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Abstract: The ability to detect and quantify change of direction (COD) movement may offer a
unique approach to load monitoring practice. Validity and reliability of a novel algorithm
to calculate COD angles for pre-determined COD movements ranging from 45° to 180°
in left and right directions was assessed. Five recreationally active males (age: 29.0 ±
0.5 years; height: 181.0 ± 5.6 cm; body mass: 79.4 ± 5.3 kg) ran five consecutive pre-
determined COD trials each, at four different angles (45°, 90°, 135° and 180°), in each
direction. Participants were fitted with a commercially available microtechnology unit
where inertial sensor data was extracted and processed using a novel algorithm
designed to calculate precise COD angles for direct comparison with a high-speed
video (remotely piloted, position-locked aircraft) criterion measure. Validity was
assessed using Bland-Altman 95% limits of agreement and mean bias. Reliability was
assessed using typical error (expressed as a coefficient of variation). Concurrent
validity was present for most angles. Left: (45°= 43.8 ± 2.0°; 90°= 88.1 ± 2.0°; 135°=
136.3 ± 2.1°; 180°= 181.8 ± 2.5°) and Right: (45°=  46.3 ± 1.6°; 90°=  91.9 ± 2.2°;
135°= 133.4 ± 2.0°; 180°= 179.2 ± 5.9°). All angles displayed excellent reliability (CV <
5%) whilst greater mean bias (3.6 ± 5.1°), weaker limits of agreement and reduced
precision were evident for 180° trials when compared with all other angles (p < 0.001).
High-level accuracy and reliability when detecting COD angles further advocates the
use of inertial sensors to quantify sports-specific movement patterns.
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Comment 3: Line 47-49 - please ensure consistent (and appropriate) use of scalar and
vector terminology (here and throughout the manuscript)

Response: Thank you for the suggestion. Terminology in this paragraph has been
altered to scalar quantities. This issue has been addressed throughout the paper
where applicable. Numerous studies I have referenced use the term velocity and thus I
have attempted to maintain the integrity of these studies by using the same
terminology.

Comment 4: Line 61 - this part of the sentence reads awkwardly.

Response: This sentence has been removed from the introduction, but has been
added in a clearer format to the discussion section.

Comment 5: Line 69 - why is this unexpected? All technology has some ceiling effect,
such as sampling frequency for force or EMG; additionally, there are other factors that
influence the accuracy of GPS, such as spatial resolution

Response: The term ‘somewhat unexpectedly’ has been removed.

Comment 6: Line 84 - what type of validity?

Response: ‘Construct’ and ‘concurrent’ validity have been added.
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Comment 8: Line 116 - incident is not an appropriate word choice here
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Comment 9: Line 184 - why not use proper anatomical terminology? The entire section
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using present or past tense throughout the methods
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axes of the inertial sensors. Various changes have been made to ensure the entire
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Whilst we recognise that the ‘Algorithm Creation’ section may be difficult for S&C
researchers and practitioners to fully understand, we feel it is necessary to be
transparent with the precise methodological steps used in the signal processing stages
of the raw inertial sensor data and calculation of COD angle within our novel algorithm.

Comment 10: Line 250 - "precisely" is not required here; along these lines, was the
accuracy of this measurement tool validated?
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Kinovea motion analysis software (including the angle measuring tool) has been used
for many purpose and in multiple peer-reviewed publications such as:
•To quantify joint angles whilst running (Damsted C, Nielsen RO, Larsen LH.
RELIABILITY OF VIDEO‐BASED QUANTIFICATION OF THE KNEE‐ AND HIP
ANGLE AT FOOT STRIKE DURING RUNNING. International Journal of Sports
Physical Therapy. 2015;10(2):147-154.)
•Flight time of a vertical jump (Balsalobre-Fernández, C., Tejero-González, C. M., del
Campo-Vecino, J., & Bavaresco, N. (2014). The concurrent validity and reliability of a
low-cost, high-speed camera-based method for measuring the flight time of vertical
jumps. The Journal of Strength & Conditioning Research, 28(2), 528-533.)
•Measure angular positions of lower limbs during therapeutic motion (Guzmán-Valdivia,
C. H., Blanco-Ortega, A., Oliver-Salazar, M. A., & Carrera-Escobedo, J. L. (2013).
Therapeutic motion analysis of lower limbs using Kinovea. Int. J. Soft Comput. Eng,
3(2), 359-365.)

Comment 11: Line 258 - how was velocity determined? Does this velocity include both
magnitude and direction components?

Response: Instantaneous velocity (amended in the manuscript) is calculated using the
velocity based on GPS Doppler shift from the GPS engine. This is the main measure of
velocity in the software and is the recommended velocity metric from the
microtechnology unit manufacturer (Catapult Sports). Alone, it does not provide a
direction component. However, other metrics which use this velocity measure can
provide some information regarding direction (e.g. acceleration / deceleration). We
report the direction of each COD movement using our novel algorithm and compare it
against the high-speed video criterion. The average velocity measures are provided to
give the reader an understanding of the running speed that the participants completed
the COD movements at.

Comment 12: Line 295 - was a minimal value set, i.e. where any larger value is
considered to be a real difference?

