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Abstract  

Environmental modelling is transitioning from the traditional paradigm that 
focuses on the model and its quantitative performance to a more holistic 
paradigm that recognises successful model-based outcomes are closely tied to 
undertaking modelling as a social process, not just as a technical procedure. 
This paper redefines evaluation as a multi-dimensional and multi-perspective 
concept, and proposes a more complete framework for identifying and 
measuring the effectiveness of modelling that serves the new paradigm. Under 
this framework, evaluation considers a broader set of success criteria, and 
emphasises the importance of contextual factors in determining the relevance 
and outcome of the criteria. These evaluation criteria are grouped into eight 
categories: project efficiency, model accessibility, credibility, saliency, 
legitimacy, satisfaction, application, and impact. Evaluation should be part of an 
iterative and adaptive process that attempts to improve model-based outcomes 
and foster pathways to better futures.  

Keywords: model evaluation, model assessment, model performance  

  

Highlights  

• An evaluation framework for the new process-oriented paradigm of 

modelling is presented  

• Effectiveness of modelling is a multi-dimensional and multi-perspective 

concept   

• 32 criteria for model evaluation are considered from project-level to 

system-level outcomes  

• We link the success of modelling to modelling context and modelling 

practices  
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1. Introduction  

In the environmental sector, modelling serves a variety of interrelated purposes, 
including decision support, scientific discovery, and social learning (Badham et 
al., 2019; Gober 2018). In the water sector, for example, it supports a range of 
water management decisions, including infrastructure construction and 
operations, flood control and drought management, harvesting and storing water 
above and below ground, maintaining healthy ecosystems, and allocation of 
water for agriculture, energy production, cities, and environmental uses (Loucks, 
et al. 2005; Mulligan and Ahlfeld 2016; Snow et al., 2016; Sharvelle et al., 2017; 
Robert et al. 2018). Modelling also enables scientific discovery, for example, 
about anticipated impacts of climate change on regional hydrological systems 
(Cook et al., 2015). It can also serve as a vehicle to accrue and share knowledge 
in a learning process (Elsawah et al., 2015), and build public interest in adaptive 
management and collective action (Pahl-Wostl et al., 2010). These modelling 
functions are increasingly interrelated, stemming from the fact that many 
environmental, especially water-related, problems are recognised as wicked 
(see Rittel and Webber 1973); in that they are complex, intractable, contentious, 
and open-ended (Head, 2010).   

Evaluation of modelling projects helps improve the modelling when conducted 
within an ongoing model development process such as that described in phases 
and steps by Badham et al. (2019) for integrated water resource management. 
It enables weaknesses to be identified and resolved and can also allow the 
experience from one modelling project to improve future modelling. Evaluation 
of a modelling exercise or project is especially important during an era of climate 
change, globalisation, increasing environmental degradation and high 
uncertainty in general about the future, requiring effective adaptation in 
response to changing circumstances (Gorddard et al. 2016; Radhakrishnan et 
al. 2018). Ecologists now talk about transitioning ecosystems away from 
conservation to managing the “new normal” (Stein et al., 2013). This transition 
involves enhanced awareness of system change (e.g. water supply, demand, 
quality, reliability), and increased interest in the human dimensions of evolving 
natural systems.   

Success in model building and application for challenging interdisciplinary 
issues is about more than getting the science and engineering right. It is about 
embedding model building in a social process that links and engages scientists, 
decision makers, interest groups and the wider public towards achieving impact 
beyond merely technical performance of a model (e.g. as addressed by Bennett 
et al., 2013). Such impact can be as basic as sharing understanding of a 
problem, and as complex as identifying policy changes that yield long-term 
improvements for society (Ticehurst et al. 2011).  

  
1.1 Towards a new paradigm of modelling and evaluation   

In the traditional paradigm of modelling and evaluation, the focus is on the model 
itself (Pianosi et al. 2016). Knowledge transfer to action is treated as a linear 
process whereby a model is developed, used, and then subsequently has 
organizational or societal impact; scientific discovery, decision-making, and 
social learning are treated as rather separate activities. Over the last decade or 
so, there has been a transition towards a new process-oriented paradigm where 



 https://doi.org/10.1016/j.envsoft.2019.04.008  

 

3  

  

those three activities are inextricably intertwined (Voinov et al. 2018; Gober 
2018). This is a paradigm that we, the authors of this present paper, have been 
working extensively within. Under the new paradigm, effectiveness of modelling 
also includes the ability to link scientific discovery, decision-making, and social 
learning in the modelling process. Modelling outcomes are recognised as being 
highly dependent on the interaction users have with a model and the modelling 
process, in addition to the properties of the model output itself. Outcomes 
therefore emerge in a highly iterative and nonlinear process (Ward et al., 2009). 
The shift to the new paradigm demands that evaluation not only extends beyond 
assessment of the model but is also an iterative yet systematic process nested 
within the social process of modelling.    

1.2 Contribution of this paper  

This paper intends to expand evaluation of modelling to reflect our transition 
from the old modelling paradigm where focus is on the technicalities of the model 
itself, toward the new paradigm where modelling is a social process that 
considers more holistic outcomes. This work arose from an NSF-funded 
SESYNC pursuit1 to integrate understanding of core modelling practices. The 
framework and concepts were developed as part of a workshop process, based 
on participants’ understanding and supported by literature review. The 
participants have a diverse range of backgrounds covering social and natural 
sciences, public health, and computer science, and have extensive experience 
in the development of models for decision and policy support, social learning 
and scientific research. This work reflects an iterative process of consensus 
building rather than a systematic review.   

In Section 2, we synthesise existing evaluation literature, and argue that current 
evaluation practices are largely inadequate in both depth and scope, which limits 
their applicability and prospects to improve modelling practices. We outline an 
evaluation process (Section 3) that goes beyond simply confirming a project’s 
achievements to exploring factors and practices that contributed to its success 
(or failure), providing constructive learning that can feedback into current or 
future projects. The overall message is that effectiveness comes down to 
modelling being a process of change rather than change as an outcome. We 
therefore need to think of evaluation as a nested process in which specific 
practices are woven together to progressively improve understanding.   

Evaluation involves mobilising evaluation criteria that suit the project and 
evaluation context. The context to be considered is described in Section 4. In 
Section 5, we expand and present 32 criteria to consider in evaluating modelling, 
ranging from project-level to system-level outcomes, and from technical metrics 
to indicators of more complex attitudinal, behavioural and relational changes. 
This is followed by a brief overview of the common methods used for evaluation 
in Section 6. The primary contribution of this paper is the overarching evaluation 
process and the comprehensive list of evaluation criteria. In providing an 
overview of criteria and techniques and how they fit together, the paper intends 

                                            
1 “Pursuits” project at the National Socio-Environmental Synthesis Center (SESYNC)  

(https://www.sesync.org/for-you/educator/research/themes-pursuits), funded by the United 
States National Science Foundation (NSF)  

https://www.sesync.org/for-you/educator/research/themes-pursuits
https://www.sesync.org/for-you/educator/research/themes-pursuits
https://www.sesync.org/for-you/educator/research/themes-pursuits
https://www.sesync.org/for-you/educator/research/themes-pursuits
https://www.sesync.org/for-you/educator/research/themes-pursuits
https://www.sesync.org/for-you/educator/research/themes-pursuits
https://www.sesync.org/for-you/educator/research/themes-pursuits
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to help practitioners make sense of available tools and how they could mobilise 
these tools for their own needs.  

  

2. Evaluation barriers, gaps and opportunities  

There are several objectives in conducting a model evaluation. In terms of 
accountability, evaluation can provide the research and modelling team, as well 
as funders and other interested parties, feedback on whether the project is 
achieving or has achieved its set goals. It can also help demonstrate outcomes 
from the work. From a policy point of view, an evaluation will help gauge the 
merit of the work and assist policy makers in determining how much weight to 
give project/model outputs when making their decisions. An evaluation can also 
help justify expenditure to funders and provide a guide for resource allocation in 
the future, including whether funding should be continued, increased or limited. 
Evaluating the success of projects is also important for learning, sharing and 
improving the accrual of knowledge. Despite these potentially large benefits of 
evaluation, a systematic approach to it is not commonly sought.  

2.1 Barriers to evaluation  

There are several barriers to be surmounted for evaluation to become more 
commonplace. One is the lack of time and resources to conduct them. 
Generally, projects are funded up to the point of the delivery of the final model 
and report, and, in some cases, training in the use of the model. Final project 
evaluation is rarely budgeted for, thereby creating a lack of incentive to do so 
(Alexandrov et al. 2011; Schwanitz 2013).   

In some cases, the reason for not evaluating success may be structural 
pressures and biases that modellers are subject to. For models that have been 
well received, there may be apprehension that further evaluation may uncover 
shortcomings that undermine the project’s performance. On the other hand, for 
those models that were not well received, there may be reluctance in further 
scrutinising the work. These are not necessarily conscious motivations for 
avoiding evaluations, and may occur despite the best intentions of modellers.   

