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H I G H L I G H T S

• Indentation-based deformation is af-
fected by the type of Laves phase pres-
ent in the microstructure.

• The C15-type Laves phase deforms bet-
ter than the C14-type Laves phase.

• The C15-type Laves phase could con-
tribute in enhancing bulk plasticity of
the alloy.

• The C14-type Laves phase exhibits a
better dislocation-pinning ability than
the C15-type Laves phase.
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The superior reinforcement nature of Laves phasesmake them suitable for high-strength applications. Therefore,
investigations on the deformation and strength characteristics of Laves phases are useful in development of an
improved Laves phase-reinforced alloy. In this work, the Vickers micro-indentation method is used to evaluate
and compare the deformation and strength characteristics of a hexagonal close-packed Laves phase (C14-type)
in Ti-35Zr-5Fe-6Mn (wt%) and a face-centered cubic Laves phase (C15-type) in Ti-33Zr-7Fe-4Cr (wt%), consider-
ing the same volume fraction of Laves phase (~7.0%) in these alloys. Moreover, the effects of higher volume frac-
tion of Laves phase (19.4%) on indentation-based deformation features are evaluated in Ti-35Zr-5Fe-8Mn (wt%).
Remarkably, dislocation activity and plastic deformation features are evident in the C15-type Laves phase,
whereas the C14-type Laves phase strongly blocks dislocation motion. Therefore, the C15-type Laves phase im-
proves plastic deformability, whereas the C14-type Laves phase improves strength characteristics of Laves
phase-reinforced alloys.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Laves phases have become a promising strengthening agent in alloys
suitable for automotive, aerospace and petrochemical applications,
where Laves phase-reinforced alloys exhibit high strength along with
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superior hardness [1–3]. Hence, research interests have been increas-
ingly investigating the deformation and strength characteristics of
Laves phases, which may be favorable to develop an improved Laves
phase-reinforced alloy for several structural applications. Usually, the
following three types of Laves phases are formedwith AB2 compositions
of various elements: (i) C14, (ii) C15 and (iii) C36 [4]. The prototype
structures of C14-type, C15-type and C36-type Laves phases are
MgZn2, MgCu2 and MgNi2 respectively [5]. Among these three types of
Laves phases, C14-type and C15-type phases are formed frequently,
whereas the C36-type phase is rarely formed [6]. The formation of
Laves phases primarily depends on a geometric parameter, i.e., atomic
radii ratio of A and B atoms (where A has a relatively larger atomic
size and B has a relatively smaller atomic size), the electronegativity dif-
ference between A and B atoms and the valence electron concentration
[7–9]. Other than these, the transformation of Laves phase from other
phases is also possible when an alloy undergoes a thermal processing
and/or mechanical deformation [10,11]. Furthermore, C14-type phases
possess a hexagonal close-packed (hcp) structure [12], whereas C15-
type phases have a face-centered cubic (fcc) structure [1]. Therefore,
the deformation and strengthening behavior of C14-type and C15-
type Laves phases towards the dislocation activities should be different
from each other due to different crystal structures.

It is well-known that indentation methods are non-destructive, less
time consuming, more simplistic and inexpensive compared to conven-
tionalmechanical testingmethods and they can effectively elucidate the
deformation characteristics of a material [13]. The formation of crack
and/or deformation bands occurs around and beneath the impression
of hardness indentation [14,15]. Based on these features, deformation
behavior and other mechanical properties such as hardness, elastic
modulus, strain-hardening exponent, yield strength and fracture tough-
ness can be estimated using indentation methods [16,17], where these
properties are correlated directly with the microstructure of a material
[18]. Considering these advantages, the Vickers micro-indentation
methodwas chosen in thiswork to investigate the deformation features
of the investigated alloys.