Response:  There was no minimal value set as the statistical software only required the
mean and standard deviation of the differences and a maximum allowed difference
between the methods to compute a recommended sample size in accordance with pre-
determined Type I and Type II error probabilities. Any real differences (albeit very
minor from a practical perspective) were calculated using Bland-Altman LOA and
reported as mean bias (Table 1).
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ABSTRACT 1 

 2 

The ability to detect and quantify change of direction (COD) movement may offer a unique 3 

approach to load monitoring practice. Validity and reliability of a novel algorithm to calculate 4 

COD angles for pre-determined COD movements ranging from 45° to 180° in left and right 5 

directions was assessed. Five recreationally active males (age: 29.0 ± 0.5 years; height: 181.0 6 

± 5.6 cm; body mass: 79.4 ± 5.3 kg) ran five consecutive pre-determined COD trials each, at 7 

four different angles (45°, 90°, 135° and 180°), in each direction. Participants were fitted with 8 

a commercially available microtechnology unit where inertial sensor data was extracted and 9 

processed using a novel algorithm designed to calculate precise COD angles for direct 10 

comparison with a high-speed video (remotely piloted, position-locked aircraft) criterion 11 

measure. Validity was assessed using Bland-Altman 95% limits of agreement and mean bias. 12 

Reliability was assessed using typical error (expressed as a coefficient of variation). 13 

Concurrent validity was present for most angles. Left: (45°= 43.8 ± 2.0°; 90°= 88.1 ± 2.0°; 14 

135°= 136.3 ± 2.1°; 180°= 181.8 ± 2.5°) and Right: (45°=  46.3 ± 1.6°; 90°=  91.9 ± 2.2°; 15 

135°= 133.4 ± 2.0°; 180°= 179.2 ± 5.9°). All angles displayed excellent reliability (CV < 5%) 16 

whilst greater mean bias (3.6 ± 5.1°), weaker limits of agreement and reduced precision were 17 

evident for 180° trials when compared with all other angles (p < 0.001). High-level accuracy 18 

and reliability when detecting COD angles further advocates the use of inertial sensors to 19 

quantify sports-specific movement patterns.      20 

 21 

KEY WORDS: validity, accuracy, reliability, microtechnology, signal processing, 22 

accelerometry 23 

 24 

 25 

 26 

 27 

  28 

Manuscript ( NO AUTHOR INFORMATION - Manuscript Text
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INTRODUCTION 29 

 30 

Change of direction (COD) movements (pre-planned and reactive) are characterized by 31 

whole-body changes of velocity requiring high magnitudes of vertical, medio-lateral and 32 

anterior-posterior impulses to move quickly and efficiently (6, 34). Each COD event involves 33 

a braking and propulsive phase which highlights the importance of eccentric-concentric 34 

muscle actions for both force production and muscular endurance as the number of 35 

directional changes increases (6). As the occurrence of these movements increase, high levels 36 

of muscle damage and neuromuscular fatigue become prevalent (6, 33). The accumulation of 37 

both acute and chronic fatigue may alter movement strategy and compromise mechanical 38 

efficiency of movement during subsequent efforts or exercise bouts (32). Without adequate 39 

recovery, a reduction in movement efficiency may alter mechanical loading on lower-body 40 

joints, and inherently increase the risk of injury (13, 30). If such changes in mechanical 41 

loading can be identified, quantified, examined and subsequently integrated into load 42 

management practice through wearable technology; effective strategies may be developed to 43 

enhance performance and reduce injury risk through individually tailored, sport-specific 44 

conditioning interventions.  45 

 46 

 Global Positioning System (GPS) technology is principally used in team-sports to 47 

monitor athletes during on-field training and competition by transmitting instantaneous 48 

triangular positioning information which is used to formulate a multitude of distance, time 49 

and speed derived metrics (11, 36). This technology is widely used within elite sport as a 50 

performance analysis tool (9, 11), and whilst it has the capability to accurately calculate 51 

accumulated distance when movement is largely linear (8, 27), it is inherently prone to error 52 

during short duration, high-speed movements (10, 26) and even more so when these 53 

movements incorporate non-linear characteristics (e.g. COD movement) (14, 25). 54 
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Additionally, this technology appears to be approaching its limits with regards to more 55 

advanced movement tracking whereby an optimal sampling frequency (10 Hz) has been 56 

proposed (26), suggesting alternate technologies may be required to accurately identify and 57 

quantify more complex, sports-specific movement patterns.   58 

     59 

Inertial sensors (accelerometers, gyroscopes, magnetometers) in wearable technology 60 

have previously been used to detect physical activity and sleep patterns in both clinical and 61 

general populations (9, 28); and to more precisely differentiate between a range of activities 62 

from sitting and standing to walking, running and jumping by assessing vector quantities of 63 

acceleration in three dimensions (anterior-posterior, medio-lateral and vertical) with high 64 

levels of validity (both construct and concurrent) and reliability (3, 9). Commercially 65 

available GPS devices implemented in elite sport currently house these inertial sensors co-66 

located within the same unit casing as the GPS engine, which have the capability to 67 

accurately identify, record and quantify more sport-specific movements (4), yet tend to be 68 

underutilized in the professional environment and within proprietary software. These inertial 69 

sensors sample at a much higher frequency than GPS engines (most commonly 100Hz) and 70 

can therefore detect subtle changes in movement within the three-dimensional environment 71 

that GPS technology is presently incapable of (9). Additionally, inertial sensors work 72 

independently of satellite reliant GPS technology and can therefore be implemented indoors 73 

(9); superseding a fundamental limitation of GPS engines when used in isolation.   74 

 75 

In a team-sport environment, inertial sensor technology has been effectively used to 76 

quantify a range of different movements from jumps to collisions, impacts and tackles (5, 16-77 

