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Abstract 
Metallic glasses (MGs) with their intrinsic disordered atomic structure and widely 
controllable atomic components have recently emerged as fascinating functional materials in 
wastewater treatment. Compared to crystalline alloys, the less-noble atomic components in 
monolithic metallic glass are more efficient to be selectively dissolved during dealloying 
process. This work reported a facile chemical dealloying approach to fabricate a void 
channels-like structured MG with the elemental components of Fe73.5Si13.5B9Cu1Nb3 for 
methylene blue (MB) degradation. Results indicated that the dealloyed Fe73.5Si13.5B9Cu1Nb3 
MGs with the void channels-like morphology presented a significant improvement of 
catalytic efficiency and reusability. The dye degradation reaction rate (kobs) of the dealloyed 
Fe73.5Si13.5B9Cu1Nb3 MGs presented 3 times higher than their as-spun MGs. More 
importantly, the dealloyed Fe73.5Si13.5B9Cu1Nb3 MGs can be reused up to 25 times without 
significantly loosing catalytic efficiency. It was also found that the dealloyed 
Fe73.5Si13.5B9Cu1Nb3 MGs exhibited a greater corrosion resistance in the simulated dye 
solution compared to the as-spun ribbons, demonstrating a robust self-healing ability in 
catalytic activity. This work provides a novel view for designing MG catalysts with high 
efficiency and stability in worldwide energy and environmental concerns.   
 
Keywords: Metallic glass; Amorphous; Surface roughness; Stability; Heterogeneous 
catalysis   
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1. Introduction 

Metallic glasses (MGs), also alternatively named as amorphous alloys, have emerged as 

great potential catalysts in treating industrial pollutants because of their ultra-fast efficiency, 

high reusability and environmentally-friendly properties [1-3]. Many reports have 

demonstrated that the MGs with intrinsically catalytic advantages, such as disordered atomic 

packing structure [4, 5], high free Gibbs energy [6, 7] and abundant active sites [8, 9], are 

becoming a new promising and competitive member in the big family of catalysts. Recent 

studies indicate that the MGs with widely tunable atomic components, such as Fe- [10-24], 

Mg- [7, 25-30], Al- [31, 32], Co- [33] and Ni-based [34] alloys, indeed have catalytically 

active and uniquely selectivity in both reductive and oxidative wastewater remediation. For 

example in the reductive reaction, it is found that the ball-milled (BM) Fe73Nb3Si7B17 [6] and 

Mg73Zn21.5Ca5.5 [7] MG powders with the high free Gibbs energy and large active sites 

presented 200 times and 1000 times higher catalytic efficiency than their crystalline 

counterparts, respectively. The melt-spun Al91-xNi9Yx glassy ribbon could effectively purify 

direct blue 2B dye in a wide pH conditions, demonstrating extensive application of MGs in 

the wastewater treatment [32]. The BM Co78Si8B14 MG powder with a large specific surface 

area exhibited one order and three orders higher magnitudes of essential dye degradation 

ability than the Co- and Fe-based crystalline powder, respectively [33]. With respect to the 

advanced oxidation processes (AOPs) [35], MGs present ultrafast activation efficiency for 

various peroxides including hydrogen peroxides (H2O2) [36], persulfate (PS) [37] and 

peroxymonosulfate (PMS) [38]. For instance, using Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3 

glassy ribbons as catalysts presented 5 - 10 times higher activation efficiency of H2O2 than 
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the currently employed Fe-based crystalline catalysts [11]. The Fe78Si9B13 MGs could 

rapidly activate H2O2, PS and PMS to produce highly reactive radicals towards complete 

crystal violet dye degradation within 15 min [39] and could be reused up to 20 times when 

activating PS without significantly loosing catalytic efficiency [37] and so on. Therefore, as 

a new type of promising catalyst, MGs have been promoted to be the cutting edge of 

advanced material research and industrial practical applications. However, due to their 

unique amorphization process (rapid solidification or mechanical alloying), the presented 

specific surface area of MGs are relatively lower than other porous/nanoporous metallic 

catalysts. For further facilitating their catalytic activity, the alteration of surface morphology 

of MGs should be importantly explored to provide more active sites in the theoretical and 

practical study. 

