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Abstract

Building Automation Systems (BAS) are a collection of devices and software which manage the

operation of building services. The BAS market is expected to be a $19.25 billion USD industry

by 2023, as a core feature of both the Internet of Things and Smart City technologies. However,

securing these systems from cyber security threats is an emerging research area. Since initial

deployment, BAS have evolved from isolated standalone networks to heterogeneous, interconnected

networks allowing external connectivity through the Internet. The most prominent BAS protocol is

BACnet/IP, which is estimated to hold 54.6% of world market share. BACnet/IP security features

are often not implemented in BAS deployments, leaving systems unprotected against known network

threats. This research investigated methods of detecting anomalous network traffic in BACnet/IP

managed BAS in an effort to combat threats posed to these systems.

This research explored the threats facing BACnet/IP devices, through analysis of Internet

accessible BACnet devices, vendor-defined device specifications, investigation of the BACnet spe-

cification, and known network attacks identified in the surrounding literature. The collected data

were used to construct a threat matrix, which was applied to models of BACnet devices to evaluate

potential exposure. Further, two potential unknown vulnerabilities were identified and explored

using state modelling and device simulation.

A simulation environment and attack framework were constructed to generate both normal and

malicious network traffic to explore the application of machine learning algorithms to identify both

known and unknown network anomalies. To identify network patterns between the generated nor-

mal and malicious network traffic, unsupervised clustering, graph analysis with an unsupervised

community detection algorithm, and time series analysis were used. The explored methods identi-

fied distinguishable network patterns for frequency-based known network attacks when compared

to normal network traffic. However, as stand-alone methods for anomaly detection, these methods

were found insufficient. Subsequently, Artificial Neural Networks and Hidden Markov Models were

explored and found capable of detecting known network attacks. Further, Hidden Markov Models

were also capable of detecting unknown network attacks in the generated datasets.

The classification accuracy of the Hidden Markov Models was evaluated using the Matthews

Correlation Coefficient which accounts for imbalanced class sizes and assess both positive and

negative classification ability for deriving its metric. The Hidden Markov Models were found

capable of repeatedly detecting both known and unknown BACnet/IP attacks with True Positive

Rates greater than 0.99 and Matthews Correlation Coefficients greater than 0.8 for five of six

evaluated hosts.

This research identified and evaluated a range of methods capable of identifying anomalies in

simulated BACnet/IP network traffic. Further, this research found that Hidden Markov Models

were accurate at classifying both known and unknown attacks in the evaluated BACnet/IP managed

BAS network.
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5.4 Comparison between näıve (k=10) and optimised (k=16) GMM clustering approach

for host 246.35.6.172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.5 Scatter graph of packet size and destination for command packets sent by host

246.35.6.172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.6 Command breakdown for host 246.35.6.172 . . . . . . . . . . . . . . . . . . . . . . . 169

5.7 Seasonal decomposition of the Real Normal Dataset . . . . . . . . . . . . . . . . . . 171

5.8 Average weekly time plot of the Real Normal Dataset . . . . . . . . . . . . . . . . . 172

5.9 Synthetic Normal Dataset directed network graph . . . . . . . . . . . . . . . . . . . 175

5.10 Scatter graph of packet size and destination for command packets sent by host

192.168.10.101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.11 Command breakdown for host 192.168.10.101 . . . . . . . . . . . . . . . . . . . . . . 178

5.12 Comparison of AIC and BIC cluster size optimisations for a range of hosts in the

Synthetic Normal Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
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Chapter 1

Introduction

1.1 Background

The total cost of reported cyber crime in Australia during 2016 was $4.3 million USD per year,

with an average of two cyber attacks per week per business (Ponemon Institute, 2016). While these

are direct costs, indirect or second order costs can manifest when the systems under attack manage

cyber-physical devices; such as buildings. Building Automation Systems (BASs), also referred to as

Building Management Systems (BMSs), are a collection of devices and software used to automate

the control of various services which comprise a building. Automation control was originally used

for heating ventilation and air conditioning (HVAC) services, but has steadily evolved to encompass

other building services with the improvement of electronic circuitry and microprocessors. BASs are

now used to control energy management, water/waste systems, lighting, security and life-safety

systems in addition to HVAC, a typical BAS is shown as Figure 1.1. The purpose of a BAS is

essentially to optimise the operational costs and processes of a building in relation to the comfort,

safety and security of the buildings occupants, goods, and services provided within. Given that 40%

of the worlds energy costs are generated from commercial buildings, BAS can provide a significant

reduction in operational costs, through the optimisation of building services using sensing devices

and efficient load algorithms (IEA, 2015). Further, the BAS market is expected to grow from $6.65

billion USD in 2016 to $19.25 billion USD by 2023 (Wood, 2017).

Connections between BASs and other networks, such as enterprise networks and the Internet are

increasing. The core motivations for increased connectivity are reduced costs and optimised auto-

mation through remote management, outsourced cloud analytic platforms, and the future use in

smart cities and the Internet of Things (IoT) (Khaund, 2015; Baig et al., 2017). However, with in-

creased connectivity and automation, network complexity can increase (Kastner, Neugschwandtner,

Soucek & Newman, 2005; O’Neill, Bailey, Dong, Shashanka & Luo, 2013), and a need exists for

increased device and network level monitoring. While system monitoring is often undertaken for

operational means at a device level, network level monitoring is often ignored, which is of principal

interest for network security and digital forensic purposes. The lack of network monitoring can be

attributed to a historical remnant of the closed system topology, whereby access was physically re-
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stricted and thus monitoring for network security was not of concern. When externally connected,

there exists a detrimental level of network monitoring in BAS, with Kovach (2016) stating that

on average a successful adversary is connected and operating on a BAS without detection for 243

days. Coupled with tens of thousands of misconfigured BAS networks directly connected over the

Internet (Peacock & Johnstone, 2014; Johnstone et al., 2015; Praus, Kastner & Palensky, 2016;

Gasser et al., 2017), BASs are accessible to adversaries.

Figure 1.1: The Integrated Building Automation System, replicated from Kast-
ner, Neugschwandtner, Soucek and Newman (2005, p1180)

With increased accessibility comes increased cyber security threat vectors. These vectors are

a cumulative effect of the original design of BAS, namely, high trust devices, isolated topology

and extensive lifecycle. Previously, adversaries required a physical presence within, or near the

BAS for malicious action, which significantly reduced the actionable threats against BASs. With

interconnected systems the physical barrier has been removed, exposing BASs to domain specific

threats, in addition to inheriting traditionally IT based threats with the adoption of protocols

such as IP. BASs face both first and second order threats. As BASs are cyber-physical devices,

malicious action against a BAS can cause physical damage to buildings, termed cyber-kinetic attacks

(Applegate, 2013). This class of attack can be devastating economically as directly, the damage to

the building is sustained, and indirectly, the occupants, goods and services provided by the building

are reduced, causing lost opportunity costs. A range of identifiable outcomes for launching a cyber

attack against a BAS exist. There are tangible benefits, such as corporate espionage, terrorism

or data exfiltration. There are also hidden, second order benefits, such as increasing operational

costs and a businesses bottom line, or reputation damage from discomfort caused from the air-

conditioning being off in commercial complexes. In both cases, tangible and hidden, there is an
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associated direct, or underlying cost to cyber attack.

There is an increasing understanding that securing cyber-physical systems is of high import-

ance, highlighted by a number of IoT based Distributed Denial of Service (DDoS) attacks, most

prominently the Mirai Botnet. The Mirai Botnet used a large number of physical devices with

low compute power to create a 600Gbps DDoS against a range of services (Herzberg, Bekerman &

Zeifman, 2016). It is not inconceivable that a similar event could occur in a BAS, due to the shared

design philosophy and characteristics between BAS and other, cyber-physical systems. A high pro-

file example of a BAS attack was conducted in 2014 against the US retail chain Target. The BAS

of a Target store was breached using a third party contractors credentials to the HVAC system.

The BAS was used as a pivot point into the corporate network, where the point of sale systems

in most US Target stores were infected with malware, resulting in 40 million credit card details

being stolen, and personal data relating to 70 million customers exposed (Vijayan, 2014; Krebs,

2014). In 2015 after the Target breach, a single credit card detail was reportedly worth between

$5 and $30 USD, dependent on the issuing bank, credit card information and geographical loca-

tion (Mcfarland, Paget & Samani, 2015). Thus, the initial cost of the Target breach was between

$200,000,000 and $1,200,000,000 USD. In addition, the second order costs included banks in the

U.S spending $200,000,000 USD on bank card replacements, the CEO and CIO of Target losing

their positions, and the sales in Target dropping 46% in the quarter after the attack, representing

reputation damage. The attack was not detected by Target, but rather Target were notified by the

U.S Department of Justice. The success of the attack was due to a combination of lack of network

segregation between the BAS, enterprise network and point of sales systems, lack of BAS network

monitoring, and the remote access credential theft from a third-party managing the HVAC system.

A focused attack against a BAS occurred in November 2016, when reports emerged of a BAS

being attacked in two apartment blocks in Finland (Roberts, 2016). The attack was originally

claimed as a DDoS against the building controller, which effectively shutdown the ability to heat

the buildings during winter. However, the attack was detected by the BAS management after the

BAS “began issuing strange alarms and could not be remotely accessed” Roberts (2016), inferring

the adversary had control of the BAS, rather than just DDoSing the BAS. The attack lasted for

one day; with resolution achieved via shutting down the BAS and reconfiguring at a hardware level

(Roberts, 2016). Envisage this sort of attack against a major apartment block in a global city

such as New York, London or Sydney, reputation damage alone would be significant. The response

time to the Finland incident was extensive in terms of a control system, whose core purpose is

availability. A requirement in any digital system is knowing what your system entails, and having

oversight to ensure operation is running accordingly. The Finland example reveals a core issue in a

security context for network oversight in a BAS. The attack was detected due to the out-of-bounds

nature of the communications being sent, which was identified in the normal monitoring of the

system for performance and general operation. Without actively monitoring for security, a stuxnet

type attack, where normal inbounds commands are acting maliciously could be envisaged to exist

on a BAS.
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Table 1.1: Survey results, adapted from Facilities.net (2015)

Question Yes No
Not
Sure

N/A
Total

Respondents

Are any of the building automation
systems in your buildings connected to
the Internet?

84% 16% - - 224

If the building automation system(s) is
(are) on a dedicated building
automation network, is it bridged to
the corporate/enterprise network?

35% 29% 27% 9% 173

Has a budget been established for
security countermeasures for building
automation systems

41% 59% - - 172

Have you conducted a threat
assessment of your network and
physical security measures for
cyberattacks on your building
automation systems?

42% 58% - - 157

Has your building automation system
monitored for cyberattacks?

54% 46% - - 155

Have you developed a plan for
responding in the event of a
cyberattack on your building
automation system?

37% 63% - - 156

While there are known cyber security issues, awareness in the BAS domain has been increasing.

A 2015 survey conducted by Facilities.net recorded 224 building operation managers as respondents

on cyber security and BAS trends, selected results are detailed in Table 1.1. Of note, 75% of

respondents stated their organisation did not have a formal cyber security incident response plan

for their BAS. 66% of respondents were not confident in their organisations ability to effectively

recover from an attack, and 84% of respondents stated their BAS was connected to the Internet.

An understanding of the protocols and components operating in the BAS domain is required

to detect attacks against the system. A shift to open-source protocols over the past 30 years has

changed the landscape from primarily vendor-specific proprietary protocols, to three major open-

source protocols and a range of proprietary protocols which encompass the market, namely, BACnet,

KNX and LONWorks. The Building Services Research and Information Association (BSRIA) states

that BACnet is the dominant communications protocol with a 54.6% world market share as of 2015

(Towler, 2015). Following this trend, BACnet is widely deployed in government, industry and

businesses around Australia. As such, the research presented focuses on the BACnet/IP protocol,

which uses IP as its communication media.

The SANS 2016 state of ICS security survey, which includes BAS, states that 54% of respondents

are reliant on their trained staff to search and detect threats manually, while 30% state they use

anomaly detection tools (Harp & Gregory-Brown, 2016). Given the time taken to detect attacks

on BAS, there exists the need to improve detection methods beyond manual means, and account
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for the potential of stuxnet type zero day attacks.

Classification of the ability to detect threats faced by BASs can be represented using a Johari

window (Luft & Ingham, 1955). Kim (2017) adapts the Johari window model to present certainty

and identification in terms of risk, shown as Table 1.2. Kim (2017) elaborates on “unknown

unknowns”, through a further classification of unknown-unknown types, namely, unidentified due

to knowledge gap, or unidentified due to an assumption. These include time space or condition,

between parts or the whole system. Identifying hidden or temporal interactions in a system can

Table 1.2: Johari window of certainty and knowledge, replicated from Kim
(2017, p155)

Certainty
Known Unknown

Identification
Identified (Known)

Known-Known
(Identified Knowledge)

Known-Unknown
(Identified Risk)

Unidentified (Unknown)
Unknown-Known
(Untapped Knowledge)

Unknown-Unknown
(Unidentified Risk)

be achieved through learning how a system operates in relation to its defined rules and semantic

meaning. Methods which can account for temporal features, such as time series analysis, state

space modelling and some machine learning algorithms could be appropriate.

Intrusion Detection Systems (IDS) for computer networks have been an active research field

since the initial works of Anderson (1980) and Denning (1987). The purpose of an IDS is to identify

potential attempts of unauthorised access or actions being undertaken on a system (Denning, 1987;

Yu & Tsai, 2011). Typically, classification of IDS approaches fall into two categories, misuse-

based (often called Signature) and anomaly-based (Axelsson, 2000). Misuse-based rely on accurate

signatures of malicious actions, to which normal traffic is compared. Comparatively, anomaly-based

approaches define a baseline of normal actions on the network through a learning phase, and report

deviations from normality as potential intrusions.

Application of Intrusion Detection Systems to BACnet managed BAS is a growing area in cyber

security literature, with many authors focusing on anomaly detection (Kaur, Tonejc, Wendzel &

Meier, 2015; Tonejc, Güttes, Kobekova & Kaur, 2016; Caselli, Zambon, Amann, Sommer & Kargl,

2016; Esquivel-Vargas, Caselli & Peter, 2017). The application of machine learning to enhance

intrusion detection is a more recent occurrence. Tonejc et al. (2016) explores unsupervised machine

learning methods to identify anomalous traffic in BACnet/IP networks. Application of supervised

learning, which can account for temporal data has not been explored.
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1.2 Purpose

“There are known knowns; there are things we know we know. We also know there

are known unknowns; that is to say we know there are some things we do not know. But

there are also unknown unknowns – the ones we don’t know we don’t know.” Rumsfield

(2002)

This research identifies a gap in knowledge in regards to anomaly detection in BACnet/IP

managed Building Automation Systems (BASs). The literature review reveals limited applications

of intrusion detection methods against BACnet/IP managed BASs. A similar problem faced by

generic IDS researchers is suffered in BAS anomaly detection, the lack of datasets. Datasets in BAS

anomaly detection can be classed as a real network dataset, requiring synthetic malicious traffic,

and small-scale simulated network datasets with limited attack variance. More recent studies utilise

both types of dataset to improve the efficacy of the presented detection method (Tonejc et al., 2016;

Esquivel-Vargas et al., 2017). Further, the application of machine learning use in IDS for BAS is

limited, with investigations focused on unsupervised methods. Results from the literature show

the ability to detect “known known’s” with varying success rates, but rarely address “unknown

unknowns”.

This study aimed to investigate methods of identifying both known and unknown BACnet/IP

specific attacks in a BACnetwork. Given the temporal nature of BAS, models which can utilise

time based features, such as Markov Models, time series analysis and Artificial Neural Networks

were explored and compared. As with previous studies, a range of real and simulated datasets

were obtained to evaluate the methods. The purpose of the research is thus to improve anomaly

detection in BACnet/IP managed building automation systems to improve the protection of critical

infrastructure. A range of research questions were derived to further define the research, detailed

in §1.3

1.3 Research questions

RQ1 How can known and unknown attacks against BACnet/IP based Building Automation Systems

be detected?

SQ1 Are BACnet devices exposed to known threats?

SQ2 Do known BACnet attacks have distinguishable network patterns compared to normal

BACnetwork traffic?

SQ3 Is machine learning applicable to identify known and unknown attacks against BACnet/IP

networks?

SQ4 How accurate are machine learning approaches in detecting known and unknown attacks

against BACnet/IP networks and devices?
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1.4 Thesis terminology

While the writing convention of this thesis is Australian English, many BACnet components are

referred to throughout the thesis in American English spelling in line with the SSPC-135 (2012)

standard. Further, BACnet networks will be referred to as BACnetworks.

1.5 Thesis structure

The remainder of the thesis is structured into a number of distinct parts. Chapter 2 reviews the

literature in the domain of Building Automation Systems and approaches undertaken in Building

Automation cyber security. Further, approaches for state modelling and machine learning applied to

cyber security problems, and the applications to building automation systems security is discussed.

Chapter 3 details the research design and methodology used throughout the research. A discussion

of the dominant research paradigms is undertaken, culminating with the paradigm selected for

this research. Further, a review of approaches resolves the specific methods used throughout the

research, forming the research design. Chapter 4 outlines the exploratory results of the research,

including a survey of Internet connected devices, threat modelling of devices and simulation design.

Chapter 5 continues, presenting the results of a range of algorithms applied to the generated

simulation data. Chapter 6 discusses the results in respect to the existing literature, followed by

a critical review of the research process. Finally, Chapter 7 presents conclusions drawn from the

research, and suggests potential future work in the domain.
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Chapter 2

Literature Review

The literature review chapter frames the research project undertaken in the context of previous

works in the respective areas. The chapter begins with a discussion of Critical Infrastructure (CI),

Supervisory Control and Data Acquisition (SCADA) systems and where Building Automation Sys-

tems (BASs) sit in relation to CI and SCADA. Followed by a discussion of the open-source protocol

landscape; accompanied by a comparison and justification of research towards BACnet. The review

then traverses to BACnet security, outlining the current state of the BACnet protocol in regards

to security features. Following, a critical review of previous and current works in BACnet security,

with particular focus on intrusion detection research is presented. Machine learning techniques

for anomaly detection, and system behaviour are discussed, with specific applications applied to

BACnet identified. Finally, three machine learning algorithms are presented as potential approaches

to identify anomalies in BACnet/IP managed BAS.

2.1 Critical Infrastructure

Critical Infrastructure (CI) is defined by the Australian Federal, State and Territory governments

as

“...those physical facilities, supply chains, information technologies and communic-

ation networks which, if destroyed, degraded or rendered unavailable for an extended

period, would significantly impact on the social or economic wellbeing of the nation

or affect Australia’s ability to conduct national defence and ensure national security”

Attorney Generals Office (2010, p. 8).

The direct mention of “physical facilities” should be evidence enough that buildings are a core part

of CI. However, it was not until 2015 that in the United States, The National Institute of Stand-

ards and Technology (NIST) updated the “Guide to Industrial Control Systems (ICS) Security”,

to mention Building Automation Systems (BASs) as an “other type” of control system classed as

CI (Stouffer, Pillitteri, Lightman, Abrams & Hahn, 2015). Further, the SANS 2016 State of ICS

Security Survey encompassed BAS as a core focus for the survey, alongside SCADA, Distributed
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Control Systems (DCS) and Process Control Systems (PCS) (Harp & Gregory-Brown, 2016). The

classification, and inclusion as a core focus underpins the importance of securing Building Auto-

mation and Control systems, which have been used extensively for over 30 years. There has been

a gradual convergence between Information Technology (IT) and Operational Technology (OT)

(Murray, Johnstone & Valli, 2017). The convergence between building controllers and IT based

protocols has created a larger threat surface, not previously faced by building controllers. Differing

control structures however have left traditional cyber security approaches in the IT sector incapable

of direct application securing building controllers. These issues faced are similar in nature, and

general operation to Supervisory, Control and Data Acquisition (SCADA), systems; another CI,

which has been the focus of security researchers for some time.

2.1.1 Supervisory Control and Data Acquisition

SCADA systems are used to monitor and control industrial automation processes which are geo-

graphically dispersed. In Australia, the distance between stations can be thousands of kilometres.

SCADA systems are deployed to manage utilities and CI, including gas, water, electricity and

traffic systems. SCADA systems provide a real-time centralised monitoring and control system

for large numbers of process inputs and outputs (Stouffer, Falco & Kent, 2007). SCADA systems

were originally implemented with proprietary protocols for communication; however over the past

two decades, standardised network communications using TCP/IP has increased (Zhu, Joseph &

Sastry, 2011). Standardisation to IP protocols and connecting SCADA systems to the Internet for

remote management and control can leave SCADA systems exposed to vulnerabilities. The barrier

to entry for attackers is reduced due to external facing connections, rather than needing line of sight

or physical access to systems. Traditional IT security measures, such as patching directly clash with

the high availability requirement of SCADA, further exacerbating security concerns with patchable

vulnerabilities existent on these systems (Dussel et al., 2010; Murray et al., 2017).

2.1.2 SCADA security

Due to the cyber-physical nature of SCADA systems, cyber security is of high importance (Zhu

et al., 2011). Previously, threats to availability were a hardware reliability issue, with protection

tied to fault prevention and detection (Cárdenas, Amin & Sastry, 2008). However, with increased

network connections in SCADA systems and increased use of commercial off the shelf (CoTS)

IT systems, protection against cyber threats is now also required to prevent availability issues

(Cárdenas et al., 2008; Dussel et al., 2010). Unlike CoTS devices, the application of CoTS based

cyber security practices are limited by the SCADA environment. Noted by Granzer and Kast-

ner (2010), limitations include power requirements, security scalability, communication medium

support, the use of non-IP protocols and quality of service differences. The potential impact on

availability that security practices create is often the limiting factor upon direct integration of se-

curity systems to SCADA. Patching often requires system downtime which is not acceptable in life

safety or CI systems particularly (Zhu et al., 2011; Murray et al., 2017). The culmination of these
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issues has resulted in a high number of legacy devices in SCADA systems, which are unpatched

(Cárdenas et al., 2008; Cheminod, Durante & Valenzano, 2013; Murray et al., 2017). In addi-

tion, protocol design can contribute to system vulnerabilities in SCADA. For example, ModBus,

a widely used SCADA protocol contains no confidentiality, integrity or authentication checking

processes (Benbenishti, 2017), allowing attackers to use the normal commands of the protocol to

undertake malicious actions. Building Automation suffers from many of the same security issues as

SCADA systems (Fisk, 2012). Particularly protocol based vulnerabilities, caused by initial design

choices stemming from a segregated local network with low access and highly trusting devices.

2.2 Building Automation Systems

Building Automation Systems (BASs), historically called Building Management Systems, are the

result of the centralisation of control and management of services operating in a building. Originally,

BASs encompassed heating, ventilation and air conditioning (HVAC) systems, but now can be used

to centralise control of lighting, water systems, power management and security features, such as

CCTV cameras and access control (Kastner et al., 2005; H. Merz, 2009). Typically, a BAS consists

of management devices, controllers and field devices, such as sensors and actuators. The services

in buildings operate using schedules and control loops, defined for the specific facility based on the

features of the building, and surrounding environment. The primary goal of BASs is to reduce the

cost of a building, through the application of smarter control loops and schedules to reduce energy

consumption, while maintaining comfort for building occupants (H. Merz, 2009). For this purpose,

data collection is required from field level devices to make short term decisions in controllers, and

long term decisions based on trend data. Trend data is compared to the control schema, when the

trend does not follow the control schema, it is a point of interest to investigate, showing either the

system is incorrectly programmed, or an extreme weather event caused the controls to activate out

of bounds. However, there is the potential that trend data could also indicate a network attack

event against a device. Typically, the network data associated with a BAS is not monitored, with

the interest from owners and operators of the system coming from data values, rather than network

traffic (Caselli, 2015; Jabado, 2017; Humphries, 2017). Correlation between network traffic and

trend data could be used to identify issues from a security perspective.

Emerging from a proprietary locked industry, three open source network protocols with similar

aims have become dominant in BASs, namely, BACnet, KNX and LONWorks. The largest protocol

is BACnet, with a world market share of 54.6% in 2015 (Towler, 2015), thus BACnet is the object

of interest for this research, due to its proliferation in Australia and abroad. Byres, Franz and

Miller (2004) note that SCADA protocol adoption and use is highly coupled to industry preference,

vendor operating requirements and design history of systems. These attributes are applicable to

BAS protocols, which followed a similar history of proprietary communication protocols in closed

internal networks.

There are a number of challenges facing BASs, particularly the IT/OT convergence also faced
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by SCADA systems. The long life-cycle of buildings, compared to IT devices is of note. Typic-

ally, BASs are expected to operate for 10-20 years, this time frame requires designs to be flexible

for future advancement and integration, while also supporting legacy devices and maintaining a

limited amount of interaction for security purposes (Kastner et al., 2005) BAS design is thus in a

challenging position, given the advancement of the Internet of Things (IoT), Smart Cities, Cloud

based analytics and Wearable technologies, which can be used to improve BASs core purpose (Baig

et al., 2017; Ahmad, Mourshed, Mundow, Sisinni & Rezgui, 2016). From a security standpoint,

the incorporation of these devices, which were designed to be interconnected, into the BAS domain

which was typically locationally isolated increases the threats faced exponentially. Fisk (2012)

noted that external connection is required for systems to maintain longevity to allow for future

patching cycles. Counter to this, Cárdenas et al. (2008) state that “Patching and frequent updates,

are not well suited for control systems” (Cárdenas et al., 2008, p3), citing a nuclear power plant

which accidentally shut down after a diagnostic computer rebooted for a software update. Given the

range of vendors, devices and protocols in use, every BAS is a unique implementation. Each system

now requires knowledge and management of IT domain systems and issues, while maintaining a

coexistent relationship with the safety and operational constraints of an OT system.

