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New findings 27 

• What is the central question of this study? 28 

Corticospinal excitability to biceps brachii is known to modulate according to upper-limb 29 

posture. Here, cervicomedullary stimulation was used to investigate potential spinal 30 

contributions to elbow angle dependent changes in corticospinal excitability at rest. 31 

• What is the main finding and its importance? 32 

At more extended elbow angles, biceps responses to cervicomedullary stimulation were 33 

decreased, whereas cortically-evoked responses (normalised to cervicomedullary-evoked 34 

responses) were increased. Results suggest decreased spinal excitability but increased cortical 35 

excitability as the elbow is placed in a more extended position, an effect that is unlikely due 36 

to cutaneous stretch receptor activation. 37 
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Abstract 46 

Corticospinal excitability to biceps brachii is known to modulate according to upper-47 

limb posture. In Study 1, our aim was to investigate potential spinal contributions to this 48 

modulation and the independent effect of elbow angle. Biceps responses to transcranial 49 

magnetic stimulation (motor evoked potentials; MEPs) and electrical cervicomedullary 50 

stimulation (cervicomedullary motor evoked potentials; CMEPs) were measured at five 51 

elbow angles ranging from full extension to 130° of flexion. In Study 2, possible 52 

contributions of cutaneous stretch receptors to elbow angle dependent excitability changes 53 

were investigated by eliciting MEPs and CMEPs under three conditions of skin stretch about 54 

the elbow (stretch to mimic full extension, no stretch, stretch to mimic flexion). Each study 55 

had 12 participants. Evoked potentials were acquired at rest with participants seated, the 56 

shoulder flexed 90° and forearm supinated. MEPs and CMEPs were normalised to maximal 57 

compound muscle action potentials (Mmax). In Study 1, as the elbow was moved to more 58 

extended positions, there were no changes in MEPs (p = 0.963), progressive decreases in 59 

CMEPs (p < 0.0001; CMEPs at 130° flexion ~220% of full extension) and increases in 60 

MEP/CMEP ratio (p = 0.019; MEP/CMEP at 130° flexion ~20% of full extension). In 61 

Study 2, there were no changes in MEPs (p = 0.830) or CMEPs (p = 0.209) between skin 62 

stretch conditions. Therefore, while results suggest a decrease in spinal and an increase in 63 

supraspinal excitability at more extended angles, the mechanism for these changes in 64 

corticospinal excitability to biceps is not cutaneous stretch receptor feedback.  65 

 66 
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Abbreviations 69 

CMEP – Cervicomedullary motor evoked potential 70 

MEP – Motor evoked potential 71 

Mmax – Maximal compound muscle action potential 72 

TMS – Transcranial magnetic stimulation 73 

 74 

Introduction  75 

In humans, corticospinal excitability to upper-limb muscles can be modified by 76 

changes in upper-limb posture (Collins & Button, 2018; Collins et al., 2017; Dominici et al., 77 

2005; Forman et al., 2016; Ginanneschi et al., 2005; Ginanneschi et al., 2006; Mazzocchio et 78 

al., 2008; Mitsuhashi et al., 2007; Mogk et al., 2014; Nuzzo et al., 2016; Perez & Rothwell, 79 

2015; Peterson et al., 2014; Renner et al., 2006). For biceps brachii – a muscle whose length 80 

is modified by changes in shoulder, elbow, and forearm position – motor evoked potentials 81 

(MEPs) from transcranial magnetic stimulation (TMS) are larger when the forearm is 82 

supinated compared to pronated (Mitsuhashi et al., 2007; Mogk et al., 2014; Nuzzo et al., 83 

2016; Peterson et al., 2014), or when the shoulder is in a more flexed or abducted position 84 

(Collins & Button, 2018; Collins et al., 2017; Mogk et al., 2014; Nuzzo et al., 2016). Such 85 

modifications can be assessed by activating the corticospinal pathway at supraspinal and 86 

spinal levels to elicit MEPs and cervicomedullary motor evoked potentials (CMEPs) 87 

respectively.  88 

Changes in MEPs may reflect changes at any point along the pathway from the cortex 89 

to the muscle. Cervicomedullary stimulation on the other hand activates the corticospinal 90 



pathway subcortically, and variations in the CMEP reflect changes at a spinal level (Taylor, 91 

2006; Ugawa et al., 1991; Ugawa et al., 1994). A recent study showed that CMEPs change in 92 

a similar manner to MEPs with different shoulder and forearm orientations (Nuzzo et al., 93 

2016). This suggests that arm posture modulates motoneurone excitability, which likely 94 

contributes to changes seen in MEPs. This idea is further supported by a study of 95 

anaesthetised monkeys showing modulation of upper-limb muscle responses to cervical 96 

spinal cord stimulation as shoulder and elbow position was changed (Yaguchi et al., 2015). 97 

Retention of these posture-dependent changes after a high spinal lesion confirmed that they 98 

occur without descending influence and suggests that they depend on afferent input (Yaguchi 99 

et al., 2015). However, with changes in posture of multiple joints it is difficult to predict 100 

which afferents may change and hence, may contribute to altered excitability at a spinal 101 

and/or cortical level. 102 

Manipulation of the angle of a single joint should simplify the afferent changes 103 

associated with altered posture. A few studies have examined the effects of elbow angle on 104 

corticospinal excitability to biceps, independent of changes in shoulder and forearm 105 

orientation. Of these, cortically-evoked biceps responses were larger in elbow extension than 106 

flexion in monkeys (Gellhorn, 1948; Graziano et al., 2004). This change is consistent with an 107 

increase in muscle spindle-afferent firing as the muscle stretches with consequent excitation 108 

of motoneurones and/or motor cortex (Pierrot-Deseilligny & Burke, 2005). However, the 109 

opposite effect has been shown in humans, with larger biceps MEPs reported during elbow 110 

flexion in comparison to extension (Renner et al., 2006). Renner et al. suggested the effect 111 

may be cortical in origin, given it was not seen in participants with cortical stroke. However, 112 

potential spinal contributions cannot be ruled out, particularly as more complex postural 113 

changes that shorten biceps and lead to larger MEPs also result in larger CMEPs (Nuzzo et 114 

al., 2016). Increased excitability of biceps motoneurones when biceps is shorter suggests that 115 



muscle spindles from the homonymous muscle are not the main contributor to posture-related 116 

changes in excitability but this has not been confirmed for single-joint changes in posture. 117 