Among all the preparation processes of turning surface morphology, the chemical dealloying 

has been attracting great attentions due to their facile and cost-effective advantages. The 

dealloyed catalysts with a large surface roughness and high electrical conductivity present 

significant enhancement in the catalytic applications [19, 26, 40]. Compared with the 

traditional crystalline alloys with complex phases, large grain boundaries and few atomic 

components, the multi-component MGs (i.e. 2-6 components) with a monolithic phase and 

homogeneous atomic distribution present large interests in enlarging their surface roughness 

in catalytic application. So far, many attempts have been investigated to optimize the surface 

morphology using MGs as the precursors by chemical dealloying. For example, it is reported 

that the porous structured Y-Ni-Co MGs with a large specific surface area could be designed 

by chemical dealloying of Al from Al85Y6Ni6Co3 MGs, presenting a promoted activity in 
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energy storage [41]. The nanoporous Pd-Cu-S catalysts prepared by chemical dealloying of 

Ti-Cu-Pd MGs exhibited a highly active catalytic efficiency in hydrogen evolution reaction 

[42]. A core-shell structure with face-centered-cubic structured Cu enveloped by Mg-based 

amorphous matrix could be designed by chemical dealloying of Mg-Cu-Y MGs, highly 

facilitating the degradation efficiency of direct blue 6 dye [26]. The chemically dealloyed 

nanoporous architecture in Fe-Si-B-P [19] and Fe-Si-B-Nb [40] MGs demonstrated a lower 

activation energy and larger specific surface area in dye degradation compared to their 

as-prepared MGs. The alteration of surface morphology obtained by chemical dealloying 

method provide a vivid portrait into the surface roughness design of novel MG catalysts. 

Therefore, selecting the atomic components to be dealloyed in MGs remains a great 

challenge in catalysis. 

It is well accepted that the initial consideration of designing the elemental components in 

MGs is their glass forming ability [43-45]. The proper addition of metalloids, such as Si and 

B, could remarkably improve their formation of amorphous structure. On this basis, the 

micro-alloying into MGs may affect their intrinsic atomic structure so as to effectively alter 

their dealloyed architectures. In addition, a severe crystallization behavior usually occurrs in 

previously reported MGs during the chemical dealloying [19, 26, 41], which will 

subsequently affect their catalytic properties more or less. In this work, the fabrication of 

void channels-like architectures in Fe73.5Si13.5B9Cu1Nb3 MGs under different acidic 

conditions is systermatically discussed to improve their surface roughness for promoting the 

catalytic performance. The designed MGs are manufactured by a melt-spinning method and 

their corresponding amorphous nature is characterized. Although the Fe73.5Si13.5B9Cu1Nb3 
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glassy ribbons have been reported as catalysts in treating various industrial pollutants [11], 

the comparative study of chemical dealloying is still remains unexplored. Furthermore, the 

Fe73.5Si13.5B9Cu1Nb3 MGs in this work present a void channels-like architecture while the 

amorphous nature is well maintained. The catalytic activity will be performed on monitoring 

the methylene blue (MB) degradation by the use of the chemically dealloyed MGs with 

different morphologies. The catalytic stability as well as corrosion resistance will also be 

investigated for comparing their overall catalytic performance. 

