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Abstract: Recent studies in bioinspired artificial olfaction, especially those detailing the application
of spike-based neuromorphic methods, have led to promising developments towards overcoming the
limitations of traditional approaches, such as complexity in handling multivariate data, computational
and power requirements, poor accuracy, and substantial delay for processing and classification
of odors. Rank-order-based olfactory systems provide an interesting approach for detection of
target gases by encoding multi-variate data generated by artificial olfactory systems into temporal
signatures. However, the utilization of traditional pattern-matching methods and unpredictable
shuffling of spikes in the rank-order impedes the performance of the system. In this paper, we present
an SNN-based solution for the classification of rank-order spiking patterns to provide continuous
recognition results in real-time. The SNN classifier is deployed on a neuromorphic hardware system
that enables massively parallel and low-power processing on incoming rank-order patterns. Offline
learning is used to store the reference rank-order patterns, and an inbuilt nearest neighbor classification
logic is applied by the neurons to provide recognition results. The proposed system was evaluated
using two different datasets including rank-order spiking data from previously established olfactory
systems. The continuous classification that was achieved required a maximum of 12.82% of the total
pattern frame to provide 96.5% accuracy in identifying corresponding target gases. Recognition
results were obtained at a nominal processing latency of 16ms for each incoming spike. In addition to
the clear advantages in terms of real-time operation and robustness to inconsistent rank-orders, the
SNN classifier can also detect anomalies in rank-order patterns arising due to drift in sensing arrays.

Keywords: neuromorphic olfaction; electronic nose systems; bioinspired artificial olfaction;
multi-variate data classification; SNN-based classification

1. Introduction

In recent years, research focusing on the development of artificial olfactory systems, also known
as electronic nose systems, has gained significantly increased attention. This has been largely due to
the diverse applications of these systems [1]. Whilst artificial olfactory systems emulate the biological
model for sensing and processing of odor data, the biological olfactory pathway outperforms the
current electronic systems in terms of accuracy and speed and can perform effectively even under
rapidly changing environmental conditions [2,3]. Biological studies indicate that these attributes are
achieved mainly because of the neurological architecture, which enables a rapid transformation of
odor data into spikes and learning from previous responses [4]. The idea of implementing bioinspired
methods for artificial olfaction generally focuses on using a sensor array with wide selectivity range,
and processing methods that rely on extracting features from the sensor output, encoding them in
patterns, and using pattern-matching algorithms for recognition logic [5,6].
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The introduction of bioinspired neuromorphic methods for artificial olfactory systems has allowed
the encoding of odor information in the form of spikes resulting in the development of computationally
efficient processing methods and deployment of associated learning algorithms [3,7]. The analog VLSI
circuit by Koickal et al. [8] was amongst the first silicon implementations of a neuromorphic olfactory
system. Subsequently, several other contributions, such as [9–12], have implemented spike-based
methods to develop neuromorphic olfactory systems. As discussed in [5], most of these studies have
mainly focused on simulating the biological counterpart, thus resulting in high levels of bio-realism
but poor performance parameters and impractical designs.

The bioinspired electronic nose system reported in [13–16] focuses on emulating only the
underlying neuro-biological architecture that can be practically implemented in silicon rather than
designing a detailed biological olfactory pathway in electronics. Furthermore, a 4 × 4 metal-oxide
sensor array design implemented resistance-to-time conversion in order to generate unique rank-order
signatures for classification and identification of target gases. While the use of rank-order spiking
patterns was not effective for encoding information, such as changing odor concentration, they have
provided a simplified platform for detecting the presence of a target gas in feature space [5,17].
However, the utilization of traditional pattern-matching methods in the presence of shuffled spike
sequences imposed limitations on the performance of the classifier [17].

This paper presents an SNN-based hardware solution for continuous and rapid classification of
rank-order spiking patterns in an artificial olfactory system. The key goals of this implementation are
to overcome the requirement for complete rank-order frames to provide recognition information and
reduce the processing latency to provide real-time classification results. The classifier was implemented
using radial basis function (RBF), a subset of the nearest neighbor algorithm, on a neuromorphic
pattern-matching platform where the experiments were conducted using rank-order signatures from
previously implemented electronic nose systems.