It has been reported that a C14-type Laves phase forms in Ti-Zr-Fe-
Mn alloys [19] and a C15-type Laves phase precipitates in Ti-Zr-Fe-Cr al-
loys [1]. The values of atomic radii ratio for both the Ti-Zr-Fe-Mn and Ti-
Zr-Fe-Cr systems are N1.200, which is very close to the ideal value of
atomic radii ratio (1.225) for forming the Laves phase [1,19]. Therefore,
Laves phases precipitate in the investigated Ti-Zr-Fe-Mnand Ti-Zr-Fe-Cr
alloy systems when the alloys are rapidly cooled. On the other hand,
Strukturbericht designation (C14/C15/C36) and volume fraction of the
Laves phase (Vf, Laves) depend on the alloying elements and their quan-
tities [8,20]. Hence, the quantities of alloying elements in the two afore-
mentioned systems of alloys are selected in such a manner that the C15
phase is formed in the Ti-Zr-Fe-Cr alloys and the C14 phase is precipi-
tated in the Ti-Zr-Fe-Mn alloys according to their respective phase dia-
grams and the findings in the previous literature [1,19–25]. Moreover,
apart from the mechanical characterizations of the Ti-Zr-Fe-Mn alloys
containing a C14 phase and the Ti-Zr-Fe-Cr alloys containing a C15
phase, the deformation and strength characteristics of C14 and C15
type phases in the two aforementioned quaternary alloy systems can
also be a great area of research in the development of improved high-
strength alloys.

Hence, considering the points discussed above, two C14-type alloys,
i.e., Ti-35Zr-5Fe-6Mn (wt%) (abbreviated as TZF6) and Ti-35Zr-5Fe-
8Mn (wt%) (abbreviated as TZF8) [19], and one C15-type alloy, i.e., Ti-
33Zr-7Fe-4Cr (wt%) (abbreviated as TZ74) [1] were selected in this
work. The primary aim of selecting the TZF6 and TZ74 alloys was to
compare the indentation-based deformation and dislocation-pinning
behavior of C14-type and C15-type Laves phases in the body-centered
cubic (bcc) β- titanium (Ti) matrix because TZF6 (7.0 ± 0.5%) [19]
and TZ74 (7.6 ± 0.7%) [1] comprise nearly identical Vf, Laves. On the
other hand, Vf, Laves for TZF8 is 19.4 ± 0.4% [19], which is greater than
other two selected alloys (i.e., TZF6 and TZ74). Thus, the present work

also investigates the effects of higher Vf, Laves (19.4± 0.4%) on the defor-
mation characteristics of TZF8. In addition, Ti alloys comprising a β
phase were selected in this work because β-Ti alloys can be used in
many structural and biomedical applications [26,27] as β-Ti alloys pos-
sess a low density and exhibit a superior balance of strength and ductil-
ity as well as excellent corrosion resistance [28–30]. The β phase in Ti
alloys comprises a bcc structure which is also effective in improving
bulk plasticity of Laves phase-reinforced alloys [2,9]. The advantage of
the bcc matrix is that it possesses a total of 48 slip systems and exhibits
high dislocation density after deformation in multi-phase alloys due to
the dislocation-pinning produced by second phase precipitates/parti-
cles [28,31,32]. Second phase precipitates/particles produce a stress
field, which hinders the dislocation motion to pass through them due
to comprising different atomic sequence and/or different crystal struc-
ture. This phenomenon is known as dislocation-pinning. In the present
work, dislocation-pinning could be produced by the precipitated Laves
phases (C14 and C15) at the Laves (C14/C15)-β interfaces, which
usually leads to an improved strengthening effect in an alloy. Conse-
quently, dislocation activities at Laves (C14/C15)-β interfaces and in
the interior of Laves (C14/C15) phases are investigated with aim to
shed insight into: (i) the deformability of C14 type and C15 type Laves
phases, (ii) the occurrence of dislocation-pinning and (iii) the precipita-
tion strengthening due to the presence of respective Laves phase (C14/
C15). These findings are useful in optimizing strength and plasticity in
emerging Laves phase-reinforced alloys.