2. Materials and methods 

2.1. Material preparation 

The MGs with a nominal atomic composition of Fe73.5Si13.5B9Cu1Nb3 were fabricated by a 

reported melt-spinning method [46, 47]. Typically, the master alloys with a specific atomic 

composition were initially prepared by an arc-melting process through melting the high 

purity elemental pieces (higher than 99.9 wt.%) under a Ti-gettered argon atmosphere for 4 

times. Then the prepared master alloys were further melted in a quartz tube and were ejected 

onto a rotating Cu wheel with a tangenetial speed of 30 m/s in an argon atmosphere. The 

melt-spun Fe73.5Si13.5B9Cu1Nb3 ribbons were measured as 30 - 40 µm thickness and 5 mm 

wide, denoted as as-spun FeCu in this work. The as-spun FeCu ribbons were further treated 

by chemical dealloying method in the diluted H2SO4 solutions with various concentrations of 

0.05, 0.1, 0.2, and 0.5 M at different time intervals of 0.5, 1, 2, 5, 10, 15 and 24 h, 

respectively. After dealloying treatment, the ribbon surface was further ultrasonicated and 

washed by Milli-Q water (18.2 MΩ·cm) with three times for the dye degradation 

experiments. 

2.2. Material characterization 
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The surface morphology and amorphous structure of the prepared samples were 

characterized by the scanning electron microscope (SEM) (FEI Verios 460), transmission 

electron microscopy (TEM) (JEOL JEM-2100) and X-ray diffraction (XRD) with Co-Kα 

radiation (PANalytical Empyrean, Netherlands), respectively. The surface atomic distribution 

of the catalysts was measured by the X-ray photoelectron spectroscopy (XPS) on a Kratos 

AXIS Ultra DLD instrument with Al-Kα X-ray and energy-dispersive X-ray spectroscopy 

(EDS) equipped on the SEM (FEI Verios 460). A differential scanning calorimeter (DSC) 

(Netzsch DSC-404C) with a heating rate of 20 /min was employed to examine the thermal ℃

behavior of the samples. A Parstat 2273 electrochemical station with a traditional 

three-electrode cell was used for measuring the corrosion resistance of the samples. The 

prepared samples were used as the working electrode by connecting to a Luggin capillary 

bridge. A platinum sheet and a saturated calomel electrode (SCE) were employed as the 

counter electrode and the reference electrode, respectively. A simulated H2SO4 solution with 

a pH = 3.4 was chosen for the electrochemical measurements of the prepared glassy ribbons 

due to the initial pH 3.4 of dye solution after adding PMS. A pH meter (Oakton PC 2700 

Benchtop Meter) was used to measure the pH values. The scanning rate was set as 1.0 mV/s. 

The scanning potential was started from -0.25 V to +1.0 V for the measurement of 

potentiodynamic polarization curves. In this electrochemical measurement, the potentials 

were recorded against SCE. 

2.3. Catalytic activity  

In catalytic tests, 50 mg (0.5 g/L) of the prepared catalysts was dispersed in a 100 ml of 

methylene blue (MB) solution with 20 ppm concentration (20 mg/L). Afterwards, 1.0 mM 
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peroxymonosulfate (PMS) was added into the dye solution for recording the catalytic 

experiment start. The dye solution was vibrated by a Vortex-Genie 2 mixer (Scientific 

Industries, Inc. USA) under a 300 W simulated solar light (Perfectlight Scientific Pty Ltd, 

Beijing, China) throughout the whole catalytic progress. The irradiation intensity was 

measured in the range of 7.7 - 14.8 µW/cm2 by Newport optical power meter. All these 

mentioned operating variables for PMS activation were based on our previous reports [11, 

17]. The water samples were taken out at predetermined time intervals of 1, 2, 5, 10, 15, 20, 

25, 30, 40, 50 and 60 min, respectively, after which the sampled dye solutions were 

examined in turn by a UV-Vis spectrometer (Shelton, CT, USA). For total organic carbon 

(TOC) (TOC-VCSH, Shimadzu, Japan) and metal leaching (Optima 8300 ICP-OES 

Spectrometer, PerkinElmer) experiments, the sampled dye solutions were diluted 10 times by 

2% w/w nitric acid (HNO3) and treated by sodium nitrite (NaNO2) with the same 

concentration of PMS to prevent further catalytic reaction. The maximum light absorbance 

(λmax) of MB was recorded as 664 nm. The catalytic efficiency and reaction rate (kobs) were 

calculated by Eqs. (1) and (2): 

� = (�� − �)/�� × 100%                                 (1) 

whereas C0 and C are the initial concentration and the concentration at time t of MB dye, 

respectively. 