2. Approach

While the implementation of rank-order encoding schemes has emerged as one of the more
promising solutions for encoding multivariate artificial olfactory data, the performance of electronic
noses that utilize this approach is hindered by the limitations of current pattern-matching methods,
such as considerable computational requirements, and significant latency to provide classification
results. In order to overcome these limitations, we base our approach on implementing a simplified
spiking neural network (SNN) architecture that utilizes the nearest neighbor logic. This implementation
has been devised to achieve the following primary objectives: (a) Continuous classification of incoming
spiking patterns with minimum latency to enable real-time application. (b) Robustness to inconsistent
spiking patterns resulting from shuffling of rank orders. (c) Easy integration in a rank-order-based
olfactory system.

The SNN consists of 1024 leaky-integrate-and-fire (LIF) neurons that apply a bioinspired nearest
neighbor approach to classify an incoming rank-order pattern. The neurons are interconnected through
a daisy chain to form a network and perform classification in parallel to provide rapid recognition
results. Each neuron consists of an associative memory and processing unit along with an in-built
nearest neighbor-based classification logic. A crucial feature of the network is the massively parallel
and bi-directional neuron bus that allows neurons in the network to collaborate and provide accurate
classification results with minimum latency. The network layout and its implementation are discussed
in more detail in the subsequent sections.

Since the rank-order encoding approach has been utilized only in selected artificial olfactory
systems, such as [13–15,18,19], a limited volume of rank-order data is available for use to test the
functionality of the classifier. Hence, in order to better test the robustness and quantify classifier
performance, a rank-order encoder was developed using Python. The encoding logic is based on
the spike latency coding described in [15] that uses sensor characteristics and power law to convert
the analog output into sequences of latency spikes that represent the order in which the spikes were
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generated when a sensor array was exposed to a certain target gas. A subset of data points was
extracted from the dataset described in [20] and used as an input for the encoder to convert the 16-array
sensor output to a 16-element rank-order spiking pattern. A block diagram of the proposed approach
is shown in Figure 1 below.
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3. Rank-Order Encoding and Classifiers—Overview

The transmission of information by neurons in most early neuromorphic models was implemented
using a firing rate code [21]. While the main idea of applying this approach was to include a high degree
of bio-realism, the conventional rate-coding scheme was found to be incompatible with increased
processing speed requirements [22,23]. As a result, rank-order spike encoding was developed as an
alternative coding scheme that provided several advantages, such as speed, robustness, and ease
of implementation. The rank-order spike coding represents the order in which the neurons fire in
response to a stimulus, thus encoding the information in the relative timing of spikes across the neuron
population. This approach was first introduced and applied by Thorpe et al. for pattern and face
recognition in artificial retinas [21,23].

Building on the foundational studies presented in [13,19,24], the spike-latency coding utilized in
the bioinspired microelectronic nose, as described in [14], was among the first to apply rank-order spike
encoding in neuromorphic olfaction. The application of resistance-to-time conversion transforms the
analog sensor responses to sequences of latency spikes. This bioinspired approach provides a unique
concentration-invariant rank-order spiking pattern for a specific target gas. The rank-order signatures
generated by the 4 × 4 metal-oxide sensor array for different target gases at varying concentrations is
shown in [15]. The bioinspired analog gas sensing front-end, proposed by Huang and Rabaey in [18]
is the most recent application of rank-order coding in artificial olfaction. A spike-timing encoding
algorithm is proposed that can generate concentration-invariant temporal spike patterns, equivalent to
rank-order spiking patterns, without prior knowledge of sensor characteristics.

While the rank-order coding scheme cannot be applied to systems monitoring changes in
concentration of gases, this approach is more effective in encoding multi-variate data to detect the
presence of a set of target gases, especially in applications, such as bio-security and environmental
monitoring [3,5]. The classifiers developed for such systems are mainly based on traditional
pattern-matching techniques that compare the rank-order spiking pattern with the reference patterns
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stored in a library [16]. An alternative approach using conventional K-nearest neighbor (KNN) has also
been proposed in [25] where a minimum spike distance algorithm was used to identify a new test rank.
These techniques require an entire frame of the rank order signatures to commence the pattern-matching
process, resulting in a latency build-up in result classification. Furthermore, limitations of such an
approach include susceptibility to inconsistent spiking order [17], and high computational and power
requirements. Recent development in a neuro-inspired spike-pattern classifier was reported in [26],
but its dependency on futuristic 3D technology to apply hyper-dimensional computing principles may
not be viable for current artificial olfactory systems.

