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RESEARCH Open Access

An analysis of the foot in turnout using a
dance specific 3D multi-segment foot
model
Sarah L. Carter1,2,3* , Alan R. Bryant1 and Luke S. Hopper2

Abstract

Introduction: Recent three-dimensional (3D) kinematic research has revealed foot abduction is the strongest
predictor of standing functional and forced turnout postures. However, it is still unknown how the internal foot
joints enable a large degree of foot abduction in turnout. The primary purpose of this study was to use a dance
specific multi-segment foot model to determine the lower leg and foot contributions to turnout that female
university-level ballets use to accentuate their turnout.

Methods: Eighteen female dance students (mean age, 18.8 ± 1.6 years) volunteered for this study. Retro-reflective
markers were attached to the dancers’ dominant foot. Each dancer performed three repetitions of functional
turnout, forced turnout and ten consecutive sautés in first position. Repeated measures ANOVA with Bonferroni
adjustments for the multiple comparisons were used to determine the kinematic adjustments, hindfoot eversion,
midfoot and forefoot abduction, navicular drop (i.e. lowering of the medial longitudinal arch) and first
metatarsophalangeal joint abduction between natural double leg up-right posture and the first position conditions.

Results: Hindfoot eversion (4.6°, p < 0.001) and midfoot abduction (2.8°, p < 0.001) significantly increased in
functional turnout compared to the natural double leg up-right posture. Thirteen dancers demonstrated increased
first metatarsophalangeal joint (MTPJ) abduction in forced turnout, however no statistically significant increase was
found. Navicular drop during sautés in first position significantly increased by 11 mm (p < 0.001) compared to the
natural double leg up-right posture.

Conclusion: Our findings suggest dancers do pronate, via hindfoot eversion and midfoot abduction in both
functional and forced turnout, however, no immediate association was found between forced turnout and first
MTPJ abduction. Foot pronation does play a role in achieving turnout. Further prospective research on in situ
measures of the lower limb in turnout and injury surveillance is required to improve our understanding of the
normal and abnormal dance biomechanics.

Keywords: Ballet, Three-dimensional, Hallux valgus, Kinematics, Sautés

Background
A dancer’s foot articulates through extreme ranges of mo-
tion to achieve a wide variety of aesthetically pleasing
dance movements and postures. Our understanding of the
internal movements of the foot joints in dance is largely
based on theoretical knowledge, in particular, the

compensation mechanisms the foot undergoes to achieve
a greater turnout due to limited hip external rotation [1,
2]. Turnout involves the maximal external rotation of the
lower limb and is fundamental to classical ballet. 3D mo-
tion analysis is a growing field in dance research, which is
enhancing our understanding of dynamic alignment dur-
ing the execution of specific dance movements. Previous
3D kinematic research has revealed foot abduction is the
strongest predictor of a dancers’ turnout in first position
[3]. However, it is still unknown how the internal foot
joints enable a large degree of foot abduction in turnout.
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Dancers will often assume a comfortable double leg
up-right posture in turnout in class and this is commonly
referred to as their ‘functional turnout angle’. First pos-
ition in turnout is with both hips maximally externally ro-
tated, the knees are extended with the heels contacting,
the knee should be in line with the second metatarsal, and
the longitudinal axes of the feet pointing away from each
other [4]. Dancers with low hip external rotation are likely
to compensate through foot abduction, a component of
pronation, rather than forcing turnout via knee external
rotation [3]. Dancers will often force turnout by planting
their feet in an overturned position in demi-plié (knee
bend) (Fig. 1A) followed by knee extension (Fig. 1B-C).
The foot maintains a passive overturned position via the
friction between the plantar surface of foot and floor. The
rotational force created from the floor is thought to be at-
tenuated via the tibia internally rotating relative to the foot
[5] and subtalar joint pronation (i.e. eversion of the calca-
neus, plantar flexion and adduction of the talus) [5, 6],
resulting in the midtarsal joint unlocking, allowing fore-
foot abduction [2, 6, 7], and lowering of the medial longi-
tudinal arch [1, 2, 8] (Fig. 2).
A dancer’s foot posture in turnout forms an important

part in dance screening programs [9–11]. Research has
demonstrated that dancers attain a more pronated posture
[6, 12] (i.e. a greater Foot Posture Index-6 score [13]) and
a lower medial longitudinal arch profile [12] (i.e. navicular
drop [14]) in functional turnout compared to their natural

double leg up-right posture. Conversely, dance research
using 3D kinematic analysis, with a retro-reflective marker
attached to the navicular tuberosity [15], reported no sig-
nificant change in the medial longitudinal arch height sta-
bility for both a dancer’s functional turnout and forced
turnout position [3]. These findings disagree with the
common anecdote that the medial longitudinal arch
lowers in forced turnout [1, 2, 8]. However, Carter et al.
2018 [3] did not consider the dancers’ foot type, it is