2.2.1 System requirements

Apart from the functionality of controlling building services, BAS also have a number of require-

ments with regards to safety and operation. The requirements from OT do not always overlap

with IT and more specifically, security. Novak and Treytl (2008) discuss the common require-

ments between safety and security systems, summarised in Table 2.1. Novak, Treytl and Palensky

(2007) describe the comparative goals between safety and security, which can allow for crossover

life-cycles to be developed, as undertaken in Novak and Treytl (2008) and Novak and Gerstinger

(2010), with further discussion in Cheminod et al. (2013). Novak and Treytl (2008) elaborate that

safety and security systems have a common goal in reducing risk; but state that confidentiality

and non-repudiation are not relevant for automation systems. While confidentiality may be an

added burden to low-power systems, the data transmitted is important and should be protected.

Additionally, non-repudiation of commands sent on a BAS is an important feature which would

be required for a secure system. For a safety system, it would be required to know with great

certainty that a device had acted according to its specification and cannot deny its involvement

in an action. Further, Cheminod et al. (2013) highlight the key disparity between requirements in

BAS and IT are the real world ramifications of system failure. Downtime in IT systems is generally

acceptable, and often to be expected in relation to the patching cycles of software. Exemplified by

service level agreements for Internet service providers stating a 99.999% uptime on their service

(Amazon, 2017). Additionally if an IT device fails, the device is generally survivable when proper

contingency planning was implemented. However, if safety or security critical systems fail, the risks

are significant, with the potential for loss of life, asset damage and environmental impact. These

issues cause BAS to follow the paradigm that failure is unacceptable, similar to SCADA systems
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(Kirsch, Goose, Amir, Wei & Skare, 2014). The difficulty arises when implementing this paradigm

using failure tolerant IT systems.

Table 2.1: Summary of security and safety common requirements defined in
Novak and Treytl (2008, p312)

Requirements of
Security Systems

Requirements of Safety Systems
Integrity Authentication Availability Authorisation

Confidentiality
Integrity 3

Availability 3

Authentication 3

Authorisation 3

Non-Repudiation

2.2.2 Protocols

BAS specific protocols are typically open source, examples include BACnet, KNX, LONWorks and

ModBus. In addition, a number of proprietary frameworks interlinking the open source protocols

together exist, such as Tridium-Fox and Schneider’s Continuuum. The benefit of the three major

BAS specific open source protocols, apart from being device independent, is the ability to com-

municate with multiple protocols, on existing cabling infrastructure (Granzer, Kastner & Reinisch,

2008), reducing costs significantly. While originally serial-based, other data media such as Ethernet

are increasingly being used for BAS, with IP encapsulation and more recently native IP stacks al-

lowing BAS to be connected to enterprise networks and allow direct remote access over the Internet

(Kastner et al., 2005; ASHRAE, 2018).

2.2.2.1 BACnet

Building Automation Control Networking (BACnet) is an object-oriented peer-based protocol for

managing BASs, which began development in 1987. The aim of BACnet was to create a protocol

which would work with management, field and automation devices, and provide interoperability

between other protocols. BACnet was released in 1995 as an ASHRAE/ANSI standard, in 2003,

BACnet gained ISO standardisation (ISO 16 484-5). BACnet is actively maintained, with reviews

of the protocol occurring every four years until 2008, thence changing to biennial reviews (SSPC-

135, 2017). The most recent BACnet standard is BACnet-2012, Version 1, Revision 19 (SSPC-135,

2017). In December 2016, Addendum 135-2016bj was released for initial public advisory, as of June

2018, Addendum 135-2016bj is in its second round of public advisory. To provide interoperability,

BACnet focusses on the Network layer and above, allowing for multiple physical and data link layer

technologies to be used (Hersent, Boswarthick & Elloumi, 2012). While there are defined protocols

in the standard for interoperability depicted in Table 2.2, further undocumented mapping can occur

due to the flexibility of the protocol (Granzer et al., 2008; Hersent et al., 2012). BACnet utilises

UDP for transmission over IP networks, using a virtual IP network stack. UDP is used to reduce
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the overhead which occurs from using connection orientated protocols, such as TCP (Zachary,

Brooks & Thompson, 2002), along with providing the ability to map protocols to interpret the

UDP data (Newman, 2013). However, Addendum 135-2016bj aims to implement a native IP

option as opposed to Virtual IP, to allow for greater interconnection between traditionally BAS

devices, and IT services such as cloud analytic platforms.

Table 2.2: BACnet architecture mapping to the OSI model as of revision 19,
replicated from SSPC-135 (2012, p11)

OSI BACnet Layers
Application BACnet Application Layer (APDU) Application

Network BACnet Network Layer (APDU) Network

Data Link ISO 8802-2 MS/TP PTP BVLC
LonTalk

ZigBee
Data
Link

Physical Ethernet ARCNET EIA-485 EIA-232 UDP/IP
802.15.4
Physical

2.2.2.2 KNX

Konnex (KNX) Association began in 1999, as a merger between the European Installation Bus

(EIB), Batibus and European Home System (EHS) protocols. The aim of KNX was to define and

offer certification services for the KNX open standard (Hersent et al., 2012); which was defined in

2002 (Granzer et al., 2008). KNX became a European Standard in 2004, and defined as ISO/IEC

14543-3 in 2006 (ISO, 2006). KNX follows the OSI model for packet construction, see Table 2.3.

Further, KNX is based on the older protocol EIB; allowing EIB to coexist and be compatible with

KNX. Similar to BACnet, KNX is flexible in physical media usage, with twisted-pair, power line

and wireless radio available. Additionally, KNX can use tunnelling to operate over IP, with unicast

for configuration and maintenance, and multicast for process data exchange (Granzer et al., 2008).

KNX has a small network stack, making it suitable for field devices with low processing power,

while also providing collision avoidance via CSMA/CA (Granzer et al., 2008).

Table 2.3: KNX/EIB architecture mapping to the OSI model, adapted from
Köhler (2008, p12)

OSI KNX/EIB Layers
Application KNX/EIB Application Layer

Transport
KNX/EIB Transport Layer

Connection Orientated Connectionless Orientated
Network KNX/EIB Network Layer

Data Link MAC through CSMA/CA

Physical
Twisted Pair Power Line

Radio
Frequency

Ethernet

TP-0 TP-1 110Khz 132Khz 868Mhz UDP/IP
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2.2.2.3 LONWorks

Local Operating Networks (LONWorks) is a network platform developed by Echelon Corp., and

was accepted as an ANSI standard for control networking in 1999 (Hersent et al., 2012). In

2008, LONworks was approved as ISO standard ISO/IEC 14 908-1, -2, -3 and -4 (Hersent et al.,

2012). LONWorks aim was to move away from proprietary centralised control models, by using

connection devices to exchange data directly, eliminating the need for a central controller, and thus

the single point of failure (Hersent et al., 2012). LONWorks is the combination of the LONTalk

communication standard, defined as ISO/IEC 14908 (‘ISO/IEC 14908 Information Technology

- Control network protocol’, 2012) with Neuron chips developed by Echelon Corp. Originally

dominant in the transportation and utilities industries, the LONWorks platform was adapted to

BASs (Snoonian, 2003). Similar to BACnet and KNX, LONWorks is physical media independent,

allowing the use of twisted pair, power lines, wireless and optical fibre (Hersent et al., 2012).

LONworks is not an IP native protocol, and makes use of ANSI/CEA-852 IP tunnelling to connect

LONwork networks to IP networks (Hersent et al., 2012). A mapping of LONworks to the OSI

model is shown as Table 2.4

Table 2.4: LONWorks architecture mapping to OSI layers, adapted from
Hersent, Boswarthick and Elloumi (2012, p. 63)

OSI LONWorks Layers
Application LONWorks Application Layer
Presentation LONWorks Presentation Layer

Transport LONWorks Transport Layer OR LONworks Session Layer
Network LONWorks Network Layer

Data Link MAC through CSMA/p-persistent

Physical
Twisted Pair Power Line Fibre

Optic
LON-
Works
over
IP

Free
Topo-
logy

RS-485
Transformer

Isolated
75kHz 86kHz 115kHz 132kHz

2.2.2.4 Protocol comparisons

The objective of all three major open-source protocols is identical, to increase interoperability over

multiple physical media and vendor devices, and thus reduce the cost of implementation while

also providing robust building automation operation. A shortcoming in all three protocols is that

they are based on BASs initial design, being a local, trusted network. With the increased use

of the Internet, remote administration and more recently cloud-based analytics and smart city

initiatives, BASs have become interconnected to enterprise networks and the Internet (Baig et al.,

2017). Security, was not an original function of BASs, nor needed given the previous closed network

topology (Newman, 2013). However, with increased connectivity exists an increased attack surface,

where a lack of inherent security processes expose BASs to adversaries (Khaund, 2015). Security

through obscurity no longer exists in BASs (Kastner et al., 2005), the cyber-physical nature of

BASs, and the integration of security and safety services makes the system a potential target to
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a range of adversaries (Khaund, 2015). Overall, the cyber security practices in BASs are lacking.

A range of factors contribute, including but not limited to, a lack of awareness and a limited

consolidated effort for implementing network security features.

2.3 BACnet structure

This research focuses on ASHRAE Standard 135-2012 BACnet, as this was the latest version

implemented upon undertaking the research. Additionally, the BACnet 2012 is the version to which

BACnet compliant devices are measured (BTL, 2017). BACnet is an object-oriented protocol in

which associated sets of values are represented by an object, a complete listing is shown as Table 2.5.

These objects are held in collections representing a single device, referred to in the object model

as a BACnet Device. There are 54 standard objects that communicate using 38 standard services

as of the 2012 version of the BACnet Standard (SSPC-135, 2012). When transported on UDP/IP

as default, BACnet uses UDP Port 47808 for communications to the server running the service.

However, it should be noted that the UDP port in use is arbitrary, with proprietary middleware

implementations of BACnet communicating on additional UDP ports (Schneider Electric, 2015;

Gasser et al., 2017).

Each object contains a set of properties to describe the object. For each of these properties

a definition of type is included, the type could be analogue, binary, text or a number of other

possible types. Additionally, each attribute includes a flag indicating optionality, essentially if the

property can be omitted and still operate in accordance with the protocol standard. The majority

of properties present in each object is optional. To facilitate object handling and communication,

each object contains a mandatory property of an object identifier field, which identifies what type of

object is being examined. Every BACnet device requires a mandatory device object, which provides

addressing details for communication on the BACnet network (SSPC-135, 2012). All other objects

are implemented based on the requirement of the device (SSPC-135, 2012). Each BACnet device

supports a number of services. These services provide the means of communication between devices

on the network. The services make use of a client-server model for connectivity similar to that in use

on TCP/IP networks, however the classification is reversed. The clients are controller devices, while

servers are sensors, actuators and point controllers which generate the data to provide to the client

devices. Thus, server devices have much lower hardware capabilities compared to client devices.

As stated, there are 38 services defined in the 2012 version of the protocol, outlined in Table 2.6.

The BACnet services themselves are not dependent on any particular network infrastructure, with

the protocol specification stating that BACnet is to be agnostic to the transport of data (SSPC-

135, 2012). Addendums to the protocol have formally added virtual IP and ZigBee to the list of

supported underlying protocols, however in theory any underlying protocol could be utilised for

this purpose (Granzer et al., 2008; Hersent et al., 2012).

A minimum set of services required for operation is defined as a BACnet Interoperability Build-

ing Block (BIBB) in the BACnet standard. Each BIBB represents a service function, or network
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Table 2.5: BACnet standard objects sorted by type, adapted from SSPC-135
(2012), bolded objects represent the most common objects used defined by
Distech (2010, p23)

Basic Device SimpleValue

Device Bit String Value
Analog Input Character String Value
Analog Output Date Pattern Value
Analog Value Date Value
Binary Input Date Time Pattern Value
Binary Output Date Time Value
Binary Value Integer Value
Multi-state Input Large Analog Value
Multi-state Output Octet String Value
Multi-state Value Positive Integer Value
File Time Pattern Value

Time Value

Physical Access Control Notification

Access Credential Event Enrolment
Access Door Notification Class
Access Point Notification Forwarder
Access Rights Alert Enrolment
Access User
Access Zone
Credential Data Input

Presentation Process

Group Averaging
Global Group Loop
Structured-View Program

Life safety and security Logging

Life Safety Point Event Log
Life Safety Zone Trend Log
Network Security Trend Log Multiple

Schedule Control

Calendar Command
Schedule Load Control
Meter Lighting control
Accumulator Channel
Pulse Converter Lighting Output

message which can occur in the device, specifying which device is to act as a client or server for

each individual service. Thus there are two types of BIBB, Client BIBBs which represent supervis-

ory/control devices requesting data and actions to occur (classed A), and Server BIBBs representing

sensors which respond to requests with data (classed B). The BACnet standard defines six device

profiles which couple a set of BIBBs with the minimum working set of objects with which to classify

a device. See Addendum A for a complete listing of device profiles. Each device may implement
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Table 2.6: BACnet standard services sorted by type, adapted from
ANSI/ASHRAE standard 135, BACnet 2012. (SSPC-135, 2012)

Alarm and Event Remote Device Access Object Access

AcknowledgeAlarm DeviceCommunicationControl AddListElement
ConfirmedCOVNotification DeviceCommunicationControl RemoveListElement
UnconfirmedCOVNotification ConfirmedPrivateTransfer CreateObject
ConfirmedEventNotification UnconfirmedPrivateTransfer DeleteObject
UnconfirmedEventNotification ReinitializeDevice ReadProperty
GetAlarmSummary ConfirmedTextMessage ReadPropertyMultiple
GetEnrollmentSummary UnconfirmedTextMessage ReadRange
GetEventInformation TimeSynchronization WriteProperty
LifeSafetyOperation UTCTimeSynchronization WritePropertyMultiple
SubscribeCOV Who-Has WriteGroup
SubscribeCOVProperty I-Have

Who-Is
I-Am

File access Virtual Terminal

AtomicReadFile VT-Open
AtomicWriteFile VT-Close

VT-Data

additional services other than the minimum required in the standard, thus comparable devices from

different vendors can have differing functionality. Thus, each device of the same profile type may

have different objects and services but undertake the same functions, due to a minimum operating

specification and optionality of most objects, object properties, and services which can vary by

vendor. Compliance with the BACnet standard is based on a minimum set of features required,

with devices currently tested against the ASHRAE 135-2012 BACnet version (BTL, 2017). Com-

pliance holds for one specific hardware version of the device, with future versions requiring a new

round of compliance testing. To determine the objects and services a specific device supports,

BACnet employs a Protocol Implementation Conformance Statement (PICS), which each vendor

is required to generate for each device a vendor produces. Each device is therefore capable of

generating a PICS, from which core information can be retrieved. Compliance holds for multiple

software versions for a device, according to the listing of PICS retrieved from BTL (2018). Thus

many devices for sale use older BACnet protocol revisions for operation. Typically, the BACnet

protocol version a device operates with is between five and ten years old. The flexibility of the

protocol implementation has allowed BACnet to become widely used and interoperable, over a

range of devices and use cases, but also makes it difficult to baseline devices for security purposes

(Caselli et al., 2016).

2.3.1 Typical network topology

Historically, BACnet operated on a three tiered network topology (Kastner et al., 2005), see Fig-

ure 2.1. With the advancement of microprocessors, the typical three tier topology has been reduced
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Figure 2.1: BACnet three tiered network topology, replicated from Kastner,
Neugschwandtner, Soucek and Newman (2005, p1183)

to two tiers (Kastner et al., 2005), management and field, with the automation tasks undertaken

on point controllers in the field tier and network controllers operating in the management tier, see

Figure 2.2. The management tier contains networking controllers, operator workstations, human

machine interfaces and facility management networks, which provides the ability to retrieve data

and interact with field tier devices to make high level decisions. For interconnected BACnet sys-

tems, the management level also holds connections to the enterprise network, and externally to the

Internet through a firewall. The field tier represents physical devices in the network which gener-

ate data about the environment, or interact with humans, such as sensors, actuators, valves, light

switches. The field tier also holds point controllers, such as variable air valve controllers, thermo-

stats and zone controllers, which control subsections of a network allowing for local control decisions

(Kastner et al., 2005). Serial connections between field devices are often daisy chained together

operating with master/slave token passing, with the network controller acting as a bridge between

the serial and digital management network (Cisco, 2008). There has been a shift to BACnet using

exclusively IP networks, culminating with the public review release of BACnet Addendum 135-

2016bj (ASHRAE, 2018). Currently, BACnetworks operate over IP using a virtual IP stack, which

encapsulates idioms of the BACnet application layers to transport over IP medium. BACnet/IP

networks do not use token passing, but rather operate as a traditional peer based network. As such,
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Figure 2.2: Example of BACnet two tiered network topology, described in Kast-
ner, Neugschwandtner, Soucek and Newman (2005)

BACnet/IP networks follow a more traditional IP based network topology, where related devices

are in a joint subnet. Typically, this only consists of controllers and management devices such as

workstations due to their higher feature set.

2.3.2 BACnet networking devices

In contrast to the conventional definition of a router (separation of networks) a BACnet router

translates between two different protocols in a network. When using BACnet/IP, connections

to other protocols in the hierarchy, such as BACnet MS/TP or ModBus are connected using a

BACnet router (Thomas, 2008). BACnet routers are not necessarily standalone devices, and are

often incorporated as part of a BACnet device, typically the network controller.

Given the reliance on broadcasting, a BACnet Broadcast Management Device (BBMD) can

be used as a gateway device for BACnet devices that are on different sub-networks. The purpose

of a BBMD is to broadcast, direct or relay packets between subnetworks, as BACnet routers

simply translate messages between protocols (Thomas, 2008; Distech, 2010). In the same way that

Ethernet bridges store Media Access Control (MAC) addresses, the BBMD stores locally known or

registered devices in their BACnet Device Table (BDT). Further, devices which operate under a

separate networking controller in the shared backbone network are classified as “Foreign Devices”,

and are stored in a Foreign Device Table (FDT) in the BBMD. BBMD management traffic is

undertaken using UDP/IP.

The BACnet standard defines 19 Network layer messages, which are used for device management

and network security processes when implemented. In addition, vendors may implement proprietary
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messages, outlined in Table 2.7.

Table 2.7: BACnet network layer messages defined by SSPC-135 (2012)

Hex Octet Message

X00 Who-Is-Router-To-Network
X01 I-Am-Router-To-Network
X02 I-Could-Be-Router-To-Network
X03 Reject-Message-To-Network
X04 Router-Busy-To-Network
X05 Router-Available-To-Network
X06 Initialize-Routing-Table
X07 Initialize-Routing-Table-Ack
X08 Establish-Connection-To-Network
X09 Disconnect-Connection-To-Network
X0A Challenge-Request
X0B Security-Payload
X0C Security-Response
X0D Request-Key-Update
X0E Update-Key-Set
X0F Update-Distribution-Key
X10 Request-Master-Key
X11 Set-Master-Key
X12 What-Is-Network-Number
X13 Network-Number-Is
X14 - X7F ASHRAE Reserved
X80 - XFF Vendor Proprietary

2.4 BACnet security issues

“ We didn’t really think that the threat would come from someone tapping into the

network in some dark mechanical room and sending legitimate, but malicious, mes-

sages.” Newman (2013, p. 43)

BACnet was not designed with security as a primary requirement, as the original intention and

implementation of BAS was isolated from external connection. With the advancement of network-

ing technology, the change from serial-based networks to Ethernet, and the rise of the IoT, BAS

networks now have external facing connections to internal enterprise networks, and the Internet for

remote management and cloud-based data analytics (Ahmad et al., 2016; Baig et al., 2017; IBM,

2017). As such, the attack surface against BAS networks, including BACnet managed networks

has increased.

Before publishing the first edition of the BACnet standard in 1995, public review comments

highlighted a concern about security in BAS (Newman, 2013). As noted by Newman (2013),

peoples view of the “main threat” to BACnet was different. The main threat proposed by the

BACnet working group was that of a disgruntled employee, who would use an existing operator

workstation to attack the BACnetwork. The realisation of the threat provided by public comments
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however was an external physical intruder who would tap into the network and send “legitimate,

but malicious messages” (Newman, 2013, p43). With the way BACnet is structured, and the now

ubiquitous connection to the Internet, the physical requirement of the intruder to send legitimate

commands which cause malicious actions has been eliminated. While BACnet has the most robust

security features of the three major open source protocols, the lack of implementation equates the

robustness to naught.

With the increased connectivity of BAS to other networks, such as enterprise and the Inter-

net, BAS are exposed to the same threats faced by traditional IT based networks and protocols

However, BAS are also exposed to their own set of threats, due to a hierarchal topology, broadcast

based communications and extensive trust placed in communications from devices connected to the

network. The consequence of this design leaves BAS networks with no third party verification for

source authentication, exposing BAS protocols to message interception, replay and message inser-

tion attacks (Holmberg, 2003; Granzer, Praus & Kastner, 2010). In addition, BAS are vulnerable

to a range of denial of service attacks through normal operation of BAS protocols against specific

building services (Antonini, Barenghi, Pelosi & Zonouz, 2014; Mundt & Wickboldt, 2016).

Many researchers have identified and classified vulnerabilities in the BACnet protocol. Holmberg

(2003) in their 2003 threat assessment identified a range of vulnerabilities against BACnet, with

classification split into two distinct parts, IT based, which represent generic Internet Protocol

based vulnerabilities, and BACnet protocol specific vulnerabilities. Within the BACnet vulner-

ability class, there are five categories, snooping, application service attack, network layer attack,

network layer Denial of Service and application layer Denial of Service. Similarly, Kaur et al. (2015)

identified three classes of vulnerability against BACnet, adapted from IT (equivalent to Holmberg’s

IT based), non-conformance and protocol vulnerability. Further, Caselli (2016) defined snooping,

Denial of Service and process control subversion. At the time of writing, no research was found to

have been undertaken to consolidate a classification scheme, or address the impact of each BACnet

vulnerability against a system. The range of vulnerabilities defined have had limited known usage

in real networks. Reported attacks against BACnet specifically are limited, and those that exist are

not at a level where specific vulnerabilities are discussed. Typically, reported attacks are disclosed

by researchers, rather than reported by advisories after an attack has occurred.

Researchers have implemented a range of attacks against BACnet using the detailed specific

vulnerabilities in a number of simulated environments (Johnstone et al., 2015; Tonejc et al., 2016;

Esquivel-Vargas et al., 2017). Bowers (2013) outlined a range of attacks implemented as part of an

automated attack framework implemented in Python. The Framework contained three categories,

Discovery, Enumeration and Fuzzing, which utilised legitimate BACnet commands. However, often

researchers forgo directly implementing an attack, rather using synthetic data manipulation for

out-of-bounds data set generation and testing purposes (Kaur et al., 2015; Tonejc et al., 2016).

There are various reports of the number of BACnet devices which are directly accessible to the

Internet. Praus et al. (2016) details results from 2014, where 13,964 BACnet devices are openly

accessible. More recently Gasser et al. (2017) undertook active Internet-Wide traffic measurements
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searching for BACnet devices, between 2016 and 2017, revealing 16,485 internet accessible devices.

Further, Gasser et al. (2017) scanned 16 ports, as opposed to only the default port 47808, which they

identify as 53% of their responses. Identifying an exposed BACnet device is relatively simple given

the protocol has high trust, and is verbose. In addition, fingerprinted device search engines such

as Shodan, can be used to search directly for BACnet devices. The devices detailed from a Shodan

scan is not a complete listing of all devices, given the results displayed are a subset of total results

due to caching. At any one point around 3,000 readily accessible BACnet devices exist through

the Shodan Engine, with Australia being consistently in the top five exposed countries (Peacock

& Johnstone, 2014; Peacock et al., 2017). Figure 2.3 details three Shodan searches undertaken

at various points during the research duration. In 2017, Positive Technologies undertook data

collation of scans from Shodan, CenSys and Google to outline the number of Internet accessible

ICS components. 175,632 devices were found, with BACnet devices accounting for 13,717, and the

Tridium Fox framework accounting for 39,168, placed 4th and 2nd respectively out of all protocols

detailed (PositiveTechnologies, 2018). With an increased level of exposure, detection of incidents

is of importance to reduce associated costs and risks.

2015 2016 2017

Figure 2.3: Shodan search engine results outlining directly accessible Internet
connected BACnet/IP devices at the time of query in 2015, 2016, and 2017.
The darker the colour the more devices identified.

Second order threats are those which have an emergent effect against a system. In BAS, these

can include damage to physical goods/data inside a building, such as perishables or data servers

through temperature manipulation. Since BAS networks are connected to enterprise networks,

attacks such as data theft and extortion on enterprise networks can also occur via the BAS network

(Cárdenas et al., 2008; Vijayan, 2014).