Another key reason for not evaluating success may be the lack of awareness or 
recognition of its benefits, including the view that modelling evaluation is limited 
to model validation and verification. Through this narrow validation/verification 
lens, evaluation of complex models such as large integrated socioenvironmental 
models (Kelly et al., 2013; Hamilton et al., 2015) can be seen as impractical 
(Jakeman et al. 2006; Schwanitz 2013). This paper expands the definition and 
conceptualisation of evaluation, enabling modellers to see that even if certain 
aspects of evaluation cannot be performed (e.g. due to lack of data), others may 
be both practical and useful.     

Other barriers to evaluation may include the limited availability of expertise in 
evaluation, and the lack of guidance or standard procedures in interpreting and 
carrying out these evaluations (Alexandrov et al. 2011). This paper intends to 
help researchers and practitioners overcome these two barriers by providing a 
framework that guides the characterisation and evaluation of the success of 
modelling projects.    
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2.2 Overview of prior work around evaluating success   

Prior work has included useful categorisations and criteria for success in several 
settings, ranging from policy and systems analysis (Goeller, 1988), project 
management (Ika, 2009; Westerveld, 2003), timescales (Roughley, 2009), 
decision support systems (McIntosh et al., 2011; Merritt et al., 2017), 
environmental management and policy (Cash et al., 2003; White et al., 2010), 
stakeholder equity and representation (van Voorn et al., 2016), and model 
performance (Bennett et al., 2013). Of note is the landmark paper by Cash et al. 
(2003) which argued that science and technology are unlikely to be used by 
decision makers to address environmental problems unless relevant 
stakeholders see them as credible, salient and legitimate. Discourse has also 
addressed the value of non-quantitative outcomes such as community and 
capacity building, and co-learning (Krueger et al., 2012; Voinov and Bousquet, 
2010). This existing body of literature defines a diverse set of prior criteria yet 
each article views success factors through a different lens, resulting in the need 
to synthesise the criteria and assure that a representative set is defined and 
described cohesively. These criteria are further discussed in Section 5. Here we 
give a brief overview of some key lines of work: model evaluation frameworks, 
factors contributing to project success, and evaluation in environmental planning 
and participatory research.    

There are some available frameworks for evaluating environmental models, 
however these frameworks are highly technical with a focus on characterising 
the uncertainty and performance of the actual model (Galelli et al., 2014; Matott 
et al., 2009; Refsgaard et al., 2007). These frameworks are not suited to 
evaluating the broader modelling process, including the knowledge building and 
use processes. At the other end of the spectrum, generic frameworks for 
evaluating the success of studies in environmental management can be broadly 
applicable for assessing the social aspects of modelling (e.g. Cash et al., 2003; 
Goeller, 1988; Roughley, 2009). However, on their own, these generic 
frameworks capture only a limited depth and/or scope of criteria and 
considerations relevant to environmental modelling processes. There is a need 
for a modelling-focused evaluation framework that builds on both existing 
environmental model frameworks and more generic evaluation frameworks, and 
provides adequate depth and scope to allow the full range of modelling practices 
and outcomes to be considered.  

The current literature on factors contributing to success is similarly often 
undertaken within a specific scope, such as for a type of model or tool, or models 
for a specific purpose. Examples for the first group are abundant, mainly 
stemming from synthesis of best/good practices for different types of modelling, 
such as system dynamics modelling (Elsawah et al., 2017a; Martinez-Moyano 
and Richardson, 2013), environmental decision support systems (McIntosh et 
al., 2011; Merritt et al., 2017), environmental modelling (EPA, 2009; Jakeman et 
al., 2006), process modelling (Bandara, 2007), and Bayesian Network modelling 
(Chen and Pollino, 2012). The second group of studies is less common where 
examples include those focusing on factors in modelling that contribute to 
societal problem solving (Sterk  et al., 2011), or factors that contribute to a 
particular evaluation criteria (van Voorn et al., 2016).   

The first group, being well-confined and tailored to the processes of a particular 
type of modelling, may be easier to follow in practice by modellers. In contrast, 
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factors that are output/outcome-focused seem to be more general and may not 
be explicit enough for modellers. Also the second group of literature tend to have 
a clearer and broader definition of success in mind, but in the first group, 
connection between best/good practices and what constitute “best” or “good” is 
not always clearly defined. There is a gap in systematically linking modelling 
context (e.g. purposes, interest groups, resources available), modelling 
practices and success. Part of this gap is being addressed by studies examining 
why models and other scientific information have not been used to their full 
potential (Borowski and Hare, 2007; Diez and McIntosh 2009; Dilling and 
Lemos, 2011). The major takeaway message from these studies is that greater 
interaction between users and producers of information improves the usability 
of results. There is a need to promote evaluation approaches and techniques 
that are suited to this iterative knowledge exchange process.   

There is a considerable amount of literature on evaluation processes in the fields 
of environmental planning and participatory research. For example, Von  

Korff et al. (2012) provided an overview of evaluating participatory water 
management projects. Syme and Sadler (1994) identified six principles for 
evaluation of stakeholder engagement processes, highlighting the importance 
of agreeing on objectives of the program and the criteria and methodology of 
evaluation in partnership with stakeholders, as well as allocating the resources 
(including evaluators) early in the program. Bellamy et al. (2001) developed an 
integrated systems-based framework for the evolution of natural resource 
management policy initiatives, which recognises the multiple levels and nested 
nature of such policies. Hassenforder et al. (2016b) proposed the Monitoring 
and Evaluation of Participatory Planning Processes (MEPPP) Framework that 
includes the consideration of context, process and outputs/outcomes. However, 
there is little literature that focuses on the evaluation process explicitly for 
environmental modelling projects.  

     

3. Evaluation process  

In the context of environmental modelling under the new paradigm, we suggest 
that evaluation occurs within an adaptive learning and management cycle, in 
which evaluation occurs both repeatedly in time, and at different levels of a 
project (e.g. in designing a stakeholder engagement process, planning a 
modelling-focussed workshop, and responding to changes dynamically within 
the workshop itself). This is consistent with the principle identified by Syme and 
Sadler (1994) that evaluation should influence planning (in our case, projects) 
on an ongoing basis. To provide feedback to this adaptive cycle, the emphasis 
of evaluation must shift from being a summative assessment to formative 
assessment. While there has been some debate about the distinction between 
these two types of evaluation (Chen, 1996; Patton, 1996; Scriven, 1991), the 
key difference lies in their primary function. Summative evaluation passes 
judgement on whether an aspect of the modelling was effective or not (e.g. ‘was 
X practice appropriate for realizing Y?’), whereas formative evaluation 
generates explanatory information about the gap between the actual and 
desired performance level for the purpose of learning (e.g. ‘why was X practice 
appropriate/inappropriate for realizing Y?’) (William and Black, 1996). Although 
both forms of evaluation can be complementary and valuable, more attention is 
needed on understanding why things went right or wrong (i.e. formative 
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evaluation) to guide both conceptual and instrumental improvements in ongoing 
and future projects. Such evaluation cycles can occur within different stages of 
a project and across different projects.  

This cyclic process can be informed by evaluation criteria at various levels of 
abstraction (Figure 1); these criteria are described in Section 5. The most 
concrete, detailed, lower level criteria tend to relate to project-level impacts, 
including project efficiency, credibility, and model accessibility. These criteria 
are expected to influence higher level criteria including the application of the 
model and satisfaction of stakeholders. At a higher level, “impact” is a more 
abstract concept that typically builds on lower level ideas and emerges at system 
level potentially in the long term. At any point in time, the evaluators ultimately 
form their own overall judgement of the effectiveness of the modelling project.  

It is recognised that bias may exist in the knowledge and perception of the 
evaluators themselves (Smith et al., 2018). Entirely avoiding bias is impossible, 
both in modelling and evaluation. However, some techniques applicable to 
modelling can be used in the evaluation process itself, for example, those that 
result in a reflective evaluation process whereby in some sense the evaluation 
is evaluated (see e.g. Lahtinen et al. 2017). This is part of the motivation for the 
cyclical process presented in Figure 1, which indicates evaluation as an 
ongoing, iterative process, rather than a once off activity.  

  

  
Figure 1 Conceptualisation of evaluation, set within the broader context of an adaptive learning and 
management cycle, occurring at different scales within a project. Criteria for evaluating effectiveness can 
roughly be differentiated according to their level of abstraction or detail, with more concrete, detailed, lower 
level criteria typically influencing more abstract, higher level criteria. Colours indicate level of impact of 
outcomes, and correspond to circles of influence in Fig. 2.  
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To describe the evaluation itself, we propose an evaluation process (Table 1 in 
conjunction with Figure 1) that is applicable to projects across the spectrum from 
the traditional to the emerging modelling paradigm. It applies both during (ex 
ante) and after (ex post) the modelling project and is built on previous research 
aimed at characterising success of models, decision support tools, and research 
and management projects in general (e.g. Bennett et al. 2013; Cash et al., 2003; 
Goeller, 1988; Ika, 2009; McIntosh et al., 2011; Roughley, 2009). Effectiveness 
can take on different forms, and the relevant criteria depends on the project and 
evaluation contexts. Overall effectiveness of the project in a sense captures the 
appropriateness of the modelling approach for achieving the intended 
objectives, including the selection of tools and methods (Voinov et al. 2018) and 
their implementation. The form and function of the evaluation activities, 
described below in Section 4, can vary depending on whether it is an ex ante or 
ex post evaluation, and whether the outcomes evaluated are within or beyond 
the control of the project team. The learnings from the evaluation can then be 
used to improve current and future projects (Table 1).  

