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Stability analysis and design charts 
for a sandy soil slope supporting an embedded 
strip footing
Emmanuel Baah‑Frempong*  and Sanjay Kumar Shukla 

Introduction
The stability analysis of slopes has been a challenging task for geotechnical engineers 
since ancient days. In assessing the stability of any slope, the focus is mainly on calcu-
lating the factor of safety to estimate the degree of closeness of the slope from the fail-
ure condition. Some infrastructure projects, particularly in hilly terrains, involve the 
construction of footings/foundations on slopes. When a foundation is built on a slope, 
the factor of safety is expected to reduce depending on the foundation location rela-
tive to the crest edge and its depth. In the past, several studies have been carried out 
on the bearing capacity and settlement behaviour of footings resting on unreinforced 
slopes. Some investigators have developed analytical formulations to estimate the bear-
ing capacity of a footing positioned on a slope [1–6]. Meyerhof [4] developed an ana-
lytical formulation to estimate the bearing capacity of a footing on a slope face and crest 
for both completely cohesive and cohesionless soils. For a footing on top of the slope, it 
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was reported that the bearing capacity factors decreased with higher slope inclination 
and increased with the footing distance from the slope edge. The bearing capacity of 
the footing is independent of the slope angle when the footing is located at a distance, 
greater than 2–6 times the footing width, from the slope crest edge. Graham et al. [3] 
used the stress characteristics to analyse the load-bearing pressure of a footing on cohe-
sionless soil slope. They compared their results with the experimental data of Shields 
et al. [7] and found a good agreement between them. Saran et al. [6] used the limit equi-
librium and limit analysis methods to obtain the bearing capacity of a foundation close 
to a slope. It was demonstrated that the two methods produced almost the same results 
presented in the form of non-dimensional bearing capacity factors which are influenced 
by the soil friction angle, slope inclination and footing edge distance. Narita and Yama-
guchi [5] carried out a log-spiral analysis of the bearing capacity of footings located on 
slopes. They compared their results with other analytical and experimental works and 
found that the method overestimates the bearing capacity in comparison to other ana-
lytical solutions. A good agreement was however observed between the ultimate bearing 
capacity and the form of failure surface from the log spiral analysis and the laboratory 
model test. Buhan and Garnier [1] analysed the load bearing behaviour of a footing close 
to a slope by the yield design theory and compared the predictions with a full scale and 
a centrifuge test results. Castelli and Motta [2] utilised the limit equilibrium method to 
investigate the load bearing capacity of a foundation on a ground surface with a slope. 
A parametric study, under static and seismic conditions, was conducted to examine the 
effect of footing edge distance, slope inclination, footing embedment depth and seismic 
coefficients on the footing load bearing pressure.

Some investigators have analysed the bearing capacity of footings on slopes by labo-
ratory model tests [8–10]. Castelli and Lentini [8] experimentally evaluated the load-
bearing behaviour of footings on slopes, and proposed modified bearing capacity factors 
by considering the effect of sloping ground. Keskin and Laman [9] studied the bearing 
capacity of a strip footing positioned on a sand slope. They demonstrated that the ulti-
mate bearing capacity improved with an increase in the footing edge distance, sand rela-
tive density, and decrease in slope inclination. Patil and Chore [10] demonstrated that 
the bearing capacity of a strip footing on a fly ash and furnace slag slope is influenced 
by the footing edge distance and slope angle. They also established a good agreement 
between the ultimate bearing capacity obtained from the experimental work and analyti-
cal solution.