4. Implementation Methods

4.1. Input Dataset

The implementation of a rank-order scheme for artificial olfactory systems has only been recently
realized and remains a relatively novel concept for encoding multi-variate olfactory data. To the best
of our knowledge, only selected implementations including [14,15,18] have utilized this bioinspired
approach. As a result, investigations based on classification of rank-order patterns can only utilize
datasets presented in these studies to validate their methodology.

Primary experiments to validate the classification methodology developed in this study have been
conducted using the dataset, extracted from [15], consisting of eight rank-order patterns. A 16-element
spike latency code (shown in Figure 2) is generated by the 4 × 4 metal-oxide sensor array using signal
processing strategies that implement the resistance-to-time conversion. Rank-order patterns for four
target gases, hydrogen, methane, carbon monoxide, and ethanol, at 20 ppm concentration are used as a
learning dataset and spiking patterns generated at 200 ppm are used as an input dataset for validation
of the methodology. Except for methane (CH4), the rank-order patterns for other target gases are
slightly altered for the purpose of verifying the robustness of the classifier.
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oxide sensor array adapted from [15].

While this dataset met the requirements to validate classification results, the performance of
the classifier could not be quantified with this limited dataset. A subset from the dataset recorded
by Vergara et al. [20], was extracted from the UCI machine learning repository and encoded using
rank-order spiking patterns. Along with the analog sensor output for six different analytes, several
key features extracted from the output signals are included within the dataset. The normalized
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steady-state features extracted from analog recordings of a 4 × 4 metal-oxide gas sensor array when
exposed to six different analytes namely ammonia, acetaldehyde, acetone, ethylene, ethanol, and
toluene, were included in the extracted subset. The comprehensive dataset, recorded in different
batches over a span of 36 months, is vast and includes data from sensor responses when exposed
to a wide range of concentrations of the target gases. Furthermore, the sensor responses for target
gases and concentrations are not sampled in a particular order and the distribution of the number
of measurements for each target gas is inconsistent. As a result, sensor features for only a specific
range of concentrations from batch 1 (Table 1) were included as part of the subset mainly because
sensor characteristics change substantially over time and with exposure to higher concentrations.
This results in inconsistent rank-order patterns due to several factors, such as sensor drift and aging,
and substantial changes in experimental conditions.

Table 1. Dataset details with analytes, their concentrations and number of samples.

Analytes Concentrations (ppmv) Samples

Ammonia 50, 75, 100, 125, 150, 175, 200, 225, 250, 275 55
Acetaldehyde 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300 23

Acetone 150, 200, 250, 300, 350, 400, 450, 500 40
Ethylene 50, 75, 100, 125, 150, 175, 200, 225, 250, 275 64
Ethanol 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300 46
Toluene 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 57

4.2. Rank-Order Encoder

The rank-order encoding methodology implemented in [13,15] was used to develop a rank-order
encoder to convert the steady-state features extracted from the dataset into one-dimensional
feature vectors of rank-order signatures. The steady-state features are a crucial component of
this process, representing the maximal resistance change of the sensor with respect to its baseline
resistance. The encoding of sensor output to spike latencies in [15] mainly focus on generating
concentration-invariant rank-order patterns using sensor and gas-dependent characteristics where
these properties are known in advance. Since these properties were not readily available, we computed
the relative time difference between the spikes using steady-state resistance values.

The firing latency of the ith sensor was computed using,

ti =
ln

(
Ri j

)
γi j

(1)

where, Rij is the steady-state resistance for sensor i and target gas j, and γij is a constant parameter
that depends on the characteristics of sensor i when exposed to analyte j. The value of the constant
γij can either be determined using a linear regression model or by using the power law mentioned
in [15]. The encoder was developed using Python and the resulting program generated an output file
with rank-order codes and spike latency timings when an input file with steady-state features and the
sensors’ characteristic parameters was provided.