Other sensory receptors that fire in relation to joint angle with the muscles at rest include 118 

cutaneous and joint receptors, both of which are thought to contribute to perception of limb 119 

position. In particular, slowly adapting type II cutaneous receptors respond to skin stretch and 120 

can fire monotonically across joint range (Edin, 1992). Hence, these receptors could 121 

potentially contribute to joint-angle-related changes in excitability of neurones in the motor 122 

pathway. Some evidence for cutaneous afferent influences on motor pathways come from 123 

studies showing that physiotherapy taping over the skin can modify muscle activity, although 124 

the reported effects are mixed (Constantinou & Brown, 2010; Morris et al., 2013). Further 125 

evidence comes from human studies showing the presence of several excitatory and 126 

inhibitory cutaneomuscular reflexes, involving indirect cutaneous afferent input to spinal 127 

motoneurones (Jenner & Stephens, 1982; Maertens de Noordhout et al., 1992; McNulty et al., 128 

1999). Furthermore, cutaneous afferents have been shown to decrease presynaptic inhibition 129 

of Ia afferents (Nakashima et al., 1990) and inhibit propriospinal-like excitatory connections 130 

to motoneurones supplying the biceps and other upper limb muscles (Burke et al., 1994; 131 

Nielsen & Pierrot-Deseilligny, 1991).   132 

Here we aimed to investigate the effects of elbow angle on cortical and spinal level 133 

excitability in two studies. In Study 1, we elicited biceps MEPs, CMEPs and Mmax at angles 134 

ranging from full extension through to 130° of flexion. We hypothesised that, consistent with 135 

effects in more complex postures, CMEPs would be smaller at long biceps muscle lengths 136 

produced via single-joint angle changes. In Study 2, a potential contribution of afferent input 137 

from cutaneous stretch receptors with different elbow angles was assessed by stretching the 138 

skin around the elbow to mimic both flexion and extension, whilst maintaining the elbow at 139 

90°. 140 



Materials and methods 141 

Ethical approval 142 

All individuals presenting to the laboratory gave informed, written consent. Procedures 143 

were approved by the Human Research Ethics Committee of the University of New South 144 

Wales (HREC number HC14318), and the study was conducted according to the Declaration 145 

of Helsinki, except for registration in a database. 146 

Participants 147 

Seventeen healthy individuals presented to the laboratory for Study 1 with five 148 

excluded due to the presence of an early latency component of CMEPs, as described in the 149 

‘Cervicomedullary stimulation’ section. Twenty-two healthy individuals presented to the 150 

laboratory for Study 2, with ten excluded due to discomfort from stimulation or the presence 151 

of an early latency component of CMEPs. Twelve participants completed each study (Study 1: 152 

aged 25 y (SD 4), 5 F; Study 2: aged 27 y (SD 5), 8 F) with one completing both studies. All 153 

were right hand dominant in Study 1. Ten were right-hand dominant and two were left-hand 154 

dominant in Study 2.  155 

Experimental setup 156 

Participants sat upright with the right shoulder flexed at 90° and the forearm supinated. 157 

The arm was secured with straps at both the wrist and palm to an arm bar that allowed 158 

movement of the elbow joint (Fig 1A). The arm bar allowed the arm to be fixed at angles 159 

ranging from 0° of flexion (arm straight) to 130° of flexion, in increments of 5°. Participants 160 

were asked to keep their arm relaxed for the duration of each study. Electromyographic activity 161 

was recorded from the right biceps brachii through 20-mm diameter Ag-AgCl surface 162 

electrodes (Conmed, NY, USA) which were placed over the muscle belly (motor point) and 163 

distal tendon. Electrodes were attached with the arm in full extension, and a marker was used 164 



on the skin surrounding each electrode so that any electrode displacement could be detected 165 

and corrected. Once electrodes were attached, the arm was fixed at 90° of elbow flexion for the 166 

remainder of the setup. EMG signals were amplified (x 300), filtered at 16-1000 Hz (CED 1902 167 

amplifier; Cambridge Electronic Design, Cambridge, UK), sampled at 5 kHz, and recorded on 168 

a computer for analysis (CED 1401 with Signal software; Cambridge Electronic Design).  169 

For Study 2, the posture of the upper-limb and the placement of the biceps recording 170 

electrodes were identical to that in Study 1. However, the elbow was fixed at 90° of elbow 171 

flexion throughout Study 2. Similar to methods used in previous studies (Collins & Prochazka, 172 