18, 38). Furthermore, signals from inertial sensors coupled with various pattern recognition 78 

techniques have successfully been used to create algorithms that automatically detect and 79 
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categorize collisions and tackles in heavy contact sports such as Australian rules football and 80 

rugby league (16, 17); and a range of different activities including rotational magnitude of 81 

aerial acrobatics in snowboarding (20), kick count in swimming (15), and more recently, an 82 

entire fast-bowling event in cricket (31).   83 

            84 

Whilst these inertial sensors have previously been assessed for their ability to detect 85 

and analyze a number of different multi-planar ‘sports specific’ movements (15, 16, 20, 31, 86 

38), these studies are infrequent, and to our knowledge, these sensor signals are yet to be used 87 

to accurately distinguish COD movement from other variables from within a commercially 88 

available microtechnology unit.  89 

 90 

Given the neuromuscular implications associated with repeated COD movements, 91 

highly prevalent in team-sports (12), and the subsequent effect resulting fatigue may have on 92 

the movement efficiency of an athlete, there is clear rationale for non-linear movement 93 

patterns to be further assessed and included in both acute and chronic load monitoring 94 

practice. Therefore, the current study is a description of the use of inertial sensor technology 95 

(accelerometers, gyroscopes and magnetometers) to develop an algorithm that is able to 96 

automatically detect and record COD movements  ranging from 45 to 180 degrees (both left 97 

and right direction) and concomitantly assesses the validity and reliability of the calculated 98 

COD angle.    99 

 100 

METHODS 101 

Experimental Approach to the Problem 102 

This concurrent validity study was designed to investigate the accuracy of a novel algorithm 103 

to automatically detect and quantify COD angle against a high-speed video criterion measure. 104 
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Participants were required to run a series of single, pre-determined change of direction 105 

(COD) trials consisting of four different angular changes (45°, 90°, 135° and 180°) in each 106 

direction (left and right). Each participant was required to run five COD trials at each angle in 107 

each direction (i.e. 40 trials per participant) wearing a commercially available, and commonly 108 

used microtechnology unit (Optimeye, S5, Catapult Innovations, Melbourne, Australia) on an 109 

outdoor football field. A remotely piloted aircraft (drone; Mavic Pro; DJI, Shenzhen, China) 110 

was position-locked above the marked COD center-point to record all trials for comparison 111 

between measurement devices and for visual confirmation of correct running lines (Figure 1).  112 

 113 

ENTER FIGURE 1 ABOUT HERE 114 

 115 

Subjects 116 

Five recreationally active males (mean ± SD; age, 29.0 ± 0.5 years; height, 181.0 ± 5.6 cm; 117 

body mass, 79.4 ± 5.3 kg) volunteered to participate in this study. All participants were free 118 

from injury and medical conditions that would contraindicate participation in physical 119 

activity. The study was ethically approved by the University’s Human Research Ethics Board 120 

and subjects were informed of the benefits and risks of the investigation prior to signing an 121 

institutionally approved informed consent document to participate in the study. 122 

 123 

Procedures 124 

Testing Protocol 125 

Prior to commencement of testing, participants were given clear instructions to run directly 126 

on a visibly marked straight line on the ground and change direction at a marked center-point 127 

before continuing to follow a second marked straight line in accordance with the intended 128 

COD and angle (Figure 2). A dynamic warm-up was undertaken before each participant 129 
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completed one warm-up COD trial at each angle (45°, 90°, 135° and 180°) in each direction 130 

(left and right) for familiarization purposes. Participants were then required to complete 5 131 

individual COD trials consecutively at each angle in each direction in a randomized and 132 

counterbalanced fashion (to ensure any fatigue would not have an adverse or more influential 133 

effect on a given angle or direction relative to another); therefore all participants’ completed 134 

five 45° COD trials to the left before moving on to the next angle and direction. Participants 135 

were instructed to run at a moderate pace and change direction by planting the outside foot to 136 

the opposite direction in a ‘side-cutting’ motion but were encouraged to keep each trial ‘as 137 

natural as possible’ (Figure 2). Participants’ were provided with adequate rest of at least 60 138 

seconds between COD trials and ensured compliance of 5 consecutive trials in each direction, 139 

confirmed with visual inspection using drone-footage post-collection. Each participant 140 

completed 40 COD trials, producing a total of 200 trials across the testing session. 141 

 142 

ENTER FIGURE 2 ABOUT HERE 143 

 144 

Microtechnology 145 

Each participant was fitted with a commercially available microtechnology unit (Optimeye, 146 

S5, Catapult Innovations, Melbourne, Australia) (Figure 3a) posteriorly trunk-mounted (at the 147 

level of the upper thoracic vertebrae (T1 to T5), between the medial borders of the scapulae) 148 

in a manufacturer supplied, fitted vest (Figure 3b). This microtechnology unit houses a 10 Hz 149 

Global Navigation Satellite System antenna along with a tri-axial accelerometer, tri-axial 150 

gyroscope and tri-axial magnetometer, all sampling at 100Hz. Each unit was calibrated in 151 

accordance with the manufacturer’s guidelines prior to the commencement of the testing 152 

session. Raw data was extracted from the microtechnology unit using manufacturer designed, 153 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7 
 

proprietary software (Catapult Sprint 5.1, Catapult Innovations, Melbourne, Australia) for 154 

subsequent exportation and analysis.   155 

 156 

ENTER FIGURE 3 ABOUT HERE  157 

 158 

Algorithm Creation 159 

Data analysis and algorithm creation were performed using MATLAB (MathWorks, Natick, 160 