2. Experimental procedure

TZF6, TZ74 and TZF8 were first cast from the alloying elements with
a purity of 99.9% using a cold crucible levitation melting furnace and
then rapidly quenched in a water-cooled copper crucible. Multiple cy-
lindrical rods (4.6 mm diameter) of each alloy were produced from
the respective cast ingot using wire electrical discharge machining.
Eight Vickers micro-hardness indentations were performed at room
temperature on multiple samples of each alloy using a Zwick Roell
ZHU at: 5 kgf (49.03 N), 10 kgf (98.06 N) and 30 kgf (294.19 N) and at
a dwelling time of 20 s. The bonding-interface technique was used to
study the subsurface deformation features [14,33]. Scanning electron
microscopy (SEM) was performed using a FEI Verios XHR 460 micro-
scope. Transmission electron microscopy (TEM), selected area electron
diffraction (SAED) and energy dispersive X-ray spectroscopy (EDX)
were performed using a JEOL JEM-2100 microscope. The samples of
each alloy for SEM were ground using SiC papers up to 2000 grits and
then polished using a Struers MD-Chem polishing cloth with a presence
of Struers OP-S colloidal silica, according to standard metallographic
procedures. Specimens for TEM were prepared from the 3 mm discs
by electropolishing in a mixture of ethanol and perchloric acid with a
proportion of 9:1 by volume at a temperature of −30 °C with an elec-
trode voltage of 30–90 V [34]. Microstructure, indentation-based defor-
mation and strength characteristics of Laves phases were analyzed
using SEM, TEM, EDX and SAED patterns. ImageJ software was used
for all the types of length measurements discussed in this work. The re-
ported values of Vf, Laves were estimated using ImageJ software (thresh-
old function) from the low-magnification backscattered SEM images of
all the investigated alloys.

3. Results and discussion

Table 1 summarizes the information of phase constituents (includ-
ing Strukturbericht designation and chemical formula of Laves phases),
Vf, Laves, Vβ, lattice parameters, grain size, lamellar spacing, yield strength
and plastic strain for the investigated alloys, as reported in Ref. [1, 19].
The values of these properties are used to carry out further discussion
related to deformation characteristics of the investigated alloys in this
work. The inverse correlation between yield strength and grain size
for the TZF6, TZ74 and TZF8 alloys can be seen in Table 1. The reason
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for such an inverse correlation in the investigated alloys is grain bound-
ary strengtheningwhich occurs according to theHall-Petch relationship
[35–38]. The values of lamellar spacing (inside the Laves phase mor-
phologies) are inversely correlated with the values of plastic strain pre-
sented in Table 1 for all the investigated alloys. On the other hand, Vf,

Laves of TZF6 and TZ74 are almost identical (Table 1). Therefore, it is
quite motivating, based on the results presented in Table 1, to further

investigate and compare the deformation and dislocation-piningbehav-
ior of the C14-type phase in TZF6 and the C15-type phase in TZ74.

Figs. 1–3 illustrate the SEM images of hardness indentations ob-
tained at 294.19 N for the investigated alloys. Figs. 1b, 2b and 3b display
the precipitated eutectic morphologies (white) of C14 and C15 phases
over the β matrix [1,19]. Inside the eutectic morphologies of Laves
phase (C14/C15), the white regions are the regions of the Laves phase,

Table 1
The summary of phase constituents, Vf, Laves (volume fraction of Laves phase), Vf,β (volume fraction ofβ phase), lattice parameters (ɑ), grain size, lamellar spacing, yield strength and plastic
strain for the TZF6 (Ti-35Zr-5Fe-6Mn), TZ74 (Ti-33Zr-7Fe-4Cr) and TZF8 (Ti-35Zr-5Fe-8Mn) alloys.

Alloys Phase constituents Vf, Laves (%) Vf,β

(%)
ɑLaves (nm) ɑβ (nm) Grain size

(μm)
Lamellar
spacing (nm)

Yield strength
(MPa)

Plastic
strain (%)

Ref.

TZF6 β, C14-Zr(Fe, Mn)2 7.0 ± 0.5 93.0 ± 0.5 a = 0.5198, c = 0.8515 a = 0.3320 49 ± 18 877 ± 291 1485 ± 18 5.8 ± 1.7 [19]
TZ74 β, C15-Zr(Fe, Cr)2 7.6 ± 0.7 92.4 ± 0.7 a = 0.7069 a = 0.3351 63 ± 23 396 ± 137 1285 ± 42 8.7 ± 1.2 [1]
TZF8 β, C14-Zr(Fe, Mn)2 19.4 ± 0.4 80.6 ± 0.4 a = 0.5197, c = 0.8505 a = 0.3311 18 ± 7 1091 ± 508 1580 ± 24 2.6 ± 0.5 [19]

Fig. 1. The SEM images of micro-hardness indentation taken for TZF6 (Ti-35Zr-5Fe-6Mn)
at 294.19N (HV30). Note that secondary electronmode and back-scattered electronmode
are labelled as SE and BSE respectively in (a)–(c). (b) and (c) are the high-magnification
images of the area selected using yellow and sky-blue rectangles shown in
(a) respectively.