1996; Collins et al., 2005), skin stretch was applied via pieces of Leuko sports tape (2.5 cm 173 

width; Beiersdorf, North Ryde, Australia) attached to the skin at various locations near the 174 

elbow (Fig 1A). The pieces of tape were punctured by papers clips which were then attached 175 

to strings. The skin could then be stretched by pulling on the strings and tying them to hooks 176 

on the apparatus. 177 

Brachial plexus stimulation 178 

A constant current stimulator (Model DS7AH, Digitimer, Welwyn Garden City, UK) 179 

delivered single stimuli (200-µs pulse width) to peripheral nerves supplying right elbow flexors 180 

through Ag-AgCl surface electrodes (20-mm diameter, Conmed), placed in the supraclavicular 181 

fossa over the brachial plexus (cathode) and over the acromion (anode). Stimulus intensity was 182 

increased until no further increase was seen in the compound muscle action potential recorded 183 

from biceps, and 120% of this intensity was used to elicit maximal compound muscle action 184 

potentials (Mmax). Intensities of 108 mA (SD 20) were used for Study 1 and 68 mA (SD 31) 185 

for Study 2. Brachial plexus stimulation setup was done with the elbow fixed at 90°. However, 186 

to ensure Mmax was achieved at all angles in Study 1, the intensity for Mmax was also tested 187 

in the most extended and flexed positions and was adjusted if necessary. 188 



Transcranial magnetic stimulation (TMS) 189 

To activate the corticospinal pathway at the level of the primary motor cortex, 190 

transcranial magnetic stimulation (TMS) was used. A large, bent figure-eight coil (12-cm 191 

outside loop diameter; Magstim 200, Magstim, Whitland, UK) was positioned over the left 192 

motor cortex at the optimal site to elicit right biceps responses (i.e. the position that produced 193 

the largest, most consistent responses). The coil was placed 45º from midline, handle 194 

backwards, to induce a posterior-to-anterior current in the brain. TMS intensity (Study 1: 75% 195 

(SD 13) of maximum stimulator output; Study 2: 65% (SD 11)) was set to elicit biceps motor 196 

evoked potentials (MEPs) of ~ 0.5 to 1 mV (~ 5% of Mmax) when in the 90° position. 197 

Cervicomedullary stimulation 198 

 To activate the corticospinal pathway at a spinal level, cervicomedullary stimulation 199 

was used. Ag-AgCl surface electrodes (20-mm diameter, Conmed) were placed behind each 200 

ear, 1-2 cm posterosuperior to the tips of the mastoid processes (Ugawa et al., 1991). Onset 201 

latency was monitored throughout to ensure responses were the result of corticospinal axon 202 

stimulation; as an earlier latency (by ~2 ms) indicates motoneurone stimulation at cervical roots 203 

(Taylor & Gandevia, 2004). Intensity (Study 1: 160 mA (SD 32); Study 2: 136 mA (SD 40)) 204 

was set to elicit biceps cervicomedullary motor evoked potentials (CMEPs) of ~ 1 to 2 mV 205 

(~ 10% of Mmax) when in the 90° position. In Study 1, we also acquired CMEPs (stimulus 206 

intensity: 140 mA (SD 24)) that were matched in size to the MEP (termed “matched CMEPs” 207 

throughout this paper). 208 

Study design  209 

Studies 1 and 2 were both single session studies that incorporated repeated measures, crossover 210 

designs. During each session, the effects of five different elbow angles (Study 1) or three 211 

different skin stretch conditions (Study 2) were examined in random order in each individual.  212 



Protocol 213 

Study 1 214 

Each participant’s full range of elbow flexion (12° (SD 10) to 150° (SD 8)) was measured with 215 

a goniometer, and five angles were selected for the study accordingly. The angle on the arm 216 

bar (in the flexion direction) closest to a participant’s full extension (15° (SD 10)) was used as 217 

the reference. All participants were tested at 90°, as this is a common angle used in human 218 

studies of elbow flexors and all were tested at 130° despite being able to flex further, given this 219 

was the limit of the arm bar. Two other angles were tested, halfway between full extension and 220 

90° (50° (SD 5)) and between 90° and 130° (110° for all participants). Each angle was tested 221 

twice per session, in random order within two blocks, so that the arm bar changed position ten 222 

times. Between each position change, the arm bar was moved up and down several times to 223 

avoid any thixotropic effects from the previous angle. At each position, a set of stimuli (5 224 

CMEPs, 1 Mmax and 10 MEPs at 0.1 Hz) was delivered so that two sets of responses were 225 

elicited per angle (Fig 1B). For the full extension, 90° and 130° angles, an additional 5 CMEPs 226 

matched to the size of MEPs were also elicited per set (0.1 Hz). Thus, the total number of 227 

evoked responses for each condition was 10 CMEPs, 2 Mmax and 20 MEPs, with an additional 228 

10 matched CMEPs for full extension, 90° and 130° angles. 229 

Study 2 230 

To examine whether afferent feedback from cutaneous stretch receptors affected 231 

evoked responses of the motor pathway, three skin stretch conditions were utilized. The upper-232 

limb posture for all three conditions was identical. One condition involved no skin stretch. The 233 

other two conditions involved stretching the skin about the elbow to mimic the amount of skin 234 

stretch that occurs naturally when the elbow is fully extended or fully flexed. This amount was 235 

quantified during pilot testing in two individuals by placing marks on skin of the anterior and 236 



posterior arm and forearm and then measuring how far each mark moved relative to a mark 237 

placed on the elbow, when the elbow was fully extended or flexed compared to 90˚. 238 

For the condition that involved stretching the skin to mimic elbow extension, the skin 239 

of the anterior arm was pulled proximally 2.8 cm (SD 0.6) (pilot testing showed anterior arm 240 

skin stretch of 2.1 cm (0.4) with full elbow extension), and the skin of the anterior forearm was 241 

pulled distally 3.3 cm (SD 0.7) (pilot testing showed anterior forearm skin stretch of 3.6 cm 242 

(0.4)). This stretched the skin across the anterior of the elbow. During this condition, the skin 243 

of the posterior arm was pulled distally, and skin of the posterior forearm was pulled proximally 244 

to compress the skin across the posterior of the joint. However, accurate measurements of 245 

compression amounts were not obtained due to the design of the arm bar.  For the condition 246 

that involved stretching the skin about the elbow to mimic elbow flexion, the skin of the 247 

posterior arm was pulled proximally 2.9 cm (SD 0.6) (pilot testing showed posterior arm skin 248 

stretch of 0.8 cm (0.3) during full elbow flexion), and the skin of the posterior forearm was 249 

pulled distally 2.6 cm (SD 0.6) (pilot testing showed posterior forearm skin stretch of 0.3 cm 250 