Fig. 1 Sagittal view of a dancer purposely demonstrating forced turnout in first position. Dancers usually position their feet in an exaggerated
turnout angle in demi-plie (a), a dancer maintains this angle while extending through the knees (b), into a forced turnout double leg up-right
posture in first position (c). The dancer is also demonstrating poor knee-foot alignment (c)

Fig. 2 Hyper-pronation of the foot in forced turnout. Dancer
demonstrating hindfoot eversion, medial bulging of the talar-
navicular joint, forefoot abduction, toes gripping the floor and lateral
deviation of the hallux
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unknown whether any of the dancers were highly pro-
nated (10+ Foot Posture Index-6 score) or highly supi-
nated (− 5 to − 12 Foot Posture Index-6 score) [13]. The
following point that can be identified from the previous
published work on turnout, is that dancer’s use foot pro-
nation as a compensation strategy to achieve a greater
turnout and, yet the internal mechanisms used for prona-
tion by dancers are still ill-defined.
The hindfoot provides the mechanical connection be-

tween the foot and the lower limb in which rotational
movements of the lower leg are translated into frontal
plane movements of the foot [1]. In walking, foot abduc-
tion is achieved via the closed kinetic chain axial move-
ment of the tibia which produces eversion of the hindfoot
and abduction of the forefoot, a transverse plane motion
[1, 16]. Dysfunction in the coupling of this intersegmental
relationship, has already been investigated clinically [12]
and using 3D motion analysis [3]. Dancers with a low pro-
nated (abducted) position in functional turnout, forced
turnout and during sautés (i.e. a small jump task which
begins and finishes in a plié) demonstrated high passive
external tibiofemoral rotation [3]. This finding suggests
that limited hindfoot eversion is compensated by in-
creased passive external tibiofemoral rotation in turnout.
This is consistent with current biomechanical theory
where a hypo mobile joint is compensated or transferred
to the next mobile joint along the closed kinetic chain [1].
As earlier discussed, dancers are more likely to compen-
sate for limited hip external rotation via foot pronation,
followed next by knee external rotation in spite of the
knowledge that poor turnout technique is associated with
a high risk of injury [17–20].
A hyper pronated foot in turnout is associated with in-

creased mechanical stress and loading on the following
structures; plantar fascia [1, 2, 21], deltoid ligament [1, 8],
tibialis posterior muscle [1, 21, 22] and the gastro-soleus
complex [2, 8, 21, 23–25] and the first metatarsophalan-
geal joint (MTPJ). Quantitative measurement of in situ 3D
segmental movements of the foot using a dance-specific
modified Rizzoli Foot Model [26–28] during turnout may
assist in understanding the risk factors for these foot re-
lated injuries and stressors in dancers.
The condition of hallux valgus (bunions) has anec-

dotally been associated with ballet participation, even
though there is conflicting evidence whether dancing in-
creases the risk of developing hallux valgus deformity
[29–32]. Hallux valgus is a deformity where the hallux
or great toe is laterally deviated more than 15° from the
bisection of the first metatarsal [33]. A ballet-related bio-
mechanical aetiology for hallux valgus has been pro-
posed in which forcing turnout gradually leads to
stretching of the interosseous ligaments between the first
and second metatarsal heads, allowing hallux abduction
and a greater valgus force on the first MTPJ [1, 30].

More recently, research is suggesting an underlying gen-
etic predisposition in conjunction with excessive mech-
anical stress on the growth plates of young dancers may
explain an increased incidence of hallux valgus observed
in the dancing population [29]. Application of a
dance-specific modified Rizzoli foot model will enable
dynamic assessment of the first MTPJ transverse plane
position, which can assist in investigating the biomech-
anical aetiology around hallux valgus.
In vivo evaluation of dancers’ leg and foot posture can

enhance our understanding of the mechanical adjustments
dancers utilise to further increase their turnout and the
associated tissues at risk of mechanical stress. Therefore,
the primary purpose of this study was to use a
dance-specific 3D multi-segment foot model to determine
the lower leg and foot contributions to turnout that fe-
male university-level ballets use to accentuate their turn-
out. We hypothesised that 1. A dancer’s foot will undergo
hindfoot eversion, lowering of the medial longitudinal
arch, midfoot and forefoot abduction in forced turnout
compared to functional turnout. 2. A dancer’s hallux will
be significantly more abducted in forced turnout com-
pared to their natural double leg up-right posture. 3. The
hindfoot eversion is the main contributor of foot abduc-
tion during first position conditions. 4. Passive external
tibiofemoral rotation will negatively correlate to hindfoot
eversion during first position conditions.