�(�� �⁄ ) = ���� �                                         (2)                                                            

whereas kobs is the kinetic rate constant; C0 is the original concentration of dye; C is the dye 

concentration at time t. 

3. Results and discussion 

3.1. Structures and chemical states 
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Figs. 1a and b present the HRTEM image and corresponding SAED pattern of the as-spun 

FeCu MGs, demonstrating the designed MGs are in good amorphous state [48]. In order to 

further confirm the amorphous nature of the designed as-spun FeCu MGs, DSC result is 

shown in Fig. 1c. Notably, the MG catalysts present two distinct crystallization processes 

with exothermic peaks at ~550 and 680 °C as well as the onset temperature (Tx) locating at 

530 °C. The surface atomic components of FeCu glassy ribbons are initially characterized by 

EDS analysis in Fig. 1d. As shown in Fig. 1d, the energies of Fe, Si, B, Cu, Nb and O 

elements exhibit strong intensities and there are no other signals can be observed on the 

as-spun FeCu ribbons. The corresponding atomic percentages of Fe, Si, B, Cu and Nb have a 

very close ratio to the nominal expected value of the Fe73.5Si13.5B9Cu1Nb3 glassy ribbons. To 

further confirm the chemical states and atomic bonds on the as-spun FeCu glassy ribbons, 

the XPS study is conducted as shown in Fig. 2. Fig. 2a presents the overall range XPS 

spectra of the FeCu ribbons. It is noted that only Fe, Si, B, Cu and Nb can be observed 

except the oxygen and carbon peaks which are owing to the adsorption of the molecular 

oxygen and carbon dioxides in the air [49]. No other impurity is obtained. By calculating the 

integral areas of each atomic component (Fe: 79.3, Si: 10.9, B: 8.0, Cu: 0.9 and Nb: 0.9), it is 

confirmed that the atoms are well dispersed on the ribbon surface with the nominal value of 

Fe73.5Si13.5B9Cu1Nb3. Fig. 2b shows the high resolution of Fe 2p for the as-spun FeCu glassy 

ribbons. The observed binding energies at 706.1, 710.1 and 714.2 eV can be ascribed as Fe0, 

Fe2+ and Fe3+, respectively, indicating the ribbon surface comprises of Fe-O, Fe-Si and iron 

hydroxides atomic clusters on the FeCu glassy ribbon surface [10]. For the Si 2p spectra in 

Fig. 2c, the binding energies located at 98.3 and 101.4 eV are attributed to Si0 and Si-O, 
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respectively. In the B 1s spectra in Fig. 2d, the B0 and B-O bonds with binding energies at 

192.1 and 188.0 eV can be observed. As shown in Fig. 2e, the binding energies at 931.5 and 

928.8 eV indicate the distribution of zero valent Cu and the formation of Cu hydroxides, 

respectively. Fig. 2f presents the atomic distribution of Nb on the FeCu ribbon surface. The 

peaks located at 202.4 and 206.5 eV can be ascribed as the Nb0 and the formation of Nb 

oxides, respectively.  

3.2. Surface morphologies 

Improving surface roughness of the catalysts has been attracting particular attention to the 

potential applications and theoretical research due to their superior properties, such as large 

specific surface areas and enhanced adsorption ability to promote catalytic activities. Several 

reports have demonstrated that a crystallization behavior would occur during the chemical 

dealloying progress due to the atomic re-arrangement after one of the element leached, such 

as Al85Y6Ni6Co3 [41], Fe76Si9B10P5 [19] and Mg65Cu25Y10 [26]. In comparison, the melt-spun 

FeCu glassy ribbons in this work still present a broad diffuse diffraction peak after being 

chemically treated for 2 – 15 h, as shown in XRD patterns in Fig. 3, indicating the dealloyed 

FeCu glassy ribbons are maintaining their amorphous nature [50-53]. Fig. 4 shows the 

variation of surface morphologies for the FeCu glassy ribbons at different dealloyed time in 