MA), whereby a multi-stage algorithm was developed incorporating tri-axial inertial sensor 161 

inputs that align with the athlete’s body in such a way that the x, y and z rotations correspond 162 

to the roll (medio-lateral), pitch (anterior-posterior) and yaw (superior-inferior) axes of the 163 

inertial sensors (Figure 4). This algorithm provides a series of signal processing computation 164 

and decision techniques to first detect that a COD movement has occurred; second detect the 165 

direction of the COD movement; and third report the precise COD angle.   166 

 167 

ENTER FIGURE 4 ABOUT HERE 168 

 169 

Heading Angle Calculation 170 

Initial stages of the algorithm required input from each of the inertial sensors (accelerometer, 171 

gyroscope, and magnetometer) to optimize accuracy when computing the ‘yaw’ (also known 172 

as the heading or azimuth) angle. First, the gyroscope output was time-integrated by mapping 173 

the rate of change of angular velocity (w) (i.e. angular velocity / time) from an initially 174 

known orientation.  175 

From the relationship: 𝑤 =
𝑑𝜃

𝑑𝑡
;  𝑑𝜃 = 𝑤𝑑𝑡 176 
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The overall angle change (yaw) was found by summating this quantity over many samples 177 

and then using a rotation matrix to determine the Euler yaw angle (rotation around the z-178 

axis).   179 

Therefore, 𝜃 = ∫ 𝑤𝑑𝑡
𝑡

𝑡+𝑇
 or 𝜃 = ∑ 𝑤 × ∆𝑡𝑡

𝑡+𝑇  180 

Second, the magnetometer output is able to accurately compute heading location by 181 

using the Earth’s magnetic field (when parallel to the Earth’s surface). However, a moving 182 

athlete will inevitably cause the magnetometer to move away from the horizontal plane (tilt) 183 

causing errors in subsequent calculations (40). Therefore, tri-axial accelerometer data was 184 

used to calculate roll and pitch angles which were subsequently integrated with the 185 

magnetometer data to correct this tilt error by mapping the magnetometer data to the 186 

horizontal plane providing an accurate heading calculation regardless of the magnetometer’s 187 

position. 188 

Finally, a complementary filter was used to obtain the final yaw angle estimation by 189 

integrating gyroscope and magnetometer yaw angle calculations for the strongest and most 190 

accurate sensor computation.    191 

 192 

Change of Direction Angle Calculation 193 

The ‘yaw’ angle calculation obtained (as described above) then entered a secondary stage of 194 

the algorithm (a modified Canny edge detection algorithm (7)) which principally follows a 195 

five-step process from the input of the yaw angle, to the detection of a COD movement, 196 

determination of a direction, and calculation of a precise angle.  197 

 198 

Initially, a customized 2D Gaussian filter was used to remove any ‘noise’ from the 199 

yaw signal. The next step involved determining the intensity gradient of the yaw angles in 200 
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both horizontal and vertical planes to provide both magnitude and direction. This was 201 

followed by a non-maximal suppression stage whereby a full scan of yaw angles was 202 

completed to identify the local maxima or peak (maximum change in gradient) whilst the rest 203 

of the samples were suppressed and set to zero. From here, hysteresis thresholding was used 204 

to identify ‘real’ edges based on pre-determined threshold values which differ with variations 205 

in angle. These edge values were then extracted and entered in to a multi-level piecewise 206 

thresholding algorithm (based on a piecewise linear relationship between the edge value and 207 

calculated angle change (yaw angle)) to calculate a precise COD angle.      208 

 209 

High-Speed Video Analysis 210 

A remotely piloted aircraft (drone; DJI Mavic Pro, DJI, Shenzhen, China) was positioned 211 

fifteen meters (15m) above the center-point of the marked COD grid and locked in position, 212 

remaining completely stationary for the duration of the testing session (lasting ~30 minutes). 213 

An in-built high-definition camera (1/2.3” CMOS 12MP 4K) recorded each COD trial at a 214 

sampling rate of 96 frames per second. Each COD trial was visually inspected post-collection 215 

to ensure the drone was positioned correctly and remained completely still to ensure valid 216 

trials were recorded. Subsequent video analysis was performed using Kinovea software 217 

(Kinovea, 0.8.15, http://www.kinovea.org/) where each COD trial was analyzed to allow a 218 

direct and quantifiable comparison between the algorithm-derived COD angle and the high-219 

speed video-derived COD angle.  220 

 221 

Following visual inspection, a pre-set distance of two meters either side of the COD 222 

center-point was deemed the beginning and the end of the COD trial, ensuring participants 223 

were ‘yet to commence’ and had ‘completed’ the COD in each trial respectively (Figure 5). 224 

This pre-defined distance was precisely measured during analysis using a software calibration 225 
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tool (Kinovea, 0.8.15) from a pre-measured and clearly marked point (measuring one meter) 226 

on the COD grid. A reflective marker was fixed to the exterior of the vest where the 227 

microtechnology device was housed to allow clear determination of the device’s position 228 

during video-analysis to maximize precision when calculating COD angle. COD angle was  229 

determined using an angle measuring tool within the software (Kinovea, 0.8.15) which 230 

intersected the location of the posteriorly trunk-mounted microtechnology device at both 231 

reference points (two meters either side of the COD center-point); thus calculating the 232 

resultant angle (Figure 5).  233 

 234 

ENTER FIGURE 5 ABOUT HERE 235 

 236 

Velocity Determination 237 

Instantaneous velocity measures were derived from the GPS engine (Optimeye S5, Catapult 238 