Method
Study design
This study used a cross-sectional study design.

Selection and description of participants
Eighteen dance students (fourteen classical ballet and
four modern dance) (mean ± SD: age, 18.8 ± 1.6 years,
height, 1.66 ± 0.7 m, body mass, 58.3 ± 5.3 kg, Foot Pos-
ture Index-6, 1.3 ± 2.8) from the Western Australian
Academy of Performing Arts volunteered for this study.
Dancers were excluded if they were currently injured
and/or they had highly pronated foot (10+ Foot Posture
Index-6 score) or highly supinated foot (− 5 to − 12 Foot
Posture Index-6 score) [13]. Descriptive statistics for the
participants dance history are summarised in Table 1.
All 18 participants signed an informed consent form.

Ethic approval was obtained by the Edith Cowan Univer-
sity Research Ethics Committee (12,534 HOPPER).

Data collection
Limb dominance was determined using the Waterloo Foot-
edness Questionnaire [34]. Retro-reflective markers were
attached to the dancers’ dominant lower limb and foot in
accordance with the positions described in the Besier, Stur-
nieks, Alderson, & Lloyd (2003) [35] lower limb model and
a dance-specific modified Rizzoli Foot Model [26–28]
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(Fig. 3). The inter- and intra-assessor repeatability and
modifications of the multi-segment model was previously
established on six female pre-professional dancers [28].
Twelve, Vicon T40S cameras and one Bonita video camera
(Oxford Metrics, UK) were calibrated to track the individ-
ual retro-reflective markers and triad marker clusters on
the pelvis, thigh, lower leg, foot, hindfoot, midfoot, forefoot
and hallux at 250Hz with an error of < 1mm. A natural
double leg up-right posture trial captured the anatomical
calibration marker locations relative to technical reference
frames; lateral and medial malleolus relative to the tibia
marker triad, MT1 relative to a MTS1, MTS2 and MTB1
and CALe relative to the hindfoot markers (CAL, SUS, and
HDL) [28]. A standing lunge trial recorded the femoral
condyle marker positions held to thigh marker triad, with
the mid-point of the condyle markers used to create the
knee joint centre. The knee symmetrical axis of rotation
(SARA) [36] was determined by the dancers performing 4
consecutive squats, followed by moving the hip joint
through forward flexion, abduction, backward extension
and circumduction in an externally rotated position to

calculate the hip symmetrical centre of rotation estimation
(SCoRE) [37]. These were performed in order to calculate
knee external rotation (i.e. external tibiofemoral rotation).
All participants performed a standardised 10min ballet spe-
cific warm-up routine before data collection commenced.
Each dancer then performed three first position

conditions:

1. Functional turnout: Participants were instructed
to stand still in their preferred turnout angle in a
slightly open first position (heels not in contact), so
not to occlude the hindfoot markers. This was
repeated three times.

2. Forced turnout: Participants were instructed to
stand still in a forced turnout angle in a slightly
open first position. Dancers had to be able to
maintain balance while holding the forced turnout
angle, if they were unable to maintain balance, the
dancer was informed to slightly reduce the angle
until balance was maintained during the trial. This
was repeated three times.

3. Sautés (double leg small jump): Participants were
instructed to perform ten consecutive sautés in a
slightly open first position (Fig. 4) at a controlled
tempo of 95 beats per minute.