0.05 M H2SO4 solution. It is noted that the free surface of the as-spun FeCu ribbons is 

ultra-smooth without any defects (Fig. 4a). After etching 2 – 5 h (Figs. 4 b and c), the 

metallic oxides are extensively expanded on the ribbon surface and continuously form 

several segments. After being treated for 10 h, the surface of FeCu glassy ribbons exhibits 

many dendritic void channels (Figs. 4 d and e) with large grains (Figs. 4 f and g). The 

selective dealloying of less active elements would generate an important volume shrinkage 
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to promote the final formation of interconnected voids [54]. Such surface morphology would 

significantly improve the surface roughness of the catalysts that might lead to a promoted 

catalytic activity. As shown in Fig. 4h, the Nb percentage is slightly increased compared with 

the as-spun FeCu ribbon, indicating that the atomic re-arrangement on the dealloyed ribbon 

surface is occurred during the chemical dealloying process. Furthermore, the results of XRD 

analysis in Fig. 3 demonstrate that the gradually produced Nb oxides on the ribbon surface 

are mainly in amorphous state. Such formation of Nb oxides on the ribbon surface with a 

strong stability and corrosion resistance would enhance the sustainability and reusability of 

the catalysts [11].  

3.3. Catalytic activity  

The catalytic activity of the as-prepared FeCu glassy ribbons toward MB color removal is 

conducted under the conditions of catalyst dosage: 0.5 g/L, irradiation intensity: 7.7 µW/cm2, 

dye concentration: 20 ppm and PMS concentration: 1.0 mM. As shown in Fig. 5a, less than 

10% of MB color removal could be achieved after 60 min without the addition of catalysts. 

Increasing the dealloying time from 0 h to 10 h for the FeCu ribbons could sharply enhance 

the MB degradation rate. For example, more than 90% of MB color removal can be achieved 

by the dealloyed 10 h FeCu ribbons at 40 min compared with only 60% efficiency of as-spun 

FeCu ribbons within the same time. The corresponding reaction rate increases from kobs = 

0.021 min-1 of as-spun ribbon to kobs = 0.064 min-1 of dealloyed 10 h ribbon (Fig. 5b). Such 

improvement of the catalytic performance is attributed to the large surface roughness 

and void channels presents a significant enhancement for MB degradation compared with the 

as-spun FeCu ribbons. However, further increasing the dealloying time from 10 h to 24 h 

would sharply decrease the MB degradation efficiency, which is owing to the strong 
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extension of Nb oxides layer to impede the catalytic reaction between dye molecules and 

active sites in the catalysts [11]. Fig. 5c shows the UV-Vis spectra of MB color removal 

using 0.5 g/L of dealloyed 10 h FeCu glassy ribbons at various time intervals. The maximum 

adsorption peaks at λ = 292 nm and λ = 664 nm are characterized as the triazine group and 

heteropoly aromatic linkage for the MB dye. It can be seen that the peak at λ = 664 nm in the 

visible light region is completely invisible after being treated 40 min, reflecting the 

chromophore containing organic bonds are totally decomposed. The visible color change is 

shown in Fig. 5c inset. In addition, the peak at λ = 292 nm relating to the triazine group in 

the UV region is also gradually decreased from 0 min to 40 min, indicating the aromatic 

organic components in the dye are also decomposed [10]. The variation of H2SO4 

concentration ranging from 0.05 M to 0.5 M at the treating time of 10 h on FeCu glassy 

ribbons is also conducted to verify the optimal dye degradation efficiency in Figs. 5 d and e. 

The result shows that the 0.05 M H2SO4 concentration presents the highest degradation 

efficiency with a reaction rate of kobs = 0.064 min-1 for MB dye degradation (Fig. 5e). 

Therefore, 0.05 M H2SO4 concentration is selected for the following catalytic investigations. 

The chemical reactions between the Fe73.5Si13.5B9Cu1Nb3 metallic glass and PMS are 

presented in Eqs. 3-6 below. 