Fig. 2. The SEM images of micro-hardness indentation taken for TZ74 (Ti-33Zr-7Fe-4Cr) at
294.19 N (HV30). Note that secondary electron mode and back-scattered electron mode
are labelled as SE and BSE respectively in (a)–(c). (b) and (c) are the high-magnification
images captured in BSE and SE modes respectively over the area selected using yellow
rectangle shown in (a).
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while the dark grey regions are with the β phase. Note that the regions
of β phase (dark grey) present inside the eutectic morphologies of C14-
and C15-type Laves phases (shown in Figs. 1–3) are not considered
while estimating Vf, Laves (as presented in Table 1). The crystal structures
of C14 and C15phases are confirmedusing SAEDpatterns and discussed
in succeeding explanations. EDX elemental compositions were mea-
sured on the C14 phase in TZF6 and the C15 phase in TZ74 [39–42],
i.e., Ti-48.5Zr-13.8Fe-11.9Mn (wt%) and Ti-47.8Zr-182.Fe-8.9Cr (wt%),
respectively. This indicates that the C14 and C15 precipitates aremainly
composed of (Zr, Fe and Mn) and (Zr, Fe and Cr), respectively. Conse-
quently, the AB2 phase compositions of the C14 (in TZF6 and TZF8)
and C15 (in TZ74) phases are Zr(Fe, Mn)2 and Zr(Fe, Cr)2 respectively
(Table 1). On the other hand, the compositions of the β phase are closer
to their nominal compositions.

The indentation size effect (ISE) in the present work features for the
investigated alloys as hardness of the as-cast alloys decreases as the
indentation-load increases from 49.03 N to 294.19 N (Fig. 4) [43]. ISE
generally depends on the geometrically required dislocations, surface

morphology, tip defects, creep and so on [44,45]. Established literature
acknowledges that ISE vanishes at critical load and the values of
hardness do not decrease further after critical load [46]. However, in
the present work, this phenomenon (vanishing of ISE at certain load)
is not observed in hardness testing performed until 294.19 N as the
decreasing trend of hardness continues in hardness testing performed
until 294.19 N (from 49.03 N) for the investigated alloys. The crack/de-
formation features formed around the indentations of TZF6 can be com-
paredwith those of TZ74 in Figs. 1 and 2, while the effect of high Vf, Laves
on crack/deformation patterns of TZF8 can be seen in the form of cracks
in the SEM images shown in Fig. 3, as evidenced by the large cracks at
the indentation-vertices of TZF8 when compared to TZ74 and TZF8. Al-
though cracks at the indentation vertices are a common feature for brit-
tle materials, the formation of cracks around the indentation depends
on the underlying microstructure [18]. In case of two-phase alloys in
which one phase is very brittle and the other is soft, there is a little pos-
sibility of the crack-formation at indentation-vertices if indentation ver-
tices are located on a soft phase [18,19,47]. This phenomenon can be
supported in the indentation images of the as-cast alloys as cracks de-
flect along the brittle C14 and C15 type Laves phases (Figs. 1–3). This
clearly indicates that the β phase absorbs more fracture energy than
Laves phases and dissipates the absorbed fracture energy to plastic
deformation.

Other than cracks, slip bands are formed (because of dislocationmo-
tion) around indentations of the investigated alloys [48,49]. Table 2 pre-
sents the measured size of deformation zone around the indentations
(δ) (at 98.06 N and 294.19 N) for the investigated alloys. The values of
δ evidently increase as the load increases from 98.06 N to 294.19 N. In
those indentations taken at 98.06 N and 294.19 N, the highest values
of δ are obtained in TZ74, followed by TZF6 and TZF8 (Table 2), which
indicates that the C15-type TZ74 alloy has better plastic deformability

Fig. 3. The SEM images of micro-hardness indentation taken for TZF8 (Ti-35Zr-5Fe-8Mn)
at 294.19N (HV30). Note that secondary electronmode and back-scattered electronmode
are labelled as SE and BSE respectively in (a)–(c). (b) and (c) are the high-magnification
images of the area selected using yellow and sky-blue rectangles shown in
(a) respectively.