Direct and second order threats are tightly coupled. One vulnerability could exploit each of

these threats, for example an attack against a fan in a HVAC, which uses legitimate commands

sent from a trusted by default device on the network would impact both the physical device (i.e

burn out the fan) but also impact the goods inside the building (Johnstone et al., 2015).

Compared to other connected devices, such as desktop computers and smart phones, BAS

devices undertake relatively simple computing tasks, and as such have reduced compute power by
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design. With the added long life-cycles of BAS networks compared to IT devices, most IT devices

have an order of magnitude more processing power and memory size than a building controller.

The connection of BASs to external networks provides a means for contextually powerful devices

to interact with BAS devices, which through normal interaction can overwhelm BAS devices and

cause physical damage to building components and the surrounding environment (Holmberg, 2003;

Johnstone et al., 2015).

2.4.1 Summary of core issues

Many of the underlying issues facing BACnet controlled BAS originate from historical design choices

based on the then locally connected topology. BACnet devices are peers, meaning there is a high

degree of trust placed in the network communications originating from a device. Due to previously

being closed topology, source authentication was not required and thus is lacking from base protocol

implementations of BACnet. Given there is no third-party source authentication, any device on the

network which utilised the BACnet protocol can communicate with other BACnet devices. BACnet

has limited knowledge of network scope and segregation, thus if an external device can interact with

a BACnet device, it will act on its command. As BASs often run over office network architecture,

and provides remote access to internal systems, securing the BAS is important for enterprise network

security (Cárdenas et al., 2008; Fisk, 2012), in addition to the security of the BAS. More recently,

BASs using BACnet have been integrated into cloud analytic platforms and the IoT (GO-IoT,

2018). Discussion has also begun on the use of integrating wearable technologies to further optimise

control procedures in BAS for future smart cities (Baig et al., 2017), opening another avenue into

the network which must be secured. Additionally, as BASs are more commonly being connected

to enterprise networks, the possibility of pivoting into the secured internal enterprise network can

exist (Cárdenas et al., 2008).

Oversight on the network level is also an issue. Typically, BACnetworks have sensor monitoring

and data aggregation via trending for operational purposes, but not network level oversight. Gener-

ally, the owners and operators of the BAS do not have control over the network, with IT personnel

controlling the network (Jabado, 2017; Humphries, 2017). Often BAS operators have a network

to operate the BAS, but outsource monitoring of the network connection to the IT department,

who do not deploy network monitoring to a segregated part of the network, allowing for malicious

network transactions to occur undetected.

2.5 Approaches to securing BACnet

“no company has yet implemented it[BACnet security services] in a commercially

available product”Newman (2013, p. 44)

The 2003 threat assessment undertaken by Holmberg (2003) formed the basis of the construction

of an improved security addendum for BACnet. Prior to this, Clause 24 of the BACnet Standard
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outlined minor network security features discussed in Zachary et al. (2002) and Holmberg (2003)

as in-secure. The BACnet Security Services (BSS) is the improved security addendum, defined as

Clause 24 of the BACnet standard 2012, with the intent to “...provide peer entity, data origin,

and operator authentication, as well as data confidentiality and integrity” SSPC-135 (2012, p720).

Clause 24 specifically mentions it is not defined to provide “... authorization policies, access control

lists and non-repudiation” SSPC-135 (2012, p720). Security features are implemented as a set of

network layer messages, but is typically described as a separate stack layer. Clause 24 provides the

ability for devices to authenticate, data hiding and user authentication through the use of shared

keys used to sign messages, of which there are six types outlined below (SSPC-135, 2012).

1. General-Network-Access

2. User-Authenticated

3. Application-Specific

4. Installation

5. Distribution

6. Device-Master

The General Network Access Key is provided to all devices, and is used to sign Broadcast net-

work layer messages, enable encryption tunnels and used by user interface devices which cannot

authenticate normally (SSPC-135, 2012). The standard notes that messages sent with a general

network access key should not have their user ID and user role fields trusted (SSPC-135, 2012).

The User Authenticated Key are provided to trusted client and server devices which implement

identity management, allowing for trust of the user ID and user role fields. Application-Specific

keys provide security boundaries between specific building services, such as HVAC and lighting

(SSPC-135, 2012). An Application-Specific Key is thus only provided to devices sharing a building

service, with Clause 24 stating these keys can be for highly secure communication, allowing re-

striction of services initiated by devices with lower privileged keys (SSPC-135, 2012). Installation

keys are temporary keys which are aimed to be used by technicians to configure controllers using

tools that would not normally access the network (SSPC-135, 2012). Distribution keys are used to

distribute all keys bar the device-master over the network, as per local security policy (SSPC-135,

2012). The device master key is used for the distribution key, and can be either a unique pre-

fixed key, or requested from a key distribution server using the Set-Master-Key service (SSPC-135,

2012). Key distribution is intended to occur via a BACnet key server (SSPC-135, 2012). All keys

are bundled into a set and distributed with a single key revision number, each device receives a

specific set of keys appropriate for the device use (SSPC-135, 2012).

The BSS defines SHA256 or MD5 for key Hashed Message Authentication Codes (HMAC),

however, given that MD5 is widely identified as an insecure hashing technique (Turner & Chen,

2011), the integrity of signing messages using BSS is questionable.
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Table 2.8: BACnet security policies, adapted from SSPC-135 (2017)

BACnet Security Policies

Plain-Non-Trusted Not physically nor digitally secure
Plain-Trusted Physical security is required, without protocol secur-

ity
Signed-Trusted Physical security is not required, digital security is

provided by signatures
Encrypted-Trusted Physical security is not required, digital security is

provided by encryption

Encryption is often not implemented on control networks due to the processing capability of

devices (Cheminod et al., 2013), and to provide the ability to maintain oversight for safety features.

Additionally, encryption does not prevent legitimate messages causing malicious actions if a trusted

device is taken over by an adversary. Clause 24 defines four network policies for devices, defined in

Table 2.8.

The caveat of BACnet security is that BSS defined in Clause 24 is optional. Noted by Newman

the original BACnet working groups director, “no company has yet implemented it[bacnet secure

services] in a commercially available product” Newman (2013, p. 44). Additional limitations are

identified in Clause 24, of note, for secure communications Clause 24 states that not only the

signature, but also the Device ID is required. Thus, the secure features of the protocol are reliant on

knowledge of the Device ID field of other devices, which is generally requested before communication

via a broadcast. Additionally, advice given in Clause 24 is to disable a range of error conditions

to prevent potential denial of service attacks, the equivalent of disabling ICMP in IP networks for

diagnostics, which is generally a discredited idea (Scarfone & Hoffman, 2009). To implement Clause

24, the standard defines a minimum device requirement, consisting of the details listed below.

1. Have an application layer

2. Support execution of WriteProperty

3. Ability to track time

4. Have non-volatile re-writable storage

5. Not be an MS/TP Slave device

These limitations discount legacy, and current field devices specifically, which generally cannot track

time and are MS/TP slaves. From a security standpoint, the development of BACnet seems to

have a reduced focus since the inclusion of the BSS as Clause 24 in 2009. Little additional security

analysis was performed via the BACnet working groups until 2017, with an updated release of

Addendum 135-2016bj discussing security. As noted, there is a push for BACnet to be part of the

IoT. Given the lack of implemented security features, the introduction of BACnet into the IoT area

is concerning, and requires further investigation. Currently, the security features of the protocol are

assumed to be handled by the IP suite (Newman, 2013). From a security standpoint, there are many
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questionable functions in the protocol base, which seem fundamentally at odds with traditional IT

based security theory and practice, yet are required for BACnet to operate in accordance with the

standard; for example, the reliance on broadcast communications (Newman, 2010). The BACnet

protocol is intended to provide a base level of functionality, with the flexibility to implement security

features on a per-use basis, given the optional criterion of the BSS. The implementation of the BSS

is reliant on the vendor of the device installed, however this is seen as an extra feature, rather than a

required behaviour. Unfortunately for BACnet, and subsequently the associated people, goods and

buildings, BAS vendors have historically been poor at securing their hardware devices and software

stack implementations. Additionally, many modern BACnet certified devices operating with the

base features defined in previous versions of the protocol standard, further outlined in §4.6.7.1 .

Proprietary security measures are being developed, and seems the way forward for securing BACnet

managed buildings. Given the market share of BACnet, continuing topology trends, and aim to be

integrated into the IoT, additional security features are required to improve the robustness of the

protocol.

2.5.1 Device hardening

Not only the BACnet protocol has security issues. As noted, BAS devices have a fraction of the

compute power compared to modern day desktops, laptops and smart phones. A number of reported

attacks against BACnet managed BASs have used hardware flaws in devices to gain access to the

system. One such attack was revealed via the July 2012 Federal Bureau of Investigation (FBI)

Newark divisions unclassified situational information report cyber alert, discussing vulnerabilities

in the Tridium Niagara ICS system (FBI, 2012). The report detailed that the Niagara system

is used extensively in BACnet managed BAS, with at the time, over 300,000 instances operating

worldwide (FBI, 2012). The trigger for the investigation was the infiltration of an adversary into

a New Jersey air conditioning company, who used Tridium hardware to manage its HVAC system,

and supplied the same hardware to other businesses buildings, including financial institutions (FBI,

2012). The Tridium hardware was connected directly to the Internet, with no interposing firewall;

a similar situation many businesses face with modern IP connected BAS hardware. Similarly, a

hardware flaw in a Tridium controller exposed to the Internet was used by independent researchers

to access the BAS in Googles Sydney Wharf building in 2012 (Grubb, 2013). The access was

responsibly disclosed, with Google reporting that the system accessed was segregated from other

devices on the network. Given the typical topology of BAS, and the topology retrieved in the

exposure, the statement is questionable. Analysis outlined in §4.2 found over 5000 unique Tridium

devices directly accessible to the Internet over a three year period.

An approach to improving the security of BACnet devices is firmware patching. Similarly,

software patching can be used to reduce software vulnerabilities running on each device. However,

patching is an area where IT and OT have opposing goals. Patching is a part of the system life-cycle

in IT systems, where upon detection of a flaw, a fix is designed, tested and applied to the system.

To deploy the patch, often the system must be restarted, or taken offline for a period of time. While
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appropriate for IT systems, downtime is not acceptable in BASs without forward planning; similar

to other control systems which have a safety to security relationship (Dussel et al., 2010; Fisk, 2012;

Cheminod et al., 2013). Additionally, patching a vendor installed device often leads to voiding the

maintenance warranty of the device, which is a prohibitive associated cost and justification to not

patch devices. Much like other control systems, the importance of availability has resulted in a lack

of patching, which in turn results in flawed systems in operation for often the entire lifecycle of the

device, typically 10-20 years. However noted by Fisk (2012) for longevity of a system, patching

must be a part of the system. Fisk (2012) elaborates, stating that patching only becomes effective

when an equilibrium is reached where more or equal vulnerabilities are fixed compared to those

introduced by the patch. The possibility of introducing unknown error provides further reasoning

for BAS to have infrequent to non-existent patching cycles.

While all BACnet devices are tested by a BACnet testing laboratory before being standardised

and receiving accreditation, the hardware level security of the device is not a component of ac-

creditation. Rather, the focus is on ensuring a minimum working set of communication and device

representation based on specific versions of the standard (BTL, 2017).

2.5.2 Network level security

Khaund (2015) identifies the requirement of a defence in depth, or layered approach to BAS security,

including identity validation, firewalls and encryption. BACnet specific network security methods,

such as firewalls have been investigated previously in Holmberg, Bender and Galler (2006). Pan,

Hariri and Al-Nashif (2014) investigated a means of preventing intrusions automatically through

dropping specific packets, akin to a firewall. However in life-safety critical systems, as elaborated by

Kaur et al. (2015), dropping packets is not an appropriate action. Comparatively, Fovino, Coletta,

Carcano and Masera (2012) implemented a ModBus firewall, which sits between the master and

slave devices on a network to monitor the critical state of the system. Alerts are generated based

on legitimate commands which could change the state of the system to a defined critical state.

Fovino et al. (2012) note that a great deal of knowledge is required of the system to define the

critical states, with future work proposed as a means of automatically searching the system space

and generating critical state definitions. A similar approach could be used in BACnet/IP, however,

it would suffer from similar issues due to the scope of BAS networks, and the multiple interactions

between devices. A potential means of enumerating the network protocol could be the use of

fuzzing (Takanen, Demott & Miller, 2008). Kaur et al. (2015) undertake fuzzing using a Python

Scapy based fuzzer to test their network normalisation rules. Further, fuzzing can also be used for

improving the security of the protocol, rather than testing a security tool, as noted by (Turner,

2016). Turner (2016) applied a customised fuzzer against the BACnet open stack v 0.8.4 (Karg,

2016), revealing a buffer overflow in the NPDU implementation. Fuzzing however would be highly

time consuming, and have a high degree of risk if running against a real system.

Most BACnet implementations do not have network level visibility of device communication

(Caselli, 2015; Jabado, 2017; Humphries, 2017). Rather, a Human Machine Interface (HMI) work-
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station provides a graphical interface for viewing and controlling specific devices in the network.

Further, in Khaund (2015), network visibility of the BAS network is not mentioned as a security

countermeasure. The convergence of OT and IT systems has led to data visibility being investigated

to further optimise the efficiency of BAS systems, typically for retrieving further knowledge from

data, such as occupancy trends from sensor data. With multiple motivations, and limited impact

on existing infrastructures, intrusion detection systems are an appropriate avenue to explore.

2.5.3 Intrusion Detection Systems

Intrusion Detection Systems (IDS) are an area of interest in control system network research,

and it is no different in BACnet managed BAS. Over the past decade, a range of novel detection

approaches have been undertaken to address security issues in BACnet. A Flow based intrusion

detection approach was investigated by Čeleda, Krejč́ı and Krmı́ček (2012), based on their previous

work in Krejč́ı, Čeleda and Dobrovolný (2012). The flow method, described in Krejč́ı et al. (2012)

was implemented in Čeleda et al. (2012) for IDS purposes on the Masarysk University BAS network,

with three security use cases discussed. One use case investigated three BACnet specific attacks,

namely a BACnet router spoofing attack, a BACnet DoS and a BACnet write attack. The flow

based approach was deemed sufficient by the authors to identify attacks where a combination of

packets causes a malicious action, as is the case with the router spoof attack and the DoS. The flow

patterns revealed by the write packets however, could not be used to reveal a specific attack taking

place, as one packet could cause a malicious write, and thus the pattern is much more difficult to

find with the flow based method. A significant limitation of the research is the lack of real attack

data, the flows did not reveal any BACnet specific network attacks, in addition, as the monitored

network was a real network, attacks could not be crafted and sent across the network to identify

what a malicious flow would encompass. The study by Krejč́ı et al. (2012) identified diurnal and

weekly patterns in the traffic of a university BAS. Explained by the purpose of a BAS to control

the temperature of an environment based on internal and external temperature differences, which

are diurnal. Of note is the diurnal pattern of Read property, Write property, I-am and Who-is

packets, which form the basis of BACnet communications between devices. These features could

be used for deriving normal network behaviour.

Pan et al. (2014) expanded the flow based method of Čeleda et al. (2012) by applying a capture

method to a simulated BACnetwork, with a range of BACnet specific network attacks used to gen-

erate a dataset for anomaly detection. The methods presented by Pan et al. (2014) assume that the

attacker will cause abnormal network transactions to occur, and thus defined normal value ranges

for write values. A tuning phase would be required for this method to work, as application to a

real network would require additional training to define the normal value ranges of specific devices,

as these ranges will be application specific, rather than a global standard. Of the commands clas-

sified, the authors classified I-am and Who-is network transactions as anomalous, however these

transactions are normal traffic interactions which occur in a BACnetwork when a device wishes to

find another device in the network, and write or read data to said device. Given the conditions
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set by the authors, the abnormal method is quite successful, however a limitation of the work is

the ability to correctly classify attacks which occur in the bounds of the specification of BACnet.

For example, in regards to the classification of I-am and who-is transactions as malicious, they can

be deemed as dual-purpose commands which can cause legitimate-yet-malicious commands to be

executed. Similarly, Write property commands which send values that are in-bound but with an

additional feature, such as frequency or multitude can also cause malicious action.

An alternative method for detection of out-of-bounds attacks is presented by Caselli et al. (2016),

using BACnet Protocol Implementation Compliance Statements (PICS) to derive device conform-

ance rules to form IDS rules. The approach provides a semantic-based method to detect abnormal

BACnet properties, services and objects operating in a BACnetwork with high detection rates and

low false positives. However, similar to Pan et al. (2014), the semantic based approach offered in

Caselli et al. (2016) also fails to detect legitimate-yet-malicious commands.

Esquivel-Vargas et al. (2017) continues the work discussed in Caselli et al. (2016), providing

rigorous testing to the specification mining approach. A parsing method is developed for BACnet

protocol implementation compliance statements for the specific devices operating in the network

of interest, which are used to form intrusion detection rulesets. The rulesets are tested using a real

BACnetwork, consisting of 646 devices. 10 PICS files describe 640 of these devices, with network

fingerprints generated for which services and properties each device has. When traffic deviates from

these generated fingerprints, an alert is triggered. The implementation is tested against a long

term capture of the real-network, which identified a number of implementation specific anomalous

behaviour, and a small testbed used to generate malicious BACnet specific attacks for testing. The

results are promising, but as noted by the authors, highly dependent on extraction of device PICS,

and observations of normal traffic interactions. Further, as noted, the drawback of this approach

is the inability to detect attacks which follow the correct syntax of the protocol and interact with

the defined objects and properties (Esquivel-Vargas et al., 2017).

A group of researchers have focused on anomaly based detection approaches to BACnet IDS,

carrying on from previous works with the KNX protocol. Kaur et al. (2015) discuss a snort based

traffic normalisation method for improving application reliability and security, with future work

slated for detection and prevention of attacks. Kaur et al. (2015) first derives a range of attacks

from Holmberg (2003), and defines that normal traffic, through real device testing is capable of

processing only 180 messages per second. The purpose of traffic normalisation is to improve the

robustness of the protocol implementation, through preventing malformed or, out-of-bounds traffic

from entering the network. Evaluation of the derived normalisation method is undertaken using

a simulated BACnetwork implemented as three virtual machines. The testbed consisted of an

attacker which uses the aforementioned fuzzer, the protocol normaliser and one BACnet device

operating the BACnet open stack (Karg, 2015) and wireshark to monitor the network traffic. A

range of scenarios were undertaken to generate normal and abnormal traffic sets. Of note, a DoS

attack consisting of upwards of 800,000 malformed packets per second was simulated, and used as

attack traffic for testing. When the normaliser is deployed, the DoS fails as all out-of-bounds traffic
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is dropped by the normaliser, and thus does not reach the device. The traffic normaliser defined in

Kaur et al. (2015) achieves the same purpose as Pan et al. (2014) and Caselli et al. (2016), albeit in

a different way. Implementation of the traffic normaliser in a real network would be difficult, given

the peer-to-peer topology of BACnetworks, as such a number of normalisers would be required.

Further work defined by Kaur et al. (2015) is the implementation of a state based classification,

similar to work outlined in Peacock and Johnstone (2014) and Johnstone et al. (2015).

Tonejc, Kaur, Karsten and Wendzel (2015) introduced a visualisation method for identifying

application layer anomalies in BACnet based on network messages flows. The authors test their

method with the premise of hardware malfunctions. Later, in Tonejc et al. (2016), the authors

expand and compare a range of unsupervised machine learning methods to the flow visualisation

method defined in Tonejc et al. (2015) for identifying malicious anomalies. A limitation of the

flow visualisation technique, as represented in Tonejc et al. (2016) is that only previously unseen

nodes would be classed as malicious nodes. There is no discussion on how existing trusted nodes

who sporadically exhibit malicious action would be identified. Community detection may be an

appropriate avenue to pursue, for dormant malicious actors on the network.

While work has been undertaken for intrusion detection in BACnet, current works can be

improved. Further work can be directed to identifying contextual anomalies, those which have

the characteristics and obey the rules of the protocol, but can still cause malicious outcomes.

Detection of contextual anomalies requires learning and understanding the structure of the devices

and interactions on the network, baselining behaviour, and identifying where behaviour deviations

occur. A common way to find patterns in networks is the application of machine learning algorithms.

A typical use case for machine learning in cyber security is in the area of intrusion detection systems.

The application of machine learning to BAS’s, particularly BACnet, is a recent research direction.

As such, a discussion of machine learning applied to cyber security generally is appropriate, to

outline areas in which machine learning can be applied to BAS intrusion detection.

2.6 Machine learning

Bhattacharyya and Kalita (2014) define machine learning as the application of algorithms to extract

meaningful patterns from datasets, with the intention of applying these learnt patterns to classify

future data. There are thus two sides to machine learning, developing learning algorithms, and

the application of said algorithms to specific problems. The application of a machine learning

algorithm essentially defines a learnt model of behaviour for the system of interest, from which

future data is compared, and classified based on the model. There are many learning algorithms, and

the classification of machine learning algorithms into specific methods/classes vary between texts,

with many crossovers, reclassifications and sub-classifications. Additionally, due to the quantity

of algorithms and derivatives, any listing would inevitably be incomplete (Goldstein & Uchida,

2016). There are generally however, two simplified classifications, supervised and unsupervised.

The core classifier for placement in these two defined groups is that supervised methods require
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labeled data, whereas unsupervised methods do not require labeled data. Supervised methods

model the relationships between inputs and outputs through analysis of the mapping between

inputs and outputs. While unsupervised learning is focused on finding patterns in data sets, and

forming clusters from which classification of future data can be undertaken through comparing

the distance between new data, and defined clusters. Examples of supervised machine learning

methods include Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), decision

trees, bayesian networks, and Markov models (Dua & Du, 2011; Bhattacharyya & Kalita, 2014;

Goldstein & Uchida, 2016). Unsupervised methods include clustering and statistical methods such

as expectation-maximisation algorithms (Dua & Du, 2011; Bhattacharyya & Kalita, 2014; Goldstein

& Uchida, 2016).

2.6.1 Application of machine learning to cyber security

A range of machine learning algorithms have been applied to cyber security problems, most com-

monly for intrusion detection systems (Dua & Du, 2011; Bhattacharyya & Kalita, 2014). Bhat-

tacharyya and Kalita (2014) note the different potential uses for the two generic divisions of machine

learning, supervised and unsupervised in network analysis. Supervised machine learning are useful

for finding known instances, however they require a labelled dataset which often requires human

intervention. Comparatively, unsupervised methods are useful for identifying unknown instances,

as they do not require labelled datasets, rather, using the statistical properties of instances to

group them by similarity. However, identification of unknown instances is dependent on three core

assumptions outlined by Bhattacharyya and Kalita (2014) .

1. Normal traffic has a higher occurrence than Anomalous traffic

2. Anomalous traffic is qualitatively different to Normal traffic

3. Similarity between Anomalous traffic is stronger than between Normal traffic

The features which distinguish between normal and anomalous may cause significant overhead.

A core premise of machine learning in cyber security is optimising feature selection to identify

the least number of features which can classify the traffic between normal and anomalous with

the highest accuracy levels (Bhattacharyya & Kalita, 2014). Through optimisation of features,

the subsequent dimensionality of the data is reduced which increases the processing speed of the

method (Bhattacharyya & Kalita, 2014).

A major problem with anomaly detection is the ability to detect threats in real-time, to increase

the speed in presenting an alarm. Chandola, Banerjee and Kumar (2012) highlight that Markovian

based techniques are very effective at undertaking real-time detection (termed online-detection

in Chandola et al. (2012)) through slight adaptation, with less than n-order Markovian models

applying thresholding, and Hidden Markov Models modifying the forward backward algorithm to

compute the optimal state sequence for an observation sequence in real time.
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2.6.2 Machine learning in BAS

Tonejc et al. (2016) undertakes a range of unsupervised machine learning methods, including clus-

tering, random forest, one class SVM and support vector classifier. The authors use a test set of

known attacks, and pre-process the packet captures into a vector representation, which then has

principal component analysis (PCA) applied for feature reduction. PCA can be used to classify

network traffic, whereby the lowest number of components are selected which describe the largest

amount of network traffic (Dua & Du, 2011). With the assumption that normal traffic outnumbers

malicious traffic, at a certain selected number of components, the traffic which is not explained by

the components are stated as anomalous. Tonejc et al. (2016) analysis is undertaken at a global

level, analysing all traffic on a testbed network. Any cluster smaller than 2% of total traffic is

classed as anomalous. Similar to other works in the area, many of the attacks discussed are out of

bounds based, e.g incorrect bit combinations, longer than normal addresses. These types of attacks

work well for methods such as clustering for outlier detection. The clustering and random forest

approaches undertaken were reported as successful, results for the one class SVM were deemed not

useful and thus not presented (Tonejc et al., 2016).

As reported by Tonejc et al. (2016), unsupervised methods seem appropriate for detecting an-

omalies in BAS where the malicious traffic is distinctly different from the normal traffic. However,

when detecting anomalous traffic which is close to normal, it is unclear how well unsupervised

methods will operate. The requirement of labelled data may be necessary, where supervised meth-

ods can be utilised. Typical machine learning methods which operate with labelled data include

Markov models and ANNs, which will be discussed in the forthcoming sections.