(0.5). 251 

The order of the three skin-stretch conditions was randomized. In each condition, two 252 

sets of evoked responses were collected (Fig 1C). Each set consisted of 5 CMEPs, 10 MEPs, 253 

and 2 Mmax. Thus, the total number of evoked responses for each condition was 10 CMEPs, 254 

20 MEPs, and 4 Mmax. 255 

Data analysis and statistics 256 

Individual MEP and CMEP traces were excluded if the root mean square amplitude of 257 

EMG for 100 ms before stimulation was ≥ 0.004 mV, after a digital, second-order Butterworth 258 

notch filter (bandstop 49 – 51 Hz) was applied to remove any 50-Hz noise (as per Nuzzo et al., 259 

2016). This criterion ensured that the final data set included only those trials in which the 260 



muscle was relaxed prior to the elicited potential. All of a participant’s MEP or CMEP data 261 

were excluded from analyses if they had > 10 MEPs or > 5 CMEPs excluded within at least 262 

one angle or stretch condition (Study 1: one participant’s MEP and CMEP data excluded; Study 263 

2: one participant’s MEP data excluded, one participant’s CMEP data excluded, and one 264 

participant’s MEP and CMEP data excluded). From the remaining participants a total of 6 of 265 

1100 MEPs and 13 of 880 CMEPs were excluded from Study 1 and a total of 24 of 600 MEPs 266 

and 37 of 300 CMEPs were excluded from Study 2. Mean MEP and CMEP areas were 267 

calculated for each set. Peripheral changes in muscle fibre action potentials or in the position 268 

of surface electrodes with respect to the underlying muscle were accounted for by normalising 269 

MEP and CMEP areas to the area of Mmax delivered within the same set. Mean Mmax, MEP 270 

(% Mmax) and CMEP (% Mmax) areas were calculated for each angle or stretch condition. In 271 

Study 1, matched CMEPs were treated in the same way as for larger CMEPs. The MEP/CMEP 272 

ratio was calculated using MEP and matched CMEP areas.  273 

Normality was assessed via visual inspection of histograms and the Shapiro-Wilks test. 274 

Where the assumption of normality was met, one-way repeated-measures ANOVAs were used 275 

to compare the effect of angle or stretch condition on the various outcome measures, with a 276 

Greenhouse-Geisser correction applied if the assumption of sphericity was not met. When the 277 

assumption of normality was not met, non-parametric Friedman’s ANOVAs were used. In 278 

Study 1 the angle conditions were as follows: full extension, mid extension, 90°, 110° and 130° 279 

(for Mmax, MEP (% Mmax) and CMEP (% Mmax) areas) or full extension, 90° and 130° (for 280 

matched CMEP area (% Mmax) and MEP/CMEP ratio). In Study 2 the stretch conditions were 281 

as follows: 90° with skin stretch to mimic full extension, 90° with no skin stretch and 90° with 282 

skin stretch to mimic flexion (for Mmax, MEP (% Mmax) and CMEP (% Mmax) areas). For 283 

post-hoc analyses, Bonferroni corrected two-tailed, paired-samples t-tests (normal data) or 284 

two-tailed Wilcoxon signed-rank tests (non-normal data) were used to compare the reference 285 



condition (full extension or 90° with skin stretch to mimic full extension) to each other 286 

condition. Statistical analyses were performed using IBM SPSS Statistics software (version 287 

23). Group data are expressed as mean (SD) and statistical significance was set at p < 0.05. 288 

 289 

Results 290 

Study 1 291 

Areas and peak-to-peak amplitudes of Mmax, MEPs, CMEPs, and matched CMEPs 292 

for each angle condition are given in Table 1. Mmax area was different between angles 293 

(F(1.27,14.00) = 14.83, p = 0.001, n = 12, Fig 2 and 3A), with larger Mmax at full extension in 294 

comparison to mid extension (p = 0.028; ~92% of full extension), 90° (p = 0.019; ~77% of 295 

full extension), 110° (p = 0.005; ~67% of full extension) and 130° (p = 0.007; ~66% of full 296 

extension). Similar differences between angles were seen for Mmax amplitude (F(1.65,18.12) = 297 

11.52, p = 0.001, n = 12), with larger Mmax at full extension in comparison to 90° 298 

(p = 0.023), 110° (p = 0.004) and 130° (p = 0.008). But unlike area, amplitude at full 299 

extension was not different in comparison to mid extension (p = 0.060).  300 

MEP area and amplitude (% Mmax) were not different between angles (area: χ2 (4) = 301 

0.66, p = 0.963, n = 11, Fig 2 and 3B; amplitude: χ2 (4) = 3.13, p = 0.560, n = 11).  302 

CMEP area (% Mmax) was different between angles (χ2 (4) = 33.67, p < 0.0001, 303 

n = 11, Fig 2 and 3B), with smaller CMEPs at full extension in comparison to 90° (p = 0.004; 304 

~156% of full extension), 110° (p = 0.004; ~183% of full extension) and 130° (p = 0.008; 305 

~219% of full extension), but not mid extension (p = 0.824; ~109% of full extension). Similar 306 

differences were seen for CMEP amplitude (χ2 (4) = 36.44, p < 0.0001, n = 11), with smaller 307 

CMEPs at full extension in comparison to 90° (p = 0.004), 110° (p = 0.004) and 130° (p = 308 

0.004), but not mid extension (p = 0.699).  309 



Matched CMEP areas were different between angles (χ2 (2) = 16.55, p < 0.0001, n = 310 