Fig. 4. Hardness of the TZF6 (Ti-35Zr-5Fe-6Mn), TZ74 (Ti-33Zr-7Fe-4Cr) and TZF8 (Ti-
35Zr-5Fe-8Mn) alloys.

Table 2
The values ofmeasured δ (size of deformation zone around the indentations) and theoret-
ical size of deformation zone δK obtained at indentation-loads (P) of 98.06 N and 294.19 N
for the TZF6 (Ti-35Zr-5Fe-6Mn), TZ74 (Ti-33Zr-7Fe-4Cr) and TZF8 (Ti-35Zr-5Fe-8Mn)
alloys.

Alloys P (N) Measured δ (μm) Theoretical δK (μm)

TZF6 98.06 164 ± 4 177
294.19 255 ± 7 307

TZ74 98.06 182 ± 2 191
294.19 267 ± 5 330

TZF8 98.06 155 ± 6 172
294.19 247 ± 12 298
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than the C14-type TZF6 and TZF8 alloys. According to the continuum
model suggested by Kramer et al. [50], the theoretical size of deforma-
tion zone (δK) around the indentation can be calculated by Eq. (1):

δK ¼ 3P
2πσ0:2ð Þ

� �0:5
ð1Þ

where P is indentation-load and σ0.2 is yield strength. As such, the the-
oretical values of δK were calculated for the investigated alloys at
98.06 N and 294.19 N. It is interesting to note that these δK values are
close to those of the measured δ (Table 2) at 98.06 N but not at
294.19 N. This means that the Kramer's continuum model is valid in
predicting δ up to a certain load limit. Moreover, the size of the indent
remains smaller for the indents taken at 49.03 N compared with the
sizes of the indents taken at 98.06N and at 294.19 N. Therefore, in hard-
ness testing, the indents taken at 98.06 N and 294.19 N cover a larger re-
gion of the microstructure comprising β phase and Laves (C14/C15)
phase morphologies in the investigated alloys than those taken at
49.03 N. Therefore, the deformation features obtained at 49.03 N have
not been used in this work.

Figs. 5 and 6 show the back-scattered SEM images of subsurface
morphologies obtained at 98.06 N for the TZF6 and TZ74 alloys respec-
tively. In TZF6 and TZ74, two types of deformation-induced slip steps
are found: (i) primary (semi-circular) slip steps and (ii) secondary (ra-
dial) slip steps which usually propagate along the top indentation sur-
face or from indenter tip [14]. Radial slip steps are shown in Figs. 5b
and 6a and are indicated by small yellow arrows in Fig. 6b. The semi-
circular and radial slip steps are formed because of the radial and
shear stress components respectively and moreover, radial slip steps
are usually formed after the semi-circular slip steps [33]. As the inden-
tation performed for TZF6 at 98.06 N was around 10° inclined from
thebonded interface, the epicentres of semi-circular slip steps are orien-
tated towards left from the indenter tip. However, it is noteworthy to
see that the C14 phase blocks the propagation of slip steps. As a result,
accumulation of slip steps occurs just above the C14 phase, which can

be clearly seen in Figs. 5a and 5c. Consequently, the C14 phase becomes
a high-stress concentrated region which leads to the crack formation
along the C14 phase (as indicated by white arrows in Fig. 5a). Further,
new sets of semi-circular slip steps and radial slip steps are also formed
below the C14 phase where the fracture line is shown by white arrows.

By contrast, the blockage behavior of C15 phase is not observed in
TZ74 as the propagation direction of slip steps is barely disturbed
below the C15 phase (Figs. 6b and 6c). In fact, slip steps propagate
along the C15 phase in Fig. 6c (as indicated by yellow arrows). This
shows that slip steps can propagate through the C15 phase but cannot
do so through the C14 phase because the respective crystal structure
of each phase may influence the dislocation activity and therefore the
propagation of slip steps.