2.7 Markov Models

A Markov model is a class of probability model which exhibits the Markov property, namely, the

determination of the next value is only dependent directly on the current value, and not on historical

events or values (Van Mieghem, 2009). Markov models which evaluate based on the current state

are called first order Markovian models. N order models, use additional states to assess the next

state to transition to, for example, a second order Markovian model would evaluate a pair of states

for the next subsequent state. The class of Markov model is dependent on if the state variable

is observable, and if the system changes based on the observations from the model. When the

state variable is observable, and does not alter a system, the model is classed as a Markov Chain.

Alternatively, when the state variable is only partially observable, and the system is not altered,

the model is classed Hidden Markov Model. When the system is directly acted upon by the Markov

model, it is classed Markov Decision Process; which can be fully observed, or partially observed.

Given the domain of this research, only models which do not interact with a system are evaluated,

namely, Markov chains and hidden Markov models.
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2.7.1 Markov Chains

The state space and time parameter of a Markov chain can differ, and provides a number of further

classified Markov chains. When the state space is restricted, a model which exhibits the Markov

property is called a Markov chain. There is little consensus in the literature about the naming

convention for specific types of Markov chains, with Markov chain or Markov process being used

generically to refer to different time parameter models. For this research, if using discrete time,

a Markov model is referred to as a discrete-time Markov chain. When using continuous time, a

Markov model is referred to as a continuous-time Markov chain.

A Markov chain consists of a set of states, a transition matrix between the set of states and an

initial distribution of transition matrix values. A discrete-time Markov chain can be described by

Equation 2.1 - Equation 2.4, adapted from Haykin (2009, p583). Equation 2.1 defines the Markov

property, while a transition matrix where transitions occur at the same period is defined in Equation

2.2. When Equation 2.3 is met, the transition matrix is called a stochastic matrix. Additionally,

Equation 2.4 states that at a discrete time, there occurs a transition in the Markov chain.

Markov chains have a number of properties, including reducibility, periodicity, transience and

recurrence. From these properties, the ergodicity, and steady-state analysis of the Markov model

can be determined. Reducibility describes the ability of the chain to traverse between states. A

Markov chain is classified as irreducible so the chain can get to any state from any state. The

periodicity describes the number of periods required to return to the current state from future

states. If the period is 1, the state is classed aperiodic, if all states are aperiodic, the chain is

classed as aperiodic. If the period is 1<, the chain is classed periodic with a stated period value

corresponding to the greatest common divisor of periods between states. Transience and recurrence

are properties of states in the Markov chain. A transient state describes a state which may never be

transitioned back to, while recurrent states will always, eventually return to the state. Additionally,

if a state can never be exited, the state is classed an absorbing state. A state is called ergodic if

the state is both aperiodic and positive recurrent. Classification of states, and Markov chains

can be determined through analysis of the state properties, and consultation of Figure 2.4. The

steady state distribution, sometimes called a stationary distribution, is reached when the probability

distribution remains unchanged in the Markov chain as time progresses, stated as a vector π. The

steady state is determined by raising the transition matrix to the power k, a future time step, until

the transition probabilities converge.

P (Xk+1 = xk+1|X0 = x0, ..., Xk = xk) = P (Xk+1 = xk+1|Xk = xk) (Equation 2.1)

pij = P (Xk+1 = j|Xk = i) (Equation 2.2)
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pij ≥ 0 for all i, j (Equation 2.3)

N∑
j=1

pij = 1 (Equation 2.4)

Figure 2.4: Markov state classification represented as a decision tree, replicated
from Haykin (2009, p590)

Conversely, a continuous-time Markov chain, holds the Markov property, see Equation 2.5,

and also holds the concept of time spent in a state, i.e the ∆t between transitions are not equal,

see Equation 2.6 taken from Van Mieghem (2009). Continuous time Markov chains thus have an

exponentially distributed transition time between states, which is independent of changing state;

the time spent in the state is not determinant on transitioning to the next state. Both discrete-

time, and continuous-time Markov chains can additionally hold the concept of homogeneous and

inhomogeneous time, whereby the transition probabilities between states are independent on time,

or are dependent on time, respectively. For a continuous time Markov chain, Equation 2.5 describes

the Markov property and Equation 2.6 describes the transition matrix. Equation 2.7 is called the

Chapman-Kolmogorov equation, which is the fundamental equation determining that states in

the set are connected to each other. The same relation as discrete time Markov chains holds for

continuous time Markov chains, namely Equation 2.8 stating that at any point in time, the chain
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will be in a defined state. Further, the initial condition of the transition matrix is Equation 2.9.

P (X(t+ τ) = j|X(τ) = i,X(u) = x(u), 0 ≤ u < τ) = P (X(t+ τ) = j|X(τ) = i) (Equation 2.5)

pij(t) = P (X(t+ τ) = j|X(τ) = i) = P (X(t) = j|X(0) = i)

where

X(t), t ≥ 0

(Equation 2.6)

P (t+ u) = P (u)P (t) = P (t)P (u) (Equation 2.7)

N∑
j=1

Pij(t) = 1 (Equation 2.8)

P (0) = I

where

P (0) = lim t ↓ 0P (t)

(Equation 2.9)

2.7.1.1 Markov Chain applications to cyber security

Markov chain models have been used in a range of disciplines including cyber security, typically for

network anomaly detection. Markov models can be used for simulation, testing approaches, and

classification of new data based on previously seen data. In Caselli, Zambon and Kargl (2015), a

discrete time Markov chain is defined for network communication in the ModBus protocol. The

model uses a sequence of event process, which allows for state classification based on the sequence

of commands being sent on the network, in addition to the data sent on the network. Of note

is the generation of the model being independent of the protocol of interest, where each sequence

event is automatically classified for state learning. After learning, test data is provided whereby

new states and transition patterns are flagged as anomalous, and investigated for further analysis.

The concept of weights are applied to commands based on domain knowledge and an adversary

model, where not all events are of equal importance.

In Abraham and Nair (2015), Markov models are applied to threat intelligence analytics,

through the generation of automated attack graphs from CVSS data. The inputs for this model

are the network topology, services running on devices, and CVSS scores of identified devices and

software. Markov chains are used to simulate progress of an adversary progressing through the
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network by chaining vulnerabilities in each device together to reach an end goal. The aim of the

research is to define the shortest path an adversary must take to reach their goal, and provide

insight into the current security structure of a given system. The model is generic, and could be

expanded with the combination of an adversary model, and additional goal states for the adversary.

In Kostakos, Ferreira, Goncalves and Hosio (2016), a Markov chain is developed for prediction

of smart phone screen usage, based on statistical properties of usage. The aim of the modelling

was to reveal emergent system behaviour, based on the assumption that observable state features

are mutually exclusive, and have a probabilistic transition between states. From the data used in

this research, the time between sequential events can be determined, defining how long each state

is visited for, a continuous time Markov chain. Analysis performed in Kostakos et al. (2016) details

that the data exhibits time inhomogeneous features, in certain states the transition probability

increases based on the amount of time spent in the current state. Time data analysis of the

relationships between state transitions and the time of day and day of week was undertaken.

Kostakos et al. (2016) also investigate individual device profiling, applying the analysis to individual

devices to identify device specific behaviour patterns for time between states, and time of day state

change. A difficulty with time inhomogeneous and continuous Markov models are the increased

complexity of the model requiring additional processing capability.

Abaid, Sarkar, Kaafar and Jha (2016) apply a limited state discrete time Markov chain model

for detection of botnet infections, and prediction of a botnet attack executing. The model presented

defines four states: exploit, binary download, CNC communication and attack. Of note, the

authors discuss self loops in their states, where for attack and CNC communication, the transition

probabilities are very high (90%<), which significantly impacts the prediction of state change in

their model. The authors argue that given their interest in entering an attack state, and not the

duration held within the attack state, the self loop can be discounted. From this point, the authors

investigate the potential of eliminating all self loops, and conclude that from their dataset, the

variance in temporal patterns on self loops is low enough to eliminate self loops completely. The

authors describe a high prediction rate for the attack state, and CNC communication state, but

detail a limitation of their research is the small sample size and high variance in some state data,

with two orders of magnitude more data for attack and CNC states compared to exploit and binary

download states. The research proposes a future improved state model, which holds more states,

and an improved classifier for classifying data into states.

Bockholt (2017) apply a Markov chain model to identify sequence attacks on network flows from

the DARPA98 dataset. The Sequential Probability ratio test and log likelihood ratio algorithms

are applied against the Markov chain transition matrix and graphed, with the premise of visually

identifying different classes. A linear threshold is implemented which distinguishes the classes

of traffic, future work suggests a non-linear threshold. A number of restrictions are placed on

the implementation, such as the aim to use low level information, and minimise the processing

requirements.

An underlying theme stated in the analysed literature is the requirement of ground truth data
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representing the normal network behaviours of the system of interest. This is particularly difficult

in real networks, where the certainty of having no adversary traffic in the network is unknown.

Further, the requirement of labelled data is a time-consuming, often manual process (Bhattacharyya

& Kalita, 2014), which must be overcome. An alternative, when the states are not directly observed,

and thus not labelled is the Hidden Markov Model.

2.7.2 Hidden Markov Models

A Hidden Markov Model (HMM) is a model which explains a set of unobservable states through

a probability distribution function of observations generated by the underlying states (Rabiner,

1990). The observations infer the underlying state of the system, and can be discrete or continuous

values. In a network context, the observations could be features of network packets or flows such as

packet size, and the hidden state is a discrete value, such as a command, or protocol type (Dainotti,

Pescapé, Rossi, Palmieri & Ventre, 2008). The HMM is described by a finite set of hidden states (S),

and a finite set of observations (O), generated by those states. The transition matrix (A) represents

the probability of moving from one state to another, while the emission matrix (B) describes the

probability of the observation when the system is in a specific state. The model is initialised by

a starting probability distribution function (π), which defines the probability of starting in each

hidden state. As the state is not observed, the joint distribution of the observation and state is

taken over the full set of states. Each observation is independent and identically distributed over

the state sequence. Each state is dependent on the previous state at the last time slice.

Formally a HMM (λ) is a set of model parameters (π,A,B), defined by Equation 2.10, Equa-

tion 2.11, Equation 2.12, Equation 2.13 and Equation 2.14. The joint distribution probability is

described in Equation 2.15.

S = {s1, s2, ..., sn} (Equation 2.10)

O = {o1, o2, ..., om} (Equation 2.11)

A = {aij , 1 ≤ i, j ≥ N}

where

aij = P (st = j|st−1 = i)

aij ≤ 0

(Equation 2.12)
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B = {bj(k)}

where

k ∈ O

bj(k) = P (ot = k|st = j)

(Equation 2.13)

π = {πi}

where

πi = P (q1 = si), 1 ≤ i ≥ N

(Equation 2.14)

P (O|λ) = πs1P (o1|s1)
∑ T∏

t=2

aijP (ot|st) (Equation 2.15)

Applying a HMM to real data requires solving three problems.

1. The Evaluation Problem: Determine the probability that the model generated the observation

sequence

2. The Decoding Problem: Determine the optimal state sequence which best explains the ob-

servation sequence

3. The Learning Problem: Determine the probability of the model producing an observation

sequence through tuning the model parameters.

The evaluation problem can be solved using the forwards algorithm. The forwards algorithm is

a recursive algorithm for calculating the probability of each observation sequence which ends in

a specific state, for all states in the model (Shokhirev, 2010; Rabiner, 1990). Using the forwards

algorithm, improves the calculation from order 2T ·NT to N2T . The decoding problem can have

multiple solutions, as there can be various definitions of optimal (Rabiner, 1990). When the state

space is ergodic, meaning transitions between all states can exist, the forwards-backwards algorithm

can be used. However, if the state space is not ergodic, the Viterbi algorithm can be used, which is

a form of likelihood maximisation algorithm which finds the single best state sequence for the given

observation sequences. The learning problem is the most difficult, as there are multiple model

parameters to optimise simultaneously. The Baum-Welch algorithm can be used to select a set

of locally maximised model parameters for the observation sequence given the model, using an

iterative approach which eventually converges (Rabiner, 1990). It should be noted that there may

be multiple locally maximised model parameters existing in the explored space, which may require

optimisation (Rabiner, 1990).
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2.7.2.1 Hidden Markov Model applications to cyber security

HMMs have traditionally been used in speech recognition processes (Rabiner, 1990). HMMs have

also been used for general network traffic analysis in Salamatian and Vaton (2001) and later, Dain-

otti et al. (2008). In Warrender, Forrest and Pearlmutter (1999), the use of HMM in identifying

malicious system call sequences was explored, with high true positive (0.8 to 0.99) and low false

positive readings (0.0000 to 0.0005). Warrender et al. (1999) note the overhead of HMMs with

intermediate data structures, and conclude that HMMs are dependent on the dataset for useful-

ness. Jain and Abouzakhar (2012) use HMM for network anomaly detection against the KDDcup

1999 dataset (Hettich & Bay, 1999). Two models are derived, a normal HMM and a malicious

HMM, where the observations provided are fed into each model and classified normal or malicious

based on the observations fit to the model. The overall detection rate values are calculated by

summing the F measure of each model for each TCP service investigated. Nine different classes

of service are presented, with overall detection ranging from 0.76 to 0.99. An alternative method

to having multiple models is assuming that low probability transitions lead to anomalous states

(Bhattacharyya & Kalita, 2014), which may be appropriate in certain situations. Ariu, Giacinto

and Perdisci (2007), apply a HMM for application level network traffic analysis to identify anomal-

ous sequences of commands travelling over a network. Ariu et al. (2007) explore the use of varying

size symbol dictionaries, splitting the training data, and using 10, 20 and 30 hidden states for their

model. Similar to results found in Warrender et al. (1999) for system call analysis, the application

of HMM to network sequences has a high true positive and low false positive rate. The high classi-

fication rates of HMM in both system call and network traffic warrant investigation for application

to BAS network data. Further, the periodic nature of diurnal traffic generation lends itself to the

use of a state classification method. HMM will be investigated given the lack of application to BAS

traffic in the explored literature.

2.8 Artificial Neural Networks

An alternative machine learning method is the Artificial Neural Network (ANN). As defined by

Haykin (2009), an ANN is a parallel distributed processor, which consists of simple processing

units (called neurons) that can store experimental knowledge and make it available for future use.

Knowledge is acquired through the application of multiple input signals to a neuron. Each input

signal has a synaptic weight, which provides distinction of importance between inputs in numerical

form. The inputs have a summation and bias function applied taking into account the synaptic

weights. The value is then passed to an activation function, which limits the output value to be

generated based on the type of activation. There are various learning methods, of which batch and

online are prominent (Haykin, 2009). The key distinction between the two learning methods are

when the change in synaptic weight occurs in the model. For batch learning, synaptic weights can

be changed after all training batches have been iterated, called an epoch. Comparatively, online

learning provides the ability to change weights at an example by example level inside each epoch.
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Additionally, learning algorithms are used to manipulate various parts of the base ANN model,

such as the synaptic weights, and the structure of the neurons in the network.

A commonly used learning algorithm is the back propagation algorithm, which provides feed-

back to prior nodes in the network, improving learning and classification. The back propagation

algorithm will be the focus of this section. Back propagation consists of two additional phases.

The forward phase where the synaptic weights of the network are fixed, and the input signal is

propagated iteratively through the layers until reaching the output layer. Changes in the network

only occur in the activation potentials and output neurons during the forward phase. The second

phase is called the backwards phase, whereby an error signal is produced through the comparison

of the output and desired result. The resultant error signal is then propagated through the network

backwards, to affect the synaptic weightings applied to the network.

Formally, there are five steps involved in back propagation ANNs, summarised below from

Haykin (2009).

1. Initialisation: Where, assuming no prior information is available, use a uniform distribution

with 0 mean and a variance which caused the standard deviation of the neurons to fall between

the linear and standard of the Sigma activation function, to derive the weights and thresholds.

2. Presentation: Present the constructed network an epoch of ordered training examples, for

each example, perform the sequence of forwards and backwards algorithms.

3. Forward Computation: The input vector is presented to the input layer node, similarly, the

desired response vector is presented to the output layer nodes. Computation of the induced

local fields and function signals of the network by proceeding forward through each layer of

the network, shown as Equation 2.16. Assuming a sigmoid bias function, the output signal of

neuron j in layer l is given as Equation 2.17 If neuron j is in a hidden layer, then Equation

2.18 is used, similarly, if neuron j is in the output layer, then Equation 2.19 is used. The

error signal is calculated using Equation 2.20.

4. Backwards computation: The aim of the backwards computation is to find the local gradients

shown as Equation 2.21, and then adjust the synaptic weights of the network, shown as

Equation 2.22.

5. Iteration: The iteration step involves repeating steps three and four while presenting new

epochs of training examples until a stopping criteria is met. The order of presentation of the

training examples should be randomised between epochs. As training iteration is increased,

the momentum and learning parameters are adjusted, often decreased.
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v
(l)
j (n) =

∑
i

w
(l)
ji (n)y

(l−1)
i (n)

where

v
(l)
j (n) is the induced local field

y
(l−1)
i (n) is the output signal of neuron i at the previous layer (l − 1) at iteration n

w
(l)
ji (n) is the weight of neuron j in layer l which is fed from neuron i in layer (l − 1)

(Equation 2.16)

y
(l)
j = φj(vj(n)) (Equation 2.17)

y
(0)
j (n) = xj(n)

where

xj(n) is the j′th element of input vector x(n)

(Equation 2.18)

y
(L)
j = oj(n) (Equation 2.19)

ej(n) = dj(n)− oj(n)

where

dj(n is the j′th element of the desired response vector d(x)

(Equation 2.20)

δ
(l)
j =

eLj (n)φij(v
L
j (n)) for neuron j in output layer L

φ′j(v
(l)
j (n))

∑
k δ

(l+1)
k (n)w

(l+1)
kj (n) for neuron j in hidden layer l

where

φ′ denotes differentiation with respect to the argument

(Equation 2.21)
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where

η is the learning rate parameter

α is the momentum cost

(Equation 2.22)

2.8.1 Artificial Neural Network applications to cyber security

ANNs have been used in a range of cyber security areas, most prominently for clustering, feature

extraction and anomaly detection in network traffic (Bhattacharyya & Kalita, 2014). Ryan, Lin

and Miikkulainen (1998) examined the application of an artificial neural network to Unix command

detection in one computer with multiple unique users. A classification task was undertaken for nor-

mal traffic to identify which user used what commands. In addition, random data was generated

to represent anomalous behaviour on the system. The implemented method reported a 0.96 detec-

tion rate of anomalous behaviour, with a 0.93 true positive rate. The 0.07 false positive data was

explained due to a lack of data for a specific user of the system whose only interactions were the

reported false positive data. Ghosh and Schwartzbard (1999) evaluated the DARPA 98 intrusion

detection dataset, using an ANN for misuse and anomaly based detection. 139 normal and 22 an-

omaly sessions were used for testing both approaches. Increasing the accuracy of detection results

in a higher false positive rate, with a 0.773 true positive and 0.036 false positive accepted as the

optimal outcome for the anomaly detection approach. In regards to network anomaly detection,

ANN’s have been applied to detect a range of network based attacks (Bhattacharyya & Kalita,

2014). Often, this type of research explores frequency based attacks, such as denial of service

and port scanning, whereby the normal network traffic has synthetic attacks embedded into the

dataset, such as in Andropov, Guirik, Budko and Budko (2017). Callegari, Giordano and Pagano

(2014) evaluated a range of ANNs for prediction of future network traffic for finding anomalous

traffic. The results are promising, with false positives ranging from 0.002 to 0.049. With increasing

applications of ANNs to anomaly detection in cyber security, application to a BAS network is of

interest.

2.9 Summary of literature

With the presented review of the literature, it has been determined that intrusion detection ap-

proaches with regards to BACnet/IP managed BASs should be further explored. The majority of

research has focused on incorrect traffic identification as anomalous behaviour, such as increased

frequencies or illegal byte values. Further, two distinct types of dataset are used. Either, a real-

dataset with synthetic attack traffic implemented, or a small simulated test-bed network with a

limited range of attack types. Additionally, implemented test-beds are often not analysed in the

context of real-world network implementations.
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Few articles investigate the application of machine learning to anomaly detection in BACnet-

works. Methods, such as Markov based models and ANNs have seen high accuracy rates in anomaly

detection in similar network structures such as SCADA networks. As such, improvements can be

made in both the datasets used to test anomaly detection approaches for BACnetworks, and the ap-

plication of existing machine learning algorithms for anomaly detection in BACnetworks. The study

aims to address these issues, through generation of a simulation testbed for anomalous BACnet

command generation, and the application of machine learning methods, such as HMMs and ANNs

for evaluating the detection capabilities for BACnetworks.
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Chapter 3

Research Methodology and Design

This chapter details the methodology and design selected for the research. In some circumstances

it is straightforward to identify known-known anomalies in networked computer systems where the

variables are well understood and controlled, allowing for the experimental method to be directly

applied. However, identifying other types of anomalies, such as those defined in Table 1.2 are not

as straightforward to evaluate. To explore this problem, a number of frameworks are evaluated to

identify the appropriate research approach that could address the posed research questions.

The dominant research paradigms in information systems and cyber security research are ex-

plored, and an appropriate paradigm is identified and justified. The approach taken for the research

is discussed, with a range of candidate methods identified, analysed and ultimately selected. Next,

the research questions and derived hypotheses are stated. Following, the research design is presen-

ted, detailing the phases of research, core variables and materials used. The limitations and threats

to research are identified, and subsequently mitigations to said threats are stated. The chapter

concludes with a discussion of validity testing within the study.

3.1 Methodology

A methodology, as defined by Williamson (2013) is the “overall logic of inquiry involving the philo-

sophical assumptions behind an inquiry, the strategy of conducting research such as research design

and selection, and adoption of research methods and techniques as well as arguments for knowledge

construction and justification”(Williamson, 2013, p. 116). From this definition, there are two dis-

tinct features when undertaking research. First, the methodology, which defines the philosophical

assumptions underpinning the research used to inform the overall strategy and form a foundation

for selecting a research design. Second, the research design, which details the methods and tech-

niques, defining specific processes and procedures used for conducting the research, as well as the

collection and processing of data. Crotty (1998) states another feature, the justification of using

a specific methodology and design, rooted in the research question, and the assumptions of reality

the researcher brings to the research. Thus, through exploration of the philosophical assumptions

of a research domain, a critical selection process was undertaken for the use of specific methods
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and techniques which constitute a design. Coupled with analysis of the research questions, justific-

ation can be provided for a specific selection. Given the research undertaken involves technology,

systems and information, the domain of information systems research is explored for paradigms,

and associated meta-theoretical assumptions.

3.1.1 Research paradigms

As noted, the combination of meta-theoretical assumptions can be collectively used to inform a

research paradigm. For information systems research, Williamson (2013) defines three dominant

paradigms, positivist, interpretivist and critical. Similarly, Galliers (1990), describes the paradigms

of research in information systems as a continuum between empirical (positivist) and interpretative

(interpretivist) views. While the term positivist and quantitative, and likewise interpretivist and

qualitative are often used interchangeably, Williamson (2013), notes they are not synonyms. The

terms do not exclusively match with the aforementioned paradigms. Discussed by Crotty (1998),

the qualitative and quantitative classifications for research should be applied at the method level,

as they classify types of methods, rather than at the methodology level (separated as theoret-

ical perspective and epistemology by Crotty (1998)). This view is also informed through Galliers

(1990) classification schema of empirical and interpretative. As each methodology can utilise meth-

ods from both classes, quantitative and qualitative. The research paradigms will be discussed in

Galliers (1990) and Crotty (1998) terms. Namely, the paradigms are classed in terms of empir-

ical (positivist) and interpretative (interpretivist), while methods are classified as quantitative to

qualitative, detailed in Figure 3.1.

Paradigm

Quantitative

Qualitative
Method

Positivist Interpretivist

Critical

Empirical Interpretive

Figure 3.1: The continuum of dominant research paradigms in information
systems, and method classifications.

Positivists aim to apply scientific methods to a problem domain, with close association to de-

ductive reasoning and quantitative data. The aim of the positivist is to discover general laws

which can be applied, termed nomeothic. Interpretivists are concerned with meanings constructed

through individuals and groups, principally using inductive reasoning and collecting qualitative

data, termed idiographic. Critical theory focuses on changing the structures of society to empower

45



disadvantaged or minority groups, through quantitative and qualitative data and subsequent meth-

ods.

3.1.2 Meta-Theoretical assumptions

When distinguishing between the various paradigms, classification is undertaken through the use

of differing meta-theoretical assumptions. In information systems research, there are a number of

implied meta-theoretical assumptions which guide the choice of research methodology. Four core

meta-theoretical assumptions, derived from Williamson (2013) and Guba and Lincoln (1994) are

ontological, epistemological, logic of inquiry and axiological. Crotty (1998) posits that ontological

and epistemological issues arise together, whereby a certain way of understanding “what is” (the

ontology) is tightly coupled with the way of understanding “what it means to know” (the epistem-

ology). Crotty (1998) argues that it is difficult to separate epistemology and ontology as concepts,

as they inform one another, and thus selection of a methodology (termed theoretical perspective)

is often complicated through stating the epistemological and ontological assumption. Rather, for

the sake of completeness, the methodology discussion presented will follow the specification derived

from Williamson (2013) and Guba and Lincoln (1994) stating both the epistemological and ontolo-

gical assumptions, with knowledge that the two assumptions inform one another. The definitions

of each meta-theoretical assumption can be found in Table 3.1.