Passive and active external tibiofemoral rotation mea-
surements were recorded in a seated position with the hip
in neutral relative to the frontal and transverse plane. Pas-
sive external rotation was performed with the examiner
manually rotating the lower leg, while stabilising the thigh.
When the point of resistance was felt, the foot was placed
on the ground. Femoral epicondyle markers were reat-
tached to redefine the knee joint centre and a single trial

Table 1 Dance history characteristics of university-level ballet
dancers (N = 18)

Characteristic Mean ± SD Range

Age started dancing (yrs.) 6.2 ± 3.4 2–13

Years of ballet training (yrs.) 12.6 ± 3.6 5–17

Ballet training (hr/wk.) 19.5 ± 8.8 1.5–35

Dancing barefoot (hr/wk.) 12.1 ± 8.1 4–30

Rehearsals (hr/wk.) 8.2 ± 4.7 0–18

Technique (hr/wk.) 12.7 ± 5.8 4–27.5

Stretching (hr/wk.) 3.6 ± 2.1 0–8

Fig. 3 Lateral view of the marker placement (a) medial view of the marker placement (b) and anterior view of the marker placement (c)

Carter et al. Journal of Foot and Ankle Research           (2019) 12:10 Page 4 of 11



captured this position. Active external rotation was per-
formed with the foot on a freely rotating disc to minimise
friction. Dancers were instructed to actively externally ro-
tate from below the knee while maintaining thigh position.
A single trial was recorded with the dancer holding this
externally rotated knee.

Data processing
Raw 3D marker coordinates from the sauté movements
were filtered using a low-pass Butterworth filter at a
cut-off frequency of 26Hz determined through a residual
analysis [38]. Vicon Nexus 2.3 and Bodybuilder software
(Oxford Metrics, UK.) were used in the reconstruction of
the virtual markers in each trial (femoral epicondyles, mal-
leoli (LMAL, MMAL), hindfoot offset (CALe), first meta-
tarsal head (MT1)), using the Calibrated Anatomical
System Technique method [39]. Joint coordinate systems
were constructed for the hip, knee and ankle joints [35].
Joint rotations according to the International Society of
Biomechanics Conventions [40, 41] were applied to the
multi-segment model; movement of the hindfoot with re-
spect to the tibia (TIB-HIND) i.e. the ankle/subtalar joint
complex, the midfoot with respect to the hindfoot
(HIND-MIDF) i.e. the midtarsal joint, the forefoot with re-
spect to the midfoot (MID-FORE) and the entire foot in
respect to the tibia (TIB-FOOT). The transverse planar
movement of the hallux marker (HAL) was measured with
respect to the transverse (XMET) vector of the first meta-
tarsal (MET) segment (Fig. 5). The first MTPJ abduction
angular measurements were classified as normal (< 15°),
‘mild’ (15–20°), ‘moderate’ (21–39°), and ‘severe’ (≥ 40°) in
keeping with Piqué-Vidal & Vila [33]. The intra- and
inter-assessor repeatability of the first MTPJ abduction
angle was determined using legacy data from Carter et al.
[28] (see Additional file 1). The intra- and inter-assessor

values for first MTPJ transverse plane angles demon-
strated excellent repeatability [42] with intra-class correl-
ation coefficient values ranging between 0.886 and 0.888.
The lowering of the medial longitudinal arch was de-

termined using the height of the marker on the navicular
tuberosity, i.e. navicular drop [15]. Navicular height in
relation to the laboratory coordinate system (in milli-
metres) was analysed with the variation in height from
the natural double leg up-right posture indicating na-
vicular drop. Navicular drop was classified into three
types of arch height stability according to Gontijo et al.
[43]: 1. ‘excellent stabilisation’ navicular drop < 7mm); 2.
‘stable’ (navicular drop from 7 to 13 mm); 3. ‘unstable’
(navicular drop > 13mm).
Data extraction and averaging of the 3D inter-segmental

joint angles; tibia-foot transverse plane, tibia-hindfoot
frontal plane, hindfoot-midfoot transverse plane,
midfoot-forefoot transverse plane, first MTPJ transverse
plane, knee transverse plane, and the height of the marker
on the navicular tuberosity for each dancer was performed
using MATLAB (custom software written using
MATLAB, MathWorks Inc., USA). Three consecutive
sautés with consistent pelvic height excursions were
chosen for analysis. The kinematic variables mentioned
above were extracted at the time the pelvis reached the
lowest vertical height, the point when a dancer is in
demi-plié. An average of the three demi-pliés for each
kinematic variable was then calculated. Mean values for
the measured variables across the repeated static trials of
functional turnout and forced turnout were calculated.
For the single static trials: natural double leg up-right pos-
ture, passive external tibiofemoral rotation and active ex-
ternal tibiofemoral rotation, a single value was calculated
for each measured variable by determining the mean
across the trial.