Numerical modelling has also been utilised by some researchers to study the bear-
ing capacity of footings on slopes [9, 11–13]. Georgiadis [12] presented a finite element 
analysis of the load-carrying capacity of foundations situated on slopes and compared 
the results with available analytical methods. Keskin and Laman [9] validated the results 
from their laboratory test with a numerical modelling data. Archaryya and Dey [11] 
numerically studied the collapse process and bearing capacity of a foundation on top of 
a slope that has no cohesion. They analysed the relationship between the footing bear-
ing capacity and the following parameters: internal friction angle of the soil, slope angle, 
footing embedment depth, footing width, unit weight of the soil and elastic modulus of 
the soil. Zhou et al. [13] analysed the load-bearing capacity and collapse process of an 
axially loaded footing on slopes and established six types of collapse.
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Most of the past studies have analysed the case of a footing on top of a slope. How-
ever, in most infrastructure projects, footings are usually built at some depth below the 
ground surface; and in the case of sloping ground below the slope crest. Therefore, the 
analysis of the behaviour of footings embedded in slopes will give the geotechnical/civil 
engineers more insight into the design of such foundations. There are however very few 
experimental studies on embedded strip footings supported by slopes [7, 14]. Shields 
et al. [7] performed a laboratory test to analyse the load bearing pressure of a footing 
placed on and below the crest of a sand slope constructed in a large tank having a length, 
width and height of 15 m, 2 m and 2.2 m, respectively. Bauer et al. [14] conducted a labo-
ratory experiment to extend the work of Shields et al. [7]. They investigated the effect of 
the footing width and inclined applied load on the bearing capacity of the footing at dif-
ferent locations below the crest and face of a dense sandy slope. The test was conducted 
in a tank having the same internal dimensions as that used by Shields et al. [7].

Previous investigations on the performance of a footing on or in a slope have mainly 
focused on the bearing capacity and settlement characteristics of the footing, but the 
behaviour of a footing on or in a slope is governed either by the bearing capacity of the 
footing or the overall stability of the slope. A combination of the footing bearing capac-
ity behaviour and the slope stability analysis will enable the engineers to gain a better 
understanding of the design of a footing-slope system. It is widely known that a num-
ber of studies have been conducted on the stability of unreinforced slopes/embankments 
with and without a footing/surcharge load on the crest. However, the literature reveals 
that the stability analysis of slopes, in terms of factor of safety, carrying embedded foot-
ing loads have not been greatly investigated. Also, the stability charts for such slopes are 
not available. Therefore, in this paper, an attempt is made to develop a numerical model 
to analyse the stability of a sandy soil slope supporting an embedded footing subjected 
to loads. The objective of this work is to establish the relationship between the factor of 
safety of the slope and the following slope and footing parameters: soil properties, slope 
inclination, footing locations, and applied pressure to the footing. The pattern of failure 
surfaces developed with respect to the footing locations and applied pressure have also 
been analysed. Additionally, some practical design charts have been developed for the 
routine use by the practising engineers.

Slope geometry and foundation details
The geometry of the slope and foundation details used in the present study are illustrated 
in Fig. 1. The slope has a height H and angle of inclination to the horizontal β . A verti-
cal load is applied to the footing having a width B and located at a distance e from the 
crest edge with an embedment depth D below the crest. The load applied to the footing 
is translated to a pressure q at the base of the footing. The slope comprises of a sandy soil 
with a limited cohesion. It has a unit weight γ , cohesion c and angle of internal friction 
φ . The slope is compacted to various density states expressed in terms of relative den-
sity Dr. A preliminary analysis indicated that a berm width (2–14 m) and a foundation 
thickness (2–14 m) has a negligible effect on the numerical modelling. Consequently, a 
berm width of 10 m and foundation layer thickness of 10 m was adopted for this study to 
ensure that the failure surfaces developed remain within the slope boundary. It should be 
noted that other researchers while analysing the stability of unreinforced and reinforced 
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slopes, by numerical modelling, utilized berm width and foundation thickness ranging 
from 5 to 15 m [15–18].

Numerical simulation
A series of two-dimensional finite element slope stability analysis was conducted on a 
slope supporting an embedded footing (Fig. 1), using Plaxis 2D (2016) software. Plaxis 
2D has been developed for the analysis of various geotechnical engineering problems, 
including slope stability assessment [19]. The finite element analysis has been utilised 
by many researchers, including Chok et al. [20], for slope stability evaluation. The fac-
tor of safety modelling, in Plaxis 2D, utilizes five sequential modes, namely soil, struc-
tures, mesh, flow condition and staged construction. The software has several models to 
simulate soil behavior. Out of these, the Mohr–Coulomb model (MC model), which is an 
elasto-plastic model and first-order of approximation of soil behavior, was selected due 
to the availability of required data [21, 22]. The MC model requires six input parameters, 
namely Young modulus of elasticity (E), Poisson’s ratio ( µ ), total unit weight ( γ ), friction 
angle ( φ ), cohesion (c), and dilatancy angle ( ψ ). Griffiths and Lane [23] observed that, 
using ψ= 0 allowed a model to predict a reliable factor of safety, and a realistic form and 
position of the potential failure surface. They further noted that E and µ had a negligible 
influence on the predicted factor of safety. This observation was substantiated by Ham-
mah et al. [24] when they investigated the effect of E (2000–200,000 kPa), µ (0.2–0.48) 
and ψ (0–35) on the factor of safety of a homogeneous soil slope. Cheng et al. [25] have 
also found that ψ and E are not sensitive to the factor of safety calculation and concluded 
that these parameters are not important in the slope stability analysis. Therefore, ψ = 0 , 
µ = 0.3 and E = 30, 000 kN/m