  

Table 1 Evaluation process, involving consideration of context, selection of criteria, execution of the plan 
and use of evaluation outcomes.  

  
Steps in the evaluation process  

  

1. Identify project context affecting evaluation (Section 4.1)  

• Modelling purpose  
• Problem characteristics  
• Project resources  

2. Identify evaluation context affecting method selection (Section 4.2)  

• What scale of outcomes will the evaluation be able to assess?  
• What is the timing and role of the evaluation within the project?  

3. Design evaluation process based on the project and evaluation context  

• Select and prioritise evaluation criteria (Section 5)   
• Select methods (Section 6)   

4. Execution of evaluation plan and use learnings to improve current and future 
projects, including adaptive management of the evaluation  

  

  

4. Context  

In applying the evaluation process, it is important to consider the project context, 
including the modelling purpose, problem characteristics and project constraints 
(section 3), as well as the evaluation context (section 4.2), which includes the 
stage of the project at which evaluation is planned, and differing levels of 
influence over outcomes.   
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4.1 Project context  

Ultimately, the core success of a model is based on the purpose for which it was 
built (Harmel et al. 2014). At a more general level, model purpose can be 
considered in terms of three broad categories:  

• Decision support tools  

• Participatory tools  

• Research tools  

The purpose of the model strongly influences the relevance of the evaluation 
criteria used. As a decision support tool, model effectiveness is related to 
whether it helped improve the ability of an individual or group to make decisions 
(e.g. Keen 1980). A model can serve as a participatory tool in many forms or 
degrees of participation (akin to Arnstein’s (1969) ladder of citizen participation), 
ranging from models based on crowdsourced data to models created by 
participants. As a participatory tool for social learning, effectiveness can relate 
to how well the modelling supported learning or communication among different 
parties of stakeholders (e.g. Smajgl and Ward, 2013). Lastly, as a research tool, 
effectiveness is often centred on whether the modelling helped improve the 
science and understanding of the system (Duggan, 2015). These three 
categories are not mutually exclusive, but instead are increasingly intertwined in 
modern modelling practices. Glynn et al. (2017) argue that such interconnection 
is needed for adaptive management of natural resources.  

The characteristics of the problem can also influence the evaluation criteria, 
including the benchmark for success. Relevant problem characteristics can 
include: the number, severity and complexity of issues involved; the diversity of 
stakeholders involved and their interests or priorities; and the type of system or 
the system components entailed. For example, there would be a lower 
expectation of accuracy for a model capturing the system dynamics of a large 
river basin with multiple and diverse socioeconomic and environmental drivers, 
compared to that of a model representing a water balance problem for a small, 
simple, undeveloped catchment.  

The resources available to the project, including time, funding, expertise and 
data, should also be factored in during the evaluation. Such resources can put 
constraints on what the project can feasibly achieve. It would be unreasonable 
to expect a project with limited resources to achieve the same outcomes as a 
project with a large budget and access to a wealth of data.   

  
4.2 Evaluation context  

Evaluation design should take into account the relationship between the 
evaluation and project outcomes, specifically: 1) the scale at which outcomes 
become apparent for the evaluation; and 2) the role the evaluation plays in the 
project - how it is to be used or communicated.   

4.2.1 Scale of outcomes and timing of evaluation  

Outcomes of a modelling project can occur at different times and at different 
levels, influencing the evaluation (Table 2). Outcomes include both tangible 
outputs and other nontangible benefits of the model and modelling process (see 
examples in Table 2). Following Rouwette et al. (2002) and Roughley (2009), 
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we consider outcomes as occurring at the: 1) project level; 2) individual level; 3) 
group level; or 4) system level, as shown in Figures 1 and 2. Figure 2, adapted 
from Mendoza et al. (2013), illustrates that the project team has greatest control 
over the inner circle of the diagram (i.e. project-level outcomes), and the degree 
of control decreases moving from individual-level outcomes of those directly 
involved in the project, to group-level outcomes, and finally to the outer circle 
containing system-level outcomes.   

  

Table 2 Outcome levels and their corresponding outcomes and timeframes   
Level of 
impacts  

Timeframe of 
outcomes to 
become 
apparent  

Who/what is impacted?  Examples of outcomes  

Project  Immediate  • Project products (e.g. 
models, DSS, tools, 
methods, findings)  

• Project methodology  

• Completed functional model (validated)  
• Further use of the products (legacy)  
• Validation of the methods/findings  

Individual  Short to 
medium/long 
term  

• End-user  
• Client  
• Project team members  

• Application of the model for its intended 
purpose  

• Improved understanding of the system  
• Improved decision making  
• Understanding of others’ perspectives  
• Capacity building, skills  

Group  Short to long 
term  

 Stakeholders   • Consensus, trust built  
• Relationships developed  
• Exchange of viewpoints  
• Shared understanding  
• Joint commitment to action  

System  Long term  • Community  
• Organisation   
• Environmental asset  

• Change in institutional 
structure/process   

• Change in attitudes/behaviours  
• Biophysical changes  

  

  

  
Figure 2 Circles of influence showing who and what is being impacted, and the degree of control the 
modelling team has over each circle (adapted from Mendoza et al., 2013). Colours correspond to the 
different levels of impact in Fig. 1.  
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As outcomes can be time-dependent, the timing of the evaluation can influence 
its results (Table 2) (Roughley, 2009). For example, an evaluation that occurs 
immediately after model delivery may find that no system level outcomes were 
achieved. System level changes may only be detected many years after project 
completion. Project level outcomes should be apparent within the timeframe of 
the project itself. Individual and group level outcomes can emerge anytime 
between the short term and long term. Furthermore, given the behavioural and 
social nature of most individual and group level outcomes, they are also subject 
to change through time. The timeframe of outcomes is a function of the project 
purpose and context. While it can be useful to identify this timeframe so that 
outcomes are appropriately assessed, it is subject to uncertainty. This 
uncertainty can be dealt with iteratively within the evaluation process.  

Project level outcomes include the delivery of project outputs that are generally 
agreed on and planned for at the beginning of the project. They may comprise 
products such as a functional model, or activities such as the provision of 
training. Project level outcomes may also include criteria related to the quality of 
the model, for example model validity and the representation of uncertainty.  
Outcomes at the individual level refer to the impression or effect of the model on 
individual end-users, participants or clients. Individual level outcomes may 
include whether the model was perceived as useful or effective at achieving its 
intended purpose (e.g. supporting decision making), or whether it provided any 
new insight or understanding or led to a change of behaviour. It recognises that 
the same model may have different levels of usage or success on different 
people (White et al. 2010; Hunka et al. 2013).  

Group level outcomes refer to effects of the modelling on the group of 
participants or stakeholders as a whole. These outcomes, which are particularly 
relevant for participatory tools, can consist of an exchange or alignment of views, 
consensus on an issue or solution, building networks, establishing trusting 
relationships between stakeholders, and increased quality of communication 
between different stakeholder groups (Forgie and Richardson, 2007; Gray et al., 
2017).  

System level outcomes relate to changes that occur in the organisation, 
institution, community or system as a result of the modelling, thereby referring 
to outcomes beyond the direct control of the model project team, end users and 
engaged participants. For example, the modelling may prompt changes in how 
a government agency assesses or manages a resource, including changes to 
their workflow or processes, or their organisational structure (Halbe et al., 2018). 
The modelling may have (indirectly) contributed to changes in attitudes and 
behaviours in the community, for example through someone influential in the 
community who was exposed to and gained new insight from the model (Diez 
and McIntosh 2011). System level outcomes also include changes that occur to 
parts of the system (e.g. the environmental asset or resource) as a result of 
interventions that were influenced by the modelling.   

These system level changes tend to be indirect outcomes, positioned on the 
outer circle of influence (Figure 2); they are difficult to measure, difficult for the 
modelling team to control (Roughley, 2009), and therefore the most difficult to 
evaluate. There are challenges in evaluating system level changes related to 
difficulties in attributing impact and limits to affecting change. For the former 
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challenge, establishing causality can be difficult particularly for complex 
systems, which are subject to a multitude of dynamic processes, and for indirect 
outcomes. The second challenge refers to limits to the influence that 
researchbased tools can have on the ground, regardless of the quality of the 
model and its underlying science (McIntosh et al., 2011). Not only would the 
model be just one line of evidence, its impact can be limited depending on the 
politics in play, including the power of individual stakeholders.  

