contrast, the voltage drop in the feeder section numbered L18-L19-L20-L21-L35 is lower
than other sections for all cases except Case 2(I) where the voltage drop in L20 is slightly
higher compared to other cases. Case 2(II) provides an improved feeder voltage profile
compared to Case 3(II) and most of the bus voltages are very close to 1 p.u. for Case 2(II)
except B07, B23, B24, B25, B29, and B30. The voltages of these buses are further improved
(except B07) in Case 3(II) while having little voltage deviation in other buses compared to
Case 2(II). Hence, it is evident that Case 2(II) and Case 3(II) have better voltage profiles
among the options, while Case 2(I) and Case 3(I) provide good voltage profiles.
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Comparison of line loading and losses: The percent line loadings of various cases
are presented in Fig. 11. This suggests that the loading of lines for each case is under the
maximum limit. For Case 2(II) and Case 3(II) the line loadings are higher, while Case 2(II)
provides the worst loading in lines especially in L8, L22, L26, L28, L30, L35, and L37. Case
2(I) and Case 3(I) have good line loading among the options, while the best characteristics
are provided by Case 3(I). Although the maximum loading limit of a line is 80%, L1 has
maximum loading of 40.801% for all cases. L2 has around 28% loading for Case 1, Case
3(I), and Case 3(II), while it has a lower (27.633%) and a higher (31.908%) loading value
for Case 2(I) and Case 2(II), respectively. All other lines for most of the cases are more
lightly loaded (below 15%) except L30 and L37. For Case 2(II), the L30 and L37 are loaded
around 27%, while L37 in Case 3(II) is loaded about 22%. It can be noted from the line
loading characteristics that the overall feeder has sufficient spare capacity to tackle the worst
situation during outage condition by sharing the loads with others.

The real, reactive, and total power losses of lines for various cases, with respect to
individual line numbers, are compared in Fig. 12, Fig. 13, and Fig. 14, respectively.
According to Fig. 12, L2 has a real power loss of 0.0347 MW, 0.0271 MW, and 0.0269 MW
for Case 2(II), Case 3(I), and Case 3(II), respectively. Case 2(II) and 3(II) provide higher
real power losses (compared to other cases) in L30 which are 0.0513 MW and 0.0387 MW,
respectively. The L8 has a real power loss of 0.0424MW for Case 2(II) which is higher than
other cases. It is also noticeable for all cases that there is no real power loss in tie lines
(L33 to L37) as illustrated in Fig. 12. As referred to Fig. 13, higher reactive power loss
is delivered during Case 2(II) compared to other cases, specifically in L2, L8, L30, L35,
and L37. In L2, Case 2(I), Case 3(I), and Case 3(II) have the similar amount of reactive
power loss which is 0.0133 MVar, 0.0138 MVar, and 0.0137 MVar, respectively, while it is
a bit higher (0.0177 MVar) for Case 2(II). In L8, Case 2(II) and Case 3(II) have a higher
reactive power loss of 0.0305 MVar and 0.0088 MVar, respectively. Case 3(II) gives the
highest reactive power loss of 0.0190 MVar and 0.0112 MVar in L16 and L24, respectively.
In L30, Case 2(II) has the highest reactive power loss of 0.0507 MVar compared to all other
lines. Remarkably, all cases provide reactive power loss to the tie lines (L33 to L37), while
higher losses are added by Case 2(II) and Case 3(II) compared to others. Overall, according
to the illustrations of Fig. 12, Fig. 13, and Fig. 14, the losses are higher for Case 2(II) and
Case 3(II) and lower for Case 2(I) and Case 3(I). Again, the worst case for total line loss
is Case 2(II), while having larger amount of loss in L2, L8, L30, L35, and L37 compared to
other cases.