2 have been adopted for the present study. According to 
Griffiths and Lane [23], the most critical parameters required for the stability assessment 
of a slope by finite element method are the soil unit weight, friction angle and cohesion. 
The footing was modelled as an elastic beam element using the “create plate” option in 
the structures mode of the software. The “create plate” option is utilised to specify the 
footing properties, including the flexural rigidity EI and normal stiffness EA.

Plaxis 2D has five options for mesh generation ranging from very coarse to very 
fine, with the medium mesh being the default. Preliminary analysis was conducted to 
determine and reduce the effect of mesh on the finite element modelling. The bound-
ary conditions set for the model restrained the vertical boundary horizontally and the 

Fig. 1 Geometry of the slope used in the study



Page 5 of 23Baah‑Frempong and Shukla  Geo-Engineering  (2018) 9:13 

bottom horizontal boundary in both vertical and horizontal directions. The slope sur-
face is not horizontal, therefore the primary state of stress was determined by using a 
gravity force due to the soil mass. The finite element stability analysis uses the strength 
reduction technique, also known as the strength reduction method, to calculate the fac-
tor of safety [23]. In this method, the original strength parameters, c and φ , of the soil 
are reduced by dividing them by a factor called the strength reduction factor (SRF). As 
the SRF increases, the slope soil strength gradually reduces until the slope attains the 
state of equilibrium. The value of SRF at the equilibrium state is considered as the factor 
of safety of the slope. The factored or reduced shear strength parameters cf and φf  are 
expressed as follows:

It should be noted that the SRF is represented as the incremental multiplier 
(
∑

Msf
)

 in 
Plaxis 2D. When the value of 

(
∑

Msf
)

 obtained during the analysis is generally constant 
for a number of successive steps, then a limit equilibrium state has fully been attained.

Validation of the numerical model
The present study, as already mentioned, is focused on assessing the factor of safety 
of an unreinforced slope supporting an embedded footing. The literature has revealed 
that numerous experimental data on the deformation of unreinforced slopes have been 
reported, but the literature on the stability analysis of such slopes, in terms of factor 
of safety, is not available. There is, however, a very limited laboratory (centrifuge) test 
data reported on the deformation and factor of safety of a geosynthetic-reinforced sand 
slope. It should be noted that most factor of safety analysis of slopes are based on either 
the limit equilibrium or numerical methods. As a result, some investigators have vali-
dated their works with published numerical data [26–28]. Therefore, the validity of the 
numerical simulations utilized in this study has been verified by using the finite element 
method to predict the load-settlement behaviour of a footing resting on an unreinforced 
slope as reported by Gill et al. [29] as well as the failure surface and associated factor of 
safety of a geotextile-reinforced slope from a centrifuge test data reported by Zornberg 
et al. [30, 31].

Validation with failure surface and factor of safety data

Zornberg et al. [30, 31] conducted a centrifuge test on a geotextile-reinforced sand slope 
and determined the factor of safety of the slope at various acceleration levels. This rein-
forced slope has been employed for the numerical model validation because there is 
no experimental reported data, to the best knowledge of the authors, on the factor of 
safety of unreinforced slopes. The slope used by Zornberg et  al. [30, 31] has a height 
H = 228mm and inclination angle β = 63◦ . Underlying the slope is a sand founda-
tion layer with a thickness H = 25.4mm . Eighteen geotextiles having an equal length 
L = 203mm were installed at an equal vertical interval of 12.7 mm below the slope crest. 