Fig. 4 Frontal view of a dancer performing a sauté in a slightly open first position. A sauté begins from a demi-plié position (a) the sauté
movement is initiated by the simultaneous extension of the hips and knees and plantar flexion of the ankles. This shifts the body weight from
the heel to the forefoot, as the dancer moves onto demi-pointe [55] (b). The last point of contact before elevation is with the toes [55]. In the air,
dancers maximally plantar flex the whole foot (pointe) (c). Dancers are taught to land with a nearly fully extended knee and a maximally plantar
flexed foot at initial contact [55, 56]. The phalanges are the first point of contact, followed by ‘rolling through their feet’ to allow the heels to
contact the ground quietly [56] (d). The sauté ends with a demi-plié (e)

Carter et al. Journal of Foot and Ankle Research           (2019) 12:10 Page 5 of 11



Statistical analysis
All data were analysed using the Statistical Packages for So-
cial Science (SPSS, Version 24, IBM). Normality assump-
tions for parametric tests were all met with the
Shapiro-Wilk test. Repeated measures ANOVA with Bon-
ferroni adjustments for the multiple comparisons were used
to determine the kinematic adjustments, hindfoot eversion,
midfoot and forefoot abduction, navicular drop (i.e. lower-
ing of the medial longitudinal arch) and first MTPJ abduc-
tion between natural double leg up-right posture and the
first position conditions. Stepwise multiple linear regression
analyses were used to predict the combination of kinematic
strategies: hindfoot eversion, midfoot and forefoot abduc-
tion, and navicular drop (i.e. lowering of the medial longitu-
dinal arch), employed to achieve foot abduction in each
first position condition. A Pearson’s correlation analysis was
used to determine relationships between hindfoot eversion
during each first position condition with the knee joint
transverse plane measurements from the passive and active
external tibiofemoral rotation trials. A probability (p) value
of < 0.05 was used to determine significance for all the stat-
istical tests performed. Retrospective power calculations
were conducted using G*Power (v.3.0.10) [44] for the step-
wise multiple linear regression analyses and the Pearson’s
correlation analysis.

Results
Seventeen dancers were right limb dominant and one
was left limb dominant according to the Waterloo

Footedness Questionnaire [34]. All repeated measures
ANOVA with Bonferroni adjustments for multiple
comparisons revealed significant effects when incorp-
orating a Greenhouse-Geisser correction for hindfoot
eversion (F 2, 32 = 74.96, p < 0.001), midfoot abduction
(F2, 33 = 39.08, p < 0.001), forefoot abduction (F2, 35 =
4.23, p = 0.021), navicular drop (F2, 35 = 81.51, p <
0.001) and first MTPJ abduction (F3, 51 = 4.07, p =
0.011) (Table 2). There were, however, no significant
differences between the natural double leg up-right
posture and the three first position conditions for the
first MTPJ transverse plane position. Interestingly, of
the 18 dancers, six dancers had a hallux valgus de-
formity, five ‘mild’ and one ‘moderate’ (Fig. 6). Thir-
teen dancers demonstrated an increase in forced
turnout, of those three were ‘mild’ and three were
‘moderate’.
No significant differences were found between navicu-

lar drop measurements in functional and forced turnout,
i.e. the medial longitudinal arch did not significantly
change. All dancers demonstrated either ‘excellent sta-
bility’ or ‘stable’ static arch heights in functional and
forced turnout (Fig. 7). Seven dancers even demon-
strated an increase in navicular height in both standing
functional turnout and forced turnout. There was a sig-
nificant increase in navicular drop during dynamic
movements, i.e. the sautés in first position with a drop
of 11 mm (p < 0.001), with ten dancers exhibiting dy-
namic arch height ‘instability’.

Fig. 5 Diagram depicting an abducted first MTPJ in the transverse plane. The dark grey circles represent the anatomical retro-reflective markers
and the light grey circles represent the calculated midpoints. Note: MTB1, base of the first metatarsal (anatomical/tracking marker); MT1, head of
first metatarsal (anatomical/calibration marker); MidMet, midpoint between MTB1 and MT1 (virtual marker); XMET, a virtual marker on the end of
the x-axis defined by the vector joining the metatarsal origin (MT1) and MTB1, and pointing anteriorly; HAL, middle of the dorsal aspect of the
hallux nail (anatomical/tracking marker); MT5, head of the fifth metatarsal (anatomical/tracking marker); FTML, intermedius forefoot, mid-point
between MT1 and MT5 (virtual marker)
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Multiple regression analyses for foot abduction in
functional turnout (F1, 16 = 19.25.89, p < 0.001) revealed
hindfoot eversion as positive predictor that could ac-
count for 55% variance of foot abduction in functional
turnout (R2 = 0.55, Adjusted R2 = 0.52). Retrospective
power calculation revealed the model had a power of
0.75; to achieve a power of 0.80, 20 dancers must be
recruited.
A similar prediction model was found for forced turn-