Statistical analysis of ABC approach with PSO algorithm: The well-known PSO
algorithm [81] is employed to verify the ESS allocation results of Case 2(I) and Case3(I)
obtained from the ABC approach. Cognitive and social components of PSO are both set to
1.8, while the inertia weight is selected as 0.6 as recommended in [55]. The ABC settings are
listed in Table 1. The ABC optimization and the PSO are executed for 30 times considering
a maximum iteration value of 1000, a population size of 50, and γV D=γPL=γLL=γESS=1
in (8). From the list of obtained results, the best, worst, and mean objective function
solutions are compared in Table 3 for the two investigation types. Furthermore, the standard
deviations for ABC and PSO approaches (σABC and σPSO) of objective function values are
evaluated. The lesser standard deviation value represents smaller deviation among solutions
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of 30 times optimization runs. Although both algorithms provides very close solutions in
terms of objective function costs, it is evident from Table 3 that the more optimal solutions
are obtained from the ABC for both investigation types. For instance, the ABC best solution
for investigation type-I signifies the improvement in performance such as %V DI = 75.753,
%LLT = 241.128, PT = 0.0905 MW, and total ESS size (5.793 MWh) except little deviation
in QT (0.0683 MVar) compared to PSO best solution (i.e. V DI = 76.894, %LLT = 241.633,
PT = 0.0917 MW, QT = 0.0677 MVar, and total ESS size=6.007 MWh). Hence, it is obvious
from the statistical analysis of Table 3 that the proposed ABC-based approach is successful
in achieving required optimal solutions for both investigation types.

The configuration of the used computer for conducting the optimization is: Intel(R) Xeon
3.5 GHz processor, 16 GB RAM, 64-bit windows 10. Fig. 15 represents the convergence
test of the ABC and PSO algorithms for two investigation types. The convergence results
and computation time are summarized in Table 4. This suggests that the ABC-based
approach converges after 208 and 347 iterations for investigation type-I and investigation
type-II, respectively. On the contrary, PSO algorithm converges after 191 and 332 iterations
for investigation type-I and investigation type-II, respectively. In other words, the PSO
algorithm converges faster than the ABC approach. In real time, ABC and PSO algorithms
require around 325 s and 440 s, respectively, to locate the ESSs under investigation type-
I. For investigation type-II, the ABC and PSO approaches take about 503 s and 665 s,
respectively, to place the ESSs on the network.

Overall performance and ESS cost comparison: The performance indices of the
proposed system are evaluated and presented in Table 5. Generally, the system has a good
voltage profile for VPII > 1. For instance, the VPII = 2.114 for Case 2(II) represents that
Case 2(II) has the best voltage profile among the options. On the other hand, the higher
values of PLRIP , PLRIQ, PLRIT , and LLI denote higher real power loss, reactive power
loss, total line loss, and line loading, respectively. For example, Case 3(I) has the PLRIT =
0.802 and the LLI = 0.890 which are lower than those of Case 2(I) (PLRIT = 0.816 &
LLI = 0.894). This implies that Case 3(I) has achieved improved performance in regard to
total line loss and line loading compared to Case 2(I).

Fig. 16 presents the overall comparison of the system performance indices and total ESS
unit cost (as the total ESS unit cost is the highest cost component of the system, which
is defined in (15)). It is apparent from the characteristics that case 2(I) is relatively cost
efficient and is the optimal solution for distributed ESS allocation with a uniform size, while
Case 3(I) is the optimal choice for ESS allocation with non-uniform sizes.

7. Conclusions

This paper has presented an effective strategy for the optimal placement of distributed
ESSs in distribution networks using the ABC meta-heuristic optimization technique. The
key problems of voltage deviation, line loading, and power losses in distribution networks are
addressed and mitigated to improve system performance. The PSO algorithm is also applied
to verify the system results obtained from the ABC approach. The related performance
indices are evaluated and overall system results are analyzed quantitatively. Based on the
investigations and analysis presented in this paper, the following conclusions can be made
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in regard to optimal ESS placement:

• The optimal placement of multiple ESSs, in a distributed manner, offers good flexibil-
ity and performance improvement in a distribution network with large renewable DG
penetration.

• Both approaches − optimal distributed ESS placement with a uniform size and non-
uniform sizes − are suitable for solving distribution network issues as addressed in this
paper. However, ESS placement with a uniform size technique can be implemented
more flexibly, while the approach with non-uniform ESS sizes is more adjustable with
regard to performance improvement.