(1)cf =
c

SRF

(2)φf = tan
−1

(

tan φ

SRF

)
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The sand used for the slope and foundation construction was compacted to a relative 
density Dr = 55% with a corresponding friction angle ϕ = 35◦ . A wide-width tensile 
test, carried out, on the geotextile resulted in an ultimate tensile strength of 0.063 kN/m 
at 17.7% strain. A 2-dimensional finite element model was developed, using Plaxis 2D 
package, as well as the sand and geotextile properties reported by Zornberg et al. [30, 
31] to predict the failure surface and factor of safety of the slope at failure. The size of 
the slope, as reported by Zornberg et al. [30, 31], was increased by a scale factor of 10 for 
the purpose of modelling. Figure 2 compares the slip surfaces obtained from the present 
study and that of Zornberg et al. [30, 31]. It can be noticed that the results are in good 
agreement. Also, the factor of safety of 0.99 calculated from the current study is com-
parable to the factor of safety of 0.9 determined by Zornberg et al. [30], for the slope at 
failure.

Validation with load‑settlement data

Gill et al. [29] investigated the performance of a footing on an unreinforced fly ash slope. 
The test was performed in a masonry tank having internal dimensions of 2400  mm 
(length), 310  mm (width) and 1200  mm (depth). The fly ash used for the study com-
prise 4% clay, 68% silt and 28% sand. It was compacted to a maximum dry unit weight 
(MDU) of 9.34 kN/m3 at an optimum moisture content (OMC) of 48%. An unconsoli-
dated undrained triaxial test conducted on the fly ash at MDU state resulted in a cohe-
sion, c = 20 kPa and an angle of internal friction, ϕ = 14◦ . The slope was constructed 
to a height, H = 750 mm from the base of the tank and an angle, β = 45◦ to the base of 
the tank. A 2-dimensional finite element numerical model was established in this study 
to represent the load-settlement behaviour of the footing, having a width, B = 100 mm 
and located at an edge distance, De to width ratio, De/B = 1 , on the fly ash slope crest 
as reported by Gill et al. [29]. The fly ash was modelled using the MC model with the 
strength parameters reported by Gill et al. [29]. It should be noted that the MC model, as 
stated in the previous section, is the first-order of approximation of the behaviour of soil. 
It assumes the soil stiffness to be constant and for that reason does not take into account 
the stress nor strain dependency of the soil stiffness during the soil deformation. Fig-
ure 3 compares the load-settlement data of the footing from the laboratory experiment 
[29] and the numerical modelling (present study). It can be observed that the numerical 

Fig. 2 Comparison of failure surfaces between the present study and works of Zonberg et al. [30, 31]
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results closely agree with the experimental results for low settlements, particularly for 
s/B < 4% within the limitations of the MC model used for the modelling. Kazi et  al. 
[32, 33] validated their experimental works on the load-settlement analysis of a foot-
ing on unreinforced and geotextile-reinforced sand bed using Plaxis 2D along with the 
MC model, and also found that the numerical and experimental results match for lower 
settlements.

Results and discussion
After validating the numerical simulation, a parametric study was conducted to analyse 
the effect of the following factors on the stability, defined in terms of factor of safety 
(F), of the sandy slope supporting the embedded footing loads, as presented in Fig. 1: 
slope angle ( β ), sand relative density (Dr), footing edge distance (e), footing depth (D) 
and applied footing pressure (q). The properties of the slope and footing used for the 
numerical modelling are presented in Table 1. The unit weight and strength parameters 
of the slope were adopted from laboratory test data reported by Kazi et al. [32, 33]. The 
correlation of the slope soil relative density Dr with the cohesion c and friction angle φ , 

Fig. 3 Comparison of load‑settlement curves from Gill et al. [29] and the present study

Table 1 Parameters used in the numerical analysis

Parameter Values

Slope

 Angle (°) 40, 50, 60

 Height (m) 6

 Relative density (%) 50 70 90

 Total unit weight (kN/m3) 14.88 15.30 15.78

 Cohesion (kPa) 3.75 6.5 7.25

 Internal friction angle (°) 36 37 38

Footing

 Width (m) 1.0

 Normal stiffness (kN/m) 5,000,000

 Flexural rigidity (kN/m2/m) 8500
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based on the laboratory test results in Table 1, are presented in Fig. 4a, b, respectively. 
The line in Fig. 4a can be described by the following equation:

The line in Fig. 4b may be presented in the equation:

As the values of R2 for the correlations in Eqs. (3) and (4) are close to unity and equal 
to 1, respectively, the equations can be used to reasonably estimate the relative density of 
sands with similar properties as those used in the present study.

Although numerous data have been generated from several analyses, in this study, typ-
ical results have been presented and discussed in the subsequent sections. It should be 
pointed out that a slope height H = 6 m and a footing width B = 1 m were kept constant 
in all the analysis in the present work.