For practical reasons, particularly when project resources are limited, the scope 
of evaluation is typically bound to the inner circles of influence. We advocate an 
alternative approach to evaluation for system-level outcomes that examines the 
impact pathway based on the theory of change (Weiss 1995). Using this 
approach, the team explicitly maps out the impact pathway (i.e. assumptions 
about the process through which change occurs) toward expected outcomes 
(Douthwaite et al., 2003). This impact pathway represents the theory of how the 
team sees the project outputs achieving those system-level outcomes. It helps 
the team or stakeholders tease out their assumptions and test their validity.  

Deliberately thinking about how and why change can happen from the modelling 
project will help identify factors along each impact pathway that the project team 
can and cannot influence. This helps the project team to identify and dedicate 
activities and resources to enable the desired change (Schuetz et al., 2017). For 
example, capacity building, and maintenance and support of models may be 
intermediate steps along the impact pathway that are within the project team’s 
influence. The theory of change approach can help identify ‘intermediate 
outcomes’, which are indicators to track progress towards the desired outcomes 
(Douthwaite et al. 2003).  

4.2.2 Role of evaluation within a project   

As discussed early in the paper, there can be different motivations for conducting 
an evaluation including: exploring project impacts; deepening understanding of 
the system; improving modelling and other methodological practices; improving 
and sharing knowledge; assessing merit of the work; and providing transparency 
by justifying expenditure. Furthermore, the evaluation can be intended for 
different parties, including the project team (i.e. selfreflection), the funders, 
stakeholders, and/or other researchers and practitioners. The purpose of the 
evaluation, including its motivation and who it is intended for, will help determine 
whose point of view (see Hassenforder et al. 2016b) the evaluators need to 
consider when measuring the individual criteria.  

Ideally evaluation should be considered from the planning stage of the project, 
including budgeting adequate time and resources to carry out evaluation 
activities throughout the project as well as post-project. Considering evaluation 
and identifying criteria from the beginning also helps to provide better clarity to 
both the modeller and client about what the modelling is trying to achieve. The 
contextual factors, such as modelling purpose, problem characteristics, and 
project constraints (Section 3) determine the relative importance of various 
criteria (described in Section 5).  

In addition to the evaluation purpose, evaluation design is also guided by the 
stage of the project at which it will be performed, and how the evaluation can be 
used within the project. The use of evaluation results relies on their interpretation 
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and communication. Interpreting results is a process of linking facts or points 
collected through data analyses to the purposes and questions that drove the 
evaluation. Through this process, information turns into evidence that 
demonstrates progress and success of the project, as well as learnings and 
suggestions for future improvements. The use of evaluation results may be 
either summative or formative. In a summative evaluation, one may summarise 
what aspects of each individual criteria have been done well or poorly. We may 
also wish to draw overall conclusions on what types of success criteria the 
project has achieved, and where it may have fallen short. In a formative 
evaluation, emphasis is on explanation, in which ‘why’ questions will be asked. 
For example, if the results are positive and confirm project achievements, what 
external factors and/or practices were undertaken by the modelling team that 
contributed to the success? If the results are negative and contradict the planned 
objectives, what were the factors that contributed to the failure and what could 
have been done differently?  

Evaluation activities conducted while the project is ongoing help assess 
progress towards objectives and provide feedback to improve the methodology 
or practices if required. Evaluation of all criteria should be applicable both ex 
ante and ex post. However given the timing of ex ante evaluations they tend to 
seek metrics that are only indicative of progress and anticipated outcomes given 
how the project is tracking. To serve a formative function, the evaluation should 
not only provide evidence of a gap between actual and desired performance 
levels for that point of time, but also identify ways to help close the gap (William 
and Black, 1996). Thus with ongoing evaluation the modelling is carried out in 
an adaptive learning cycle: if progress is not tracking towards desired outcomes, 
practices are adapted accordingly. Evaluation at regular intervals of the 
modelling process can help identify potential issues as they emerge. This 
enables corrective action to be applied before it becomes a more serious 
problem requiring major amendments later in the project (Warren, 2014). If 
evaluation activities only commence later in the project, there is less opportunity 
for evaluation to improve and influence the project outcomes.  

While evaluations conducted ex post cannot improve the project itself, they can 
provide valuable information to improve future projects. With the project 
complete, many outcomes are final (e.g. project-level outcomes). However, 
other outcomes may take several years after the project to become apparent 
(e.g. some group-level outcomes, and many system-level outcomes) and others 
may vary with time (e.g. related to the use or application of the model). 
Evaluation may feed into mechanisms to help design future projects.   

The role of the evaluation may also evolve during a project. It is typically useful 
to at least informally reflect on or evaluate the evaluation – checking for bias, 
whether criteria were realistic/attainable, revisiting the timing of the evaluation 
and who carried it out. The credibility of the information used as evidence may 
also be revisited. For example, Bark et al. (2016) evaluated a large integrated 
project aimed at assessing ecological and economic benefits of environmental 
water in the Murray-Darling Basin in Australia. Several types of information were 
gathered including anonymous survey, facilitated workshop and bibliometric 
analysis of publications. This ensures multiple perspectives and lines of 
evidences are used to support interpretation of the data against evaluation 
questions.   
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5. Evaluation criteria  

We have collated 32 criteria for evaluating the success of modelling projects 
(Figure 1) based on existing literature and the collective experience of the 
authors. The criteria are grouped into eight categories: project efficiency; 
credibility; salience; legitimacy; model accessibility; application; satisfaction; and 
impact. The following subsections describe each of the criteria and the contexts 
where they may be important or not relevant. Our framework intends to provide 
the full possible scope within which environmental models can be evaluated, 
however it is not expected that projects will assess all 32 criteria at a high level 
of detail. Nevertheless we do propose that all criteria are at least discussed 
when planning an evaluation.   

These criteria will vary in importance depending on the project and evaluation 
contexts (see Section 4), and should be prioritised on a case-by-case basis. 
Additionally multiple authors recognise that perceived deficiencies in just one of 
these interrelated criteria can undermine the overall effectiveness or success of 
the modelling effort (Cash et al., 2003; Kunseler et al., 2015). For example, 
engaging more stakeholders in the process may lead to greater legitimacy and 
salience, but it may also decrease the credibility if the science is no longer 
viewed to be impartial. Achieving success therefore requires a balancing of 
tradeoffs across criteria (van Voorn et al., 2016). While it is not feasible to 
capture the vastly different cases of environmental modelling projects, we 
suggest the following considerations that may be useful when prioritising criteria.  

- Recognise project constraints, which necessitates prioritisation or 
tradeoffs among the criteria. The most common constraints are related to 
project efficiency, such as time and cost constraints.   

- Identify criteria that are critical to the project objectives.    

- Identify criteria that enhance the project objective. These criteria may not 
be critical, but enhance the use and outcomes of the project, including 
that of the critical criteria.   

- Identify criteria that have little relevance to a particular context. For 
example, stakeholder communication and consensus may not be 
important for a biophysical model developed for scientific research.   

Here we provide three hypothetical examples of prioritising our criteria for three 
different types of projects: development of decision support systems (DSS), 
participatory modelling and development of research models for biophysical 
systems (Table 3). Note that in general the prioritisation of the criteria should be 
undertaken and agreed on by all parties in the project, with consideration of the 
project and evaluation contexts. In addition, we should allow the prioritisation to 
evolve as we enter different stages of a project.   



 

 

Table 3: Examples of criteria prioritisation for three different types of projects: development of decision support systems (DSS), participatory modelling and development of 
research models for biophysical systems.    

Level  Category  Criteria  

 DSS   Participatory modelling  Research modelling  

Critical  Supportive  
Not  
critical  Critical  Supportive  

Not  
critical  Critical  Supportive  

Not  
critical  

Project 
level  

Project 
efficiency 

Punctuality  X           X         X     

Costs  X        X        X        

Credibility  

Theoretical basis     X           X  X        

Credibility of inputs  X        X        X        

Testability of implementation  X           X     X        

Match to observed 
behaviour     X     X        X        
Treatment of uncertainty     X        X     X        

Saliency   

Relevance  X        X        X        

End-user input  X      X          X  

Timeliness    X      X           X     

Legitimacy  

Inclusion    X    X          X  

Lack of bias  X      X      X      

Trust  X      X        X    

Model  
accessibility  

Input accessibility  X        X           X     

Output accessibility  X        X           X     

Model transparency     X        X     X        

Reusability        X     X        X     

Flexibility     X     X              X  

Ease of maintenance  X              X        X  

 
Application  

Instrumental use  X        X        X        

System understanding  X        X        X        

  
 



 

 

Group to 
individual 

level  

 Work productivity      X        X        X     

Stakeholder communication  X        X              X  

Stakeholder consensus     X     X              X  

Decision/ Commitment         X        X        X  

Satisfaction  

User satisfaction  X        X           X     

Team satisfaction     X        X     X        

Client satisfaction  X           X           X  

Independent satisfaction        X        X  X        

System 
level  

Impact  

System outcomes  X           X        X     

Science impact        X        X  X        

Community understanding & 
attitudes     X     X              X  
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5.1 Project efficiency  

Historically, project management was framed around the three constraints of 
time, cost and quality (Ika, 2009). The understanding of quality has broadened 
in recent years and is addressed by the remaining 30 success criteria to varying 
degrees; therefore this section concerns only time and cost. Punctuality and 
costs are the key aspects of project efficiency: the delivery of the project without 
considering the quality of the deliverables. They are also easily measured, and 
probably the only completely objective success criteria. Efficiency criteria are 
relatively generic and relevant for almost all modelling projects.  