Table 3.1: Summary of meta-theoretical assumptions, adapted from Williamson
(2013), Guba and Lincoln (1994)

Assumption Description

Ontological The nature and existence of social reality
Epistemological The nature of knowledge and the ways of

knowing
Logic of Inquiry The logic of scientific explanation
Axiological Ethics and claims about values and their im-

pact on research

3.1.2.1 Ontological assumptions

The ontological assumption or question, relates to the form and nature of reality (Williamson, 2013).

Through defining the ontological assumption, research questions are grounded in what is perceived

to be “real”, and thus knowledge can be acquired which describes “how things really are” (Guba

& Lincoln, 1994, p. 108). The three dominant paradigms have competing views of the ontological

assumption. The positivist view accepts that there is one ordered and stable reality, which exists

regardless of interaction, called realism (Guba & Lincoln, 1994; Williamson, 2013). Interpretivists

view reality as a social construct, where reality is fluid and exists for the individual or group when

experienced, called relativism (Guba & Lincoln, 1994; Williamson, 2013). A middle ground is the

critical paradigms view, which accepts that reality objectively exists without interaction, but was
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shaped through the individual or groups construction over time, and now confines what is real,

called historical realism (Guba & Lincoln, 1994).

3.1.2.2 Epistemological assumptions

Epistemology, as stated by Crotty (1998) is “how we know what we know”. Epistemology is used to

ground research and allow for decisions of what can be classified as knowledge, and how knowledge

can be described as adequate and legitimate. A core epistemology is objectivism, which states that

meaning exists apart from the operation of consciousness. As an object, of a certain type, there

exists an intrinsic meaning defining the object. Thus, when an object is identified as a specific type

of object, the meaning of said object is revealed. Objectivity aligns with the positivist paradigm,

and, as noted, is clearly aligned with the ontological assumption of realism. Another, competing

epistemology is constructionism, which rejects the objectivist view, stating that there is no objective

truth waiting to be discovered, meaning exists due to the interaction with the world. Thus, meaning

is not discovered, but rather constructed by the individual, who may have competing meanings for

the same object of interest. Constructionism aligns with the interpretivist paradigm, and is closely

formed by the relativism ontological assumption. A third epistemology called subjectivism aligns

with both the interpretivist and critical paradigms, thus being influenced by historical realism.

Subjectivism states that knowledge is value mediated, and thus meaning is value dependant and

can change (Guba & Lincoln, 1994).

3.1.2.3 Logics of inquiry

There are two dominant logics of inquiry also called logical reasoning, namely, deductive and

inductive. Deductive reasoning begins with a general theory about an object of interest, testable

hypotheses are formed, and observation is undertaken. The end result of deductive reasoning is

an acceptance or rejection of the stated hypothesis, providing suggestion of a theory. Conversely,

inductive reasoning begins with a specific observation, which is then explored to find patterns and

thus form temporary hypotheses. The hypotheses are then explored and a general conclusion or

theory is then suggested. Typically, deductive reasoning aligns with a positivist paradigm, while

inductive reasoning aligns with interpretivist paradigms.

3.1.2.4 Axiological assumptions

Axiology is the study of the nature of values, when making an axiological assumption, one is

assessing the impact of individuals or a group of people’s values which influence the research

(Williamson, 2013; Guba & Lincoln, 1994). Positivist paradigm research defines that research is

undertaken in a value-free way, with the researcher being independent from the data, allowing

an objective stance. Interpretivist paradigm research defines all research as value laden, as the

researcher is part of the study, and cannot be separated, thus research is subjective. A summary

of the dominant meta-theoretical assumptions in information systems is presented as Table 3.2.
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Table 3.2: Summary of meta-theoretical assumptions for the three dominant
paradigms in information systems research, adapted from Guba and Lincoln
(1994), Crotty (1998), Williamson (2013)

Paradigms

Positivist Interpretivist Critical

Reason for
Research

Discovery of regularities
and causal laws for explana-
tion, prediction and control
of events and processes.

Description and under-
standing of phenomena in
the social world and their
subsequent meanings in
context

Empower people to change
their conditions through
unmasking and exposing
hidden forms of oppression,
false belief and commonly
held myths.

Ontology Realism: Ordered and
stable reality exists irre-
spective of an observer

Relativism: Reality is
socially constructed, as
people experience and
assign meaning, making
reality fluid and fragile.

Historical Realism: Real-
ity is socially constructed
but also perceived as ob-
jectively existing.

Epistemology Objectivism: Instrumental
approach to knowledge.
Knowledge enables control
of events, and represents
reality being stable and
additive.

Constructionism: Practical
approach to knowledge. In-
clusion of evidence about a
subject, and context is used
to empower understanding
of other realities, and how
the researcher came to un-
derstand them.

Subjectivism: Dialectical
approach to knowledge.
Knowledge reveals hidden
forms of control, domina-
tion and oppression, which
empowers individuals to
seek social change and
reform.

Logic of In-
quiry

Deductive: hypothesised
relations among variables,
logically derived from laws
or theories are empirically
tested in a repeatable way.

Inductive: development
of idiographic descriptions
and explanations based
on studies of people, and
actions in context. Explan-
ations need to make sense
to the individual or group
being studied as well as the
researchers and subsequent
research community.

Deductive, Inductive or
Abductive: seeking creative
leaps and revealing hidden
forces or structures which
help people understand
their circumstances and
ways of changing them.

Axiological Value-Free: Assumes both
natural and social sciences
are objective and value free,
operating separately from
social and power structures.
Ideally, positivist research-
ers are detached from the
topic of interest, and collect
value-free facts

Value-Laden: Questions
the possibility of value-
neutral science and value
free research. Values
are seen as embedded in
all human action, and
hence are inevitably part of
everything studied, without
judging one set of values as
better than another.

Value-Reasoned: Describes
any research as a moral-
political and value-based
activity. Critical research-
ers explicitly declare and
reflect on their value po-
sitions and provide argu-
ments for their normative
reasoning.

3.1.3 Selection of methodology

According to Williamson (2013), selection of a research paradigm is closely related to the form of

the research question, which infers the values of the core meta-theoretical assumptions. Questions

which aim to use measurements which can reliability provide an objective answer, and can be
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generalised to the population on which the study is based, can derive its assumptions from the

positivist paradigm. Questions which do not lend themselves to measurement and objective results

can instead derive their assumptions from the interpretivist paradigm.

From analysis of the stated major research question RQ1: How can known and unknown attacks

against BACnet/IP based Building Automation Systems be detected?. An objective, empirically

proven answer would be appropriate, and thus the research paradigm leans towards a positivist

approach. A similar method is described by Crotty (1998), whereby a research question or problem

informs the method to answer the question, and thus is the foundation of the strategy to undertake

subsequently leading to a discussion of assumptions about knowledge and reality; the methodology.

A complementary approach to identifying the meta-theoretical assumptions and subsequent

paradigm of research is through the analysis of the object of interest, and associated methods

described by Galliers (1990). Analysis of the objects of interest from Galliers’ taxonomy, shown as

Table 3.3, and the research questions posed suggests that both technology and theory testing are

potential subject matters for this research. From the identified objects of interest, the approaches

which align with both objects are highlighted, where the classification of “yes” is stated in one of the

objects of interest, it is explored. The “possibly” ranked approaches omitted from exploration are

Case Study, Survey, Subjective and Descriptive, given the research questions do not lend themselves

towards these approaches. The approaches explored are Theorem Proof, Laboratory Experiment,

Field Experiment, Forecasting and Futures Research, and simulation and game/role play.

Theorem Proof is described in Galliers (1990) as the development and testing of theorems,

closely tied to the strengths of the scientific method, namely, repeatability, reductionism and re-

futability, in addition to the precision of results. In essence, Theorem Proof is primarily concerned

with mathematical theorems, and thus will be discounted as an approach for this research.

Laboratory Experiments are described as the identification of precise relationships between vari-

ables in a designed controlled environment, with analysis undertaking using quantitative techniques.

With the aim to derive generalist laws to be applied to real world situations, the embodiment of the

positivist paradigm. Given the empirical nature of the research questions,laboratory experiments

is an appropriate approach.

Field Experiments are an extension of Laboratory Experiments, with the aim of improving the

real-world applications of research through some external object of interest, which the researcher

has limited control over to experiment on. The lack of control, and repeatability that this ap-

proach would incorporate, and potential of damaging real networks with attack traffic discounts

this approach.

Forecasting and Futures Research, defined by Galliers (1990) are scientific (positivist) and in-

terpretivist terms for determining future behaviour or action based on past historical data. In

a positivist tense, Forecasting involves the use of statistical models, such as regression and time

series analysis on numeric data. From an interpretivist perspective, in terms of technology, Futures

Research is the interpretation of behaviour over time related to a specific technology. Given the

research questions, Forecasting aligns with the operation of intrusion detection systems, and the
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purpose of the research, namely, to detect future known and unknown threats based on histor-

ical threats and an understanding of the system of interest. As such, the positivist approach of

Forecasting could be an appropriate approach for this research.

Similarly, Simulation and Game/Role Playing represent the positivist and interpretivist aspects

of the approach, being, the extrapolation of a model to solve problems which are difficult to solve

analytically from observable behaviour. In terms of Simulation, this is a mathematical, or com-

puter based construct which represents a system of interest. Whereas, for Game/Role Playing, a

hypothetical situation is devised and prepared for testing in a real-world scenario. Through the use

of Simulation, complex problems can be reduced, explored and extrapolated based on controllable

factors. Given that a BAS is a complex system, the ability to simulate parts of the system to answer

controllable, repeatable questions is justifiably appropriate for the research. As such, Simulation

can also be classed as an appropriate approach.

Through the exploration of the objects of interest, and approaches combined, there exists three

potential approaches to undertaking the research, Laboratory Experiments (Experimental), Fore-

casting, and Simulation. The shared paradigm of these approaches are positivist. Derived from the

approaches of Galliers (1990) and Williamson (2013), and reflection upon the research questions, a

positivist paradigm has been accepted for the research.

3.1.4 Summary of accepted meta-theoretical assumptions

A realist ontological view is taken for this research, given that the research is based on empirical

comparisons of measures, the belief that reality is stable and existent irrespective of observation.

An objective epistemology is taken, based upon the acceptance of reality existing irrespective of

observation, knowledge is derived through the control of events, to be determined through the

analysis of appropriate identified methods. The logic employed for the research follows deductive

reasoning, the classical positivist logic, as the research naturally forms from a general theory about

anomaly detection in BAS, with room for testable hypotheses to be developed. The role of values in

the research follows from the objective epistemology, the researchers values are of no consequence

for the exploration, testing, observation and analysis of the research problem posed. A summary

of the selected meta-theoretical assumptions are presented in Table 3.4. With the paradigm now

apparent, the associated quantitative methods and techniques, relating to the identified approaches,

Experimental, Forecasting and Simulation shall be explored to derive a research design.
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Table 3.3: Galliers’ taxonomy of research approaches and objects of interest,
adapted from Galliers (1990)

Traditionally Empirical approaches Overlapping approaches Traditionally Interpretive approaches

Object of
interest

Theorem
Proof

Laboratory
Experiment

Field
Experiment

Case
Study

Survey
Forecasting
and Futures

Research

Simulation
and Game

/Role
playing

Subjective
/Argument-

ative

Descriptive
/Interpretive

(Reviews)

Action
Research

Society No No Possibly Possibly Yes Yes Possibly Yes Yes Possibly

Organisation
/Group

No Possibly Yes Yes Yes Yes Yes Yes Yes Yes

Individual No Yes Yes Possibly Possibly Possibly Yes Yes Yes Possibly

Technology Yes Yes Yes No Possibly Yes Yes Possibly Possibly No

Methodology No No Yes Yes Yes No Yes Yes Yes
Yes

Theory
Building

No No No Yes Yes Yes Yes Yes Yes
Yes

Theory
Testing

Yes Yes Yes Possibly Possibly No Possibly No Possibly Possibly

Theory
Extension

Possibly Possibly Possibly Possibly Possibly No No No Possibly Possibly
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Table 3.4: Accepted meta-theoretical assumptions of the research

Assumption Description

Ontology Realism
Epistemology Objectivism
Logic of Inquiry Deductive
Axiomatic Value free and separate from power struggles

3.2 Research approach

As identified through the exploration of the methodology, there were three potential approaches ap-

propriate for the research. The forthcoming section describes the methods of the three approaches,

Experimental, Simulation and Forecasting.

3.2.1 Experimental approach

The core concepts of experimental methods are the construction of hypotheses, identification of

statistical tests, definition of variables, and a discussion of the reliability and validity of the design

(Williamson, 2013). Further, experimental methods involve undertaking the experiment according

to the design, performing the appropriate statistical analysis and drawing conclusions to suggest

recommendations. The experimental method process is visually represented as Figure 3.2, with the

concepts discussed in the forthcoming sections.

3.2.1.1 Hypotheses

There are a number of reasons for using an experiment, discussed by Montgomery (2013) and

detailed in Table 3.5. The overall objective of an experiment is to.

1. Determine the influential variables against the response variable.

2. Optimise the control variables to ascertain a desired response.

3. Optimise the control variables to reduce the variability of the response.

4. Reduce the effects of uncontrollable variables.

Recognition of an experimental reason is paramount to form appropriate questions, and thus derive

hypotheses to form experiments from. A hypotheses, as defined by Williamson (2013), is a statement

or proposition about a predicted relationship between two or more variables which is empirically

testable. Noted by Montgomery (2013), generally, a single experiment is not adequate to answer

a question, thus a set of smaller experiments, of multiple types are used to suggest answers to

posed questions. The notion of hypotheses thus allows exploration of “smaller questions”, which

can be used to inform of a larger overarching question. Once a hypotheses is formed, classification

of variables in the object of interest can commence.
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Identify Measures of 
Validity

Identify Measures of 
Reliability

Select Experimental 
Design

Perform 
Experiments

Derive 
Hypotheses

Define 
Variables

Build 
Experiments

Statistical Analysis of 
Data

Draw Conclusions

Figure 3.2: Summary of experimental method processes, adapted from Willi-
amson (2013), Montgomery (2013)

3.2.1.2 Variables

Independent variables are the factor which is manipulated to observe what impact change has on

other variables. The independent variable is the presumed cause of the phenomena in the object

of interest. The dependent variable is the factor which is measured to determine response to a

particular change in the independent variable. The control variable is the factor which is not of

interest, but is held constant to ensure the control variable does not impact the independent or

dependent variables. The confounding variable is an unknown element, which is not the focus of the

study, but is assumed to affect some of the observations, and must be accounted for. The extraneous

variable is a competing independent variable which may explain outcomes in the dependent variable.

The final type of variable is the moderating variable, which moderates the impact, or describes the

relationship between other variables in the study.
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Table 3.5: Reasons to undertake experiments, adapted from Montgomery (2013)

Experimental
Reason

Description

Characterisation Learning which variables influence the re-
sponse of interest. Generally used when there
is a lack of knowledge about the object of in-
terest.

Optimisation When the variables have been identified, op-
timisation experiments are used to tune vari-
ables to form a desireable output.

Confirmation Used to verify behaviour of an object of in-
terest, consistent with a theory or experience.

Discovery Determine what happens when new variables
are explored in an object of interest.

Robustness Determining in what condition the response
variables degrade, to better control variab-
ility in the response from poorly controlled
cofounding variables

Through identification of the variables and analysis of the hypotheses, an experimental design

can be selected.

3.2.1.3 Reliability, validity, and threats

Reliability in terms of an experimental method is the consistency of results produced by a measuring

instrument, when repeated in a similar situation. Validity, subsequently, is the capacity of a

measurement instrument to measure what is purports to measure, or the accuracy of observations

taken by the instrument. Reliability and validity have a co-existent relationship, validity infers

reliability, however, reliability does not infer validity, rather, reliability is a determinant of how

valid a measure can be. The purpose of ensuring reliability is to reduce the rate of random error in

measurements. Mitchell and Jolley (2010) detail three sources of random error, namely, observers,

participants and test situation. Determining the extent of random error can be achieved using a

test-retest process, whereby multiple runs of an experiment are taken and compared, to determine

any change. If change due to random error is determined, additional methods, such as measures

of reliability and measures of internal consistency can be used to identify the source of reliability

degradation.

It is important to establish the validity in addition to the reliability, as an invalid variable can

be reliably measured. There are two types of threats to the validity of an experiment. The internal

validity, which is the confidence that observed results are attributable to the independent variable,

and not caused by other, unknown factors. External validity is the generalisability of the research

findings, or, the extent of application to other populations, settings or treatments. The strength

of each type of validity is a distinction between laboratory and field experiments. Laboratory

experiments are high in internal validity due to the control provided from the surroundings. Al-

lowing manipulation of the independent variable, accuracy of effect measurement on the dependent
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variable, and ensuring that the effect of cofounding variables are controlled or mitigated. The gen-

eralisation of results, or external validity, is often questioned due to the results being drawn from

an environment which may not resemble the “real world”. Conversely, the lack of external control

in field experiments questions the internal validity of an experiment, whereas the external validity

is generally higher. Elaborated upon by Mitchell and Jolley (2010) and detailed in Table 3.6, there

are common threats to validity and reliability faced by laboratory and field experiments, however

there are also precautions which can be applied to eliminate these potential threats.

Table 3.6: General threats and precautions to experiments, adapted from
Mitchell and Jolley (2010)

Threat Description Precaution

History External events that are mis-
taken as treatment effects

Isolate participants from ex-
ternal events

Maturation Biological changes that are mis-
taken as treatment effects

Conduct study in a short period

Testing Treatment effects are due to par-
ticipants having learnt from the
pretest

Only test once, use different ver-
sions of the test to decrease the
testing effect

Instrumentation Changes in measuring instru-
ment causes treatment effects

Be consistent with materials and
measurements

Mortality Apparent effects are due to par-
ticipants leaving the study

Use incentives and reduce num-
ber of treatments to prevent par-
ticipants stopping

Regression Treatment effects are due to
extreme scoring results in the
pretest being less extreme in the
post test

Do not choose participants based
on the basis of extreme scores

Selection Effects are based upon the con-
trol groups being different before
the study started

Don’t use designs that involve
comparing groups of participants
with each other.

Selection Inter-
actions

Effects are due to groups that
scored similarly in the pretest
naturally growing apart and
scoring differently in the post
test

Match on all relevant variables,
not just on pretest scores.

3.2.2 Experimental designs

There are a range of experimental designs, the selection of which is dependent on the hypotheses,

the variables, and the object of interest. Additionally, in computer science research, difficulties can

arise with the control of non-treatment variables due to the volatile state of computer memory.

To control non-treatment variables, the use of quasi-experiments can be undertaken, which limits

the effects of non-treatment variables by identifying, and proving that the change in the dependent

variable was not caused by changes to the non-treatment variable.
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3.2.2.1 Randomised two group design

The basic experiment, or Randomised two-group design involves two identical groups which are

treated differently throughout the experimental process. One group termed the treatment group

receives a treatment, while the second group receives no treatment, termed the non-treatment or

control group. Analysis of these two groups is undertaken, where the treatment or independent

variable is the only systematic difference between the groups. To ensure that the treatment is

the only systematic difference applied, independent random assignment is used where assignment

of participants or objects to each group is randomised. The groups are then measured based

on the dependent variable, from which two hypotheses can be defined, namely the experimental

hypothesis: the treatment has an effect, and the null hypothesis: the treatment does not have an

effect. Additionally, temporal precedence must be established and spuriousness must be identified.

Temporal precedence proves that the changes in a group occurs after the treatment variable has

been applied. While spuriousness shows that the variation observed between both groups could only

be due to the treatment applied. Without temporal precedence, the variable which causes change

cannot be determined, similarly without measuring spuriousness causality cannot be determined.

Statistical analysis is undertaken on the dependent variable, and conclusions drawn. The basic

model can be varied to include alternative treatments, rather than a control group, with comparison

between each alternative treatment, and no treatment.

3.2.2.2 Pre-test/Post-test control group design

A pre-test, post-test control group design, often called a covariance design is similar in premise

to the randomised two group experimental design. The difference being that both groups are

initially tested before a treatment is applied. After initial testing, the treatment group undertakes

a treatment and is then measured. The control group is isolated from the treatment group, and

tested at the same time as the treatment groups post-test. Observations are then derived from,

and attributed to the change, or lack of change between the treatment and control group.

3.2.2.3 Factorial design

When there exists multiple independent variables in a study, both the independent effects, and

the interactive effects between the variables on the dependent variable is studied, termed Factorial

design. Unlike experiments which evaluate independent variables individually, factorial designs

allow for combinations of independent variables to be explored jointly, revealing potential effects

on the dependent variable caused via interactions between independent variables. Confounding

variables can also be built into the design, providing a level of control not offered in some other

experimental designs. Factorial designs can also reduce the number of observations required when

compared to other experimental designs; the number of observations required for a factorial design

is determined through power analysis. A drawback of Factorial design is the increased complexity

as the number of independent variables increases.
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3.2.3 Quasi-Experimental Designs

Quasi-experiments have a similar aim as true experiments, where a treatment is administered.

However, when using a quasi-experiment design, treatment and control group participants are not

randomly assigned. In addition, non-treatment factors are identified and taken into account, rather

than eliminated. Quasi-experiments aim to establish temporal precedence in the same manner as

true experiments, covariation is also assessed through comparison of treatment and non treatment

conditions. However, spuriousness through randomising the group values cannot be eliminated,

nor are non-treatment factors kept constant to account for spuriousness. Rather, non-treatment

factors are identified, and explored to justify that the observed change is not due to a non-treatment

factor. The eight general threats to validity, defined in Table 3.6 can be used to eliminate specific

threats and infer the causality in the dependent variable. Each quasi-experimental design eliminates

different threats, with remaining threats requiring additional controls to eliminate, or explain the

impact of the threat, explained in §3.2.3.1, §3.2.3.2, §3.2.3.3, and summarised in Table 3.7.

Table 3.7: Threats to internal validity mitigated by stated quasi-experimental
designs, adapted from Trochim (2006), Mitchell and Jolley (2010), Williamson
(2013), Edgar and Manz (2017)

Potential Threats NEGD ITSD RD-D

History 3 3 7

Maturation 3 7* 7

Testing 3 7* 7

Instrumentation 3 7* 7

Mortality 3 7* 7
Regression 3 3 7
Selection 7 7 7

Selection Interaction 7 7 7
* Requires additional controls to mitigate

3.2.3.1 Non-Equivalent group design

The non-equivalent group design (NEGD) is a direct comparison to the simple experiment, as

noted by Trochim (2006), Mitchell and Jolley (2010). The NEGD is structured as as pre-test/post-

test randomised experiment, with the randomised assignment removed. Groups of subjects are

formed on the notion of similarity, however, true certainty of the groups comparisons cannot be

stated, given the threats to internal validity faced. The selection threat is not accounted for in

the design due to the deliberate group separation. The interaction between threats and selection,

termed selection interaction in Mitchell and Jolley (2010) is dependent on the data analysed, and

thus can be explained given the pre and post bivariate data. Mitchell and Jolley (2010) states

that the NEGD has all the strengths of a simple experiment, with the design eliminating the

threats of maturation, testing and instrumentation. While the use of a control group allows for

the explanation of history, maturation and mortality threats. Further controls, such as variable
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matching or statistical techniques can assist in reducing the impact of selection interaction threats

(Christensen, Johnson & Turner, 2011)

3.2.3.2 Interrupted time series design

An interrupted time series design (ITSD) uses a series of observations and/or measurements over an

extended period of time, before and after the treatment condition, rather than two distinct pre and

post tests. When the point at which a treatment occurs, the “interruption” treatment can be iden-

tified through the change in the slope when plotting the observations (Shadish, Cook & Campbell,

2002). The design allows for trends to be examined before, during and after a treatment, test-

ing and re-testing is also performed on the same subjects, thus, selection and selection-interaction

threats to internal validity are eliminated by design. Conclusions drawn in ITSD are only valid if

the effects of history, maturation, mortality, testing and instrumentation during the study’s time

is estimated correctly. The greatest threat to internal validity is that of history, as the precaution

is at odds to the design. An alternative measure for ITSD could be the collection of baseline data

to account for historical effects, which could reveal cyclical patterns, which, without a historical

evaluation, may be mistaken for treatment effects. In addition, any inconsistent effect could be a

threat to internal validity, specifically for history and regression, however, inconsistency in matur-

ation, testing, mortality and instrumentation are possible, but can often be estimated, thus being

accounted for in the design (Mitchell & Jolley, 2010). Where estimation is inaccurate, ITSD should

attempt to eliminate the threat, rather than account for it, through similar measures in randomised

experimental designs.

3.2.3.3 Regression-discontinuity design

The regression discontinuity design (RD-D), is similar to NEGD, with a pre and post test, however,

there are two (or more) groups, whose selection is based on a continuous numeric criterion derived

from the pre-test. In this way, groups of interest within specific value ranges determined by the

pre-test, are given treatments, while other classed groups are set as control groups. A regression

line is fit between both the treatment and control groups, at the point of the cutoff, a discontinuity

is present, which can show the effect of the treatment, as opposed to the control group. The RD-D

counters many threats to internal validity faced by other quasi-experimental designs, and thus can

be comparable to the validity of fully random experimental designs Trochim (2006).