4.3. Network Layout

This study utilizes the underlying SNN architecture provided by the NeuroMem chip on the
BrainCard, a neuromorphic pattern-matching board [27], to implement the rank-order classifier.
The classification logic is deployed on the network comprising of 1024 trainable integrate-and-fire
(INF) neurons in a fully parallel daisy chain neural network as shown in Figure 3.
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The INF neurons in the network can be programmed to behave as an RBF or a KNN classifier, both
subsets of the nearest neighbor logic. Along with the classification logic, each neuron has an associative
memory of 256 bytes that can be used for learning rank-order feature vectors as well as for recognition
of known patterns or detecting anomalies by using the learning data as a reference. A bioinspired
logic is applied for classification of incoming patterns where the neurons autonomously evaluate the
distance between the broadcasted and the reference pattern and generate spiking output consisting of
classification information if the calculated distance is within the influence field [28]. This distance is
calculated based on the Manhattan distance that evaluates each component in the patterns using the
following mathematical formula:

D =
∑
|Vi − Pi| (2)

where, Vi is an element of the broadcasted vector and Pi is an element of the stored reference vector.
If this distance value is less than a neuron’s influence field, the neuron enters into “firing” mode and
returns a positive classification with information, such as category, distance, and identifier. Figure 4
shows a model of the component by the component distance evaluation technique. The classification
result is based on winner-takes-all (WTA) logic that includes recognition responses from K neurons
ordered as per increasing distance values.
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The neuron elements in the network are interconnected through a parallel and bidirectional neuron
bus that enables the neurons to learn and process information simultaneously, and collaborate with other
neurons, resulting in improved performance in terms of speed, accuracy, and flexibility. In addition to
low power requirements and rapid communication over the neuron bus, this implementation benefits
from the fixed processing latency (19 clock cycles) of the SNN to return the distance value of the closest
neuron, which is crucial for the real-time operation of this system [28].
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4.4. Supervised Learning

The classifier is trained using supervised learning that includes broadcasting the learning data to
the neurons and setting-up their active influence field (AIF). The learning mode is activated when an
input pattern is allocated a category and broadcast to the network through the neuron bus. Only the
‘firing’ neurons that have already been assigned a reference pattern and category value, and the
‘ready-to-learn’ neuron, which is the next available neuron to store the broadcasted pattern, react to the
learning operation. If, for a broadcasted pattern, none of the neurons fire, a new neuron is allocated to
store the reference pattern and its associated category value, and the value of its influence field is set to
the current value of the maximum influence field register [28].

In the case where neurons have fired in response to a broadcasted pattern, the allocation of a new
neuron to learn the reference pattern is based on the condition that none of the firing neurons should
identify the broadcasted pattern as belonging to the category to learn. As a result, the influence field
of this newly committed neuron is set to the distance of the closest firing neuron. Furthermore, the
committed neurons initiate a corrective action to reduce their AIF value to the distance between the
stored pattern and the broadcasted pattern. The feature space consisting of four committed neurons
after the learning dataset from dataset [15] was broadcast is shown in Figure 5. Offline learning method
was used where neurons were dynamically allocated corresponding to the number of learning patterns.
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5. Results and Discussion

5.1. System Configuration

The classifier hardware setup includes interfacing of the BrainCard, neuromorphic hardware where
the pattern-matching SNN is deployed, with a host microcontroller board through the serial peripheral
interface (SPI) bus. The input rank-order patterns for learning and classification are transmitted from
a PC-based console to the neuromorphic hardware through a serial interface provided by the host
microcontroller. This emulates the implementation of the classification system as a recognition engine
interfaced with a front-end sensing array that provides rank-order spiking output. A block diagram of
this setup is shown in Figure 6.
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Among the supported nearest neighbor algorithms, the neurons were configured for RBF
recognition logic, which is more aligned to a bioinspired approach. Within this configuration,
the neurons enter the ‘firing’ state only if the distance between the incoming pattern and the reference
pattern is within its AIF [27,28]. This is in contrast to KNN classifiers, which always fire to input
by identifying the incoming pattern to a category with minimum distance irrespective of their AIF.
Such an approach leads to misclassifications and minimizes the detection of anomalies in rank-order
patterns [28]. For this implementation, the value of the nearest neighbor is set to two, therefore the
classification results are narrowed to two possible target gases based on the closest match of the input
rank-order pattern from the rank-order signature learning data.