Innovations) and extrapolated using identical proprietary software to that mentioned 239 

previously (Catapult Sprint 5.1, Catapult Innovations, Melbourne, Australia). ‘Pre change of 240 

direction average velocity’ was defined as the average velocity over two seconds preceding 241 

the point of COD, ‘post change of direction average velocity’ was defined as the average 242 

velocity over two seconds directly following the COD point, and ‘total change of direction 243 

average velocity’ was defined as the average velocity from the beginning of the ‘pre change 244 

of direction’ to the end of the ‘post change of direction’ time-stamp (including the point of 245 

COD).      246 

 247 

Statistical Analyses 248 

Six COD trials were removed following visual inspection, as slight movement of the 249 

remotely piloted aircraft (environmental factors) was detected during these trials. This left a 250 
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total of 194 COD trials for use in the analyses. All statistical analyses were conducted using 251 

SPSS software (v24.0, SPSS Inc., New York, USA) and Microsoft ExcelTM (Microsoft, 252 

Redmond, USA) with the exception of statistical power estimation (for sample size 253 

determination) described below. Data are presented as mean ± SD for both high-speed video 254 

and algorithm derived determinants of COD angle (Table 1). Level of agreement and 255 

accuracy of the proposed algorithm was assessed by calculating the Bland-Altman 95% limits 256 

of agreement (LoA) (2) and mean bias in relation to the criterion measure (high-speed video). 257 

Effect size of the mean bias was calculated using Cohen’s d where results were interpreted as 258 

negligible (< 0.2), small (0.2-0.6), medium (0.6-1.2), large (1.2-2.0) or very large (2.0-4.0) 259 

(22). Precision or variability of bias was assessed using a root mean square error of prediction 260 

(RMSEP). Reliability was calculated using Hopkins’ spreadsheet (21) and was expressed in 261 

absolute terms as typical error (TE) ± 90% confidence intervals and relative terms as a 262 

coefficient of variation (CV) percentage where; a CV < 5% was considered ‘good’; a CV 263 

between 5-10% ‘moderate’;  and a CV > 10% ‘poor’ as has been previously interpreted when 264 

assessing the reliability of sports analysis technology (5, 25).  265 

 266 

A one-way analysis of variance (ANOVA) was conducted on the mean difference 267 

scores (or bias) between each participant to identify any potential differences in algorithm 268 

accuracy between calibrated Catapult S5 Optimeye microtechnology devices and/or 269 

movement techniques. A second one-way ANOVA was conducted to determine any 270 

differences in mean bias across each angle (45°, 90°, 135°, and 180°), independent of 271 

direction. Post-hoc comparisons were assessed using a Games-Howell test as appropriate for 272 

heteroscedastic data. A paired samples t-test was used to determine any differences in mean 273 

bias between left and right direction across all angles. Sample size requirements for LoA 274 

were calculated using MedCalc Statistical Software (v18.2.1, MedCalc Software bvba, 275 
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Ostend, Belgium; http://www.medcalc.org; 2018) where 10° was set as the maximum 276 

allowed difference between methods across all trials; yielding a required sample of 171 trials. 277 

An alpha level of p < 0.05 was set as the level of significance for all statistical tests.        278 

 279 

RESULTS 280 

Concurrent validity and accuracy of the proposed algorithm is presented in Table 1. The 281 

results from the Bland-Altman analysis are shown in Table 1 and Figure 6. Concurrent 282 

validity was present across a number of angles (45° right, 135° left and right, 180° right), 283 

however the proposed algorithm slightly underestimated COD angle at 45° (-2.3 ± 2.7°, 284 

Cohen’s d = -0.81) and 90° to the left (-3.0 ± 2.6°, Cohen’s d = -1.13), whilst slightly 285 

overestimating COD angle at 180° (4.9 ± 3.7°, Cohen’s d = 1.36) to the left and 90° to the 286 

right (1.9 ± 2.5°, Cohen’s d = 0.76). No significant bias was found between the proposed 287 

algorithm and criterion measure for any other angles with a mean bias range of -0.6 ± 2.2° to 288 

2.4 ± 6.1° and negligible to small effect size differences (Cohen’s d = -0.26 to 0.39).   289 

 290 

ENTER TABLE 1 ABOUT HERE 291 

ENTER FIGURE 6 ABOUT HERE 292 

 293 

All angles were measured with good reliability (TE = 1.6° - 5.2°; CV = 1.3 to 4.2%). 294 

Levene’s test of homogeneity revealed unequal variances and therefore the Brown-Forsythe 295 

ANOVA result was interpreted, revealing no significant difference in mean bias between 296 

microtechnology devices and/or movement technique (p = 0.25). However, the secondary 297 

Brown-Forsythe ANOVA did reveal a significant difference in mean bias between angles (p 298 

= 0.00) with Games-Howell post-hoc comparisons showing a significantly greater mean bias 299 

for the 180° COD trials (3.6 ± 5.1°) when compared with 45° (-1.3 ± 2.7°; p = 0.000), 90° (-300 
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0.6 ± 3.6°; p = 0.000) and 135° (-0.5 ± 2.9°; p = 0.000) COD trials (Figure 7). Weaker limits 301 

of agreement and precision were also apparent for the 180° trials (in both directions) when 302 

compared with all other angles (Table 1). There were no significant differences found in 303 

mean bias between 45°, 90° and 135° COD trials. Additionally, there was no statistically 304 

significant difference in the mean bias between left (-0.3 ± 4.2°) and right (0.9 ± 4.0°) COD 305 

trials across all angles (p = 0.06). 306 

 307 

ENTER FIGURE 7 ABOUT HERE 308 

 309 

DISCUSSION 310 

The purpose of this study was to assess the validity, accuracy and reliability of a newly 311 

developed algorithm to calculate COD angle for pre-determined COD movements ranging 312 

from 45° to 180° (both left and right) and assess the level of agreement against a criterion 313 

measure.  314 

 315 

Our novel algorithm displayed a high level of accuracy with mean differences ranging 316 

between -3.0 ± 2.6° to 4.9 ± 3.7° (-5.1% - 2.8%) in relation to the criterion measure; and 317 

proved valid across numerous COD angles (45°, 90°, 135° and 180°), in both directions (left 318 

and right). Of these, the algorithm slightly underestimated COD angle for 45° and 90° trials 319 