Rather than attempting to match variables or prove the equality of groups pre-test to infer post-

test results, the RD-D assumes that without a treatment, the pre-post relationship between the two

groups would be identical. The strength of the RD-D is thus dependent on two further assumptions,

that there is no spurious discontinuity in pre-post relationship which occurs at the cutoff point,

and the degree of validity in the pre-post relationship model, which is the focus of the statistical

analysis of RD-D Trochim (2006). Thus, in principle the RD-D has comparable internal validity

to randomised experiments, however, in practice, the internal validity measures are dependent on

the accuracy of the modelling of the pre-post relationship of the data. In addition, RD-D requires
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a larger data set for statistical analysis comparable to randomised experimental design, Trochim

(2006) states, as much as 2.75 times as many observations.

If the relationship between variables in a RD-D is not linear, the regression line will not represent

the true relationship, resulting in an incorrectly fitted model. Common reasons in which this

situation can arise is when the relationship is not linear between variables, but rather squared or

cubic, or if the dataset is not normally distributed. Data transformation can be used to reduce bias,

resulting from non-linear variables, allowing the correct modelling of the regression line. Another

threat is the effect of the confounding variable which may interact at the classification cutoff point,

and cause the treatment to be misinterpreted.

3.2.4 Statistical analysis

The purpose of analysing a hypothesis with statistical techniques is to determine if observed results

are due to chance, termed the Null hypothesis. Alternatively, if the Null hypothesis can be rejected,

it can be stated the treatment has some effect.

The statistical analysis undertaken is dependent on the experimental design, the aim of the

hypothesis and the scale of the data explored. Descriptive statistics are used to describe the data

presented, while inferential statistics are used to extrapolate the differences between groups of data

into a generalisable condition. A range of statistical tests are summarised in Table 3.8 according

to the analysis model, and experimental design.

Many statistical analysis techniques are reliant on the assumption of independence between

variables, which is often not guaranteed in quasi experimental designs, due to the lack of random

assignment of observations to control and treatment groups. Thus, quasi experimental analysis is

more complex, and borrows from statistical tests commonly found in forecasting, such as Autore-

gressive Integrated Moving Average (ARIMA) .

Table 3.8: Appropriate statistical analysis models for identified experimental
designs adapted from Shadish, Cook and Campbell (2002), Trochim (2006),
Christensen, Johnson and Turner (2011), Montgomery (2013)

Experimental Design
Statistical Analysis model

T-Test ANOVA ANCOVA Regression ARIMA Frequency

Randomised Two Group 3 3 3
Pre-test/Post-Test Control Group 3 3 3

Factorial Design 3 3
Non-Equivalent Control Group 3 3

Interrupted Time Series 3 3 3 3
Regression-Discontinuity 3 3

3.2.5 Forecasting approach

Forecasting as an approach is traditionally used in economics and management disciplines to plan

actions for future potential events, “predicted” from a historical based data model. Essentially,
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forecasting is the application of statistical methods on historical data with the aim of predict-

ing future values with accompanying confidence levels. There are various methods employed in

forecasting, which, similar to other scientific methods can be classified on a quantiative and qual-

itative continuum, where the polars are empirical experience (qualitative) and formal statistical

based methods (quantitative), upon which specific methods are aligned. As determined from Sec-

tion 3.1.4, the research is interested in quantitative methods, which can be further specified in the

context of forecasting as either an Explanatory model or a Time series analysis model. All quant-

itative forecasting methods share three core assumptions, defined by Makridakis, Wheelwright and

Hyndman (1998)

1. Data about the past is available

2. The Data can be quantified as numerical

3. Some aspect(s) of the past pattern will continue into the future (The assumption of continuity)

Additionally, Makridakis et al. (1998) notes that all forecasting methods follow a similar process,

shown as Figure 3.3.

3.2.5.1 Exploratory analysis

The exploratory analysis of the data informs the class of forecasting methods which are appropriate,

either explanatory or time series. Exploratory analysis involves the use of visual inspection of the

data through the use of various types of plots, including time, seasonal and scatter, in addition

to the application of descriptive statistics. The application of descriptive statistic techniques is

dependent on the historical data type, however, no single test can definitively determine which

forecasting technique to employ. Typically, the outcome of exploratory analysis is a shortlisted

selection of models. As noted by Makridakis et al. (1998), forecasting models cannot account for

all variations, or randomness in a model, meaning each forecasting model has an associated degree

of error. The output of a system can thus be described as the functional relationship governing

a system, and randomness, or data = pattern + error. Thus, at a high level, forecasting involves

separating the pattern from the error, so that the pattern features can be used to define a model.

The general process for estimating a pattern is the application, or fitting of a functional form

(model) to minimise the error component of the equation, or, to eliminate randomness. Choosing

and fitting a model involves enumerating through the shortlisted model selection, and fitting the

dataset to each model, with the aim to minimise the error component of the pattern for accurate

pattern development. Evaluation of each model is clearly dependent on the method selected, and

the results of which can inform the acceptance of the model, further exploration or tuning of the

model, or selection of a different model.
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Figure 3.3: Summary of forecasting method processes, adapted from Makrida-
kis, Wheelwright and Hyndman (1998)

3.2.6 Forecasting methods

3.2.6.1 Explanatory methods

Explanatory methods aim to describe and correlate the underlying relationships between variables

in a data set, commonly, regression models are used to this effect. Explanatory methods can suffer

in accuracy when used to forecast too far past the real dataset, with generalisability often an issue

as explanatory methods describe correlation, and not necessarily causation.

3.2.6.2 Time series methods

Time series analysis is the statistical investigation of a temporally ordered series of observations

from one or many cases. The purpose of the analysis can be to identify self correlated patterns

offset in time, determine the impact of an intervention or experiment on an object of interest

over time, or, in the case of forecasting, project the historically identified patterns forward for

future predictions (Makridakis et al., 1998; Hyndman & Athanasopoulos, 2018). There can be

multiple overlaid patterns in a data stream, which are identified as seasonality, trends and random

error. Time series models are often an approach used when the independence of errors cannot be

guaranteed, which counteracts a core assumption of regression models.

Time series methods take a black box approach to data analysis, where seasonal and trend

patterns in temporally ordered data are identified, and then removed or transformed to forecast

future data points. A class of commonly used time series models are ARIMA models, which use
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various combinations of auto regression, differentiation and moving average models.

3.2.6.3 Other methods

Additional methods exist which uphold the forecasting approaches core premise to predict future

results on historical data, these are state-space models and artificial neural networks. Both the Kal-

man filter, a series of regression algorithms used for prediction (Welch & Bishop, 2006), and neural

networks which rely on regression have been used previously as forecasting techniques (Makridakis

et al., 1998).

3.2.7 Analysis of forecasting models

Measuring the accuracy of a forecasting method often means measuring the goodness of fit, or

how well the model can reproduce known data. It is thus difficult to compare models directly as

fitting measures vary between models, a comparison from a single criteria is of limited value. The

comparison between models can be misconstrued, as many accuracy measures are reliant on the

scale of the data, however relative error calculations can be used for comparison between models.

In addition, the goodness of fit describes the models ability to identify historical data, but not the

accuracy of the future forecasting result. However, the notion of accuracy can also be applied to

the future forecast.

Comparison between different models is difficult, given the lack of a common measuring tool.

Using a Näıve forecasting method provides a comparison tool for evaluating different models.

Makridakis et al. (1998) details two näıve forecasts, named Näıve Forecast 1 (NF1), and Näıve

Forecast 2 (NF2). NF1 takes the most recent observation as a forecast, which acts as a baseline

for comparison. Any difference in the Mean absolute error and Mean absolute percentage error

between the NF1 and other, more complex models can be discussed. NF2 considers the poten-

tial for seasonality in the data series, and thus removes seasonality from the dataset to create a

seasonally adjusted data, which then follows the same forecasting method as NF1.

The accuracy measures presented however, treats each error as an equal, which is not the case

given the potential scale differences between errors. A more robust method of comparison is Theil’s

U statistic defined in Equation 3.1 from Makridakis et al. (1998), which gives large error margins

a larger weight than smaller error margins.

U =

√∑n−1
t=1 (FPEt+1 −APEt+1)2∑n−1

t=1 (APEt+1)2

where

FPEt+1 =
Ft+1 − Yt

Yt

APEt+1 =
Yt+1 − Yt

Yt

(Equation 3.1)

The Absolute Percentage Error (APE) defined in Equation 3.1 is the actual relative change,
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which is equivalent to the NF1, making the U statistic the comparison of the Mean Absolute

Percentage Error (MAPE) of a given forecasting to the MAPE of NF1. Therefore, the accuracy of

the forecasting method can be classified based on the following three points.

1. if U = 1 the forecasting model is as good as the näıve method

2. if U < 1 the forecasting model is better than the näıve method

3. if U > 1 the forecasting model is worse than the näıve method

Alternatively, using a similar approach to that of machine learning algorithms and experimental

design, a test set and initialisation set can be used, whereby the initialisation set is used for

estimating parameters and stating the method, while the accuracy of the measure is computed for

errors in the test set only.

3.2.8 Simulation approach

Simulation can be a powerful tool in research which can improve the understanding of a phenomena

of interest relating to an object or system (Dooley & Dooley, 2001; Rose, Spinks & Canhoto,

2015; Edgar & Manz, 2017). Complex models can be built at various levels of abstraction, which

provides the ability to examine system interactions, component performance and test theories that

are often not possible on real systems. Using a simulation model can be appropriate when the

object of interest cannot be directly interacted with, due to a range of circumstances, such as cost

of operation, criticality of the object of interest or associated risk of interacting with the system.

This is particularly true for critical infrastructure (CI) systems, such as BAS and SCADA where

building a real device test bed can be prohibitively expensive, and the risk posed by running tests

on a CI is difficult to accept. Simulation methods are rooted in experimental design, whereby the

aim of simulation is often to undertake specific experiments against a defined model, to optimise

processes and provide alternative paths for future operation of a system. Simulations provide strong

control over data generation and experimentation, however, results derived from a simulator are

only as good as the underlying models used (Edgar & Manz, 2017).

For cyber security, Edgar and Manz (2017) defines simulation use as a computer process or

application which imitates a cyber or physical process through generating similar responses and

outputs. An abstract model of the actual process or object is built, instantiated into a program,

and used to generate data which mimics the behaviour of the real system of interest.

Simulations can either be a black-box process, where the aim is to achieve realistic output from

a system, or a white-box implementation, where the inner workings of the process are integral to

the research questions. White-box implementations (termed emulation in Edgar and Manz (2017))

provide a higher fidelity simulation, using more complex models to provide high fidelity output

compared with that of black-box simulations (Edgar & Manz, 2017).

63



Define 
Problem

Design Model

Findings and 
Conclusion

Build Model

Run Simulation

Verification 
of Model

Validate 
Model

Figure 3.4: Summary of simulation method processes, adapted from Rose,
Spinks and Canhoto (2015)

3.2.9 Simulation methods

Edgar and Manz (2017) state there are both general and cyber security specific methods for sim-

ulation. General simulation can be classified as agent-based, process-based (continuous), discrete,

and Monte-Carlo methods (Dooley & Dooley, 2001; Edgar & Manz, 2017). Cyber security spe-

cific methods include network simulation, target simulation and threat simulation (Edgar & Manz,

2017). The purpose and potential use-cases for each stated simulation method are outlined in

Table 3.9. Each simulation method follows a number of generic steps in order to undertake a sim-

ulation. A Flow Chart representation, adapted from Rose et al. (2015) for simulation methods is

shown as Figure 3.4.

3.2.10 Simulation validation

Simulations are a specific implementation of reality based on an underlying model. To ascertain the

validity of the simulation, the underlying models should be scrutinised. Typically, observational

methods are used to test the validity of a simulation, by collecting like data of a system, and either
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Table 3.9: Comparison of simulation methods, adapted from Dooley and Dooley
(2001), Edgar and Manz (2017)

Class Method Purpose Use-Case

General Agent-Based Define parts of a sys-
tem as individual agents
which operate independ-
ently from each other,
data from interactions
between agents and the
defined environment are
monitored

1. Discover emergent beha-
viour of the system

2. Represent distributed con-
trol of systems

General Discrete-
Event

A predefined, stochastic
implementation which
defines how and when
variables change in the
system

1. Event-based analysis

2. Interactions between vari-
ables not of interest

General Process-
Based

Generates behaviour
based on a mathematical
definition of the system

1. Simulate physical pro-
cesses

General Monte-Carlo Execute a range of tests
to determine likelihood of
outcomes

1. Decision support based on
likelihoods

2. Account for uncertainty
from input parameters

Cyber Network Simulate network proto-
cols to generate both nor-
mal and malicious net-
work transactions

1. Protocol behaviour ana-
lysis

2. Traffic generation

3. Attack analysis

Cyber Target Controllable method of
studying specific cyber in-
cidents and vulnerabilities

1. Honeypots

2. Adversary profiling

3. Attack classification

Cyber Threat Analysis of user and sys-
tem action when faced
with a threat or hazard

1. Validation of experiments

2. Fault Analysis

3. Fuzzing

4. Attack classification

5. Exploit testing
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comparing the data statistically to the simulation outputs, or using the real data as a baseline

to generate models via machine learning methods. Using statistical methods, the distributions of

behaviour can be derived, if the data fits distributions well, the distribution can be used to model

and recreate similar behaviour in the simulation model (Edgar & Manz, 2017).

An alternative approach to validation is using experimentation, through defining tests cases

which can be executed in the simulation, and the real system. A comparison between the test cases

and real system responses can then be used to determine the validity of the simulation (Edgar

& Manz, 2017). A downside of this approach is the requirement of direct interaction with the

observed real process. Such as in the case of critical infrastructure and cyber-physical research,

direct interaction to run test cases is not suitable.

3.3 Comparison of identified approaches

3.3.1 Candidate experimental designs

An experimental approach clearly fits to this research, determination of the specific design to use

however, is dependent on the objective of the research, which is to identify known and unknown

threats against BACnet/IP managed Building Automation Systems (BASs). The randomised two

group design is not appropriate for this research, as a true experiment cannot be performed on the

datasets generated. Specifically, samples provided to the algorithms cannot be randomly assigned,

as an object of interest is the sequence and timing of network frames. Factorial designs can be

used to compare combinations of independent variables. The independent variables defined in

this research are the various algorithms used to test for anomalous network transactions. Given

that differing data pre-processes are required for the application of each algorithm, an exhaustive

comparison of multiple algorithms would not achieve a usable result, compared to direct comparison

between specific algorithms using appropriate pre-processing techniques. Thus, factorial design is

discounted. The research makes use of time series data, particularly data readings over time

recorded from sensors, and network data with a key element of time, an interrupted time series

design seems an appropriate fit for conducting experiments. However, the key use of ITSD is to

identify if a treatment has had an effect, when the time of the effect is known. The stated assumption

cannot be held when the aim of the research is to detect when a known or unknown attack occurs,

rather than measure the effect of an attack on a system or network, thus ITSD is discounted. A

regression discontinuity design would not be appropriate for this research, given the control set must

be the real data for validity of the synthetic data, and the relationship between variables in the

dataset cannot be claimed to be a linear relation, thus it is discounted. While the Non-Equivalent

Group design can suffer from selection bias, additional controls discussed in Section 3.2.3.1, such

as variable matching and statistical techniques can be used to account for selection bias. The Non-

Equivalent Group design provides the strengths of a laboratory experiment, minus the random

assignment, which fits the requirements of this research, thus is an appropriate design.
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3.3.2 Candidate forecasting methods

A forecasting method can be used to answer a specific question about a future result, based on

historical data and the assumption of continuity. Given the normal network interactions of a BAS

are generally deterministic, there is the potential for a forecasting model to be used to define

normality on the network, and identify relationships between features in the network. Subsequent

models could be used to identify anomalous behaviour, based on the analysis of the forecasting

method. Additionally, as time series models can account for seasonal changes, it is appropriate in

a system where temperature variations and user interaction are based on seasons, to have a model

which can take seasonality into account for identifying contextually normal and abnormal variable

values. A range of other models are classified as forecasting methods by Makridakis et al. (1998),

including state models and neural networks. Given the prevalence of state models in engineering

and computer science research for learning, in addition to neural networks use in data analysis and

cyber security, both methods are of interest. Specifically, Markov, Hidden Markov, and Artificial

Neural Network methods.

The forecasting approach, by itself is not a complete answer for this research, as the use of

forecasting based models is only a subset of tasks, rather than the overall objective of the research.

Forecasting methods, however, fit well into an overarching experimental design, where specific

methods are tested against a dataset as an experiment.

3.3.3 Candidate simulation methods

From analysis of the research goals there exists two distinct requirements for the simulation in this

research. First, to provide a means of generating representative BACnet/IP network traffic in a

controllable method based on a defined scenario. Second, to generate synthetic data values from

physical phenomena, such as temperature, to proliferate over the simulated network. The outlined

purposes in Table 3.9 informs the selection of a simulation method for both requirements. When

discussing general simulation methods, Dooley and Dooley (2001) note that any simulation method

can be applied to a problem with varying levels of success. In the context of this research, at a

network level the system of interest closely resembles a discrete event system definition, whereby

predetermined events (commands) occur in the system, changing variables and subsequently the

state of the system in a stochastic manner. However, a discrete event simulation may be an

oversimplification of an entire BAS, given there are also a number of non-constant variables which

occur at the data generation level, specifically fluctuating internal sensor readings which cause

commands to execute; therefore Discrete event is eliminated. An agent based simulation fits the

requirements, given each device can have an associated agent model representing the distributed

nature of a BAS, and generate data within each agent. Emergent behaviour between devices based

on implemented communication rules would be appropriate for examining normal actions, and

those of simulated attack traffic, and thus is selected. Additionally, a Process based simulation

method could be used to generate the environmental data readings to be transmitted over the
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network, given they are continuous variables, many of which can be created using mathematical

functions. There also exists uncertainty in the input parameters for some identified physical process

to model, as such Monte-Carlo methods are also appropriate. The requirements of the research

do not align with the Target method, as examining adversary interactions with BACnet systems

is beyond the scope of this research, thus the Target method is eliminated. Similarly, the Threat

simulation method is discounted, as the aim of the research is not to determine how devices and

users act when a network attack is or has occurred, rather to perform analysis on the generated

traffic. Naturally, the requirement to generate simulated network traffic of a specific protocol is

within the brief of a Network Simulation, and thus is selected.

3.3.4 Selected design

The approaches identified through the use of Galliers’ Taxonomy presented in Table 3.3 identified

three possible comparative approaches for this research. Given the overlap between the derived

approaches, due to a shared positivist paradigm, a range of methods and techniques are appropriate,

and complementary for the research design. In consideration of the scope of the research, and the

specificity of the forecasting and simulation approaches, it is not justifiable to select either as the

research design of this research project. However, the usefulness of the methods which fall under

these classifications cannot be dismissed. Both forecasting and simulation methods are rooted in

experimental design, and as such can be used for specific experiments which output tangible results

for the research. Of the examined experimental designs, the non-equivalent control group design

was deemed most appropriate for this research, given the strengths of a laboratory experiment,

with the flexibility of selecting specific groups for testing.

As such, a non equivalent group design is selected for use in this research, with the acknowledge-

ment that some methods used can also be classified as methods used in forecasting and simulation

approaches.
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3.4 Research questions

Given the identified gap in knowledge, and the exploration of the philosophical underpinnings of

the research, the following questions have been derived.

RQ1 How can known and unknown attacks against BACnet/IP based Building Automation Systems

be detected?

SQ1 Are BACnet devices exposed to known threats?

SQ2 Do known BACnet attacks have distinguishable network patterns compared to normal

BACnetwork traffic?

SQ3 Is machine learning applicable to identify known and unknown attacks against BACnet/IP

networks?

SQ4 How accurate are machine learning approaches in detecting known and unknown attacks

against BACnet/IP networks and devices?

3.4.1 Hypotheses

The hypotheses derived from the research questions are defined as H1 to H5.

H 1 BACnet devices are exposed to known threats

H 2 Known BACnet attacks have distinguishable network patterns

H 3 Machine learning is capable of identifying one or more known attacks against BACnet/IP

networks

H 4 Machine learning is capable of identifying one or more unknown attacks against BACnet/IP

networks

H 5 Hidden Markov Models are more accurate at detecting unknown BACnet/IP based attacks

than known BACnet/IP based attacks
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3.5 Research design

The research design is defined by five distinct phases, visually represented as a framework in

Figure 3.5. The five phases detailed in the framework include:

1. The exploration phase: which involved investigating the BACnet/IP protocol specification

for understanding and identified potential vulnerabilities, retrieving known attacks from lit-

erature, examining existing simulation/network generation solutions, and collecting a range

of BACnet device information from devices connected to the Internet.

2. The contextualisation phase: where analysis of collected device information and threat model-

ling of defined BACnet devices and networks were undertaken. Further, potential algorithms

and techniques for anomaly detection were defined and selected for the research. Finally, a

trial dataset was generated to test existing simulators, implement a known attack and test

the shortlisted algorithms.

3. The data collection phase: which was split into two stages. Stage one involved the collection

of real data. Stage two detailed the generation of a synthetic dataset, which involved defining

a scenario, devices to simulate, and data generation algorithms of both normal and attack

type. Stage two also involved simulation validity testing.

4. The experimental phase: which involved preprocessing the datasets for the appropriate al-

gorithms, application of the selected algorithms to the generated and real datasets, and

recording the results.

5. Finally, the analysis phase, examined the results of the experiments to suggest answers to the

posed research questions and hypotheses.

3.5.1 Phase One: Exploration

The aim of phase one was to explore how the BACnet/IP protocol operates, how many devices are

directly accessible over the Internet, and how to generate BACnet/IP network communications.

BACnet has five different major standard revisions, with multiple addenda. At the time of this

research, the ASHRARE-135-2012 BACnet standard was the most recent, which incorporated both

BACnet/IP and the BACnet Security Services (BSS) features. As such, the research focused

on the 2012 version of the standard, with acknowledgement that other versions are also used in

real settings. The protocol specification was examined, with the data transmission and command

sections targeted for further analysis in regards to the security principles of confidentiality, integrity

and authentication. Further, identified from the literature review, a list of published BACnet

specific attack code was detailed, examining which commands were typically used to undertake

attacks against BACnet devices. In order for the research to proceed, a range of BACnet simulation

options were identified and examined for use in the research.
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Figure 3.5: The framework representation of the research design undertaken

To explore the connectedness of BACnet devices to the Internet, a means of collecting device

information from BACnet devices was investigated. Censys (Censys, 2018), an organisation which

frequently scans the Internet for specific protocols had the required open-access data for this re-

search. The data retrieved was stored for further analysis.

3.5.2 Phase Two: Contextualisation

The contextualisation phase consisted of four sub-phases. First, to undertake analysis on the

retrieved BACnet device data, to identify a range of details, including location, device profiles,

device vendors and common configuration settings. This analysis fed forward into the device

profiles selected in Phase three. Second, contextualising the threat to BACnet devices and networks

was defined using a threat modelling approach. The STRIDE (Spoofing, Tampering, Repudiation,

Information disclosure, Denial of service, Elevation of privilege) threat taxonomy (Howard & Lipner,
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2006) was selected given its prevalence in security research, further, modelling was taken from a

device profile and network level. Third, narrowing the scope of the research by shortlisting a range

of machine learning algorithms, and testing them against trial datasets. Fourth, generating a trial

dataset to test existing BACnet simulation software, implement a known BACnet attack, and trial

run a range of algorithms defined in the selection sub-phase. Where an algorithm or process did

not perform according to expectations, the selection process would iterate.

3.5.3 Phase Three: Data collection

The data collection phase was split into two sub-phases, real data collection and synthetic data

generation. To test attacks against a real BACnetwork is not feasible, as such a simulation was

required. To validate the simulation, real data was collected for statistical comparisons, network

topology definitions and example scenario definitions. The results from Phase two, sub-phase four
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regarding simulation testing fed into the definition of the simulation. Particularly, the requirement

to generate underlying synthetic data to traverse the network using the BACnet/IP protocol.

Data generation algorithms were defined, for both normal traffic and attack traffic. A simulation

environment was developed, which operated at a device and network level for generating data based

on a given scenario, with intermittent BACnet specific network attacks undertaken. The validity

of the scenario components was undertaken in this phase.

3.5.4 Phase Four: Experimental

The Experimental phase consisted of taking both the real-normal, synthetic-normal and synthetic-

attack datasets for testing of selected algorithms. Preprocessing was a core process of this phase,

to ensure the efficacy of the application of each algorithm.

3.5.5 Phase Five: Analysis

During the analysis phase, the results from each algorithm-dataset pairing was analysed, and stat-

istically compared. A range of measures relating to binary classification were used to evaluate the

algorithms, namely, the false positive rate, true positive rate, false negative rate, true negative

rate, and Matthews correlation coefficient. The precision and accuracy of each algorithm were also

evaluated.

3.6 Variables

There are a range of variables defined in the research of varying types.