• As the optimal ESS placement largely depends on performance improvement targets,
a tradeoff should be made in terms of performance indices, installation sites, and costs.
For instance, considering optimal performance as well as implementation costs, and a
tradeoff with voltage profile, line loading, and losses, Case 2(I) presented in Section
VI is the optimal solution.

Overall, considering the above findings, the proposed approach for optimal placement of
distributed ESSs is highly suitable for an MV or large-scale distribution system and can be
used in real distribution network planning and asset management applications. Future work
can apply intelligent control techniques that consider the online communication among the
placed ESSs. Optimal operation of ESSs considering RES uncertainty, comprehensive ESS
sizing, ESS placement by injecting both P and Q on the dispatch of ESSs, and overall power
quality improvement after ESS placement can also be investigated.
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Appendices

A. System data

The system data used for the IEEE 33 distribution network test system is presented in Table
6 [67].
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Table 1: Summary of ABC optimization parameters and variables

Type Parameters/variables Description/settings

Input parameters Vrated,RL(i, j), XL(i, j), P , Q, PTF ,
QTF , Swind, SPV −max, SPV −op,
and SESS−max

Required for the network model.

Output parameters Cn
V D, Cl

PL, C
l
LL, and C

UT
ESS Required for the objective function.

Decision variables
Si
ESS Determines the ESS size in MVA with unity

power factor, i.e. the ESSs inject only P
(MW) to the network (Q = 0).

λiESS This determines the ESS position in the
network.

ABC parameters ND, CS, NFS , Ltrial, and Itmax Settings: ND = 2, CS = 100,
NFS = CS/2 =population size, Ltrial = 60,
and Itmax = 1000.

ABC bounds
For Si

ESS : lb1 and ub1 Settings: lb1 = 0.1 MVA and ub1 = 2 MVA.

For λiESS : lb2 and ub2 Settings: lb2 = 0 and ub2 = 1.

Table 2: System results after a quantitative analysis

Case Details ESS Apparent Power (MVA)
& Locations

%VDI %LLT PT
(MW)

QT
(MVar)

Total
ESS
Size

(MWh)

Case 1 Without ESS allocation

Base case No ESS 89.73 269.81 0.11 0.09 -

Case 2 Distributed ESS allocation for a uniform ESS size

(I). Min J (CFi) with
γV D=γPL=γLL=γESS=1

ESS9, ESS14, ESS25, ESS28, ESS29,
ESS30, ESS31, ESS32, ESS MVA=0.724

75.753 241.128 0.0905 0.0683 5.793

(II). Min J (CFi) with
γV D=100 &

γPL=γLL=γESS=1

ESS9, ESS11, ESS14, ESS15, ESS25,
ESS27, ESS28, ESS29, ESS30, ESS31,

ESS32, ESS33, ESS MVA=1.974

32.238 440.955 0.2491 0.2691 23.689

Case 3 Distributed ESS allocation for non-uniform ESS sizes

(I). Min J (CFi) with
γV D=γPL=γLL=γESS=1

ESS8=0.335, ESS10=0.378,
ESS13=0.383, ESS16=0.823, ESS17=0.1,
ESS20=0.128, ESS22=0.1, ESS25=2,

ESS30=1.442, ESS31=0.725,
ESS32=0.781

72.162 240.039 0.0894 0.0666 7.195

(II). Min J (CFi) with
γV D=100 &

γPL=γLL=γESS=1

ESS9=0.28, ESS11=1.13, ESS13=0.454,
ESS14=1.42, ESS15=0.735, ESS17=2,
ESS25=2, ESS26=0.11, ESS27=0.711,
ESS28=1.427, ESS29=2, ESS30=2,

ESS31=1.873, ESS32=1.603,
ESS33=0.682

41.520 388.220 0.1830 0.2100 18.425
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Table 4: Convergence and computation time of ABC and PSO algorithms

Investigation

type

ABC

convergence

ABC computation

time (s)
PSO convergence

PSO computation

time (s)