5.2. Classification Results

The experiments in this study were carried out in two stages: preliminary experiments to validate
the classification methodology and experiments to quantify the performance parameters of the classifier.
The preliminary experiments were conducted using the dataset extracted from [15] where rank-order
signatures generated at 20 ppm for four analytes were used for learning and signatures recorded for
200 ppm were used as an input for classification. The accuracy of the classifier recorded for this dataset
was 100%, and a positive recognition was obtained following the reception of 20.3% (3.25 spikes) of the
total 16-element pattern frame.

Although the dataset was sufficient to demonstrate the SNN-based classification method,
the performance and the robustness of the classifier was further validated using the dataset extracted
from [20]. As the rank-order encoding process utilized steady-state resistance values rather than the
concentration-invariant method described in [15,18], certain inconsistencies in the rank-order patterns
for different concentrations were observed. This enables us to verify the classifier’s robustness to
shuffling of spikes. The learning data consisting of six rank-order patterns were determined using the
probabilistic rank-score coding, described in [17], which calculates the probability of a sensor spiking
at a specific rank in the pattern for a target gas using

P j
i (k) =

N j
i (k)

N(k)
(3)

where P j
i (k) is the probability of sensor i spiking at rank j for a target gas k, N(k) is the total number of

rank-order patterns generated for target gas k, and N j
i (k) is the number of times the sensor i in the

array has spiked at rank j when exposed to target gas k. As a result, the unique learning set consisted
of a reference rank-order signature for each target gas derived from this method. This learning dataset
is different from the dataset used for testing the model.
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The accuracy of the SNN classifier for 285 testing sequences of rank-order patterns for six analytes
was found to be 96.5%. A confusion matrix of the classification results is shown in Figure 7. On average,
the continuous classification result was obtained with the reception of 12.82% (2.05 spikes) of the total
16-element rank-order pattern frame. The average percentage of rank-order pattern frame required
for each analyte along with average variance observed in each analyte is shown in Figure 8. It can
be observed that the continuous classification results are not only affected by the inconsistencies in
the rank-order patterns but also vary due to closely related odors that have similar elements in their
rank-order signatures. For example, the similarities between rank-order signatures for ethylene and
ethanol result in a requirement of 18.75% (three spikes) of the rank-order pattern frame to distinguish
between the two analytes.Sensors 2019, 19, x FOR PEER REVIEW 9 of 12 
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One of the key attributes of the SNN is its fixed processing latency of 19 clock cycles to obtain
a response [28]. Hence, in both cases, the maximum latency required by the classifier to provide
recognition results was observed to be 16 ms. These attributes, along with the ability of the system
to continuously identify possible target gases with minimum processing latency, are crucial for an
olfactory system when implemented for sensitive applications, such as biosecurity and defense.
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5.3. Discussion

We tested the SNN classifier using two different datasets: the first dataset consisted of rank-order
patterns generated as an output by an artificial olfactory system, and the second dataset was generated
by encoding a subset extracted from [20] into rank-order spikes. The classification accuracy obtained
for these datasets was 100% and 96.5%, respectively. Although the performance of gas identification
algorithms cannot be generalized due to several factors that affect its performance, such as encoding
method, selection of features, and sensing technology, based on the comparative study provided
in [17], it can be observed that the proposed classifier provides higher accuracy than the 1-D rank-order
classifier that recorded 55.45% with reduced power consumption and computational requirements.

The SNN-based classifier proposed in this study was able to provide continuous recognition
results with each incoming rank-order spike and at a maximum processing latency of 16 ms. One of the
highlights of this study is the implementation of an ‘increasing pattern-matching window’ that enables
the classifier to provide recognition results as soon as the first element of the rank-order pattern is
received. When an incoming spike is received by the network, the dimension of the ‘pattern-matching
window’ is increased, which enables the neurons in the SNN to simultaneously compare the current
rank-order spikes in the received pattern with the reference learning data. The application of this
technique enables the SNN to continuously evaluate relative distances and determine the closest
matching class for the broadcast pattern, with the accuracy of the decision improving as the number of
received spikes increases progressively over time.