(3)Dr = 10.307c + 9.8773 (R2
= 0.9018)

(4)Dr = 20φ − 670 (R2
= 1)

Fig. 4 Correlation of the slope soil relative density, Dr with: a cohesion, c , b friction angle, ϕ
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Effect of footing depth and applied pressure

The effect of the footing embedment depth D on F was investigated for the slope with 
β = 40◦, 50◦, 60◦ , H = 6  m and Dr = 70% . In this analysis, the depth of the foot-
ing, with a width B = 1 m, was varied at depth ratios D/B = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 
for each edge distance ratio e/B = 0, 1, 2, 3, 4 . It should be noted that D/B = 0 and 
e/B = 0 represent the footing on the slope crest and crest edge, respectively. The val-
ues of q varying between 0 and 240 kPa were applied to the footing for each combina-
tion of depth and edge distance ratio to observe the stability of the slope. A typical 
finite element model with mesh and boundary conditions is presented in Fig. 5. The 
variation of F with D/B for the footing at e/B = 0 and e/B = 2 for the 40° and 50° 
slopes are, respectively, shown in Figs.  6 and 7. It is observed that F increases with 
increasing D/B for all the slope angles and footing edge distance. A similar trend on 
the bearing capacity of a sand slope carrying an embedded footing in a large tank 
was reported by Shields et al. [7] and Bauer et al. [14]. Although Patra et al. [34] and 
Shin et al. [35] studied the performance of a footing placed in a sand bed, they as well 
found that the bearing capacity of the footing increased with increasing D/B.

It is noticed in Figs.  6 and 7 that the rate of improvement in F, generally reduces 
slightly when the footing is located at D/B ≥ 1 and e/B = 0 as well as at D/B ≥ 0.5 
and e/B = 2 . It is again observed in Figs.  6 and 7 that the slope behaves as if it is 
not carrying any footing load (q = 0 kPa) when the footing is placed at a certain 
e/B > 0 , D/B > 0 and q > 0 . For example, it is demonstrated in Figs. 6a and 7a that 
locating the footing at e/B = 0 and D/B = 2.5 and subjecting it to a load q = 40 kPa 
yields almost the same factor of safety as the slope without a footing load. A simi-
lar observation is made in Figs. 6b and 7b when the footing is positioned at e/B = 2 
and D/B ≥ 1 then loaded with q = 40 kPa . It is further noted in Figs.  6 and 7 that 
F  reduces with increasing q . Considering the contour interval of the factor of safety 
with respect to the applied load, it can be observed that, the rate of decrease of F 
reduces for q > 200 kPa regardless of the footing location.

Fig. 5 Atypical finite element model with mesh and boundary conditions
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Effect of footing edge distance

An analysis was carried out to determine the influence of the footing edge distance on 
the 40°, 50° and 60° slopes. In this case, H = 6 m, B = 1 m, and Dr = 70% were kept con-
stant while the footing was loaded up to 240 kPa at edge distance ratio e/B = 0, 1, 2, 3, 4 
for each D/B value of 0.0. 0.5, 1.0, 1.5 and 2.0. The variation of F with e/B for the various 
D/B values is presented in Fig. 8. It is observed that for D/B = 0 (footing on top of the 
crest), F improves with increasing e/B up to e/B = 3 , then remains stable for e/B > 3 . 
Thus, it can be stated that the maximum e/B , for the surface footing, beyond which the 
slope has a negligible effect on F is 3. Other researchers [9, 29, 35–40] who investigated 
the load bearing pressure of a footing on unreinforced and geosynthetic-reinforced 
slopes reported a trend comparable to the observation made in the present study. They 
found that the ultimate bearing capacity of the footing improved with increasing the 
footing edge distance from the crest. The maximum e/B within which the slope has a 
significant influence on the ultimate bearing capacity of the footing ranged from 2 to 5. It 
is again noted in Fig. 8 that when the footing is placed at D/B ≥ 0.5 , F improves steadily 

Fig. 6 Variation of factor of safety, F , with footing depth ratio D/B for 40° slope: a e/B = 0 , b e/B = 2
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with an increase in e/B . This observation is similar to the trend reported by Shields et al. 
[7] and Bauer et al. [14].