11), with smaller CMEPs at full extension in comparison to 90° (p = 0.002; ~189% of full 311 

extension) and 130° (p = 0.004; ~376% of full extension). Similar differences were seen for 312 

matched CMEP amplitude (χ2 (2) = 20.18, p < 0.0001, n = 11), with smaller CMEPs at full 313 

extension in comparison to 90° (p = 0.002) and 130° (p = 0.002). 314 

As was planned, there were no differences (p = 0.765) between matched CMEP and 315 

MEP areas elicited in the 90° position (Wilcoxon signed-rank test), indicating they were 316 

similar in size. The MEP/CMEP ratios were different between angles (F(1.05,10.47) = 7.48, 317 

p = 0.019, n = 11), with larger values at full extension in comparison to 90° (p = 0.048; ~29% 318 

of full extension) and 130° (p = 0.036; ~19% of full extension). 319 

Study 2 320 

 Areas and peak-to-peak amplitudes of Mmax, MEPs and CMEPs for each stretch 321 

condition are given in Table 1. Mmax area and amplitude were not different between skin 322 

stretch conditions (area: F(1.25,13.72) = 1.12, p = 0.325, n = 12, Fig 4A; amplitude: F(1.19,13.10) = 323 

3.08, p = 0.098). MEP area and amplitude were not different between skin stretch conditions 324 

(area: F(1.25,11.21) = 0.19, p = 0.727, n = 10, Fig 4B; amplitude: F(2,18) = 0.02, p = 0.977). 325 

CMEP area and amplitude were not different between skin stretch conditions (area: F(2,18) = 326 

1.71, p = 0.209, n = 10, Fig 4B; amplitude: F(2,18) = 1.64, p = 0.221). 327 

 328 

Discussion 329 

Results presented here show that elbow angle modulates the excitability of motor 330 

pathways supplying the relaxed biceps brachii. At more extended elbow angles, Mmax was 331 

increased, MEPs were unchanged, both large and small CMEPs were decreased, and the 332 

MEP/CMEP ratio was increased in comparison to more flexed angles. The opposite effects of 333 



elbow angle on CMEPs and the MEP/CMEP ratio suggest decreased spinal-level excitability 334 

with elbow extension, but an increase in supraspinal excitability. Changes are unlikely due to 335 

afferent input from cutaneous stretch receptors, as shown by a lack of change in MEPs and 336 

CMEPs under different skin stretch conditions in Study 2. 337 

In Study 1, Mmax was largest in full extension, becoming progressively smaller as the 338 

elbow was flexed. Changes in Mmax occur as a muscle lengthens or shortens (Frigon et al., 339 

2007). Biceps Mmax is larger when the shoulder is flexed in comparison to no flexion 340 

(Collins & Button, 2018; Collins et al., 2017; Nuzzo et al., 2016) but there are mixed reports 341 

for forearm orientation, with Mmax in supination reported as both larger (Mogk et al., 2014) 342 

and smaller (Nuzzo et al., 2016) than pronation. Overall, these studies report larger Mmax for 343 

shorter biceps lengths. This contrasts with results from the current study, given we observed 344 

smaller Mmax at shorter biceps lengths. It is likely that the specific electrode positions used 345 

in the different studies account for the differing findings as the changes in Mmax reflect the 346 

combined effects of changes in muscle length on the shape of the muscle fibre action 347 

potentials and changes in the location of the underlying muscle with respect to the surface 348 

electrodes. Here, during setup, biceps recording electrodes were placed on the skin when the 349 

arm was in full extension. Thus, the location of electrodes would have been optimal in this 350 

position and may have become less optimal as the elbow was moved to more flexed 351 

positions, resulting in progressively smaller responses. This highlights the importance of 352 

normalising MEPs and CMEPs to Mmax.  353 

Opposite to Mmax, biceps CMEPs were smallest in full extension and became 354 

progressively larger as the elbow was flexed (i.e. biceps shortened). This is consistent with 355 

previous work, which showed larger CMEPs when the shoulder was more flexed or when the 356 

forearm was more supinated (i.e. biceps shortened) in a study where posture at both joints 357 

was altered (Nuzzo et al., 2016). By contrast, no changes in CMEPs (% Mmax) were seen 358 



when the shoulder was flexed while the elbow angle was maintained (i.e. biceps shortened) 359 

(Collins et al., 2017). Thus, it is possible that elbow angle contributes more than shoulder 360 

orientation to modifications in the excitability of biceps motoneurones. Moreover, biceps 361 

muscle length may not be a critical factor that leads to altered biceps motoneurone 362 

excitability with change of posture.  363 

Unlike CMEPs, MEP size was not influenced by changes in elbow angle. MEPs and 364 

CMEPs are shown to activate many of the same corticospinal axons supplying biceps 365 

motoneurones, and spinal contributions to the MEP may be partially accounted for by 366 

normalising MEPs to CMEPs (MEP/CMEP ratio) (Gandevia et al., 1999; Taylor et al., 2002). 367 

Here, when the MEP and CMEP were matched in size to allow this comparison, the 368 

MEP/CMEP ratio was largest at full extension and became progressively smaller as the 369 

elbow was flexed. This suggests that supraspinal mechanisms probably contributed to 370 

changes in corticospinal excitability in an opposing manner to changes at the spinal level. 371 

The lack of effect of elbow angle on MEP size seen here is in contrast to previous studies in 372 

humans, which report larger MEPs at shorter biceps lengths (shoulder flexed, elbow flexed or 373 

forearm supinated) (Collins et al., 2017; Mogk et al., 2014; Nuzzo et al., 2016; Renner et al., 374 