out (F1, 16 = 21.55, p < 0.001) with hindfoot eversion ac-
counting for 57% variance of forced turnout (R2 = 0.57,
Adjusted R2 = 0.55). Retrospective power calculation re-
vealed the model had a power of 0.73; to achieve a
power of 0.80, 21 dancers must be recruited.

The sautés in first position prediction model (F1, 16 =
11.761, p = 0.003) revealed hindfoot eversion accounted
for 42% variance of foot abduction (R2 = 0.42, Adjusted
R2 = 0.39) Retrospective power calculation revealed the
model had a power of 0.84.
A moderate to strong negative relationship between

active external tibiofemoral rotation and hindfoot ever-
sion was found in all three first position conditions
(Table 3). Whereas, passive external tibiofemoral rota-
tion was only moderately negatively correlated with
hindfoot eversion in all three first position conditions (r
= − 0.442 to − 0.604) (Table 3). Retrospective power cal-
culation revealed only correlations above 0.58 had a
power of 0.80.

Fig. 6 Relationship between first MTPJ transverse plane position (°) in natural double leg up-right posture and in forced turnout (N = 18). Note: An
abducted first MTPJ is a positive value, and these values are classified as normal (< 15°), ‘mild’ (15–20°), ‘moderate’ (21–39°), and ‘severe’ (≥ 40°) in
keeping with Piqué-Vidal & Vila [33]

Table 2 Repeated measures ANOVA for kinematic variables (N = 18)

Kinematic variablea Natural double leg up-right posture Functional turnout Forced turnout Sautés in first position

Mean (SE) (95CI) Mean (SE) (95CI) Mean (SE) (95CI) Mean (SE) (95CI)

Hindfoot eversion 1.1 (0.8) (− 0.6 to 2.8) 5.7 (0.9)* (3.7 to 7.6) 7.1 (0.9)* d (5.2 to 9.0) 15.8 (1.6)* (12.4 to 19.1)

Midfoot abduction 2.8 (1.2) (0.2 to 5.4) 5.6 (1.3)* c (2.8 to 8.4) 6.3 (1.3)* e (3.5 to 9.2) 7.7 (1.3)* (5.0 to 10.5)

Forefoot abduction 7.6 (1.0) (5.4 to 9.8) 8.4 (1.0) (6.2 to 10.6) 8.8 (1.0)f (6.7 to 10.9) 8.7 (1.1) (6.3 to 11.0)

Navicular drop (mm)b 1.6 (0.9) (− 0.3 to 3.5) 1.9 (1.0) (− 0.2 to 4.1) 12.9 (1.2)† (10.4 to 15.5)

First MTPJ abduction 10.7 (1.6) (7.3 to 14.1) 12.0 (1.6) (8.7 to 15.3) 13.5 (1.8) (9.7 to 17.4) 13.1 (1.8) (9.4 to 16.8)

*A significant difference relative to natural double leg up-right posture p < 0.001
†A significant difference relative to functional turnout p < 0.001
aAngle values expressed in degrees unless otherwise signified
bA negative value represents an increase in the navicular tuberosity height. A measurement error < 1 mm
cThis significant result should be interpreted with caution because of the small difference
dA significant difference of p = 0.033 relative to functional turnout. This significant result should be interpreted with caution because of the small difference
eA significant difference of p = 0.012 relative to functional turnout. This significant result should be interpreted with caution because of the small difference
fA significant difference of p = 0.042 relative to natural double leg up-right posture. This significant result should be interpreted with caution because of the
small difference
Abbreviations: SE standard error; 95CI, 95% confidence interval
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Discussion
The primary purpose of this study was to use a dance spe-
cific 3D multi-segment foot model to determine the lower
leg and foot contributions to turnout that female
university-level ballets use to accentuate their turnout.
Our results revealed the hindfoot was more everted in
forced turnout when compared to functional turnout, al-
though the difference was very small (1.4°, p = 0.033) and
hence is not meaningful. Therefore, our findings reject
our hypothesis. It is important, however to note the hind-
foot was 4.6° (p < 0.001) more everted in functional turn-
out compared to natural double leg up-right posture. This
suggests hindfoot pronation does play a role in achieving
functional turnout, but opens the question of how much
is a safe level of pronation? There is a safe range of foot
pronation, which facilitates shock absorption and allows
for adaption to the ground surface in the gait cycle [16].
There is likely a safe range of hindfoot pronation in turn-
out, which does not lead to injury. One should also