Punctuality concerns whether the work was completed by the project deadline. 
Typically, there will be several deliverables at different stages of the project 
(such as a model, draft paper, final recommendation). While all projects have 
(or should have) target dates for planning purposes, only some projects have 
external reasons for these target dates. If the main purpose of the model is to 
support a decision with a set deadline or provide input to another research 
project, then the timing impacts on the model’s effectiveness, not only the 
efficiency. It may be necessary to reduce the project scope or make other 
compromises to meet such a deadline, and a model that cannot be applied as 
intended may be deemed unsuccessful.   

Questions of underutilisation or overload should also be considered in the 
punctuality criteria. Efficient delivery of a project involves resources (including 
specialist skills) being available at the time they are required. During the 
evaluation, critical shortages can be identified so that future projects can 
consider the ordering of activities that require the scarce resources.  

Cost criteria concern whether the project was completed within budget. As with 
punctuality, the evaluation should consider the allocation of costs to different 
components of the project, identifying where the component cost is more or less 
than expected and why.  

Time, costs and quality can be traded. For example, additional functions may 
be added to a model as stakeholders become familiar with how models can be 
used, but such scope changes impact on the timing and cost of the project. 
Such trading is linked to client satisfaction with the deliverables (Section 5.7) 
and involvement in the design; see for example extreme programming, or other 
agile project management approaches (Beck and Andres, 2005).   

5.2 Credibility  

Given that modelling is the foundation for evaluating the system of interest for 
decision making, it is fundamental that stakeholders perceive the model and 
modelling process as technically and scientifically valid. We consider credibility 
in terms of five criteria: theoretical basis of both the modelling process and 
model, credibility of model inputs, testability of implementation, match to 
observed behaviour, and adequate treatment of uncertainty. Measures of many 
of these criteria have been to some degree formalised, for example with good 
modelling practices (e.g., Anderson et al., 2015; Badham et al., 2019) and 
concepts of evaluating model reliability (Refsgaard et al. 2004; NRC 2012). 
Broadly speaking, these measures do not provide yes/no answers (NRC 2012); 
moreover, the evaluator should bear in mind expectations of different users 



 
 https://doi.org/10.1016/j.envsoft.2019.04.008  

18  

  

(Hunka et al. 2013), tradeoffs between them, and the possibility of changes in 
expectations over time.   

Credibility is fundamentally about whether stakeholders trust that the model and 
results can be used as purported. When minimising evaluation effort, it may be 
possible to conclude that because the modelling process is scientifically valid 
and the system sufficiently understood, model outputs are likely to be credible. 
Scientific validity of the modelling process may be based on acceptance that 
the modeller has used accepted or justifiable methods (Voinov et al. 2018), 
including for data and software management, as well as quality assurance. 
What is considered acceptable may not have agreement among stakeholders, 
and credibility of the process may be influenced by the modeller’s perceived 
legitimacy (Section 5.4). Determinations of acceptance of methods typically rely 
on how widespread the methods are used and discussions of the pros and cons 
of their use, which is adjunct to model transparency (Section 5.5). It is notable 
that in an integrated assessment modelling process, a high degree of 
stakeholder participation throughout the modelling process facilitates 
development of credibility (Aumann 2011), and is likely to influence the role of 
the considerations listed here.   

5.2.1 Theoretical basis    

Evaluating the theoretical basis of a quantitative model itself involves 
determining whether concepts, structure and parameterisation schemes are 
scientifically justified. Because the natural system is unknowably complex, an 
evaluation of the model basis is to some extent subjective. At a minimum, the 
conceptual model must form an acceptable approximation of the modelled 
system. The extent to which the quantitative model incorporates high degrees 
of conceptual model complexity is driven by the problem being addressed 
(Jakeman et al., 2006). A theoretical evaluation involves checking all relevant 
underpinnings used in the model construction, and that model assumptions 
invoked are justified. Justification may take the form of formal model 
confirmation (e.g. Refsgaard et al., 2004), comparison to other models in similar 
settings, or a check that the model fits client or end-user expectations. When 
justification is needed, it should support that: 1) the use of the assumptions in 
the specific circumstances the model is applied; 2) the arguments used are 
sound; and 3) the assumptions used are not biased toward a modelling 
outcome. If the theoretical basis of a model is highly uncertain, an associated 
analysis might instead explore the effect of alternative assumptions, 
parameterisation schemes, structures or conceptualisations (e.g. Bankes, 
1993, Clark et al. 2011).  

5.2.2 Credibility of inputs  

Adjunct to evaluating the theoretical aspects, those model inputs selected for 
modelling must also be credible. The inputs should be representative of the 
drivers of the system, and be suited for the required model scenarios. This does 
not necessarily mean they directly reflect what is expected in the field – they 
may capture hypothetical what-if situations. Finally, the inputs should be 
technically correct, without omissions or errors that are not acknowledged.  
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5.2.3 Testability of implementation  

The implementation of the model needs to be reliable in its running and output, 
and technically valid. Verification benefits from being able to examine the code 
(e.g. open-source code), as well as from a hierarchical testing approach starting 
with unit tests, benchmark problems and analytical solutions (NRC, 2012). If not 
already verified by others, evidence that the algorithms solve the salient 
mathematical equations should be provided (e.g. NRC, 2012). When executed, 
the software outputs must adequately capture the conceptual model and reflect 
descriptions from the model domain. The most current version of the software 
should be used to reduce potential artefacts from bugs in the software, and 
solutions should be replicable and reproducible. Bugs are inevitable in all 
software, including high quality commercial software (McConnell, 2004; 
Refsgaard and Henriksen 2004). Therefore in addition to checking inputs and 
comparing outputs to observed data, internal consistency checks such as 
assertions and unit testing, can be valuable in detecting bugs and ensuring the 
quality of the model code (Crout et al. 2008; Homès 2011).  

5.2.4 Match to observed behaviour  

Stakeholder acceptance of the model is commonly decided, in part, by its ability 
to simulate what was observed within the natural system. Typically, a model 
that approximates observed system behaviour well has higher acceptance than 
one that does not, though other aspects may be more important depending on 
the context (Olsson and Andersson 2006). To increase acceptance of the model 
for scenario testing, this may also mean that behaviour is evaluated outside of 
conditions specified for calibration (e.g., for droughts and other extreme 
conditions) (NRC 2012, Klemes, 1986). Formal history matching performance 
metrics (Bennett et al. 2013) objectively quantify the degree of fit between 
observations and the model’s simulated equivalent outputs. History matching 
metrics may be difficult to construct in highly complex problems, where data is 
scarce/unavailable, and where the model is numerically unstable or when the 
model runtimes are extremely long. Future behaviour is notably fundamentally 
unknown for example in global climate change models  

(Schwanitz 2013). Jakeman et al. (2006) note that comprehensive evaluation 
of behaviour is “rarely possible (or perhaps even appropriate) for large, 
integrated models.” Yet even then, stakeholders or experts may be able to 
identify aspects that are unrealistic, or judge whether differences from 
observations are tolerable for the modelling purpose. These judgement might 
be codified as “stylized facts” describing system behaviours that need to be 
reproduced (Schwanitz, 2013), minimum performance requirements, or fitness 
for purpose criteria (Haasnoot et al., 2014; Parker, 2009).  

5.2.5 Treatment of uncertainty  

For model outputs generated in prediction or forecasting mode, assessment of 
past behaviour typically needs to be complemented by quantification of 
uncertainty in the actual predictions of interest (Guillaume et al. 2016). 
Addressing uncertainty requires assessment of variation across many model 
realisations of possible model inputs for a given structure, and in some cases 
different model conceptualisations and related structures.  That is, one model 
realisation cannot be considered a full representation of consolidated 
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knowledge (Bankes, 1993; Maier et al., 2016). More broadly, model uncertainty 
needs to adequately acknowledge alternative paths that could lead to different 
modelling outcomes (Lahtinen et al. 2017), and adequately (and legitimately) 
address disagreements as they arise.   