Effect of slope angle

In order to investigate the influence of the slope angle β on F, the footing, hav-
ing a width B = 1  m, was positioned at each combination of e/B = 0, 1, 2, 3, 4 and 
D/B = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 in the 40°, 50° and 60° slopes having H = 6  m and 
Dr = 70% . The values of q , applied to the footing, were varied from 0 to 240  kPa 
to observe the corresponding F for each slope angle. The variation of F with β for 
each D/B value is presented in Fig. 9. It is observed that F reduces with increasing 
β regardless of the footing depth and edge distance. This outcome agrees with the 
findings of Khan et al. [41] and Rai et al. [42] who respectively analysed the stabil-
ity of a plastic pin-reinforced slope and a geogrid-reinforced mine waste dump and 
determined that the factor of safety reduced with increasing the slope inclination. 
The results, obtained in this study, are also consistent with the observation made 
by Lee and Manjunath [39], Choudhary et al. [37] and Keskin and Laman [9] while 

Fig. 7 Variation of factor of safety, F , with footing depth ratio D/B for 50° slope: a e/B = 0 , b e/B = 2
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investigating the load-bearing capacity of a footing positioned on an unreinforced 
and a geosynthetic-reinforced slope crest. They found that the bearing capacity of 
the footing decreased with increasing the slope angle.

To overcome the reduction effect of the slope angle on F  , the footing could be 
moved further away from the crest edge and/or below the crest into the slope. For 
example, in Fig. 9a, the factor of safety of the slope for a footing located at D/B = 0 
and e/B = 0 reduces from 1.22 to 0.97 (becoming unstable) when the slope angle is 
increased from 40° to 60°. However, relocating the footing to D/B = 0.5 and e/B = 2 
(Fig. 9b) in the 60° slope improves the factor of safety, by 54%, from 0.97 to 1.49. It 
is also demonstrated in Fig. 9b that having the footing at D/B = 0 and e/B = 2 in the 
50° slope, as well as D/B = 0.5 and e/B = 2 in the 60° slope yields the same factor of 
safety.

Fig. 8 Variation of factor of safety, F , with edge distance ratio, e/B : a q = 120 kPa , b q = 160 kPa
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Effect of relative density

Sandy soils have been classified into various density states ranging from loose to very 
dense based on the degree of compaction, which has a direct effect on the strength 
of the sand. To establish the relationship between the slope soil relative density (Dr 
= 50%, 70%, 90%) and  F, the footing ( B = 1 m ) was placed within the slope, having 
a height H = 6 m and inclined at angles β = 40◦, 50◦, 60◦ , at the edge distance ratio, 
e/B of 0, 1, 2 and 3 for each depth ratio D/B of 0, 0.5, 1.0, 1.5 and 2. A pressure rang-
ing from 120 to 200 kPa was applied to the footing at each footing location, defined 
by e/B and D/B , to observe the corresponding factor of safety. Figure 10 shows the 
relationship between F and Dr . It is noticed that F  improves with increasing Dr from 
50 to 70%, then the rate of improvement in F reduces for Dr > 70% , regardless of the 
footing depth and edge distance. Keskin and Laman [9] observed, while studying the 
load-settlement performance of a footing placed on an unreinforced sand slope crest, 
that the ultimate bearing capacity of the footing improved with increasing the slope 
relative density. Kazi et  al. [33] studied the effect of relative density on the bearing 
capacity of a footing on an unreinforced sand layer and determined a trend similar to 
that established in the present study.

Fig. 9 Variation of factor of safety, F , with slope angle, β : a e/B = 0 , b e/B = 2
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The improvement in F resulting from increasing the slope soil relative density Dr could 
be attributed to the fact that increasing Dr improves the shear strength of the slope 
which correspondingly increases the shearing resistance along the critical failure surface 
and hence improves the factor of safety. It is also noted that for a particular e/B and Dr , 
F increases with an increase in D/B . Combining e/B , D/B and Dr can significantly affect 
F. From Fig. 10a, F = 1 when the footing is located at e/B = 0 , D/B = 0 and the slope is 
compacted to a relative density Dr = 50% . When the footing is placed below the crest 
at e/B = 0 , D/B = 0.5 , and Dr increases from 50 to 70% (Fig. 10a), F increases by 40% 
from 1 to 1.4. If the footing is again moved to e/B = 2 , D/B = 0.5 and keeping Dr = 70% 
(Fig. 10b), F further increases by 40% to 1.8.