��� + 	2����
� 	→ 	�� ! +	2��� + 	2��" •

�			         (3) 
�� ! + ����

� 	→ 	��$! +	��� +	��" •
�				          (4) 

����
� 	+ ℎ& →	• �� +	��" •

�																													        (5) 
• �� +	��" •

�+ '()*�+, → 	-./('01,�2 +	�� + � � + ��"
 �			 (6) 

To demonstrate the organic matters are oxidized to CO2 and H2O, the comparable TOC 

results are conducted for the as-prepared samples in Fig. 6. It is noted that the TOC removal 

rate sharply improves from 38% of as-spun FeCu ribbon to 50% of dealloyed 10 h FeCu 
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ribbon within 30 min, presenting the significance of the facile chemical dealloying for the 

glassy ribbons. The metal leaching effect is also important to be investigated in wastewater 

treatment due to large metal sludge would cause severe secondary pollution. As shown in Fig. 

6, the Fe concentration of the as-spun FeCu ribbons reach to 0.40 mg/L at 30 min, whereas 

only less than 0.15 mg/L of Fe is observed for the dealloyed FeCu ribbons. The FeCu glassy 

ribbons have a negligible Fe leaching that is much lower than the European Union standard 

of 2 mg/L, owing to the micro-alloying of Nb atomic configurations in the FeCu glassy 

ribbons. This slight leaching of Fe (ferrous or ferric) ions from the FeCu ribbons would also 

assist the PMS activation to produce hydroxyl radicals (•OH) and sulfate radicals (SO4•
‒) in 

dye degradation [37].  

3.4.Catalytic stability  

Considering overall catalytic performance, the catalytic stability of a catalyst is also very 

important to be investigated in the practical applications. Fig. 7 shows the catalytic 

reusability of the dealloyed 10 h FeCu glassy ribbons. As shown in Fig. 7, the dealloyed 10 h 

FeCu glassy ribbons can be reused up to 25 times without significantly loosing catalytic 

efficiency. The micro-alloying of Cu (1%) and Nb (3%) atoms into the FeSiB glassy ribbon 

could largely improve the surface stability that plays a significant role during the chemical 

dealloying progress. However, a sharp decrease of dye degradation efficiency is observed 

after being reused for 30 times for the dealloyed 10 h FeCu glassy ribbons. As shown in Fig. 

8, the surface morphology of dendritic void channels for the dealloyed 10 h FeCu ribbons 

(Figs. 4 d-g) is completely changed to many densely packed segments. According to 

elemental mapping observation in Fig. 8b, the atomic distributions of the segments are 

mainly Nb, O and S, indicating the Nb oxides with a strong stability is precipitated on the 
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ribbon surface. The contacted area of Fe and PMS is continuously reduced to finally cause 

the decrease of dye degradation efficiency. The slight adsorption of S element on the surface 

is originated from the MB dye and PMS molecules. It is well accepted that the stability of a 

catalyst has a strong relationship with their corrosion resistance. Fig. 9 presents the 

potentiodynamic polarization curves of the as-spun and dealloyed ribbons after the open 

circuit potential (OCP) stabilization. It is observed that all the glassy ribbons could achieve 

large potential values of 1.0 VSCE without reaching breakdown potential, demonstrating the 

strong corrosion resistance of the Fe-based glassy ribbons [55]. In addition, although all the 

glassy ribbons present similar anodic polarisation behaviors, the dealloyed 10 h FeCu ribbon 

with a higher potential value of – 0.35 VSCE demonstrates stronger corrosion resistance than 

other counterparts. This result indicates that the dealloyed 10 h FeCu ribbons are more 

qualified under complex environment of industrial wastewater in the practical application.  