(left), and slightly overestimated COD angle for 90° (right) and 180° trials (left). These 320 

results are a mild bias that may be statistically present in some cases, however from a 321 

practically meaningful perspective, a bias of less than 5° or 6% for all COD angles could be 322 

considered insignificant when aiming to assess the mechanical load associated with COD 323 

movement for both acute and chronic load monitoring purposes; given there is currently no 324 

alternative in detecting, recording and reporting COD angle on-field using a commercially 325 
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available and commonly used microtechnology unit. However, caution is required when 326 

quantifying 180° COD movements which evidently presented a significantly greater mean 327 

difference (bias) and showed the weakest limits of agreement (95% LoA (Left: -2.16°, 328 

12.00°, Right: -9.51°, 14.29°)) and lowest precision (RMSEP(Left: 6.05°, Right: 6.40°) when 329 

compared with the 45°, 90° and 135° trials. Yet importantly, all angles displayed good 330 

reliability (TE = 1.5° – 5.2°; CV < 5%) between trials.   331 

 332 

Our algorithm demonstrates a level of validity and reliability that is comparable and 333 

mostly favorable to similarly previous research whereby inertial sensor outputs have been 334 

coupled with signal processing techniques to identify more complex movement patterns. For 335 

example, categorizing rotational magnitude of aerial acrobatic maneuvers in snowboarding 336 

(20), recording kick count during freestyle swimming (15) and somewhat unsuccessfully 337 

applying a tackle detection algorithm to Australian rules football matches (18). However, 338 

these studies have typically used only one of the inertial sensors in isolation (18, 23) and in 339 

some cases only analyzed a single-axis of movement (15, 20), whereas our algorithm utilizes 340 

more than one sensor, and considers all axes of movement. Similar to the current study, 341 

previous research that has utilized the integration of multiple sensor outputs (e.g. 342 

accelerometer and gyroscope) has demonstrated a high-level of success in detecting more 343 

holistic, sports-specific movement patterns like an entire fast bowling event in cricket (31) 344 

and quantifying the contact load of collisions in professional rugby league (16). These 345 

improved findings may be due to the ability to utilize the relative strengths of each inertial 346 

sensor to compensate for the weakness of another (29). The current study adds to this body of 347 

knowledge and the successful characterization of athletic movement by successfully 348 

(accurately and reliably) quantifying COD movements.    349 

 350 
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Whilst it has been suggested that a majority of human motion occurs at a rate of less 351 

than 20Hz (24), it is clear that much higher sampling rates are required to accurately capture 352 

more detailed and complex movement characteristics. Within elite sport, GPS technology is 353 

used heavily by sports science and strength and conditioning staff to make informed load-354 

management decisions in ‘real-time’ and prospectively when periodizing and planning 355 

subsequent training sessions. However, GPS technology requires triangular signal positioning 356 

from orbiting satellites; thus requires an outdoor venue, limiting its applicability across 357 

sporting types, some outdoor venues and all indoor venues (11) and can be vulnerable to 358 

dysfunction or interference from adverse environmental conditions and other competing 359 

technologies. Furthermore, the reliability of GPS technology is considerably reduced during 360 

high-speed movements (1, 10, 14) and is even further compromised when measuring 361 

movement patterns that incorporate COD (25); highlighting other important limitations when 362 

using GPS to quantify player movement patterns and performance.  363 

 364 

GPS technology has improved using higher sampling rates (10  Hz) where an 365 

‘acceptable’ level of accuracy (CV < 11.3%) and reliability (CV < 6.0%) has been 366 

demonstrated when calculating instantaneous velocity during high-speed straight-line running 367 

(36), in contrast with less advanced GPS technologies (1-5 Hz sampling rate) which have 368 

proven to be less reliable when calculating instantaneous velocities during similar movement 369 

patterns (10, 19, 25). This logically suggests a potential linear relationship between higher 370 

sampling frequencies and greater detection sensitivity, leading to improved accuracy and 371 

reliability of GPS at higher sampling rates when measuring distance and instantaneous 372 

velocity during high-speed movements. However, Johnston et al. (26) recently demonstrated 373 

a potential ceiling effect, whereby GPS technology sampling at 10 Hz demonstrated superior 374 

accuracy and reliability than a 15 Hz sampling frequency when measuring distance run at 375 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 
 

high-speed. Interestingly, neither technology was considered to be valid when calculating 376 

peak speed, however this may have been due to a limitation within the criterion measure itself 377 

(26). Consequently, GPS technology (i.e. satellite-based positioning) may be approaching its 378 

limits with regard to player monitoring capabilities, paving the way for high-frequency 379 

inertial sensors to more accurately identify sports-specific movement patterns, such as in the 380 

current study.      381 

 382 

Furthermore, previous research has revealed inconsistencies in reliability between 383 

microtechnology devices when comparing GPS derived distance and speed measures (8, 14, 384 