Failure zone and critical slip surface pattern

The stability (factor of safety) of a slope is very much related to the failure (shear) zone 
including the critical slip surface developed within the slope. The size of the failure zone 
and the corresponding length of the critical slip surface influence the shearing resist-
ance along the failure surface. As the size of the shear zone and the length of the failure 
surface increase, the resistance to the footing failure offered by the shear zone, from the 

Fig. 10 Variation of factor of safety, F , with relative density, Dr : a e/B = 0 , b e/B = 2
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slope face, and the shearing resistance along critical slip surface increase and enhance 
the overall stability of the slope. This section presents and discusses the typical pattern 
of shear zones and failure surfaces generated within the slope ( H = 6 m and Dr = 70% ) 
as a result of varying the footing location (edge distance and depth) and the applied pres-
sure. The footing width B = 1 m was used for the analysis.

Edge distance pattern

The critical failure surface developed from moving the footing away from the crest 
edge on the slope (D/B = 0) and within the slope (D/B = 1) are respectively displayed 
in Fig. 11a, b. The failure surfaces for the surface footing (Fig. 11a) start from the crest 
and end on the slope face for e/B = 0, 1, 2 . The distance from the crest edge to the 
starting point of these slip surfaces on the crest increases with e/B = 0, 1, 2 . However, 
these slip surfaces exit at the slope face with a decreasing distance from the crest. Fig-
ure 11a depicts that the overall size of the sliding wedges including the length of the fail-
ure surfaces for e/B = 0, 1, 2 increases from e/B = 0 to e/B = 2 , with a corresponding 
improvement in F.

Fig. 11 Slip surface pattern with edge distance ratio, e/B : a D/B = 0 , b D/B = 1
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It is further observed that the slip surfaces generated for e/B = 3, 4 are different 
from those obtained for e/B = 0, 1, 2 . The sliding surfaces for e/B = 3, 4 are sym-
metrical about the vertical axis, starting from a point within the slope and propagate 
to the crest. The size of the failure zone is almost the same for e/B = 3, 4 and larger 
than the size of the shear zones obtained for e/B = 0, 1, 2 . Therefore the values of F 
obtained for e/B = 3, 4 are higher than those established for e/B = 0, 1, 2 . It can be 
stated that the slip surfaces and shear zones for e/B = 0, 1, 2 are influenced by the 
slope and the crest whereas the sliding wedges for e/B = 3, 4 are entirely influenced 
by the crest (horizontal ground).

Figure  11b shows the pattern of failure surfaces and shear zones developed, from 
moving, the footing within the slope (D/B = 1) , away from the crest edge at the edge 
distance ratio e/B = 0, 1, 2, 3, 4 . It can be observed that the sliding surfaces, in this 
case, start from the crest and terminate on the slope face for all e/B values considered. 
The distance from the crest edge to the starting point of the slip surface on the slope 
crest and the distance from the crest to the ending point of the sliding surface along 
the slope face increases with increasing e/B from 0 to 4. Therefore, increasing e/B for 
a footing located below the crest increases the length of the sliding surface and size of 
the failure wedge and hence F. A comparison between the size of the failure zone for 
each e/B value presented in Fig. 11a, b, indicates that the size of the failure wedge for 
the embedded footing is larger than the surface footing for all e/B values considered 
for the analysis.

Embedment depth pattern

Figure  12 displays the pattern of sliding surfaces and failure zones generated from 
increasing the footing depth (D/B = 0, 0.5, 1.0, 1.5, 2.0) at e/B = 1 . This fail-
ure pattern is similar to that observed from varying the footing edge distance 
e/B = 0, 1, 2, 3, 4 within the slope (D/B = 1) as shown in Fig. 11b. It can be clearly 
seen that as the footing depth ratio increases, the length of the slip surface and size of 
the shear zone increases and correspondingly improves F.

Fig. 12 Slip surface pattern with embedment depth ratio, D/B
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Applied pressure pattern

Figure 13 presents the pattern of sliding surfaces and size of failure zones resulting from 
varying the footing applied pressure from q = 0 kPa to q = 240 kPa. It is observed that 
the slip surfaces for all the applied pressure considered, in the analysis, commence from 
almost the same location on the crest but end at different locations on the slope face, 
ascending the slope with increasing q. The length of the sliding surface and size of the 
sliding wedge reduce with an increase in q, resulting in a decrease in F.