consider the duration and velocity of hindfoot pronation
during jump landings which influences the rate at which
forces are applied to the foot. Future studies conducting
injury surveillance and functional dance screenings using
motion analysis should consider range, duration and vel-
ocity of hindfoot pronation with the lower extremity in a
maximally externally rotated position.
We also surmised a dancer’s foot would undergo fore-

foot and midfoot abduction and collapse of the medial
longitudinal arch in forced turnout compared to func-
tional turnout. We found no change in forefoot abduction
angles in functional or forced turnout, but rather an in-
crease in midfoot abduction, although the difference was
very small (0.7°, p = 0.042) and therefore signifies no
meaningful change. Hence, our findings rejected our hy-
pothesis. Midfoot was more abducted (p < 0.001) in all
three first position conditions compared to natural double
leg up-right posture. The midfoot abduction does confirm
the unlocking of the midtarsal joint (talocalcaneonavicular

Fig. 7 The navicular drop (mm) values across functional turnout, forced turnout and sautés in first position (N = 18). Note: Navicular drop was
classified into three types of arch height stability according to Gontijo et al. [43]: 1. ‘excellent stabilisation’ navicular drop < 7mm); 2. ‘stable’
(navicular drop from 7 to 13mm); 3. ‘unstable’ (navicular drop > 13 mm)

Table 3 Correlations between the external tibiofemoral rotation clinical measurements and hindfoot eversion (N = 18)

Functional turnout Forced turnout Sautés in first position

r p r p r p

Passive external tibiofemoral rotation Hindfoot eversion −0.604 0.008 −0.533 0.023 −0.442 0.066

Active external tibiofemoral rotation Hindfoot eversion −0.625 0.006 −0.593 0.009 −0.509 0.031

Abbreviations: r, Pearson’s correlation
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and calcaneocuboid joints), which would give the appear-
ance of an abducted forefoot, however the tarsometatarsal
joints may not be contributing to a greater abduction
angle of the entire foot. Dancers exhibiting greater mid-
foot transverse mobility, however will expose the medial
joint capsule, plantar calcaneonavicular ligament and
tibionavicular fibres of the deltoid ligament to increased
tensile forces. Repetitive stress on the soft tissue structures
could potentially result in further laxity and hinder their
function to provide static midfoot stability. However, due
care must be taken when comparing the midfoot abduc-
tion angle over multiple data collection sessions as the
intra and inter-assessor repeatability measures for this
angle was poor [28].
Again, contrary to our hypothesis our results demon-

strated pre-professional dancer’s arches did not signifi-
cantly drop when forcing turnout, and even increased in
height when assuming functional turnout. The lack of a
significant navicular drop in functional turnout was also
reported by de Mello Viero et al. [45]. Dancers are edu-
cated to activate their arches and to have three points of
contact with the ground; the heel, and the first and fifth
metatarsal heads, when performing pliés [46].
Pre-professional dancers undergo years of extensive dance
education on technique development and strength, which
may explain the strong static extrinsic and intrinsic mus-
culature of the foot to maintain good posture in turnout.
Although, this strong static musculoskeletal control may
not necessarily extend to quick dynamic dance move-
ments. According to Gontijo et al. [43] arch height stabil-
ity classification, some of the dancers who demonstrated
‘excellent stability’ in both static first positions experi-
enced dynamic ‘instability’ during sautés landings. These
dancers demonstrating increased dynamic arch ‘instability’,
and therefore, potentially are exposing the posterior tibial
muscle to excessive eccentric forces and tensile loads [47].
These mechanical ground reaction forces transferred
through the tibia may also increase the likelihood of the
dancer developing medial tibial stress syndrome [47].
Eichelberger et al. [48] has recently published a minimal
marker-set for measuring navicular drop and drift which
could be incorporated into functional dance screenings or
even the dance studio, as static measurements of a
dancer’s navicular drop provided little indication of dy-
namic behaviour of the arch height stability. Dance
teachers often focus on the arches of a dancer when exam-
ining aesthetics. Motion analysis could be used in con-
junction with visual and audible cues from the educator to
provide positive reinforcement and constructive criticism
on their landing technique; instructing the dancer to not
collapse through the feet.
Dancers demonstrated no significant increase in the