3.6.1 Dependent variables

The dependent variables for the research were identified as the features which the selected al-

gorithms were applied to. These include the ∆t between two successive network frames, the BACnet

command which was executed and the packet size,

3.6.2 Independent variables

The independent variables for the research were defined as the specific algorithms and methods

used in the research.

1. Hidden Markov Model

2. Artificial Neural Network

3. Graph analysis

4. k-means clustering
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5. Gaussian mixture model clustering

6. Time series analysis

3.6.3 Control variables

To ensure the internal validity of each algorithms run, a number of control variables were defined.

The materials used in the data collection and analysis phases were held identical for each independ-

ent variable, see §3.7. Datasets generated in the contextualisation phase were undertaken earlier

than the data generation phase. As the network stack used was under active development, various

versions of the network stack were used. Each dataset generated used a specific version of the se-

lected network stack, defined in §3.7 As each dataset is different, comparisons between independent

variables are compared on a per dataset basis.

3.6.4 Compound variables

The pseudo random number generation functions of Python were used in a number of the syn-

thetic data generation algorithms. A common seed value was selected for the Python random.seed

function, allowing for the repeatability of data generation to occur.

3.7 Materials

A range of software and hardware were used throughout the research, detailed in Table 3.10. As the

research progressed, the environment used to generate datasets was iterated upon and improved,

as such, the materials used are classified by research usage.
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Table 3.10: Materials used throughout the research, classified by usage

Research Usage Hardware/Software Details Description

Development,

Analysis and

Writing

Macbook Pro 2015, 16GB ram, 2.9GHz

i5 processor

-

OS X 10.11.6 OS

Jupyter Notebook 1.0 Development Environment

Jupyter Core 4.4.0 Development Environment

matplotlib 1.3.1 Graphics

ipython 5.4.1 Development Environment

python 2.7 Programming Language

numpy 1.8.0rc1 Python Math Package

pandas 0.20.2 Python Data Science Package

pomegranate 0.8.1 Python Markov Model Package

Bibdesk 1.6.11 Referencing

TexPad 1.7.9 Word Processing

Omnigraffle 6.2.3 Graphics

Wireshark 2.2.6 Network Analysis for Mac

Theory Testing

Dataset

Raspbian Jessie R2016-09-23, V4.4 Rpi OS

CBMS Studio V1.3.7.1204 Simulation Software

CBMS Engineering configura-

tion tool

V1.3.1221.7 Simulation Software

Bacnet Open Stack V0.82 Networking Stack

Windows 7 SP1 OS

Windows 7 Desktop 16GB Ram, AMD FX-

8120 eight core processor

Desktop

Wireshark V1.12.1 Network Analysis

3x Raspberry Pi 2 1GB ram, 16GB SD card Sensors

Cisco Switch Catalyst 3560, SPAN con-

figured

Networking
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Research Usage Hardware/Software Details Description

Trial Dataset

SCADA Engine BACnet device

simulator

2.0 Simulation Software

Windows XP SP2 Virtual Machine OS

Windows XP VM 512 Mb ram, 1 processor

core

Virtual Machine

Ubuntu 13.04, 64bit Virtual Machine

Ubuntu VM 4GB ram, 1 processor core

Bacnet Open Stack V0.82 Networking Stack

Macbook Pro 2015, 16GB ram, 2.9GHz

i5 processor

-

OS X 10.10.5 OS

Real Data

Collection

Ubuntu 16.04 LTS, 64bit OS

Ubuntu Desktop 16GB Ram, AMD FX-

8120 eight core processor

Capture Machine

Wireshark 2.2.6 Network Analysis

Dumpcap 2.2.6 Command Line Wireshark

Simulation Dataset

Vmware Fusion 6.0.6 Virtual Machine hosting

Vmware Fusion 8.5.0 Virtual Machine hosting

Windows 7 SP1 OS

Windows 7 Desktop 16GB Ram, AMD FX-

8120 eight core processor

64bit

Desktop

Cisco Switch Catalyst 2960, SPAN con-

figured

Networking

ESXi Vmware 6.0 Virtual Machine hosting

ESXi Vmware Server 32GB ram, AMD FX-8120

eight core processor

Virtual Machine hosting

Lubuntu 16.04 Virtual Machine

Actuator VM 256 MB Ram, 1 CPU core Virtual Machine

Sensor VM 256 MB Ram, 1 CPU core Virtual Machine
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Research Usage Hardware/Software Details Description

Thermostat VM 768 MB Ram, 1 CPU core Virtual Machine

VAV box VM 256 MB Ram, 1 CPU core Virtual Machine

Workstation VM 768 MB Ram, 1 CPU core Virtual Machine

Logger VM 256 MB Ram, 1 CPU core Virtual Machine

Capture VM 768 MB Ram, 1 CPU core Virtual Machine

BACnet Open Stack V0.85 Networking Stack

BACnet Open Stack V0.85-a Networking Stack amended

Flow Analysis

Ubuntu 16.04 LTS, 64bit Virtual Machine

Ubuntu VM 16GB Ram, 4 processor

core

Virtual Machine

YAF 2.0.0 Flow Generation

Moloch 0.19.2 Network Analysis

Gephi 0.9.2 Graph Analysis and Community

Detection
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3.8 Limitations

The research conducted focused on BACnet/IP traffic which travels over IP based networks. While

some serial traffic is encapsulated in IP, the investigation did not specifically look at monitoring, nor

simulating the serial-based media of BACnet managed BAS. Serial-based communication medium

are traditionally used for the connections between sensors and controllers to reduce costs of system

implementation (Cisco, 2008). However, the BACnet standard is independent of the physical layer

implementation of the network, given the aim of the research is to assess the BACnet/IP version

of the protocol, sensor devices are implemented with BACnet/IP as the communication medium.

The representation of a device in BACnet is abstracted away from the communication medium,

thus allowing for the definition of BACnet/IP based sensors.

There is no assurance that the real dataset collected and used in the investigation does not

contain malicious traffic. Given that real data is used to validate the simulation, a necessary

assumption is made that there is no anomalous behaviour in the collected data.

3.9 Threats to research

Of the defined threats in Table 3.7, History, Testing, Instrumentation, Regression, Selection and

Selection Interactions can be seen as threats to this research. While Maturation and Mortality are

not applicable threats to this research due to the lack of human element. Table 3.11 details the

mitigations applied to combating the identified research threats, through the design and application

of the experiments.

Table 3.11: Potential mitigations to the associated threats of using experiments

Threat Employed Mitigation

History Isolated simulation network to prevent external interference

Testing Separate training and testing data sets

Instrumentation Consistent simulation, working environment and materials

Regression Identical training and testing datasets for all algorithms. Performance

criteria stays constant through testing and training phases

Selection Identical testing dataset allocation for testing of each algorithm

Selection Interactions Identical training and testing datasets for all algorithms, Performance

criteria stays constant through testing and training phases

3.10 Validity

Simulation validity was discussed in Section 3.2.10. Validation of each model used in the simulation

is undertaken. Where possible, the physics-model of the phenomena is used based on accepted

85



laws relating to the nature of the universe. The selected models are typically used in the design

and analysis of HVAC systems and Building Energy Simulation programs, discussed further in

§4.6. Thus deemed appropriate for data generation for this simulation. Where accessible, the data

generated in the simulator was compared to real data, collected from external weather files. Further

discussion on validity is directed to the specific algorithm implementation sections in Chapter 4.

The Network topology was designed to represent a typical HVAC managed BAS, with topologies

taken from vendor documentation, discussion with BAS experts, and descriptions from the BACnet

standard, further discussed in Chapter 4. Device selection and definitions are based on national

and international industry standards, and configuration retrieved from vendor information, and

Internet scannable device configurations.
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Chapter 4

Exploratory Results

This chapter describes a range of initial results generated as part of this research. In §4.1, the results

derived from investigating the BACnet/IP protocol are presented, with two commands noted for

further investigation. §4.2 and §4.3 outline the existing threat to BACnet devices, presenting

collated data from Internet wide network scans and threat modelling of a network controller. Next,

one of the identified commands is modelled and tested using a network stack to determine the

viability of a theoretical vulnerability. In §4.4, a number of existing BACnet/IP simulators are

examined, with datasets generated to test the capability of the simulators generating normal and

malicious traffic. Two datasets were generated, the first to examine the use of a machine learning

algorithm for identifying a frequency attack, and the second to investigate the remaining command

identified in §4.1. Penultimately, §4.6 details the real network data collection, followed by the design

and implementation of a BACnet/IP network testbed. Finally, an attack framework is presented

which was applied to the defined network testbed for attack data generation.

4.1 Protocol analysis

This section describes a preliminary investigation of the BACnet protocol specification. The pur-

pose of this task was to identify additional objects and services which may be used to perform

legitimate-yet-malicious, commands. The section focusses on two identified components, namely,

Change of Value reporting functions, and the queuing implementation for priority commands. An

overview of the limitations of the security addendum is outlined in §2.5, and is thus not repeated

here.

4.1.1 BACnet change of value reporting

BACnet systems are data driven, with values passed over the network between devices using various

methods. As BACnet is a peer-based network, any capable device in a BACnetwork may request

values from other devices, or be notified of events occurring. To accommodate peer-based com-

munications as default, BACnet devices are passive servers which listen for requests and service
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received requests. Each data sharing transaction is represented as a client/server request, where the

device requesting data is a client, and the targeted device providing the data is the server. A server

in this case might be a sensor or actuator, while a client might be a controller or workstation. Data

can be shared using one, or multiple methods simultaneously. There are three defined methods,

polling, triggered collection and Change of Value (CoV) reporting.

Polling is a simple method, where data requests are made at pre-defined time intervals. Polling

has the potential to miss value changes if they occur between time intervals. As noted in Chipkin

(2009), a balance is required in regards to the polling interval, too large and data will be missed, too

small and the network will be impacted by the traffic size. Triggered collection defines a boolean

property in a device, when the property is true, data is retrieved from the device. External network

writes and internal processes such as alarms or other events can cause the trigger to become true,

and cause an immediate acquisition of values to occur. CoV reporting is an active data collection

method, defined in SSPC-135 (2012, pp. 461-464). CoV reporting defines subscriptions between

devices, where a threshold value is set. If the monitored value changes over the set threshold,

a notification is sent to all subscribed devices. The server device maintains a list of subscribers,

namely the Active CoV subscriptions which holds the CoV subscriptions. CoV subscriptions may

be either Confirmed or Unconfirmed, reminiscent of TCP and UDP in operation. Unconfirmed CoV

reporting sends a notification to the subscriber when a value changes within the CoV threshold

of the subscription. Confirmed CoV reporting incorporates acknowledgement of change, with an

ACK packet to be sent from the subscriber to the device serving the data.

Due to the variety of media on which BACnet operates some devices take longer to acknow-

ledge a Confirmed CoV notification than others. Two device object properties, APDU timeout and

Number Of APDU Retries, set on the client device determine how long to wait for an acknowledge-

ment, and how many times to retry waiting. The values for these properties are vendor and even

device-specific. The BACnet standard suggests between 6,000ms and 10,000ms (Newman, 2013);

the de-facto standard set by the vendors is a 3,000ms wait time with three retries (see Table 4.1).

However, some vendor guidelines suggest a 20,000ms or even 60,000ms wait time, dependent on

the capability of older devices. Further, one guide suggests all APDU timeouts should be set to

the highest value in the system (Contemporary Controls, 2014). In contrast, Siemens (2012) states

that any timeout over 30 seconds is too long. If a subscriber is offline when a Confirmed CoV

notification is sent, the CoV server device will wait the length of the APDU Timeout of the client

device, and then retry the CoV notification the specified number of times before processing the

next CoV notification. Given the length of some APDU timeout values and the number of retries,

network delays can occur (Chipkin, 2009).

Additionally, when a subscriber goes offline, CoV messages are not stored or queued, therefore

if a subscriber returns to the network, data synchronisation can be lost (Chipkin, 2009). If the

subscription is Unconfirmed, there is no feasible way to determine if the subscriber has received

the CoV notification, or tell if the subscribing device is offline. A combination of polling and

CoV is suggested to counteract devices power cycling, however the solution is not complete, as the
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logging device for the system could suffer from the same issue, and the log of a CoV will never

be recorded (Chipkin, 2009). Subscriptions to devices are not persistent between power cycles,

meaning if a device is reset for any reason, the subscriptions to other devices will not be preserved

and must be re-connected. Automatic re-subscriptions can be implemented, where a duration

property exists which triggers a CoV subscription to occur. However, automatic re-subscription is

also not persistent between power cycles.

Table 4.1: Sample of BACnet vendor APDU-Timeout and retry default values
and ranges, expanded from Peacock, Johnstone and Valli (2018, p259)

Vendor Default
APDU timeout
value (ms)

Default
APDU
retries

APDU timeout
value (ms) Range

APDU retries
Range

ScadaEngine1 500 5 300-30,000 0-5
Kepware2 1,000 3 100-9,999 1-10
Siemens3 3,000 3 - 1<
Contemporary Controls4 3,000 3 - -
Tridium5 3,000 3 - -
UTC6 6,000/10,000 3 - -
Obvius7 6,000 3 6,000< -
Metasys8 20,000 3 500-20,000 -
Viking Controls9 3,000/60,000 3 - -
1 (Scada Engine, 2009b)
2 (Kepware, 2016)
3 (Siemens, 2012)
4 (Contemporary Controls, 2014)
5 (Tridium, 2017)
6 (UTC Fire and Security, 2015)
7 (Shepard, 2013)
8 (The S4 Group, 2015)
9 (Viking Controls, 2002)

Due to the limited capacity of BACnetworks oversubscription of CoV notifications is plausible.

Robust testing of oversubscription is often not carried out due to the risk of damage to devices

(Chipkin, 2009; Newman, 2013). Further, many devices have a maximum subscribers limit, which

is often short according to Chipkin (2009). There is no maximum limit of subscriptions defined in

the BACnet 2012 revision 19 of the standard (SSPC-135, 2012, p461). A device on the BACnetwork

may subscribe to the same object multiple times, as the unique identifier for each subscription is self-

assigned. Each implementation of a device may have a limit applied to the quantity of subscriptions

that each device can initiate. This bottleneck can create a network security issue, where critical

devices will not receive notifications due to the subscription limit being reached (malicious or not)

(Peacock et al., 2018).

A potential scenario defined in Peacock et al. (2018) is discussed here. A malicious device

could send Confirmed, low threshold value CoV subscriptions to every supported device on the

BACnetwork, and then disconnect from the network. Whenever a value on any device changes, the

malicious device will be notified, but as the malicious device is offline, each legitimate device will
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Client Device Server Device

1) CoV Subscription Request

4) CoV Notification

7) CoV ACK

3) Value Change

5) Wait for ACK6) Write to Buffer

2) Client Disconnect

Figure 4.1: Malicious confirmed CoV transaction, red struck-out labels indicate
normal CoV transaction steps which do not occur due to the attack, replicated
from Peacock, Johnstone and Valli (2018, p261)

then wait for the timeout to expire before sending the next notification. As the APDU timeout

property is defined on the client of the transaction, the malicious device may set the length to wait,

and the number of retry attempts. A model of the attack is detailed in Figure 4.1, and explored in

§4.4.4 and §5.4.

4.1.2 BACnet bounded priority arrays

In a similar fashion to reading data, any capable device in a BACnetwork may write to any writable

property on any other device. As some property values directly cause cyber-physical actions to

occur, conflict resolution in the form of a priority system is implemented. BACnet accounts for

the potential of conflicting commands through a conflict resolution process where properties are

split into commandable, and writeable types. Commandable properties are defined as those whose

value change causes physical actions, while all other properties are defined as writeable. Conflict

resolution is only applied to commandable properties, whereas writable properties have no priority

mechanism, meaning the last write to the property overwrites the previous value.

Priority arrays are defined in Section 19.2 of the BACnet 2012 standard. The present value

property of many objects in BACnet are classed as commandable properties, for example, Analog

Output and Binary Output objects. BACnet devices interact with commandable properties using

the Write property or Write property multiple service requests. The request primitive for both

services contain three parameters; Property Identifier, Property Value and Priority. The three

parameters contain the commandable properties ID, the desired value for the property, and the

priority value respectively. The priority value is a number set between 1 and 16 for that Write

property service request, the lowest number having the highest priority.

Outlined in Peacock et al. (2018), the BACnet standard defines consistent representations for

the applications of command priority levels, with five defined applications and eleven flexible open

applications which can be implementation specific, outlined in Table 4.2. When a client device no

longer requires access to the commandable property in a service provider, a relinquish command

is sent to the provider, using Write property or Write property multiple service requests. The

relinquish request uses the same parameters as a normal write request with the property value

parameter set to NULL. When a device is notified that no service request exists at that priority level,

the next priority array element is checked for a service request. When all elements in the priority

array are NULL the property value will be set to a default value, defined in the Relinquish Default
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Table 4.2: BACnet priority array applications, replicated from Peacock, John-
stone and Valli (2018, p257)

Priority level Application

1 Manual Life Safety
2 Automatic Life Safety
3 Available
4 Available
5 Critical equipment control
6 Minimum on/off
7 Available
8 Manual Operator
9 Available
10 Available
11 Available
12 Available
13 Available
14 Available
15 Available
16 Available

property of the object.

Each priority value in the array may only hold one command value at a time. If two devices

have written to a commandable property with the same priority level it is unclear which value has

precedent. As source authentication is not specified for write commands entering the priority table,

the priority array attempts to create a queue of values to enter into a commandable property. This

results in a similar scenario to writable properties, where last-write-wins occurs. Seemingly, this

negates the purpose of the priority array implementation. Further, upon relinquishing an array

position with a NULL value to the array position, the standard describes “unknown behaviour”

for any queued command which is in the same array position (SSPC-135, 2012). Due to a lack

of verification or limitation on which devices may issue specific priority levels, any capable device

may change the value of a commandable property at any priority (Peacock et al., 2018). As these

actions are defined normal in the standard, it is difficult to detect malicious use of this service.

Detection approaches to write commands are outlined in Johnstone et al. (2015), and expanded on

in §4.4.1. Further exploration of the priority array behaviour is undertaken in §4.3.1, and §5.4.

4.1.3 Summary of protocol analysis

Analysis of the protocol specification identified two potential issues which could manifest as vulner-

abilities. Both required further investigation, as it was unclear from the specification what would

be the correct behaviour of devices if the identified scenarios were to occur. Further exploration is

undertaken in §4.4.4 and §5.4 for the CoV reporting function, and §4.3.1, and §5.4 for the priority

array, respectively.
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4.2 Scan analysis

A number of authors have discussed the exposure of BACnet devices at various points in time,

identified in §2.4. As a longitudinal view of exposure of BACnet devices, Internet wide scans from

Censys (Censys, 2018), an open-access repository for researchers were retrieved and analysed. Scans

from the period December 2015 to January 2018 were retrieved. Over the period, 102 scans of the

Internet were undertaken against the BACnet default port 47808. 1,733,392 devices were probed,

with 76,489 unique devices identified. Over the entire duration, 3,670 devices were active in every

scan. See Figure 4.2 for a general perception of global location of unique devices over the scan

duration, derived from the Geolite 2 IP database (MaxMind, 2018). Further, Table 4.3 outlines

the ten countries with the highest proportion of scanned BACnet devices. Of note, Australia is

ranked 5th overall, with 3.585% of devices over the three year duration. In a similar outline to

Gasser et al. (2017), Table 4.4 outlines the five vendors with the highest representation of unique

devices in the Censys scans.

Table 4.3: Breakdown of countries and the number of unique hosts scanned
from December 2015 to January 2018

Country Unique Scanned Hosts Percentage of Total Unique Hosts

United States 30942 40.453%
Canada 9618 12.574%
France 4260 5.569%
Germany 2994 3.914%
Australia 2742 3.585%
Oman 1787 2.336%
Spain 1725 2.255%
Brazil 1553 2.030%
Italy 1536 2.008%
United Kingdom 1504 1.966%

Table 4.4: Unique device vendor counts identified over the duration of the
examined scans, 2015-2018

Vendor Unique Device Count Percentage of Scanned Devices

Delta Controls 7661 10.0%
Reliable Controls Corporation 7501 9.8%
Tridium 4953 6.5%
Automated Logic Corporation 3456 4.5%
SAUTER 2094 2.7%
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Figure 4.2: Overview of global unique device locations derived from Censys
scans and Geolite2 geolocation database
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4.3 Threat modelling

Threat models are often used to identify threats and systematically reveal vulnerabilities in a system

(Peacock et al., 2017, 2018). The core requirements for a threat model are the identification of

adversaries and their motivations, description of the system and identification of threats against

the system. The last published threat model undertaken for BACnet was by Holmberg (2003).

Adversaries, motivations and the connectivity of BAS have changed in the past 15 years, as such

threat modelling was undertaken to ground the research perspective. There exist many taxonomies

regarding adversary identification and classification, such as those presented in Magar (2016).

Further, generic adversaries and their motivations (see Table 4.5) were identified in Bernier (2013),

and presented in Peacock et al. (2018).

Table 4.5: Summary of cyber adversaries, adapted from Bernier (2013), replic-
ated from Peacock, Johnstone and Valli (2018, p266)

Adversary Modus Operandi Motivation

Novice Denial of Service Attention Seeking
Pre-written Scripts Prestige

Hacktivist Denial of Service Political Cause
Defacement
Information Disclosure

Insider Sabotage Revenge
Information Disclosure
Internal Knowledge

Coder Develop scripts Power
Prestige

Organised Crime (Blackhat) Avoid Exposure Money
Highly Skilled Greed
Well Resourced
Targeted Attacks

Cyber Terrorist Destabilise Cyber or Physical assets Ideology
Disrupt Cyber or Physical assets
Destroy Cyber or Physical assets
Highly Skilled
Well Resourced

Nation-State State Sanctioned National Interests
Destabilise Cyber or Physical assets
Disrupt Cyber or Physical assets
Destroy Cyber or Physical assets
Highly Skilled
Well Resourced
Information Theft
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As noted by Newman (2013), the threat considered most damaging originally to BACnet was

the insider adversary, given the previously segregated nature of BAS networks, and the system

knowledge required. With increased connectivity and highly trusting devices, adversaries now have

external pathways to interact with BAS directly, or use BAS to pivot into enterprise networks

(Peacock et al., 2018). Given the defined modus operandi in Table 4.5, the motivation of each

adversary could be fulfilled when targeting an appropriate class of building system, e.g hospital,

office complex, government building.

Building on the threat modelling undertaken in Holmberg (2003), known BACnet specific vul-

nerabilities were collected from a range of sources (Holmberg, 2003; Kaur et al., 2015; Johnstone

et al., 2015; Caselli, 2016; Tonejc et al., 2016; Esquivel-Vargas et al., 2017; Peacock et al., 2017)

and summarised in (Peacock et al., 2018). The specific commands and properties used in these

vulnerabilities were identified, and classified using a STRIDE threat matrix (Howard & Lipner,

2006), presented as Table 4.6. To quantify the defined known attacks to a scenario, a model of the

interaction between a controller and other devices was defined in Figure 4.3. The model details

commands, objects and properties which are interacted with, sent or received by the controller

device.

Table 4.6: Known attacks classified against the STRIDE matrix, replicated
from Peacock, Johnstone and Valli (2018, p268)

Attack Type Specific Command/Property S T R I D E

Denial of Service Subscribe-CoV X X X
Denial of Service Router-Busy-To-Network X X X
Denial of Service I-am-Router-to-Network X X X
Denial of Service Router-Available-to-Network X X X
Denial of Service Disconnect-Connection-To-Network X X
Denial of Service DeleteObject X X X
Flooding Who-is-Router-to-Network X X
Flooding Reinitialize-Device X X
Flooding I-am X X
Flooding Any Malformed Packet X X
Malformed Broadcast Reject-Message-To-Network X X
Malformed Broadcast CreateObject X X
NetworkLoop InitializeRoutingTable X X
Reconnaissance NPDU probes X
Reconnaissance Read Property X
Reconnaissance Whois X
Reconnaissance Whoami X
Reconnaissance Who-is-Router-to-Network X
Reconnaissance WhoHas X
Routing table attack InitializeRoutingTable X
Shutdown/Reboot Reinitialize-Device X
Smurf attack source address manipulation X X
Spoof device I-am X X X
Traffic Redirection I-am-Router-to-Network X X
Traffic Redirection Router-Available-to-Network X X
Write Attack Write Property X X
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Figure 4.3: DFD of controller actions in a BACnet managed HVAC scenario,
replicated from Peacock, Johnstone and Valli (2018, p267)
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The appropriate STRIDE threat classes for each unique element in the model was defined, and

correlated with the STRIDE threat classification of known vulnerabilities presented in Table 4.6

(Peacock et al., 2018). The threats which each identified attack could initiate towards each element

was mapped, a subset is detailed in Table 4.7. To rank the impact of each attack against the

scenario, a count of threats against elements was used. The total threats posed by all noted attacks

was 652. Of the 652 total threat instances, Denial of Service was the largest threat class with 306

instances.