What constitutes adequate treatment of uncertainty is highly problem-specific, 
but it is generally recognised that formal uncertainty evaluation provides indirect 
benefits such as increasing the depth of analysis (see Guillaume et al., 2017). 
Uncertainty quantification can provide better understanding of forecast 
accuracy (see NRC 2012), which provides for more informed evaluations of risk 
and reliability. Exploration of sources of uncertainty can be a source of 
innovation and scientific discovery (Brugnach et al. 2008, p.65). For example, 
model non-uniqueness can be examined by performing identifiability analysis 
on hypothetical data that might be collected in the future (Doherty and Hunt, 
2009), and help evaluate worth of future data collection (e.g. Fienen et al. 2010). 
Some model problems benefit from expressing confidence intervals around a 
prediction/forecast, and there are metrics for measuring quality of uncertainty 
bounds (Laio and Tamea, 2006; Gneiting et al., 2007; Xiong et al., 2009).  
Likewise, methods are available to test robustness of management actions 
(Herman et al., 2015), and a multitude of tools and approaches for working with 
uncertainty (Refsgaard et al. 2007; Matott et al. 2009, van der Sluijs et al. 
2005;Jakeman et al. 2006). In specific domains, there may be guidelines or 
stated protocols for evaluating the treatment of uncertainty, but typically each 
modelling project will have its own criteria for determining whether adequate 
consideration is given to whether alternative paths might have resulted in 
different outcomes.   

5.3 Salience  

In terms of modelling, salience refers to the potential usefulness of the model 
and/or modelling process to the end user. Can the model help address users’ 
questions of interest? How likely are decision-makers to integrate results into 
policy decisions? Salience is critical to all model and evaluation purposes. The 
actual use and impact of the model is further discussed under “Application” and 
“Impact”. The focus here is on the purpose of the modelling: is the model 
relevant, did end-users provide input into the design of the modelling, and is it 
timely? This corresponds to the three criteria: relevance, end-user input, and 
timeliness.  

5.3.1 Relevance  

Science methods and outputs need to link to local issues relevant to 
stakeholders. If a model is not relevant to addressing the end-user questions, 
whether that be related to decision making or scientific research, it cannot be 
deemed successful. As put by Lusiana et al. (2011): “perfect models that only 
answer irrelevant questions in users’ perspectives have limited utility.” Salience 
relates not only to the inclusion of important input and output variables, but also 
to their adequate representation, including appropriate spatial and temporal 
extents and resolutions that capture the variables. This criterion therefore 
relates closely to the modelling being fit-for-purpose, a central tenet of good 
modelling practice (Jakeman et al. 2006).   
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5.3.2 End-user input  

End-user engagement is often considered critical for ensuring relevance of 
model results. The USA National Research Council asserted that “inadequate 
progress has been made in synthesizing research results, assessing impacts 
of climate change on human systems, or providing knowledge to support 
decision making and risk analysis” (NRC 2007). Reasons included a lack of 
meaningful interaction between scientists and decision makers,  and difficulty 
in interpreting scientific information and results and translating them into 
recommendations for action. Dunn and Laing (2017) came to similar 
conclusions about the disconnection between research and policy more 
recently. Rather than assuming stakeholder needs are known, it is useful to 
have users at the discussion table to frame the problem initially, or establishing 
two-way, iterative engagement between producers and users to build trust and 
better understand the needs of policy-makers (Dilling and Lemos, 2011).   

Furthermore end-user engagement is important from a social learning 
perspective, which is the idea that people learn in groups; this has emerged as 
imperative for mediating the science-policy divide (Gober, 2018; Gynne et al. 
2017). Managing environmental systems in an era of uncertainty requires the 
capacity to learn from experience, synthesize different types of knowledge and 
experiences, and view policies as learning experiments (Folke et al. 2005).  

From a water resource perspective, this means greater interaction and mutual 
learning from scientists and water managers. The need for social learning 
implies new roles for scientists in the water management process, moving from 
providers of scientific tools and insights to partners in the use of tools and 
insights for policy and adaptation decision-making (Pahl-Wostl, 2009; Pahl-
Wostl et al. 2012).   

Direct end-user engagement may be beneficial, including co-authorship 
between scientists and decision makers. However, it is not always appropriate 
for modellers to engage directly with users. Instead, engagement might be 
structured through knowledge brokers or boundary organisations who can 
negotiate tensions and facilitate useful exchange between scientists and 
decision makers, linking science and decision-making, and building 
collaboration and cooperation (White et al. 2008; Crona and Parker, 2012).  
Boundary agents help ensure that scientists provide information that fits the 
given policy context. Boundary objects such as water resource models are an 
obvious way for the two groups to work together, but uneven power relations 
and the institutional differences between academic and public sector 
employment can stymie their role in mediating interests of the two groups 
(White et al. 2010).     

5.3.3 Timeliness  

Even where modelling is in principle relevant and end-users are appropriately 
engaged, the timeliness of scientific activities needs to be right (Cash et al. 
2003). If modelling exercises are run or model results are published at an 
inconvenient or inopportune time (practically or politically), then they may be 
less likely to be salient or have an impact. In a policy context, timing needs to 
fit in the policy decision window when the need for change is widely 
acknowledged and participants feel they can make a difference (Huitema and 
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Meijerink 2010). This is not to say that modelling should not proceed outside 
those times. Indeed, often modelling exercises need to have occurred prior to 
the decision window in order for model results to be available. Rather, the 
purpose and design of the project and its evaluation should be adjusted to 
reflect these timing constraints. For example, a modelling exercise that loses 
its salience due to political events can still be effective if it instead aims to ready 
materials for the next decision window – and the evaluation needs to reflect this 
new aim.   

5.4 Legitimacy  

Legitimacy is the extent to which decision makers or stakeholders feel that the 
science or model was developed and presented in an open and unbiased way, 
respectful of divergent points of view in the community (Cash et al. 2003). This 
criteria includes the acceptance of the authority of the modelling process to 
influence decision making (based on Lockwood et al. 2010). Legitimacy is 
closely related to notions of fairness and justice (Syme et al. 1999). It is critical 
for all models, particularly when there is a human dimension involved, which is 
the case for any model focussed on decision support. Without legitimacy of the 
model, subsequent scientific advice and decisions may also not be perceived 
as legitimate. Legitimacy may often be observed retrospectively, through 
increasing commitment of decision makers, from exploratory conversations and 
brokering the pros and cons of potential decisions to later events that mobilize 
action on agreed upon policy. We focus here on early indicators: inclusion, lack 
of bias and trust.  

5.4.1 Inclusion  

Stakeholders need to feel that the modelling process has included them and/or 
their perspectives. The presentation of scientific results and model outputs is 
inherently a political process, and therefore one that must reflect a community’s 
divergent viewpoints. Increased acceptance of resultant management 
decisions is part of the motivation of engaging stakeholders throughout the 
process from the early stage of defining the problem and identifying priorities 
and constraints through to interpreting model results, and involving them in the 
process as partners (Jakeman et al. 2006; Röckmann et al., 2012). Scenarios 
are often considered a powerful method of engagement, particularly focussed 
on alternative visions of the future and outcomes of competing policy decisions 
(Larsen and Gunnarsson-Östling 2009).  

Stakeholders may also judge legitimacy based on the inclusion of others – does 
the modelling draw on a wide range of opinion and input from stakeholders, 
including community representatives, minorities, and Indigenous groups. Water 
decisions, for example, are inherently valued-based, and they reflect the 
meaning and purpose of water to different groups in society. Underlying values 
about water stem from beliefs about human rights to water, economic efficiency, 
social equity, environmental protection, provision for future generations, and the 
role of government, as well as aesthetic and spiritual concerns. Today’s water 
policy decisions reflect deep-seated beliefs about the rights and responsibilities 
of individuals and groups in society and the role of science in decision-making 
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(Gober 2018). Incorporating the range of beliefs about water from a community 
reflects the legitimacy of the decision-making process in that community.  

5.4.2 Lack of bias  

Stakeholders should be included in an unbiased way. Bias in the model can be 
perceived if it reflects goals or perspectives held only by one group of 
stakeholders or preconceptions held by the modeller, or disregards those of 
another stakeholder group (White et al. 2010). This does not necessarily mean, 
however, that every perspective needs to be given equal voice. Rather, 
stakeholders need to be included in a fair way, which may depend on the size 
of each stakeholder group affected, their stake in the issue, or formal rules 
about standing or admissibility in a legal setting. Legitimacy rests on the 
capacity to muster a representative cohort of decision-makers and the public – 
on their terms.  

5.4.3 Trust  

Legitimacy is fundamentally about accepting others’ contributions to decision 
making, meaning that trust plays an important role. Trust is about the 
willingness of those in a dependent relationship to rely on each other (Sharp 
and Curtis 2014). This applies not just between researchers and other 
stakeholders, but also within a research team. Individuals vary in their 
predisposition to trust others, but their willingness to rely on others is also based 
on their assessments of the trustworthiness of others. Trustworthiness is based 
on assessments of ability, integrity (do they hold/exhibit desirable values), and 
benevolence (to what extent do they consider my interests) (Mayer et al. 1995). 
Trust may take time to form, and can be influenced by previous experiences 
with not only those individuals involved but also their institutions or related 
groups (e.g. water experts or modellers in general) (Olsson and Andersson 
2006). Considerations around trust may be related to trust in a model or those 
doing the modelling – assessment of legitimacy may wish to consider both.  