Design charts
Slope design charts are tools used by geotechnical engineers for quick and preliminary 
assessment of slope stability. The estimated factor of safety from these charts can be 
used as a quality control check for detailed analysis. The charts can also be utilised in 
estimating the strength parameters of failed slopes for remedial works design [43].

Taylor [44] produced the first set of stability charts for unreinforced homogenous soil 
slopes without a loaded footing on the crest. Since then, several other charts for unre-
inforced slopes, not subjected to footing loads, have been developed by investigators 
[20, 44–52]. Review of previous works shows that design charts for estimating the factor 
of safety of slopes carrying embedded footing loads are limited. Consequently, it was 
considered to develop design charts for estimating the factor of safety of a 6-m high, 
40°, 50° and 60°, slopes supporting a footing having a width B = 1 m, and subjected to 
a pressure q = 100 kPa . The locations of the footing considered are e/B = 0, 1, 2 and 
D/B = 0, 0.5, 1.0.

For each combination of e/B and D/B , the slope soil strength parameters c and φ were 
varied from 0 to 10 kPa and 30° to 50°, respectively to determine the resultant F for each 
slope angle. A dimensionless stability number (N) defined in Eq. (5) [48] was calculated 
for each analysis and the relation between F and N are presented as design charts in 
Figs. 14, 15, and 16.

(5)N = c
/

γH tan φ

Fig. 13 Slip surface pattern with applied pressure, q
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Fig. 14 Design charts for β = 40
◦ : a D/B = 0 , b D/B = 0.5 , c D/B = 1
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Fig. 15 Design Charts for β = 50
◦ : a D/B = 0 , b D/B = 0.5 , c D/B = 1
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Fig. 16 Design Charts for β = 60
◦ : a D/B = 0 , b D/B = 0.5 , c D/B = 1
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It is observed that F improves with an increase in N values. When required, other design 
charts can be produced for various combination of soil strength, foundation depth, edge dis-
tance, slope angle and applied pressure following the methodology developed in this paper.

Illustrative example

An example is presented in this section to explain how the design charts presented in 
Figs. 14, 15, and 16 can be utilized by geotechnical engineers. Let us consider the follow-
ing problem:

A footing having a width of 1 m is to be constructed on a slope crest, at a distance of 
1 m from the crest edge. The footing pressure is q = 100 kPa . Consider the following: 
H = 6 m, β = 50◦ , γ = 15.3 kN/m

3 , c = 3 kPa and φ = 35°. Determine the factor of safety 
of the slope.

Solution

From Eq. (5),

Using the slope angle, β = 50◦ , the footing edge distance ratio e/B = 1 , and the footing 
depth ratio D/B = 0 , the factor of safety of the slope can be estimated from Fig. 15a as 
F = 1.3 , which indicates that the slope is stable.

Conclusions
The stability analysis of a sandy slope supporting an embedded footing has been eval-
uated by developing a numerical model with focus on the factor of safety. A series of 
2D finite element analysis has been conducted to determine the effect of the following 
parameters on the factor of safety (F) of the slope: slope angle ( β ), relative density (Dr), 
footing edge distance (e), footing depth (D) and applied pressure (q). Based on the results 
and discussion, the following conclusions can be drawn:

  • The factor of safety (F) of the slope reduces with an increase in the applied footing 
pressure and the slope angle.

  • Increasing the footing depth ratio ( D/B ) improves F irrespective of the slope angle 
( β ) and the edge distance ratio ( e/B).

  • The slope stability also improves with increasing footing edge distance ratio ( e/B ), 
regardless of the slope angle ( β ) and the depth ratio ( D/B ). For a surface footing, F  
increases to a critical value at e/B = 3 then remains constant for e/B > 3.

  • As the relative density (Dr) increases, F significantly improves until Dr= 70% beyond 
which further increase in Dr results in a marginal increase in F.

  • Design charts for estimating F for 40°, 50° and 60° slopes, having a height H = 6 m, 
and supporting an embedded footing with parameters q = 100  kPa, e/B = 0, 1, 2 , 
D/B = 0, 0.5, 1.0 , and B = 1 m have been provided. An illustrative example has been 
given to explain how the developed charts can be utilized by the geotechnical/civil 
engineers. As required, the design charts for other cases may be created following 
the methodology developed in this paper.

N =
c

γH tan φ
=

3

(15.3)(6)(tan 35)
= 0.05.
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