Furthermore, fewer slip steps are found in subsurface morphologies
obtained at 98.06N and 294.19N for TZF8 (Fig. 7) compared to TZF6 and
TZ74. A large crack is also found at 294.19 N in TZF8 (Fig. 7d), which in-
dicates that TZF8 ismore brittle compared to TZF6 andTZ74. In addition,
spacing between slip steps (S) in subsurface morphologies obtained at
294.19 N was measured from the indenter tip in the four different
zones as depicted in Table 3. It is evident that S increases as the distance
of slip steps increases from the indenter tip [14,51]. This means that slip
steps remain closely spaced near the indenter tip and widely spaced as
the distance of slip steps increases from the indenter tip. A lower value
of S indicates the occurrence of large plastic deformation,while a higher
value of S suggests less plastic deformation in the respective zones [14].
Table 3 demonstrates that S for TZ74 is the lowest in all four zones
followed by TZF6 and the highest in TZF8. The values of S reveal that
TZ74 has a better plastic deformability than TZF6 and TZF8.

Table 3 summarizes the measured size of the subsurface deforma-
tion zone (λ) for the investigated alloys at 98.06 N and 294.19 N.
Giannakopoulos and Suresh [16] have suggested thatλ can be estimated
by Eq. (2):

λ ¼ 0:3P
σ0:2

c ð2Þ

Fig. 5. The backscattered SEM images of the subsurface deformationmorphologies formed at 98.06 N (HV10) for TZF6 (Ti-35Zr-5Fe-6Mn). (b) and (c) are the high-magnification images of
the area selected using yellow and sky-blue rectangles respectively in (a). The bright field TEM images of (d) eutectic C14 phase and (e) the area outside the C14 phase at the C14-β phase
interface of TZF6. The inset images in (d) and (e) are the SAED patterns of C14 (hcp) and β (bcc) phases respectively.
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where P is indentation load and σ0.2
c is yield strength in compression.

Based on Eq. (2), λ for all the as-cast alloys was calculated at 98.06 N
and 294.19 N and the corresponding results are summarized in

Table 3. For the investigated alloys, there is a little difference between
the measured and calculated values of λ obtained at 98.06 N; nonethe-
less, there is a significant difference between the measured and

Fig. 6. The backscattered SEM images of the subsurface deformationmorphologies formed at 98.06 N (HV10) for TZ74 (Ti-33Zr-7Fe-4Cr). (b) and (c) are the high-magnification images of
the area selected using yellow and sky-blue rectangles respectively in (a). The bright field TEM images of (d) eutectic C15 phase and (e) the area outside the C15 phase at the C15-β phase
interface of TZ74. The inset images in (d) and (e) are the SAED patterns of C15 (fcc) and β (bcc) phases respectively. Stacking faults and cross slips are labelled as SFs and CS respectively.

Fig. 7. The backscattered SEM images of the subsurface deformationmorphologies formed at (a) 98.06 N (HV10) and (d) 294.19 N (HV30) for TZF8 (Ti-35Zr-5Fe-8Mn). (b) and (c) are the
high-magnification images of the area selected using yellow and sky-blue rectangles respectively in (a). (e) and (f) are the high-magnification images of the area selected using yellow and
sky-blue rectangles respectively in (d).
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calculated values of λ obtained at 294.19 N. This indicates that the
Giannakopoulos-equation is also valid for calculating λ up to a certain
load limit. Other than this, the measured and calculated values of λ at
98.06 N and 294.19 N for TZ74 are greater than the corresponding
ones of TZF6 and TZF8. The values of λ and S indicate better plastic
deformability in TZ74 than in TZF6 and TZF8.

A change in the direction of dislocationmotion occurs when disloca-
tions pass through grain boundaries or through the second phase pre-
cipitated on grain boundaries, because each grain has different crystal
orientation [52–55]. Therefore, the dislocation activities in each grain
remain different depending on the number of active slip systems and
crystallographic orientation [54]. This phenomenon can be observed in
grains G1-G10 shown in Fig. 7 as multiple types/sets of slip steps in in-
dividual grains in different directions are formed in grains G1–G10.