19, 26, 37) , whereas research assessing ‘inter-unit’ reliability in relation to inertial sensor 385 

derived metrics, whilst scarce, has indicated more positive results (4, 23); likely due to their 386 

self-contained nature (i.e. no reliance on satellite connectivity). These findings are in 387 

agreement with the current study where no differences in accuracy were found between 388 

microtechnology devices and suggests that assuming manufacturer calibration instructions 389 

are adhered to, and units are functioning correctly; our algorithm is highly accurate across 390 

multiple Catapult S5 Optimeye microtechnology devices and a variety of COD movement 391 

techniques (as each participant wore a different microtechnology device). This, however, 392 

requires further investigation, but may have important practical applications across a squad of 393 

athletes where movement technique will likely differ between individuals.  394 

 395 

The proposed algorithm requires inputs from each of the inertial sensors 396 

(accelerometer, gyroscope, magnetometer) prior to undergoing a series of signal processing 397 

techniques to compute a ‘heading’ or ‘yaw’ angle which subsequently enters a secondary 398 

custom-designed Canny edge detection algorithm to compute a precise COD angle. Canny 399 

edge detection is a gradient-based edge detection method often used in image processing to 400 
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determine the level of variance between different image pixels with a goal to identify sudden 401 

changes in an image and identify certain objects (39). The algorithm presented in the current 402 

study uses a modified Canny edge detector to determine the level of variance, or find 403 

transitions in the yaw angle signal derived from the inertial sensor inputs before hysteresis 404 

thresholding allows the identification of ‘real edges’ which are extracted and entered into a 405 

multi-level piecewise thresholding algorithm to calculate a precise COD angle. Importantly, 406 

the pre-determined piecewise quantization thresholds can be manipulated which has the 407 

potential to improve the accuracy of the angle change calculation and thus lead to greater 408 

optimization of the algorithm in the future. This is currently under investigation. 409 

 410 

There are some limitations within the current study that must be acknowledged. 411 

Whilst only 5 participants were used, the primary measure of this study was based around the 412 

comparison between raw inertial sensor data and a high-speed video criterion; thus the 413 

number of COD trials conducted are of most importance. The remotely piloted aircraft used 414 

in this study was able to be locked in position directly above the clearly marked COD point, 415 

however it may be susceptible to very slight deviations during windy conditions which could 416 

lead to a degree of parallax error within the high-speed video footage given the height of the 417 

drone (15m) (35). Any trials where movement of the remotely piloted aircraft was deemed to 418 

have occurred were subsequently removed. Furthermore, given that the proposed algorithm is 419 

designed around a gradient-based edge detection method, it was not possible to precisely 420 

time-match the point at which the algorithm defines the ‘beginning’ and the ‘end’ of each 421 

COD trial with the high-speed video footage. Therefore, the two meter distance  either side of 422 

the COD center-point was chosen based on visual inspection as a distance ensuring 423 

participants were ‘yet to commence’ and had ‘completed’ the COD in each trial respectively. 424 

However, these limitations did not appear to have an effect on the level of accuracy displayed 425 
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in the current study when comparing the proposed algorithm to the criterion measure, and in 426 

fact, this technology may offer a time-efficient, highly practical resource for field-based 427 

performance monitoring and analysis. 428 

 429 

 Additionally, whilst future research using our algorithm to quantify COD angles at 430 

greater running velocities is warranted, we present an algorithm that has the capacity to 431 

operate at a commonly adopted, high-frequency inertial sensor sampling rate (100Hz); and 432 

thus we strongly suggest that any changes in running velocity will not impact the resultant 433 

COD angle calculation provided that the duration of an individual COD movement is not less 434 

than the time-frame equivalent to this sampling rate (10ms).        435 

  436 

 Although the current study utilized recreationally active males, we suggest that the 437 

proposed algorithm is highly applicable to team-sport athletes given the identical positioning 438 

of the microtechnology device seen during training and competition in a number of elite 439 

sports (Figure 3b) and the similarity in accuracy between participants evident in the current 440 

study. Whist the proposed algorithm displayed a high-level of accuracy for pre-determined 441 

COD movements of varying angles, this study took place in a controlled environment and 442 

thus the focus of future research will assess the algorithm’s performance during more 443 

dynamic, reactive and unpredictable movement patterns typical of team-sport activity.   444 

 445 

PRACTICAL APPLICATIONS 446 

 Through this study we have demonstrated an acceptable level of concurrent validity 447 

and a high-level of accuracy and reliability in detecting, recording and calculating a precise 448 

COD angle for pre-determined COD movements ranging from 45° through to 180° (left and 449 

right directions), with low-level bias (less than ± 5°). This novel algorithm has been designed 450 
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using inertial sensor inputs which have a much greater capacity (sampling hundreds of times 451 

per second in multiple axes) to measure more complex human motion than GPS technology is 452 

currently able; coupled with sophisticated signal processing techniques.  Currently, the ability 453 

to extract, manipulate and interpret this inertial sensor data in to more practical and sports-454 

specific metrics is viewed as a challenge (24), yet provides an opportunity for sports 455 

scientists to impart more advanced signal processing techniques on these extracted features 456 

and facilitate more in-depth analyses of the physical demands of numerous sports and 457 

communicate this critical information effectively to sports practitioners and coaches. The 458 

ability to automatically detect COD movements and accurately and reliably calculate COD 459 

angle is something, to our knowledge, is yet to be quantified in a sporting environment and 460 

offers sports scientists, strength and conditioning practitioners, and athletes, an additional, 461 

non-linear, sports-specific variable that may provide a new perspective to both acute and 462 

chronic load monitoring practice.  463 
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FIGURE LEGENDS 624 