The SNN-based approach relies on the property of neurons to generate an AIF based on the
learning data that is sufficient to distinguish and perform classification of incoming patterns. Based
on the results obtained through these experiments, we can infer that the classifier can provide highly
accurate results even when a larger input dataset with even more target gases is used, provided that the
rank-order patterns for the target gases are not similar. Moreover, the use of probabilistic rank-score
coding largely simplifies the process of determining the learning sequences and hence minimizes the
computational overhead of traditional machine learning methods that mostly require specific and
large proportions of training datasets to deliver accurate results on the testing dataset. The training
dataset derived using this method consisted of a reference rank-order signature for each target gas,
and, it should be noted, is completely distinct from the dataset used for testing the model.

Along with improved accuracy with minimum computational and power requirements,
the application of the SNN-based classifier enables detection of anomalies when a certain rank-order
pattern is unidentified [28]. If a broadcasted pattern is not within the AIF of the committed neurons,
the rank-order signature cannot be matched to a class of the reference target gases. In this case, the SNN
can be programmed to store and later retrieve the rank-order signature with the ‘unknown’ category
to be labeled. This approach can be particularly effective to detect consistent changes in rank-order
pattern caused by factors, such as varying environmental conditions and long-term drift.

6. Conclusions

Rank-order-based coding schemes have emerged as one of the more promising solutions to encode
multi-variate data generated by artificial olfactory systems into temporal spiking patterns. Recent
studies in this field have focused more on the encoding process, meaning the classification of the
generated rank-order patterns has largely depended on statistical pattern-matching methods [25].
The performance of rank-order-based artificial olfactory systems using traditional classification methods
is, however, adversely affected due to factors, such as substantial latency in providing recognition
results [5].

In this paper, we report the development of SNN-based classification hardware that can be
implemented as a recognition engine for rank-order-based artificial olfactory systems. The proposed
technique exploits the high-speed and robust recognition capabilities of the SNN to overcome limitations
of standard approaches, such as increased latency due to the requirement for a complete pattern frame to
commence classification, and the reduced accuracy in cases when spikes are shuffled. The classification
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logic is deployed on a fully parallel silicon neural network that provides several features, such as
scalability, accuracy, fixed processing latency, and low-power requirements, which are crucial enablers
for integrating artificial intelligence in embedded systems.

Experiments were conducted in two stages where the classification logic was first validated
using a smaller dataset extracted from an implementation of a rank-order-based artificial olfactory
system [15]. The second stage of the experiment included the development of an encoder to convert
the steady-state features extracted from the [20] dataset into rank-order patterns in order to evaluate
the performance of the classifier. The results show that the classifier required on average only 12.82%
of the total pattern frame to provide greater than 96.5% accuracy and was robust to shuffling of spiking
order. The classification process of broadcasting the rank-order patterns to the neurons and returning
the category of the closest firing neurons was performed with a very low processing latency of 16 ms.
Moreover, the classifier is able to handle anomalies and recurring unidentified temporal patterns that
can be crucial to detect the effects of drift on the rank-order signatures and implement corrective logic
for classification.

Current research in bioinspired olfactory systems, especially the developments in novel sensing
front-ends, has provided a promising platform for the implementation of robust real-time olfactory
systems [29]. Additionally, the application of spike-based neuromorphic methods for artificial olfactory
systems has played a crucial role in simplifying the processing of multivariate data with low power
and computational requirements. Research in neuromorphic olfactory systems is now more focused
on solving issues related to portability of these systems and handling real-world data to provide
recognition of target gases in real-time. The advantages of the SNN-based hardware classifier presented
in this study, including continuous recognition results with minimum processing latency, and a
simplified interface for using the hardware via rapid prototyping microcontroller boards, are in-line
with the development of a robust electronic nose system for real-world applications.

The implementation of this hardware-based classifier, along with a sensing front-end, such
as [18], that generates rank-order output, will provide a promising platform for the development of an
IoT-based olfactory system, such as [30], that is portable, low power, robust, and operates in real-time.
This methodology can also be extended to implement a rank-order-based neuromorphic gustatory
system that can be applied to detect the presence of certain chemical components in a liquid and provide
a platform for sensor fusion that includes both electronic nose and electronic tongue, as described
in [31]. Future developments for this system will focus on the inclusion of the time domain for learning
and recognition, analyzing the system performance in a real-world environment, and investigating
acceptable limits for variance in a spiking pattern to avoid false positives during classification.
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