first MTPJ abduction angle when a dancer assumes
forced turnout compared to their natural double leg

up-right posture. Therefore, our findings reject our hy-
pothesis. Hallux valgus, however, was observed in six of
the dancers. The dancer with the most severe deformity
was a modern dancer who does not practice en pointe
whereas the dancer with the least severe was a classical
ballet dancer who trains 20 h a week en pointe. This fur-
ther supports Steinberg et al. [29] findings in which
there is no association between the dance demographics
(hours and type of dance practice, en pointe shoe prac-
tice) of young dancers with and without hallux valgus. A
third of the dancers within this study have hallux valgus,
which is only slightly greater than the general female
population (aged 18–65, 26.3%) [49], however we believe
forcing turnout may be a minor predisposing factor for
hallux valgus development, but further investigation is
needed with a larger population to provide more clarity.
Other predisposing factors suggested for the develop-
ment of hallux valgus in pre-professional dancers are the
anatomical structure of the first MTPJ and genetic fac-
tors [29, 50, 51]. Anatomical variation of the shape of
the first metatarsal head has been cited as a potential
risk factor in the development of hallux valgus, with a
round head increasing the risk of developing a hallux
valgus deformity compared to a flat head, which resists
hallux abduction [52]. Therefore, dancers with a round
metatarsal head and forced their turnout may be more
at risk of developing of hallux valgus. In addition, the
shape of the metatarsal head has been a cited as a risk
factor for the reoccurrence of hallux valgus post-surgery
[53]. Radiographic examination of the curvature of the
first metatarsal head and clinical assessments on first ray
dorsal and dorso-medial mobility [51] may provide valu-
able information in predicting a dancer’s risk of develop-
ing hallux valgus deformity.
Hindfoot eversion was the strongest predictor of foot

abduction during standing and dynamic first position
conditions. Although, retrospective power analysis re-
vealed only the prediction model for the sautés had a
power above 0.8. To achieve a power of 0.8 for all the
models, a minimum of 21 dancers would be required.
Future studies should take this into consideration. Our
findings do support our hypothesis that hindfoot ever-
sion is the primary contributor in producing a greater
turnout angle during sautés in first position, however
more research is required to establish this relationship
for the static first position conditions.
Dancers with greater active external tibiofemoral rotation

demonstrated a less everted hindfoot during functional and
forced turnout postures. Limited hindfoot motion exposes
the tibiofemoral joint to excessive external rotation. This
supports our findings from earlier studies [3, 12], however
the relationship only holds true to active measurements of
external tibiofemoral rotation and static first position con-
ditions. Therefore, our findings reject our hypothesis, as we
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solely stated passive measurements rather than passive and
active measurements. These dancers utilising active exter-
nal tibiofemoral rotation to increase their turnout during
barre exercises, resulting in poor knee-foot alignment, may
be at greater risk of medial joint capsule and ligaments
leading to joint instability. Whereas those with limited ac-
tive external tibiofemoral rotation may be more prone to
Achilles tendinopathies when forcing turnout at the barre.
A hyper pronated hindfoot will cause high eccentric forces
and torsional stress through the medial Achilles tendon fi-
bres, thereby reducing the shock attenuating capacity of the
tendon and ultimately predispose the dancer to micro-tears
of the Achilles tendon [54].

Clinical implications

� Navicular height and/or arch height static
measurements do not reliably predict a dancers’
dynamic arch height stability.

� Radiographic assessments of the first MTPJ may assist in
determining a dancers’ risk of developing hallux valgus.

� Active measurements of external tibiofemoral rotation
can aid clinicians in predicting a dancer’s below-hip
compensation mechanism in first position turnout.

� Clinicians and dance educators should monitor the
knee-foot alignment of dancers with excessive exter-
nal tibiofemoral rotation in the interests of prevent-
ing knee injuries associated with forced turnout.

Conclusion
Our findings suggest dancers do pronate, via hindfoot
eversion and midfoot abduction in both functional and
forced turnout, however, no immediate association was
found between forced turnout and first MTPJ abduction.
Foot pronation does play a role in achieving turnout.
There may be a ‘safe’ range of pronation for turnout pos-
tures in dance. Further prospective research on in situ
measures of the lower limb in turnout and injury sur-
veillance is required to improve our understanding of
the normal and abnormal dance biomechanics.
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