 625 

Figure 1. Aerial view and schematic representation of the pre-marked COD grid displaying 626 

all COD angles that participants were required to run. 627 

 628 

Figure 2. A sample of the high-speed video footage recorded by the remotely piloted aircraft 629 

showing the requirements of each participant to run directly on a clearly marked straight line 630 

before changing direction (90° to the left in this example) at a marked center-point, then 631 

continuing on another straight line in accordance with the intended direction and angle. 632 

 633 

Figure 3.  634 

(a) Catapult Optimeye S5 microtechnology unit (52mm x 96mm x 12mm); housing a 10Hz 635 

Global Navigation Satellite System antenna, along with a tri-axial accelerometer, gyroscope 636 

and magnetometer, all sampling at 100Hz; (b) Commercially manufactured, trunk-mounted, 637 

fitted vest displaying the placement of the microtechnology unit.  638 

 639 

Figure 4. A visual representation of the tri-axial nature of the inertial sensors housed within a 640 

trunk-mounted wearable microtechnology unit for human locomotion (yaw, pitch, and roll). 641 

 642 

Figure 5. A sample of a single COD (90° to the left) analyzed using high-speed video to 643 

determine the precise angle that the participant changed direction; in relation to the intended 644 

marked path.  645 

 646 

Figure 6. Bland-Altman plots showing the systematic bias in algorithm defined change of 647 

direction angle (thick black line), 95% confidence interval of the bias (thin black line), the 648 

95% limits of agreement (dashed black line) and the line of equality (dotted black line). In 649 
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each plot, the difference between algorithm defined and high-speed video COD angle for 650 

each trial is plotted against the mean of the measurements.   651 

 652 

Figure 7. Mean Bias ± SD of each COD angle independent of direction. *denotes a 653 

significantly greater mean bias when compared with all other COD angles. 654 
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Table 1. Accuracy, validity, precision and reliability of the proposed COD algorithm in comparison to a high-speed video criterion measure for COD angle 

accuracy (n = 194).  

 

*denotes a significant level of bias (p < 0.05) between criterion and algorithm derived COD angles; COD – change of direction; SD – standard deviation; % diff – percentage difference between algorithm and criterion derived COD angle; 95% 

LoA – 95% limits of agreement; RMSEP – root mean square error of prediction; TE ± 90% CI – typical error ± 90% confidence intervals; CV – coefficient of variation; Pre COD Avg Vel – Pre change of direction average velocity; Post COD 
Avg Vel – Post change of direction average velocity; Total COD Avg Vel – Total change of direction average velocity 

 

COD Angle 
High-Speed Video 

(Mean ± SD) 

Algorithm 

(Mean ± SD) 

Mean Bias ± 

SD 
% diff 

Effect Size 

(Cohen’s d) 
95% LoA (°) RMSEP (°) TE ± 90% CI (°) CV (%) 

Pre COD Avg 

Vel (ms-1) 

Post COD Avg 

Vel (ms-1) 

Total COD 

Avg Vel (ms-1) 

Left 

45 46.1 ± 1.9° 43.8 ± 2.0° -2.3 ± 2.7° * -5.1% -0.81 -7.67, 3.01 3.55 1.9 (1.5 – 2.6) 4.2 3.81 ± 0.16 3.81 ± 0.11 3.79 ± 0.11 

90 91.1 ± 1.6° 88.1 ± 2.0° -3.0 ± 2.6° * -3.3% -1.13 -8.12, 2.16 3.93 1.6 (1.3 – 2.1) 1.7 3.68 ± 0.22 3.62 ± 0.16 3.52 ± 0.16 

135 136.8 ± 1.9° 136.3 ± 2.1° -0.6 ± 2.2° -0.4% -0.26 -4.83, 3.71 2.21 1.8 (1.4 – 2.4) 1.3 3.67 ± 0.21 3.55 ± 0.15 3.44 ± 0.11 

180 176.9 ± 2.9° 181.8 ± 2.5° 4.9 ± 3.7° * 2.8% 1.36 -2.16, 12.00 6.05 3.0 (2.4 – 4.0) 1.7 3.90 ± 0.18 3.78 ± 0.32 3.62 ± 0.20 

Right 

45 46.6 ± 1.5° 46.3 ± 1.6° -0.3 ± 2.3° -0.7% -0.14 -4.80, 4.18 2.27 1.5 (1.2 -2.0) 3.3 4.00 ± 0.24 3.96 ± 0.21 3.95 ± 0.19 

90 90.0 ± 2.3° 91.9 ± 2.2° 1.9 ± 2.5° * 2.2% 0.76 -2.95, 6.85 3.12 2.2 (1.8 – 2.9) 2.5 3.52 ± 0.19 3.49 ± 0.13 3.39 ± 0.13 

135 133.8 ± 2.0° 133.4 ± 2.0° -0.4 ± 3.5° -0.3% -0.10 -7.27, 6.53 3.47 2.0 (1.6 – 2.7) 1.5 3.81 ± 0.20 3.71 ± 0.15 3.56 ± 0.14 

180 176.8 ± 5.7° 179.2 ± 5.9° 2.4 ± 6.1° 1.4% 0.39 -9.51, 14.29 6.40 5.2 (4.2 – 6.9) 3.0 3.94 ± 0.24 3.68 ± 0.23 3.58 ± 0.18 

Table 1
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