5.5 Model accessibility  

5.5.1 Input and output accessibility, and model transparency and 
traceability  

The utility of the model strongly depends on its accessibility in terms of the 
usability of the model and its outputs and how well they are understood. We 
consider three criteria relevant to model accessibility in the immediate to short 
term and another three criteria, described later, relevant in the medium to long 
term. The immediate to short term criteria are: input accessibility, which relates 
to the ease of use of the model by the intended end user to perform the task for 
which it was designed, including the effort required to preprocess data as model 
input; output accessibility which relates to whether the model results can be 
understood, again to the intended audience; and model transparency which 
refers to whether the inner workings of the model are available to users. Model 
transparency includes the accessibility of the theory and assumptions 
underpinning the model to enable a deeper interpretation of the model results. 
Comprehensive documentation of the rationale of the model, its development 
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process, the intended area of application and its limitations can reduce 
uncertainty about how the model can be applied (Crout et al. 2008).  

Key to these three short-term accessibility criteria is ensuring the model and its 
outputs are suited to the target audience, whether they be decision makers, 
scientists or community members. These criteria are relevant to all models, 
regardless of the project context. The model should be designed to bridge the 
gap between the technological aspects of the model and the cognitive aspects 
of end users, shaped by their background and technical levels. This bridging 
can be achieved, for example, through the design of a user-friendly software 
interface (GUI) and provision of a non-technical (e.g. written in plain English) 
user manual for operating the model and interpreting results (McIntosh et al. 
2011). If the system is non-intuitive to the end-user and difficult to navigate, 
long-term adoption (especially with staff turnover) may not be achieved even if 
training is provided in the beginning. Others have also found that the complexity 
of models may contribute to model rejection (Kolkman et al. 2016).  

On the other hand, it has also been argued that a user interface that is too 
simplistic can reduce the transparency of the analyses occurring within 
environmental models, undermining the user’s satisfaction that the complexity 
of the problem has been adequately captured (Matthews et al., 2011; Stirling, 
2010). This suggests the importance of matching the model’s degree of 
complexity and transparency with the user’s capacity and expectations (Gilbert 
et al., 2018). For some users to trust the model, it may be important that it not 
be a black box and users are able to access and trace the logic of its complex 
inner workings; this may be through documentation.   

Ideally, model accessibility should be tested by end users continuously 
throughout the development process and before the model is delivered (i.e. 
formative evaluation; user acceptance testing) to allow modifications to the 
design of the model to better suit end user requirements (Otaduy and Diaz, 
2017). These accessibility criteria may not be perceived as important in many 
evaluation contexts in comparison to more outcome based (e.g. system level) 
criteria. However, model accessibility is critical to its use and may be the 
underlying factor determining whether or not a model is actually used and has 
subsequent impact.   

5.5.2 Reusability, flexibility and ease of maintenance  

The three shorter term criteria discussed above (Section 5.5.1) then interplay in 
the medium to long term through influencing model reusability, flexibility, and 
ease of maintenance. The importance of these additional criteria varies 
depending on the purpose of the model. Reusability refers to both i) running 
and re-running the model and ii) the action of repurposing the model for other 
applications and contexts. Flexibility on the other hand refers to the ease with 
which modifications can be made to include additional processes or exclude 
less relevant processes to better fit a model for its purpose. Ease of 
maintenance is defined as an attribute of the model that enables defects or 
issues to be identified and resolved with minimal effort on the part of the model 
maintainer. This can be achieved through the use of software testing principals, 
including the creation and maintenance of a test suite, which aids in alerting the 
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maintainer when a change to the model causes adverse effects or has 
unintended consequences  (Crout et al. 2008; Homès 2011).  

Model reusability hinges on the technical implementation details of the model 
(how it was developed) and how well its use is documented (Holzworth et al. 
2010). A model cannot be considered reusable if it cannot be applied to a similar 
but new context without significant modification to the underlying code. 
Similarly, insufficient user documentation hinders model reusability as the 
model cannot be reapplied to a new context without the user having prior 
knowledge of how to do so – an example of model transparency affecting 
reusability.  

Flexibility plays an important role in the medium term as poor model flexibility 
negatively impacts development velocity – the speed at which improvements 
and modifications can be made. An inflexible model structure hinders the ability 
to incorporate new information, knowledge, and data, such as those that may 
come to light through an iterative development process (Krause and Flügel 
2005; Formetta et al. 2014). In the longer term, lack of flexibility compromises 
model reusability as relevant processes may not be adequately captured for the 
model’s intended purpose.  

It is not advocated here that all models be made reusable or flexible, and 
expending considerable energy on ensuring ease of maintenance may not be 
appropriate. These all depend on the given modelling purpose. However, the 
benefits of models that may be repurposed and adjusted for different contexts 
is increasingly acknowledged by the environmental modelling community (de 
Kok et al., 2015). Approaching model development in this manner increases a 
model’s flexibility of use. Repurposing a research tool for use in participatory or 
decision support contexts is better achieved if code and processes are 
documented and changes to the code base do not adversely and unnecessarily 
propagate throughout the model structure. As a beneficial side-effect, such 
ancillary support processes increase a model’s ease of maintainability. 
However, adopting development approaches to support reusability and  

flexibility is often a secondary concern (de Kok et al., 2015; Hutton et al., 2016).   

These accessibility criteria may not be a factor in cases where use of the model 
beyond its initial purpose is not intended. This may be in cases where a single 
context-specific model is agreed to by end users prior to the delivery of the 
model. It is notoriously difficult and costly, however, to introduce reusability, 
flexibility, and ease of maintenance after the fact. Such difficulties are well 
documented in both domains of software and model development, giving rise 
to iterative development practices (as evidenced by Jakeman et al., 2006; 
Larman and Basili, 2003). Where in line with the purpose of model 
development, the criteria of model reusability, flexibility, and ease of 
maintenance should ideally be considered from the beginning of the 
development process.  

5.6 Application  

This group of criteria concerns the application of the model and the direct impact 
of its use. Our first two criteria in this group correspond to the components of 
utilisation success proposed by Goeller (1988): instrumental use which is the 
use of the model by the intended end users for the intended purpose; and 
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conceptual use which we refer to as system understanding, i.e., improved 
understanding of the system or problem as a result of model use or involvement 
in the modelling process. The third criterion, work productivity, considers 
whether the model results in improved work effectiveness or efficiency for the 
end user. If work productivity is not improved, there may be no advantage nor 
incentive to adopt the model.   

The relevance of the other three criteria in this group depends on the model 
purpose: stakeholder communication considers whether the modelling process 
helped facilitate communication between stakeholders, including an exchange 
of viewpoints and understanding of other participants; stakeholder consensus 
considers whether the modelling process helped stakeholders (or at least the 
participants) arrive at a shared view of the problem or actions required; and 
decision making considers whether the modelling process or results influenced 
actions taken to address the problem, including increased commitment to 
address the problem.  

These application criteria correspond to individual and group level criteria. The 
first three criteria – instrumental use, system understanding and work 
productivity – are expected to be relevant to most contexts. How these criteria 
are interpreted and assessed is highly dependent on the model purpose. The 
stakeholder communication and consensus, and decision criteria, are relevant 
to models serving participatory and decision support purposes. It may be 
possible to assess all five application criteria shortly after the delivery of the 
model, however some of the criteria may be subject to change over time, so an 
evaluation of the criteria in the medium to long term may also be appropriate. 
For example, the end user may take several months or longer before they are 
comfortable with using the model to its full capacity, or the participatory exercise 
may have led to initial contact between stakeholders with a notable 
improvement in communication between the parties occurring long after project 
completion. Conversely, apparent success in the instrumental use of the model 
or work productivity may change over time, for example, if the model becomes 
outdated and is too difficult for end users to update. Therefore other criteria, 
such as accessibility, may be tied to these application criteria.  

These application criteria can also be assessed in terms of the available project 
resources. For example, the evaluation may consider whether these outcomes 
could have been achieved more easily or cheaply (i.e. efficiently) using another 
approach. Such consideration may be particularly relevant if the evaluation 
purpose is to justify expenditure.  

5.7 Satisfaction  

The success of a model can also be gauged by the appraisal of the end product 
and modelling process by the different groups of people associated with the 
project or the modelled problem, including the end-user or client who funded 
the project, the project team, stakeholders or independent reviewers. In many 
ways, project satisfaction is an aggregate measure of all criteria perceived as 
important by the individual or group. As with any summative judgement, this 
assessment will be influenced by the respondent’s personal attributes (e.g. 
values, beliefs, personal norms, knowledge and skills) as well as their 
experience with the model, including their level of engagement with the process, 
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and their understanding and expectations of the model and/or modelling 
process (Olsson and Andersson 2006; Hunka et al. 2013).   