4. Conclusion 

In this work, we develop a non-noble and multicomponent chemically dealloyed 

Fe73.5Si13.5B9Cu1Nb3 metallic glass catalyst that presents a fascinating catalytic efficiency 

while maintaining a remarkable stability for wastewater remediation. The chemically 

dealloyed Fe73.5Si13.5B9Cu1Nb3 metallic glass with a void channel-like structure presented a 

significant improvement on surface roughness in catalytic application. The micro-alloying of 

Cu and Nb elements could give rise to form strong Nb oxide protective layer, leading to a 

large surface area and a promoted surface roughness by chemical dealloying for dye 

degradation. The dealloyed 10 h Fe73.5Si13.5B9Cu1Nb3 glassy ribbons presented 3 times 

higher dye degradation efficiency than the as-spun counterparts and could be reused up to 25 
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times without loosing catalytic efficiency, demonstrating a great potential in pracical 

applications. In addition, the corrosion resistance of the chemically dealloyed 

Fe73.5Si13.5B9Cu1Nb3 catalysts was also significantly promoted compared to the as-spun 

ribbons, showing a compelling self-stability in the dye containing water environment. The 

presented results in this work reveal a new method to improve the overall catalytic activity 

and provide new opportunities into the design of novel metallic catalysts. 
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Figure captions 

Figure 1 (a) HRTEM image, (b) SAED pattern, (c) DSC and (d) EDS results of the as-spun 
Fe73.5Si13.5B9Cu1Nb3 metallic glasses 

Figure 2 (a) Full range and high resolution XPS spectra of (b) Fe 2p, (c) Si 2p, (d) B 1S, (e) 
Cu 2p and (f) Nb 3d for the as-spun Fe73.5Si13.5B9Cu1Nb3 metallic glasses 

Figure 3 XRD patterns of the as-spun and chemically dealloyed (0.05 M H2SO4) 
Fe73.5Si13.5B9Cu1Nb3 metallic glasses 

Figure 4 SEM images of (a) as-spun, (b) dealloyed 2h, (c) dealloyed 5h and (d) dealloyed 
10h Fe73.5Si13.5B9Cu1Nb3 metallic glasses and (e-g) selected areas of the dealloyed 
10h Fe73.5Si13.5B9Cu1Nb3 ribbon in 0.05M H2SO4 solution, h) EDS result of 
dealloyed 10h Fe73.5Si13.5B9Cu1Nb3 ribbon 

Figure 5 (a) MB color removals and (b) the corresponding kinetic rates (kobs) by 
Fe73.5Si13.5B9Cu1Nb3 metallic glasses at different dealloying time, (c) UV-Vis 
spectra of MB degradation in the presence of the dealloyed 10 h 
Fe73.5Si13.5B9Cu1Nb3 metallic glasses (inset is the “big picture” of visible color 
change, experimental conditions comprising of 0.5 g/L of catalyst, 7.7 µW/cm2 of 
light intensity, 20 ppm of MB dye, 1.0 mM of PMS and room temperature), (d) 
MB color removals and (e) reaction rates (kobs) by dealloyed Fe73.5Si13.5B9Cu1Nb3 

glassy ribbon at different H2SO4 concentrations at treated time of 10 h 

Figure 6 TOC removals and Fe leaching concentrations of as-spun and dealloyed 10 h 
Fe73.5Si13.5B9Cu1Nb3 metallic glasses 

Figure 7 Reusability of the dealloyed Fe73.5Si13.5B9Cu1Nb3 metallic glasses (catalyst dosage: 
0.5 g/L, light intensity: 7.7 µW/cm2, dye concentration: 20 ppm and PMS 
concentration: 1.0 mM) 

Figure 8 SEM image of the 30th run of dealloyed 10 h Fe73.5Si13.5B9Cu1Nb3 metallic glasses 
and (b) corresponding elemental mapping analysis on ribbon surface 

Figure 9 Potentiodynamic polarization curves for the as-prepared catalysts 
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Highlights 

• A void channels-like structured melt-spun metallic glass is reported 

• Dealloyed metallic glasses show 3 times higher reaction rate than counterparts  

• Dealloyed Fe73.5Si13.5B9Cu1Nb3 ribbons can be reused for 25 times 

• A strong corrosion resistance in dealloyed Fe73.5Si13.5B9Cu1Nb3 ribbons is studied 
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