2006). However, an increase in supraspinal excitability with biceps lengthening is in line with 375 

studies in the rat (Sanes et al., 1992) and monkey (Gellhorn, 1948; Graziano et al., 2004). 376 

Moreover, although Nuzzo et al. (Nuzzo et al., 2016) reported smaller MEPs at longer biceps 377 

lengths, MEP/CMEP ratios were larger at longer biceps lengths, as in the current study, 378 

although differences were not statistically significant.  379 

The precise mechanisms of posture-related changes in CMEPs and MEPs remain 380 

unknown. The simplest explanation for differences in CMEPs with the arm held passively at 381 

different elbow angles is that altered afferent input changes excitability of motoneurones or 382 

premotoneurones in the corticospinal-motoneuronal pathway. Thus, afferent inputs from 383 



joint, skin and muscle receptors, and various pathways of neuronal integration at spinal and 384 

supraspinal levels are all potential contributors. Perception of passive joint angle is thought to 385 

rely on the combined firing of muscle spindle receptors (primary and secondary endings) in 386 

muscles on both sides of the joint, slowly adapting type II (SAII) cutaneous receptors which 387 

signal skin stretch and stretch receptors in the joint capsule and ligaments (Proske & 388 

Gandevia, 2012). Muscle spindle (group Ia and II) and SAII afferent firing is monotonically 389 

related to joint angle (Burgess et al., 1982; Edin, 1992), whereas joint receptors are active at 390 

the extremes of joint range (Burke et al., 1988) and may be unable to provide joint position 391 

information within physiological ranges (Proske & Gandevia, 2012). 392 

Changes in muscle spindle firing cannot explain the changes in CMEPs across elbow 393 

angles. An increase in stretch-induced muscle spindle input from biceps should facilitate biceps 394 

motoneurones with the elbow in extension, whereas stretch of triceps with elbow flexion should 395 

provide reciprocal inhibition. Both effects are counter to the observed change from small 396 

CMEP with elbow extension to large CMEP with flexion. In contrast, the increase in 397 

supraspinal excitability seen with elbow extension is consistent with additional firing of biceps 398 

muscle spindle afferents. Previous work shows that increased muscle spindle afferent firing 399 

tends to result in larger magnetically-evoked MEPs but has no effect on H reflexes or CMEPs 400 

(Stuart et al., 2002), or on MEPs evoked by electrical stimulation, which preferentially activates 401 

corticospinal axons directly, bypassing cortical influences to an extent (Kossev et al., 1999). 402 

These studies suggest that muscle spindle afferent firing alters cortical excitability more than 403 

spinal excitability and supports the differences observed here between MEP/CMEP and CMEP 404 

results. Further support for a cortical effect comes from studies showing that changes in 405 

shoulder position can modify intracortical facilitation of motor cortical areas supplying upper 406 

limb muscles (Ginanneschi et al., 2005; Ginanneschi et al., 2006; Mazzocchio et al., 2008).  407 



In Study 2, we investigated the potential contribution of cutaneous stretch receptors to 408 

explain posture-dependent changes in motor pathway excitability, but neither CMEPs nor 409 

MEPs were changed when cutaneous receptors were activated via skin stretch at a given 410 

elbow angle.  These results suggest the effect of elbow angle is unlikely to be due to input 411 

from cutaneous stretch receptors from skin surrounding the elbow joint. Although the 412 

complex skin stretch patterns associated with different elbow angles were not fully replicated, 413 

pilot testing revealed that the skin was stretched by similar amounts to, or more than, 414 

naturally occurring skin stretch during full elbow flexion or extension. Additionally, similar 415 

methodology can induce elbow flexion illusions (Collins et al., 2005), thus it is likely that at 416 

least a proportion of the same cutaneous stretch receptors activated by elbow movements are 417 

similarly activated by the skin stretch technique used here. While Studies 1 and 2 were 418 

performed in different groups of individuals (except for one participant who completed both), 419 

arm posture dependent changes in excitability are fairly robust, and have been shown in 420 

different participant groups over many studies (Collins & Button, 2018; Collins et al., 2017; 421 

Dominici et al., 2005; Forman et al., 2016; Ginanneschi et al., 2005; Ginanneschi et al., 2006; 422 

Mazzocchio et al., 2008; Mitsuhashi et al., 2007; Mogk et al., 2014; Nuzzo et al., 2016; Perez 423 

& Rothwell, 2015; Peterson et al., 2014; Renner et al., 2006). Therefore, if cutaneous stretch 424 

was contributing to changes in excitability with different postures, we would expect such 425 

changes to occur in any healthy cohort. 426 

If muscle spindle and cutaneous afferent firing do not underlie the spinal level changes 427 

in excitability demonstrated by the CMEP, other afferents need to be considered.  Autogenic 428 

inhibition mediated by Ib afferents from Golgi tendon organs could contribute to stretch-429 

induced changes at more extended angles, though this is unlikely here given that Golgi tendon 430 

organs are typically activated during contraction, and autogenic inhibition is relatively short 431 

lasting (for review see: Trajano et al., 2017). There may however be a role for heteronymous 432 



muscle afferents. Indeed, group I afferents from brachioradialis and pronator teres are shown 433 

to exert inhibitory effects on the biceps through oligosynaptic connections with biceps 434 

motoneurones (Barry et al., 2008; Naito et al., 1998; Naito et al., 1996). However, these 435 

pathways have been identified with manipulations at the proximal radioulnar joint and during 436 

weak voluntary contractions. Their role in influencing motoneuronal output in resting muscle 437 

and with manipulations of elbow angle remains unknown. Finally, the role of receptors in the 438 

joint capsule and ligaments is unexplored. 439 

Irrespective of the precise mechanisms involved, CMEPs have a strong monosynaptic 440 

component (Petersen et al., 2002), and CMEP changes are likely to reflect changes in the 441 

direct corticospinal-motoneuronal pathway. CMEPs are also likely to have some contribution 442 

from oligosynaptic connections with motoneurones, such as the propriospinal pathway. 443 