The purpose of the model as well as the purpose of the evaluation will determine 
the value of the respective satisfaction criteria, i.e. whose satisfaction is 
important? For instance, for a research tool, independent satisfaction (e.g. 
expert peer review) may be most important. For a decision support tool for 
operational management, end-user satisfaction is fundamental, but a decision 
support tool for management of more controversial issues, such as water 
allocation, may require satisfaction by stakeholders such as the affected 
communities. On the other hand, stakeholders engaged with the participatory 
modelling process, may provide valuable feedback on the social learning 
achievements of the project. The satisfaction of the project team may be useful 
for evaluating the value of methodological practices, but may be considered too 
biased for assessing the overall merits of the work.  

Satisfaction can be assessed at or after completion of the project. If this 
appraisal is undertaken shortly after the project is delivered, the detailed 
aspects of the project are more likely to be recalled. However, many outcomes, 
particularly system-level impacts, may yet be realised. On the other hand, 
satisfaction appraisals conducted many years after project completion may be 
able to capture more types of outcomes, as well as information on long-term 
model usage or changes. However, as time goes on it may be more difficult to 
engage with the relevant people, for example staff members originally engaged 
with the project may have left the organisation.     

5.8 Impact  

This final group of criteria concerns the more system-level outcomes of the 
model. Community understanding and attitudes refers to whether the model 
helped improve awareness, knowledge or confidence in science, or influenced 
the attitudes or behaviours of the wider organisation or community. System 
outcomes considers whether the model has led to changes in the problem 
situation. System outcomes tend to be indirect, such is the case where the 
modelling or model results influenced a decision that was implemented and had 
on-the-ground outcomes. Finally, science impact refers to whether the 
modelling generated new insights in the research field; this may include 
improved understandings in the methodology (e.g. modelling approach), the 
field of application, or across disciplines.  

These criteria tend to be in the outer edge of the circles of influence of the 
project (Figure 2), and therefore difficult to affect as well as to evaluate. The 
impact of the model is not only contingent on the application of the model, but 
also various external factors often beyond the control of the project team (e.g. 
politics, natural processes, other competing socioeconomic objectives), which 
give rise to the challenges of attributing impact and limits to affecting change. 
Moreover, models are typically just one of many lines of evidence used in 
decision making, and in scientific and participatory contexts. Even very good 
models may fail to make an impact due to other factors. For instance, a model 
that leads to an agreement to major reductions in water extractions, may result 
in no positive outcomes in the environment due to drought conditions. Similarly 
there are challenges associated with translating system understanding to 
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changes in behaviour, particularly at a community level (Kollmuss and 
Agyeman 2002).  

The relevance of the criteria are dependent on the purpose of the model. These 
impact criteria are likely to be best assessed in the longer term, as it is unlikely 
that outcomes will be achieved immediately. In addressing the difficulties in 
attributing impact, it may be most appropriate to map out the impact pathway 
(Douthwaite et al. 2003; see Section 4.2.1) and identify and assess those 
intermediate outcomes that are somewhat within the project team’s influence.  

  

6. Overview of evaluation methods  

There is a wide range of methods that can be used to collect data for evaluation 
(Harvey, 1998; Boaz et al, 2008), which reflects the fact that there is no single 
best method. Several factors are to be considered when selecting data 
collection methods, such as: What is the objective of the evaluation? What are 
the resources (time, cost, skills) available for the evaluation? What are the 
constraints that may determine the evaluation (e.g. cultural and political 
conditions)? It is often the case that the researcher will need to combine more 
than one data collection method in a mixed method approach to complement 
and compare results from different methods. Table 4 gives an overview of the 
evaluation methods, along with their resource requirements, strengths and 
limitations.  

  

7. Conclusion  

Our proposed framework embraces a more complete perspective on 
evaluation, extending beyond an assessment of the model product to consider 
the entire modelling process. It emphasises the flexibility and interactivity of the 
social process that takes place when models are developed, applied, and 
shared with stakeholders. The whole process of model development, 
application, and communication ultimately affects whether knowledge and 
models are used for decision-making and/or achieve useful impact in other 
nontechnical ways.   

To serve the new process-oriented paradigm of modelling and evaluation, our 
framework characterises effectiveness as a multi-dimensional and 
multiperspective concept covered by 32 criteria. These evaluation criteria range 
from project-level to system-level outcomes, and from quantitative measures of 
the technical validity of the model to more complex indicators, such as 
consideration of if and how the modelling process has affected attitudes and 
behaviours of end-users or beyond. Each model and project has a unique 
context and purpose, and as such there cannot be a standard benchmark 
against which to judge their effectiveness. Rather, for each case, the evaluation 
methods and criteria are determined by the project and evaluation contexts, 
including the aims, priorities and constraints of the project and the evaluation 
purpose and the scale of outcomes of interest. There may be value in building 
a database of modelling evaluations (e.g. checklist or narratives under each 
criteria) to facilitate learning across projects especially those with similar 
contexts.    
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The evaluation process is described as an iterative process nested within an 
adaptive learning and management cycle, to promote constructive learning that 
can feedback into the ongoing project and future endeavours. To improve 
outcomes it is critical that evaluation be factored into project plans and budgets. 
Scientific discovery, decision making and social learning have become 
increasingly intertwined in modelling processes within the field of managing 
natural resources. Therefore evaluation should be part of an ongoing exchange 
between producers and users of knowledge, including modellers and decision 
makers, to improve model-based outcomes and promote pathways towards 
positive futures.   

  

  



 

 

  
Table 4: Overview of methods used for evaluation  

Methods  What it might 
include?  

Skills  Time and cost  Strengths  Issues to be 
considered  

Examples  
from literature  

Openended 
interviews  

Face to face or 
over the phone 
questions with 
key stakeholders 
or model users  

Interviewing, 
narrative and 
discourse 
analysis  

 Time 

demanding for 
both participants  
and the 
evaluator  

 Open questions and 

probes allow for 
indepth data  

 Open responses 

are relatively 
difficult to analyse  

Blackstock et 
al. 2007, 
Jones et al.  
(2009);  
Hassenforder 
et al (2016a);  
Perez et al  
(2014)  

Surveys   Systematic 
questionnaires 
administrated 
over mail, phone, 
online, or in 
person  

Questionnaire 
design,  
statistical 
analysis  

 Relatively not 

time demanding 
for participants 
and the 
evaluator  

• access to large 
sample size  

• anonymous 
responses  

• the standardized 
responses are 
relatively easy to 
analyse  

• Closed questions do 
not capture rich 
data  

• Sample 
representation  

• Low response rate  

Jahangirian et 
al (2018), 
Merritt et al  
(2017),  
Crochemore  
(2011),  
Bellocchi et al  
(2015)  

Focus 
groups  

Planned 
discussions or 
workshops with a 
small group  
moderated by a  
trained facilitator  

Facilitation 
skills  

 Relatively less 

time demanding 
for both 
participants and 
the evaluator  

• Collecting data from 
a group of people at 
the same time.  

• Provide insights 
about group 
interactions  

• Group effects and 
dynamics  

• Group composition 
(e.g. power levels, 
background)  

Matthews et 
al (2011); 
Tavella and  
Franco (2015)  

Pre and post 
testing  

Collecting 
qualitative or 
quantitative data  
(through 
surveys, 
interviews..etc)  

Experimental 
design,  
statistical 
analysis  

 Time 

demanding for 
both participants  
and the 
evaluator  

 Provides 

comparable 
datasets to test and 
measure the effects 
of interest, and the 
variables that  

 Sensitivity to many 

factors that  
influence the 
measurements, 
such as the time 
between data  

Elsawah et al  
(2017b),  
Stave et al  
(2015);  
Smajgl and  
Ward (2015)  

 
  

 



 

 

 at multiple points 
of time   

  influence the 
generated effects  

collection, sample 
size  

 Logistics of 

engaging  
participants multiple  
times  

 

Observation  Participant or 
non-participant, 
recorded through 
notes or videos  

Ethnographic  
inquiry skills, 
such as 
discourse 
analysis   

• Does not 
demand time  
from participants  

• Time consuming 
for the evaluator  

• In situ learning about 
the system/process 
of  
interest  

• Can reveal 
unanticipated 
insights  

• Flexible data 
collection method  

 Observed 

behaviour can be  
difficult to interpret 
and link to the 
evaluation 
objectives  

Franco and  
Greiffenhagen  
(2018); Stave  
(2010)  

Document 
analysis  

Analysis of 
policy  
documents, 
reports, statistical 
data, and 
projects memos  

Varies 
depending on 
the data type, 
but basic 
desktop 
review and  
analysis skills 
are needed  

• Does not 
demand time  
from participants  

• Time consuming 
for the evaluator  

 Data already exists   Data can be limited 

or incomplete  
  

Seidl (2015); 
Hassenforder 
et al (2016a)  

Informal 
evaluation 
methods  

Informal 
conversations, 
meetings  

No particular 
skills  

 Relatively less 

time demanding 
from  
participants and 
the evaluator  

 Useful for the 

internal use of the 
research team  

 Difficult to present 

formally for an 
external audience  

Jones et al. 
(2009)  

34  
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