The TEM images were taken over the deformed C14 (Fig. 5d) and C15
phases (Fig. 6d) as well as over the C14-β (Fig. 5e) and C15-β interfaces
(Fig. 6e). The C14, C15 and β phases are shown in Figs. 5 and 6. Themor-
phologies of C14 and C15 eutectic phases look similar; however, their
crystal structures remain different [56,57]. This can be confirmed by
SAED patterns of C14 and C15 presented in Figs. 5d and 6d which reveal
the hcp structure of C14 at a zone axis (ZA) of ½2110� and the fcc structure
of C15 at a ZA of ½111�. On the other hand, Figs. 5e and 6e reveal the bcc
structure of β phase at a ZA of ½111� in the respective investigated alloys.

In Fig. 5d, dislocation activities in the C14 phase (dark) is not ob-
served, while dislocations are evident in the β-bcc matrix. Dislocation
pile-ups are also shown in Fig. 5d using white arrows. Moreover, im-
mense dislocation density can be seen in Fig. 5e which was captured
outside the C14 phase at the C14-β interface. In Fig. 5e, parallel arrays
of dislocations are found, which look like screw dislocations. Addition-
ally, dislocation tangles at many places are also evident in the β region
(Fig. 5e). Further, intensive dislocation pile-ups at the C14-β interface
can also be clearly seen. Figs. 5d and 5e reveal dislocation-less features
in the C14 phase and its strong blockage behavior to dislocation motion
because a hcp structure comprises only 3 slip systems and it is not
intended to deform much, which makes this phase a high-stress con-
centration region and causes failure of the phase without showing
much plastic deformation [58].

By contrast, in Fig. 6d, several dislocations and stacking faults (SFs)
are found in the C15 phase (dark). SFs shown in Fig. 6d are probably
formed on the same plane. SFs are planer defects in which the regular
stacking sequence is disturbed and SFs usually play a significant role
in improving plasticity of crystals along with dislocations [58]. More-
over, dislocation pile-ups also occur at the C15 phase boundary
(Fig. 6d). Interestingly, transfer of slips from bcc to fcc at C15-β inter-
faces are also found at many places in Fig. 6d (white arrows), which im-
proves bulk plasticity [59]. Therefore, TZ74 exhibits better plasticity
than TZF6. Less dislocations are also observed in the β phase present in-
side the C15 phase; however, such a low dislocation number is still
greater than those found in the β phase present inside the C14 phase.
In Fig. 6e, gliding of dislocations form many dislocation loops. Disloca-
tion loops also intersect with other loops, which is known as cross
slips that do not disturb the dislocation motion of other loops. Further-
more, although dislocation pile-ups are also seen at the C15 phase
boundary in Fig. 6e; however, the pile-ups are not as intense as ob-
served in Fig. 5e. Figs. 6d and 6e reveal that the C15 phase has better

deformability than the C14 phase because a fcc structure comprises
more slip systems (12 in total) than a hcp structure (3 in total). Conse-
quently, intensive dislocation pile-ups occur at the phase boundary of
the C14 phase than that of the C15 phase. Hence, TZF6 exhibits higher
yield strength and hardness, while it demonstrates lower plastic strain
than TZ74 even though both comprise the same Vf, Laves (Table 1). On
the other hand, plastic deformation is evident in the C15 phase
(Fig. 6c). This means that more than five slip systems should be active
in the C15 phase according to the Von-Mises criterion [58].

4. Conclusions

The following are themain concluding remarks of the present work.

• The indentation-based deformation characteristics of the C14-type
Laves phase in Ti-35Zr-5Fe-6Mn and the C15-type Laves phase in Ti-
33Zr-7Fe-4Cr are carried out and compared with each other.

• The results in this work demonstrate that the type of Laves phase
(C14/C15) and the volume fraction of Laves phase influence the
indentation-based deformation characteristics.

• Although dislocation pile-ups occur at the phase boundaries of both
C14 and C15 phases, the C14-type Laves phase immensely hinders
the dislocation motion compared to the C15-type Laves phase. There-
fore, the precipitation strengthening (dislocation pinning) ability of
the C14 phase is better than the C15 phase.

• The dislocation activities and plastic deformation in the C15 phase are
evident and are useful in obtaining an improved bulk-plasticity.
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