However, previous work shows that significant oligosynaptic contributions to the biceps 444 

CMEP are only observed when biceps and hand muscles co-contract (Nakajima et al., 2017). 445 

Therefore, it is not known whether altered excitability of propriospinal neurones can alter 446 

CMEPs in a resting muscle. It is also unknown whether propriospinal neurones have altered 447 

excitability or firing related to joint angle that might influence motoneurone excitability at 448 

subthreshold levels. Overall, elbow angle dependent differences in CMEP size are likely to 449 

reflect the convergence of multiple inhibitory and excitatory inputs to motoneurones, causing 450 

a modulation of motoneuronal excitability but the precise mechanism remains unknown.  451 

To conclude, a change in elbow angle modifies the size of biceps brachii CMEPs and 452 

the MEP/CMEP ratio. A decrease in CMEPs and an increase in the MEP/CMEP ratio at more 453 

extended angles suggest decreased spinal-level excitability but an increase in supraspinal 454 

excitability. Changes in the MEP/CMEP ratio are potentially due to changes in motor cortical 455 

excitability caused by stretch-induced afferent input from muscle spindles but as yet the 456 

mechanism to account for the robust changes in CMEPs remains unclear. 457 
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 612 

Figure captions 613 

Figure 1. Experimental setup and protocol. A) Electrodes placed over the motor point and 614 

distal tendon of biceps brachii recorded electromyographic activity. Transcranial magnetic 615 

stimulation (TMS) over the primary motor cortex elicited motor evoked potentials (MEPs), 616 

electrical cervicomedullary stimulation elicited cervicomedullary motor evoked potentials 617 

(CMEPs) and electrical brachial plexus stimulation elicited maximal compound muscle 618 

action potentials (Mmax) in the biceps. For Study 2, pieces of tape with string attached were 619 

placed on the skin at various locations near the elbow. The skin was stretched by pulling on 620 

the strings and tying them off at hooks on the apparatus. B) In Study 1, five elbow angles 621 

were tested in random order (full extension (15° (SD 10)), mid extension (50° (SD 5)), 90°, 622 

110°, 130°), and each angle was tested twice. One set of stimuli (5 CMEPs, 1 Mmax and 10 623 

MEPs at 0.1 Hz) was delivered each time the angle was changed, so that ten sets of stimuli 624 

were delivered in total. For the full extension, 90° and 130° angles, an additional 5 CMEPs 625 

matched to the size of MEPs were also elicited per set (0.1 Hz). C) In Study 2, three skin 626 

stretch conditions were tested in random order with the elbow angle maintained at 90° (skin 627 

stretch to mimic full extension, no skin stretch and skin stretch to mimic flexion). Each 628 

condition was tested twice. One set of stimuli (5 CMEPs, 10 MEPs and 2 Mmax at 0.1 Hz) 629 

was delivered with each change in condition, so that six sets of stimuli were delivered in 630 

total. 631 

 632 



Figure 2. Averaged Mmax (average of 2 traces), CMEP (average of 10 traces) and MEP 633 

(average of 20 traces) traces for a single participant at each of five different elbow angles 634 

ranging from 130° of flexion to full extension. For illustrative purposes, dashed lines indicate 635 

peak-to-peak amplitudes of responses at full extension. In line with group data, this 636 

individual had a decrease in CMEP area as the elbow was placed in more extended positions. 637 

This participant had a slightly larger Mmax at full extension in comparison to more flexed 638 

positions, also in line with group data. However, this participant had an increase in MEP area 639 

with extension, whereas group data revealed no differences in MEP area between angles. 640 

 641 

Figure 3. Group data showing the effect of elbow angle on evoked responses (for individual 642 

data see Supp 1). A) Group data (mean (SD), n = 12) show Mmax areas for each of five 643 

different elbow angles ranging from 130° of flexion to full extension (15° (SD 10) of 644 

flexion). There was a progressive increase in Mmax as the elbow was placed in more 645 

extended positions, with larger Mmax at full extension in comparison to 130° (p = 0.007), 646 

110° (p = 0.005), 90° (p = 0.019) and mid extension (p = 0.028). B) Group data (mean (SD), 647 

n = 11) show CMEP (grey bars) and MEP (white bars) areas, normalised to Mmax, for the 648 

five different elbow angles. There was a progressive decrease in CMEPs as the elbow was 649 

placed in more extended positions, with smaller CMEPs at full extension in comparison to 650 

130° (p = 0.008), 110° (p = 0.004) and 90° (p = 0.004). MEP area was not different between 651 

angles.  652 

 653 

Figure 4. Group data showing the effect of skin stretch on evoked responses (for individual 654 

data see Supp 2). A) Group data (mean (SD), n = 12) show Mmax areas for three different 655 

skin stretch conditions (skin stretch to mimic full extension, no skin stretch and skin stretch to 656 



mimic flexion). Mmax was not different between conditions. B) Group data (mean (SD), 657 

n = 10) show CMEP (grey bars) and MEP (white bars) areas, normalised to Mmax, for each 658 

skin stretch condition. CMEP and MEP areas were not different between conditions. 659 

 660 

Tables 661 

Table 1. Amplitudes and areas of biceps brachii evoked potentials in different elbow angle 662 
(Study 1) and skin stretch (Study 2) conditions 663 
Condition Mmax CMEP MEP Matched 

CMEP 
Study 1 amp area amp area amp area amp area 
130° 13.4  

(5.6) 
88.5 

(35.6) 
2.3  

(1.0) 
11.8 
(5.5) 

0.5  
(0.7) 