I After 208 iterations 325 After 191 iterations 440

II After 347 iterations 503 After 332 iterations 665

Table 5: Performance indices for various cases of Table 2
Case Details VPII PLRIP PLRIQ PLRIT LLI

Case 1 - - - - -

Case 2(I) 1.037 0.829 0.802 0.816 0.894

Case 2(II) 2.114 2.281 3.158 2.755 1.634

Case 3(I) 1.064 0.819 0.781 0.802 0.890

Case 3(II) 1.823 1.675 2.408 2.059 1.439
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Table 6: Used data for 33-bus test system [67]

Line

Number

Sending

Bus

Receiving

Bus

Resistance

(Ω)

Reactance

(Ω)

Load at Receiving End Bus

Real Power

(kW)

Reactive

Power

(kVar)

L01
B01 (Main

SS)
B02 0.0922 0.0477 100 60

L02 B02 B03 0.4930 0.2511 90 40

L03 B03 B04 0.3660 0.1864 120 80

L04 B04 B05 0.3811 0.1941 60 30

L05 B05 B06 0.8190 0.7070 60 20

L06 B06 B07 0.1872 0.6188 200 100

L07 B07 B08 1.7114 1.2351 200 100

L08 B08 B09 1.0300 0.7400 60 20

L09 B09 B10 1.0400 0.7400 60 20

L10 B10 B11 0.1966 0.0650 45 30

L11 B11 B12 0.3744 0.1238 60 35

L12 B12 B13 1.4680 1.1550 60 35

L13 B13 B14 0.5416 0.7129 120 80

L14 B14 B15 0.5910 0.5260 60 10

L15 B15 B16 0.7463 0.5450 60 20

L16 B16 B17 1.2890 1.7210 90 40

L17 B17 B18 0.7320 0.5740 90 40

L18 B2 B19 0.1640 0.1565 90 40

L19 B19 B20 1.5042 1.3554 90 40

L20 B20 B21 0.4095 0.4784 90 40

L21 B21 B22 0.7089 0.9373 90 40

L22 B3 B23 0.4512 0.3083 90 50

L23 B23 B24 0.8980 0.7091 420 200

L24 B24 B25 0.8960 0.7011 420 200

L25 B6 B26 0.2030 0.1034 60 25

L26 B26 B27 0.2842 0.1447 60 25

L27 B27 B28 1.0590 0.9337 60 20

L28 B28 B29 0.8042 0.7006 120 70

L29 B29 B30 0.5075 0.2585 200 600

L30 B30 B31 0.9744 0.9630 150 70

L31 B31 B32 0.3105 0.3619 210 100

L32 B32 B33 0.3410 0.5302 60 40

L33?? B21 B8 0.0000 2.0000

L34?? B9 B15 0.0000 2.0000

L35?? B12 B22 0.0000 2.0000

L36?? B18 B33 0.0000 0.5000

L37?? B25 B29 0.0000 0.5000

??= Tie Lines, Substation Voltage = 12.66 kV
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Figure 1: Single-line diagram of the proposed distribution network model (ESS placement for Case 2(I)).
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Figure 2: Flowchart of the ABC optimization approach.
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Figure 3: Flowchart of the proposed optimal distributed ESS placement approach.
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Figure 4: Load scaling of a distribution feeder [78].
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Figure 5: Time-variant scaling factors of loads and RES generation [12].
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Figure 6: Voltage profiles for various cases.
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Figure 7: Voltage profile of the feeder for case 2(I).
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Figure 8: Voltage profile of the feeder for case 2(II).
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Figure 9: Voltage profile of the feeder for case 3(I).
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Figure 10: Voltage profile of the feeder for case 3(II).
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Figure 11: The percent line loading for various cases.
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Figure 12: Real power loss for various cases.
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Figure 13: Reactive power loss for various cases.

37



Figure 14: The total line loss for various cases.
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Figure 15: Convergence of ABC and PSO algorithms.
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Figure 16: Performance and ESS cost comparison for various cases.
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