2.4 

(3.6) 
0.9  

(0.8) 
4.3 

(4.0) 
110° 13.5  

(6.1) 
90.8 

(40.2) 
1.8  

(1.1) 
9.7 

(6.3) 
0.5  

(0.7) 
2.7 

(4.9) 
- - 

90° 15.1  
(7.7) 

104.5 
(46.7) 

1.7  
(1.0) 

9.8 
(6.8) 

0.5  
(0.8) 

2.9 

(4.8) 
0.5  

(0.4) 
2.4 

(2.4) 
Mid extension 17.3  

(8.0) 
123.6 
(52.5) 

1.3  
(1.2) 

8.6 
(8.2) 

0.5  
(0.7) 

3.4 

(4.7) 
- - 

Full extension 19.0  
(7.9) 

134.9 
(54.1) 

1.3  
(1.5) 

8.8 
(11.3) 

0.5  
(0.5) 

3.2 

(3.3) 
0.3  

(0.3) 
1.7 

(2.2) 
Study 2         
Skin stretch to mimic flexion 16.6 

(5.6) 
156.4 
(56.5) 

1.8  
(0.8) 

12.9 
(5.4) 

0.9  
(0.9) 

7.4 
(8.0) 

- - 

No skin stretch 16.8  
(6.1) 

157.9 
(60.7) 

2.2  
(1.3) 

16.3 
(9.7) 

0.9 
(1.0) 

7.9 
(9.8) 

- - 

Skin stretch to mimic extension 18.5  
(6.1) 

164.8 
(59.4) 

2.0  
(1.0) 

14.0 
(6.8) 

0.9  
(0.6) 

7.6 
(5.5) 

- - 

Values are peak-to-peak amplitudes (amp; mV) and areas (mV.ms) of biceps brachii evoked 664 
responses given as mean (SD). Mmax: maximal compound muscle action potential; MEP: 665 
motor evoked potential; CMEP: cervicomedullary MEP. 666 
  667 



 668 

Figure 1. Experimental setup and protocol. A) Electrodes placed over the motor point and 669 
distal tendon of biceps brachii recorded electromyographic activity. Transcranial magnetic 670 
stimulation (TMS) over the primary motor cortex elicited motor evoked potentials (MEPs), 671 
electrical cervicomedullary stimulation elicited cervicomedullary motor evoked potentials 672 
(CMEPs) and electrical brachial plexus stimulation elicited maximal compound muscle 673 
action potentials (Mmax) in the biceps. For Study 2, pieces of tape with string attached were 674 
placed on the skin at various locations near the elbow. The skin was stretched by pulling on 675 
the strings and tying them off at hooks on the apparatus. B) In Study 1, five elbow angles 676 
were tested in random order (full extension (15° (SD 10)), mid extension (50° (SD 5)), 90°, 677 
110°, 130°), and each angle was tested twice. One set of stimuli (5 CMEPs, 1 Mmax and 10 678 
MEPs at 0.1 Hz) was delivered each time the angle was changed, so that ten sets of stimuli 679 
were delivered in total. For the full extension, 90° and 130° angles, an additional 5 CMEPs 680 
matched to the size of MEPs were also elicited per set (0.1 Hz). C) In Study 2, three skin 681 
stretch conditions were tested in random order with the elbow angle maintained at 90° (skin 682 
stretch to mimic full extension, no skin stretch and skin stretch to mimic flexion). Each 683 
condition was tested twice. One set of stimuli (5 CMEPs, 10 MEPs and 2 Mmax at 0.1 Hz) 684 
was delivered with each change in condition, so that six sets of stimuli were delivered in 685 
total. 686 
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 689 

Figure 2. Averaged Mmax (average of 2 traces), CMEP (average of 10 traces) and MEP 690 
(average of 20 traces) traces for a single participant at each of five different elbow angles 691 
ranging from 130° of flexion to full extension. For illustrative purposes, dashed lines indicate 692 
peak-to-peak amplitudes of responses at full extension. In line with group data, this 693 
individual had a decrease in CMEP area as the elbow was placed in more extended positions. 694 
This participant had a slightly larger Mmax at full extension in comparison to more flexed 695 
positions, also in line with group data. However, this participant had an increase in MEP area 696 
with extension, whereas group data revealed no differences in MEP area between angles. 697 
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 701 

Figure 3. Group data showing the effect of elbow angle on evoked responses (for individual 702 
data see Supp 1). A) Group data (mean (SD), n = 12) show Mmax areas for each of five 703 
different elbow angles ranging from 130° of flexion to full extension (15° (SD 10) of 704 
flexion). There was a progressive increase in Mmax as the elbow was placed in more 705 
extended positions, with larger Mmax at full extension in comparison to 130° (p = 0.007), 706 
110° (p = 0.005), 90° (p = 0.019) and mid extension (p = 0.028). B) Group data (mean (SD), 707 
n = 11) show CMEP (grey bars) and MEP (white bars) areas, normalised to Mmax, for the 708 
five different elbow angles. There was a progressive decrease in CMEPs as the elbow was 709 
placed in more extended positions, with smaller CMEPs at full extension in comparison to 710 
130° (p = 0.008), 110° (p = 0.004) and 90° (p = 0.004). MEP area was not different between 711 
angles.  712 
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Figure 4. Group data showing the effect of skin stretch on evoked responses (for individual 717 
data see Supp 2). A) Group data (mean (SD), n = 12) show Mmax areas for three different 718 
skin stretch conditions (skin stretch to mimic full extension, no skin stretch and skin stretch to 719 
mimic flexion). Mmax was not different between conditions. B) Group data (mean (SD), 720 
n = 10) show CMEP (grey bars) and MEP (white bars) areas, normalised to Mmax, for each 721 
skin stretch condition. CMEP and MEP areas were not different between conditions. 722 
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