Table 4.7: Identified BACnet specific attacks, classified by the STRIDE matrix,
replicated from Peacock, Johnstone and Valli (2018, p269)

Element A1 A2 A6 A7 A11 A13 A14 A20 A21 A22 A23 A24 A26

Alarm Alert T,D T,D T,D D D D I D D D T,I I T,D
Alarm Values T,D T,D T,D D D D I D D D T,I I T,D
Any Device S S S S S S - - - S S S -
Check Threshold
Values

T,D T,D T,D D D D I D D S,D T,I I T,D

Commence Polling
Command

T,D T,D T,D D D D I D D D T,I I T,D

HMI S S S S S S - - - S S S -
Logger S S S S S S - - - S S S -
Manual Data Read T,D T,D T,D D D D I D D S,D T,I I T,D
Move to Logger T,D T,D T,D D D D I D D S,D T,I I T,D
Poll Data T,D T,D T,D D D D I D D S,D T,I I T,D
Polled Data T,D T,D T,D D D D I D D D T,I I T,D
Property Value(s) T,D T,D T,D D D D I D D D T,I I T,D
Raise Alarm T,D T,D T,D D D D I D D S,D T,I I T,D
Read Command T,D T,D T,D D D D I D D D T,I I T,D
Subscribe to Device T,D T,D T,D D D D I D D S,D T,I I T,D
Subscription T,D T,D T,D D D D I D D D T,I I T,D
Subscription Com-
mand

T,D T,D T,D D D D I D D D T,I I T,D

TrendLog T,D T,D T,D D D D I D D D T,I I T,D
TrendLog Values T,D T,D T,D D D D I D D D T,I I T,D
Write Command T,D T,D T,D D D D I D D D T,I I T,D
Write Value T,D T,D T,D D D D I D D S,D T,I I T,D

For each individual attack, the total impact of each threat class against the scenario was derived,

Table 4.8 outlines the full threat counts for each attack. Using this classification, the commands

which have the highest threat potential for legimiate malicious action can be obtained. Six attacks

were identified as equal highest with 39 threat counts, these attacks used application layer com-

mands Subscribe-CoV, I-am and DeleteObject, and network layer commands relating to BACnet

routers. Identifying legitimate malicious instances of these commands is dependent on the context

derived from the individual implementation of the BACnet system. Exploration of identifying these

attacks is undertaken in §4.6.9.

Object and service analysis against a number of retrieved devices is undertaken in §4.6.7. The

details of these devices were correlated with the classified attacks described in Table 4.6. Of the
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Table 4.8: Total threat counts based on known attacks against scenario model,
replicated from Peacock, Johnstone and Valli (2018, p270)

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 Total

S 3 3 3 3 3 3 3 3 3 3 3 3 3
T 18 18 18 18 0 18 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 0 0 0
D 18 18 18 18 18 18 18 18 18 18 18 18 18
E 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 39 39 39 39 21 39 21 21 21 21 21 21 21

A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26

S 0 0 0 0 0 0 0 0 10 3 3 3 0 58
T 0 0 0 0 0 0 0 0 0 18 0 0 18 126
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I 18 18 18 18 18 18 0 0 0 18 18 18 0 162
D 0 0 0 0 0 0 18 18 18 0 0 0 18 306
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 18 18 18 18 18 18 18 18 28 39 21 21 36 652

known attacks against BACnet, the occurrence of surveyed devices which implement the affected

services are identified, see Table 4.9

It follows that the most common threats to devices are those which use the most common

services to undertake malicious action. Thus, the most common services, Read property, Who-is, I-

am, Who-has, I-have and Write property which are contained in over 97.8% of the devices analysed

are of interest. As these are the most common services in use, it is difficult to undertake binary

classification between malicious and normal commands. Therefore, further analysis of these service

types in the network traffic is required to classify if a malicious-command is being undertaken, as

opposed to normal operations on the BAS.

Sensors and actuators are clearly the most limited devices in terms of attempting to attack

other devices.The majority of sensor and actuator devices do not operate the client side of each

service, which allows a device to initiate functions in other devices. Sensor and actuator devices, as

designed, can execute write and read commands, allowing for other non-sensor devices to instruct

sensor devices to maliciously write values into its data structures.

Controllers, advanced controllers and workstations, by design have both the server and client

side services available, which provides these devices with the means to control other devices. Thus,

an attacker has more control over a whole system if he/she has control of a workstation or controller-

type device.
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Table 4.9: Comparison of extracted device services, and occurrence in devices
to classified known threats

BIBBS Attacks Sensor

Percent

Controller

Percent

Actuator

Percent

advController

Percent

Workstation

Percent

AE-AVM-A Denial of Service, Malformed

Broadcast, Reconnaissance,

Write Attack

0.00 0.00 0.00 0.00 4.17

AE-N-E Reconnaissance 0.00 0.00 0.00 7.41 8.33

AE-VM-A Reconnaissance, Write Attack 0.00 0.00 0.00 0.00 100.00

DM-ADM-A Reconnaissance 0.00 0.00 0.00 0.00 79.17

DM-ANM-A Reconnaissance, Flooding,

Spoofing

0.00 0.00 0.00 0.00 70.83

DM-BR-A Denial of Service, Malformed

Broadcast

0.00 0.00 0.00 0.00 25.00

DM-BR-B Denial of Service 0.00 6.64 0.00 40.74 16.67

DM-DDB-A Reconnaissance, Flooding,

Spoofing

7.14 24.22 0.00 96.30 100.00

DM-DDB-B Flooding, Reconnaissance,

Spoofing

85.71 100.00 100.00 100.00 100.00

DM-DOB-A Reconnaissance 0.00 1.56 0.00 25.93 37.50

DM-DOB-B Reconnaissance 85.71 100.00 94.12 98.15 100.00

DM-OCD-A Denial of Service, Malformed

Broadcast

0.00 0.00 0.00 0.00 16.67

DM-OCD-B Denial of Service, Malformed

Broadcast

0.00 2.34 0.00 18.52 20.83

DM-RD-A Denial of Service 0.00 0.00 0.00 0.00 37.50

DM-RD-B Denial of Service 35.71 53.52 29.41 96.30 45.83

DS-AM-A Write Attack 0.00 0.00 0.00 0.00 12.50

DS-AV-A Reconnaissance 0.00 0.00 0.00 0.00 16.67

DS-COV-A Denial of Service 0.00 7.03 0.00 27.78 70.83
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continuation of Table 4.9

BIBBS Attacks Sensor

Percent

Controller

Percent

Actuator

Percent

advController

Percent

Workstation

Percent

DS-COV-B Denial of Service 21.43 42.97 64.71 79.63 16.67

DS-M-A Write Attack 0.00 0.00 0.00 0.00 100.00

DS-RP-A Reconnaissance 0.00 14.06 0.00 51.85 100.00

DS-RP-B Reconnaissance 100.00 100.00 100.00 100.00 100.00

DS-V-A Reconnaissance 0.00 0.00 0.00 0.00 100.00

DS-WP-A Write Attack 0.00 13.67 0.00 55.56 100.00

DS-WP-B Write Attack 100.00 100.00 100.00 100.00 66.67

NM-RC-B Denial of Service, Flooding,

Traffic Redirect

0.00 0.78 0.00 0.00 0.00

SCHED-AVM-A Denial of Service, Malformed

Broadcast, Reconnaissance,

Write Attack

0.00 0.00 0.00 0.00 4.17

SCHED-E-B Reconnaissance,Write Attack 0.00 0.00 0.00 29.63 16.67

SCHED-I-B Reconnaissance, Write Attack 0.00 3.91 0.00 92.59 16.67

SCHED-R-B Reconnaissance 0.00 1.56 0.00 0.00 0.00

SCHED-VM-A Reconnaissance, Write Attack 0.00 0.00 0.00 0.00 100.00

SCHED-WS-A Reconnaissance, Write Attack 0.00 0.00 0.00 0.00 33.33

SCHED-WS-I Reconnaissance, Write Attack 0.00 2.34 5.88 0.00 0.00

T-AVM-A Denial of Service, Malformed

Broadcast, Reconnaissance,

Write Attack

0.00 0.00 0.00 0.00 12.50

T-VMT-E Reconnaissance 0.00 0.00 0.00 5.56 16.67
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4.3.1 Attack modelling

As identified in section 4.6.5, there exists potential Denial of Service methods in BACnet’s priority

array implementation. Modelling the priority array was undertaken to identify approaches to detect

contextually abnormal commands, and improve understanding of the security requirement of the

bounded array. The Anylogic simulation software (AnyLogic, 2017) was used to model the priority

level security vulnerability, described in Section 4.1.2. A conceptual model of the problem space

was developed, detailed in Figure 4.5). From this model, a dynamic agent-based simulation model,

capable of representing the identified problem with objects and their associated properties in a

BACnetwork was generated.

A typical run of the simulation is outlined in Figure 4.4. An object can be connected to the

priority list at any priority level, as per the BACnet specification (SSPC-135, 2012). Results from

two devices writing to a property at the same priority level in the simulation model is detailed in

Table 4.10.

Figure 4.4: Sample simulation run of BACnet bounded priority array, replicated
from Peacock, Johnstone and Valli (2018, p264)

Modelling the priority array has identified that the Denial of Service issue can exist, namely,

two devices can write to the same priority level in the array, with the second device overwriting

the first device’s value (Peacock et al., 2018). Due to the variance of BACnet implementations,

described in §4.1, this behaviour may not be representative or definitive for every BACnet device.

In a generic device, defined by the standard, this issue exists when represented as a theoretical

model.
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Table 4.10: Simulated array before and after two devices write to a property at
priority 1, adapted from Peacock, Johnstone and Valli (2018, p265)

Array after First Device Write Array After Other Device Write

Priority level Value Identifier Priority level Value Identifier

1 11 Device 1 68 Other Device
2 NULL 2 NULL
3 NULL 3 NULL
4 NULL 4 NULL
5 NULL 5 NULL
6 NULL 6 NULL
... ...
16 NULL 16 NULL

4.3.2 Priority array attack implementation

The BACnet open stack (Karg, 2017) was used to test the priority array issue. The procedure used

to test involved the following process.

1. Device A reads the base value of the Present value property of Device B

2. Device A writes an initial value to Priority array 12 on Device B

3. Device A reads the Present value property of Device B

4. Device A reads the Priority Array of Device B

5. Device C writes a different value to Priority Array 12 on Device B

6. Device A reads the Present value property of Device B

7. Device A reads the Priority Array of Device B

8. Device C writes a relinquish command to Priority array 12 on Device B

9. Device A reads the Present value property of Device B

10. Device A reads the Priority Array of Device B

Table 4.11 presents the values from this procedure. As can be seen, upon relinquishing the value

written into priority 12 on Device B, the original value written by Device A is lost. Therefore, when

two devices write to the same priority level in a third device, the last write wins scenario occurs.

Although the priority array allows for up to 16 devices to write values to the same property, each

of these devices must write to a different priority array value, else a value is lost. Given there are

no restrictions on which devices may write at specific priorities to devices, the priority array can

be overwritten.
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Table 4.11: Terminal output of priority array value overwrite testing

Source Device Command Output

Device A ./bin/bacrp 120 1 1 85 0

Device A ./bin/bacwp 120 1 1 85 12 -1 4 20.0 WriteProperty Acknowledged!

Device A ./bin/bacrp 120 1 1 85 20

Device A ./bin/bacrp 120 1 1 87 {NULL, NULL, NULL,

NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL,

20.000000,NULL, NULL, NULL,

NULL}
Device C ./bacwp 120 1 1 85 12 -1 4 50.0 WriteProperty Acknowledged!

Device A ./bin/bacrp 120 1 1 85 50

Device A ./bin/bacrp 120 1 1 87 {NULL, NULL, NULL,

NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL,

50.000000,NULL, NULL, NULL,

NULL}
Device C ./bacwp 120 1 1 85 12 -1 0 0 WriteProperty Acknowledged!

Device A ./bin/bacrp 120 1 1 85 0

Device A ./bin/bacrp 120 1 1 87 {NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL}
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4.4 Assessing existing simulation environments

There is a lack of available network data for security analysis in BAS, particularly for BACnet.

However, the means for generating network traffic exists in the form of the BACnet open stack

(Karg, 2015), and a number of commercial simulation environments (Scada Engine, 2009a; CBMS,

2015b). To undertake analysis of intrusion detection techniques with machine learning, a large

amount of data is required dependent on the algorithm selected. To trial the generation of data,

and prototype the identified attacks, two smaller, focused datasets were implemented, classified as

Trial dataset and Theory testing dataset. The use of smaller datasets allowed for initial testing of

algorithms to be undertaken. Additionally, the prototyping of dataset generation allowed for short-

comings in existing BACnet simulation software to be identified, and determine the requirements

for a larger simulation, which is discussed in §4.6.3. Datasets were generated based on specific

scenarios, which incorporated a base BAS, and an implemented attack.

4.4.1 Trial Dataset: Write Attack

The Trial Dataset was designed as a minimal partial HVAC system, which consisted of one temper-

ature sensor, one fan and one controller device which communicated actions to the fan, based on

the sensor’s provided data readings. In accordance with HVAC design practices, fan speed changes

occurred at a minimum 15 second interval, to replicate time delays present to prevent fan drive

damage (Stanford III, 2011). The attack defined for the Trial Dataset was a dormant threat in

the controller which would pseudo-randomly interact with the fan. The attacker sent legitimate

fan speed change commands in quick succession of each other, with the intent to cause physical

damage to the fan. The generated Trial Dataset contained three hours of BACnet simulated data

in network capture format, equating to 25,000 frames. The topology of the simulation environment

is shown in Figure 4.6. The BACnet simulation tool SCADAengine (Scada Engine, 2009a) was

used for the simulated temperature sensor and fan, The BACnet open stack (Karg, 2015) acted as

the controller, receiving temperature readings from the simulated temperature sensor, and sending

fan speed commands to the simulated fan.

4.4.2 Trial Dataset: ANN approach

As an initial test of supervised machine learning, a backpropagation Artificial Neural Network

(ANN) was selected to identify the write attack. The ANN implementation is detailed as Equation

4.1 - Equation 4.4.
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Figure 4.6: Network topology for Trial Dataset experiments, replicated from
Johnstone, Peacock and den Hartog (2015, p60)

sj =

n∑
i=1

wixi

where

xi = Input i

wi = Weighting applied to xi

(Equation 4.1)

oj = φ(sj + bij)

where

oj = Output j

bij = Bias factor applied to node sj of (Equation 4.1)

φ = The activation function

(Equation 4.2)

δj = ejφ
′
j(sj) (Equation 4.3)
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δj = − ∂E
∂yj

φ′j(sj)

where

Neuron j is hidden

e = error term

(Equation 4.4)

Pre-processing of the dataset involved removing all but the write command frames, which were

paired into events. The pairing resulted in 1,000 write events which formed the final dataset. The

Delta time (∆t) between same frames (writes) are the events of interest, as each frame contains a

legitimate command with legitimate values.

The first 500 events were used to train the ANN. The remaining 500 events were used to

test the effectiveness of the trained ANN in classifying previously unseen events. The ANN was

optimised through testing the number of iterations, the number of hidden layers and the learning

rate. The number of hidden layers were enumerated from one through eight. Testing began with

a simple three-layer network, which held one hidden layer. The results were encouraging, with a

training time of 6.349 seconds and a classification accuracy of 90.4% against the test data, with

a classification time of 0.005 seconds. The ANN was then extended to four layers. In the two

hidden layer ANN, the training time was 5.718 seconds with a classification accuracy of 100.0%

(classification time 0.006 sec.). With three hidden layers, the training time was 2.059 seconds and

had a classification accuracy of 100.0% (classification time 0.007 sec.). Figure 4.7 shows that both

three and five hidden layers appear to be optimal, the classification time is longer for five hidden

layers (0.008 sec.).

Given that Backpropagation is a gradient descent method, it is possible the ANN to not perform

well if it does not converge on the global error minimum. The error rate was examined to ensure

that the ANN was not being trapped in a non-optimal local minimum, detailed in Figure 4.8. Table

4.12 shows that the training time for the ANN increases linearly with the number of iterations, this

is not an issue provided training time is not the rate determining step. There was a 10% decrease

in classification accuracy when the learning rate was varied from 1.0 to 0.1. The learning rate is a

measure of the size of the step taken down the gradient, so large values of learning rate correspond

to smaller steps (which would be more accurate, but take longer to converge).

4.4.3 Trial Dataset: Flow Analysis

An alternative approach to using the ANN was undertaking flow analysis. As the write attack

described in section §4.4.2 is a frequency attack, identifying increases in frequency can be used for

detection. The network commands sent over the network were converted into a time series line

plot with a bin size of one minute, detailed in Figure 4.9. Through frequency comparisons for each

command, it can be seen that Who-is and I-am command frequencies peak when Write property

and Read property commands peak in phase. These relationships exist due to the implementation
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Figure 4.7: Number of hidden layers compared to the training time, replicated
from Johnstone, Peacock and den Hartog (2015, p61)

Figure 4.8: Error convergence in the ANN, replicated from Johnstone, Peacock
and den Hartog (2015, p62)

108



Table 4.12: Iterations of the ANN vs. Training Time of the Network, replicated
from Johnstone, Peacock and den Hartog (2015, p62)

Iterations Time (sec.)

100 0.875
200 1.710
300 2.593
400 3.522
500 4.302

of the network devices which do not hold network addresses, thus when a Write property or Read

property command occurs, the address of the device must be requested (Who-is) and received

(I-am). An improved dataset which holds network addresses would reduce this phenomenon.

Given we are looking for bursts of traffic over a short duration, further reducing the bin sizes

reveals the anomalous command events on the network. A comparison of bin sizes for write com-

mands are presented in Figure 4.10. Further analysis could identify a specific host generating this

traffic. While this analysis is useful for this specific attack, it requires contextual knowledge of the

normal network interactions for the attack to be identified. Further, non-frequency attacks may

not have an identifiable change in phase. Regardless, this method may be complementary to other,

more process intensive methods such as machine learning, and thus was explored further.

4.4.4 Theory Testing Dataset: CoV attack

As described in §4.3.1, a dataset was generated to undertake testing of the theoretical CoV at-

tack. Similar to the Trial Dataset, the Theory Testing Dataset represents a subset of a BACnet

controlled HVAC system, with the additional CoV reporting functionality. The Theory Testing

Dataset contains a thermostat, and an air handling unit (AHU) controller device, see Figure 4.11.

The thermostat Raspberry Pi used a CBMS BACnet server instance (CBMS, 2015b), while the

interaction from the controller device was implemented using the BACnet open stack (Karg, 2015).

The configuration of the thermostat required an additional CBMS engineering tool (CBMS, 2015a),

implemented on a Windows 7 machine. A controller acts as a client, subscribing to the thermostat

present value property. When a value change occurs over a threshold value, the controller is notified

(Peacock et al., 2018).

The scenario for testing the attack consisted of a a malicious client device subscribing to the

thermostat server device. When subscribing, the malicious client can set the timeout value and

retry attempts in the case of a device losing connection. For this test, the wait time is set to 10

seconds, and the retries are set to 3. Next, the malicious client disconnects from the network. While

disconnected, the subscribed value changes multiple times on the thermostat device. After a period

of time, the client reconnects to examine the behaviour. While the client is disconnected, the server

device attempts to send the CoV notifications, and waits the defined timeout and retry times. The

aim of creating this dataset was to determine if the client device received delayed notifications of

the server value changes after reconnecting to the network.
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Figure 4.11: Experimental simulation setup for Theory Testing Dataset, replic-
ated from Peacock, Johnstone and Valli (2018, p261)

4.4.5 Theory Testing Dataset: Analysis

Table 4.13 outlines an excerpt of the captured behaviour, outlined in (Peacock et al., 2018). Due to

a limited network handler implementation, the normal response from a confirmed request is a reject

response. Naturally, when the malicious device disconnects, the server can no longer communicate.

While attempting to communicate, the server waits 10 seconds for a response, and then resends

the confirmation twice, for three total confirmations. During the 30 second disconnected window,

the subscribed server value was changed multiple times, none of these changes triggered a further

notification while the server waited for the previous changes acknowledgement packet. Entry 81438

and 81439 in Table 4.13 detail a normal notification and ACK, after a value change and the malicious

client device was reconnected. When the malicious client reconnected, the changes that occurred

while waiting for the timeouts and retries were never disseminated to the client (Peacock et al.,

2018).

From the initial experiment and testbed implementation, the extent of the attack is unclear.

Further experimentation was required to implement additional devices, to determine if the attack

prevents the server device from communicating to other subscribed devices.

4.5 Simulator assessment and initial attack implementation out-

comes

For the simple write attack, the context of the command is of importance. The contextual inform-

ation in this case, is the ∆t between write commands occurring. By explicitly distinguishing this

feature, the ANN model was able to detect the context of the network command, and thus identify

the attack. More complex network scenarios would require additional learning for these contextual

details, which can be revealed through the use of temporal modelling, such as time series analysis
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Table 4.13: Initial experimentation results, replicated from Peacock, Johnstone
and Valli (2018, p262)

No. Time Source Destination Protocol Length Info
80040 19:58:32.5 192.168.1.12 192.168.1.5 BACnet 85 Confirmed-REQ con-

firmedCOVNotification[
67] device, 9999 analog-
output, 1 present-value

80041 19:58:32.5 192.168.1.5 192.168.1.12 BACnet 60 Reject unrecognized-
service[ 67]

80327 19:58:48.4 192.168.1.12 192.168.1.5 BACnet 85 Confirmed-REQ con-
firmedCOVNotification[
69] device, 9999 analog-
output, 1 present-value

80510 19:58:58.4 192.168.1.12 192.168.1.5 BACnet 85 Confirmed-REQ con-
firmedCOVNotification[
69] device, 9999 analog-
output, 1 present-value

80656 19:59:08.4 192.168.1.12 192.168.1.5 BACnet 85 Confirmed-REQ con-
firmedCOVNotification[
69] device, 9999 analog-
output, 1 present-value

81438 19:59:48.5 192.168.1.12 192.168.1.5 BACnet 85 Confirmed-REQ con-
firmedCOVNotification[
70] device, 9999 analog-
output, 1 present-value

81439 19:59:48.5 192.168.1.5 192.168.1.12 BACnet 60 Reject unrecognized-
service[ 70]

or other machine learning algorithms.

As demonstrated, the basic time series analysis against the trial dataset was useful for identi-

fying the contextual write attack. Given the attack was frequency based, methods such as graph

analysis, and packet counting could be useful for either detection, or building the context around

normal network commands traversing the network between hosts. There may be limitations how-

ever, particularly if the distinguishing features between legitimate and malicious commands have

a closer value range. The ANN applied to test the dataset provided justification to pursue apply-

ing additional machine learning algorithms to the BACnet traffic classification problems. The CoV

proof of concept (POC) implementation in the theory testing dataset described the issues identified

in the protocol specification review. A larger, virtual testbed was deemed necessary which could

incorporate further devices to test the effect of the attack.

The current version of the SCADAengine BACnet simulator (Scada Engine, 2009a) had many

limitations, primarily, lack of value generation or non-linear value stepping, and the requirement

of Windows XP. The CBMS server device (CBMS, 2015b) used for the theory testing dataset also

had a restrictive value generation and value stepping implementation. Additionally, SCADAengine

(Scada Engine, 2009a) and CBMS (CBMS, 2015b) are closed source stacks, in which it is difficult

to implement missing features. Both SCADAengine (Scada Engine, 2009a) and CBMS (CBMS,

2015b) provided the ability to store BACnet data structures and undertake limited network interac-
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tions. However, for a larger, more robust simulation, further programmatic network interaction was

required. As such, given both SCADAengine (Scada Engine, 2009a) and CBMS (CBMS, 2015b)

are closed source, and hardware restrictive, they were not used further in the research.

Comparatively, the flexibility of the BACnet open stack (Karg, 2015) was promising for gen-

erating a larger testbed. Sample device templates existed in the stack which could be adapted to

the scenario, to be used for data storage and initiate network communications. Due to its ability

to have missing features implemented, and the ability to pass generated values to BACnet data

structures, the BACnet open stack was selected for further simulation of BACnetworks for the

research.

Lessons learned from the implementations of both simulators identified the requirements for

developing a larger testbed. Specifically, a means of generating values to send over the network,

the ability to construct BACnet devices, and storage of network addresses for devices. Further,

investigating the network footprint of a real BACnet/IP network was deemed useful to ground the

simulation scenario.

4.6 Data collection and generation

Section 4.6 describes the rationale of both collecting real and generating synthetic network traffic for

the purpose of anomaly detection. First, the real network data collection is described, followed by

initial analysis of the captured network data. Next, a description of the defined building simulation

scenario, physical data generation and network design for data generation is presented. Finally, the

designed attack framework is defined, with testing of each defined attack described.

4.6.1 Real data collection

Real BAS data was collected from an Australasian University for the study, with the intention of

being used for validation of the simulation implementation. Data capturing involved port mirroring

of the BAS VLAN for one building on campus. The building consisted of a number of network

visible controllers operating over BACnet/IP, with underlying sensors, actuators and application

specific controllers operating over serial connection using BACnet/MS-TP. One month of network

stream was collected, with network activity averaging 1GB per day, consisting of over one million

frames. The network capture was on the backbone/management level of the topology, as such, it

was not possible to capture sensor data for the building. However, the insights gained from this

dataset, discussed in §5.2.1 were used to define some interactions in the simulation.

4.6.2 Analysis and validity

Initial analysis of the network data was undertaken using Moloch (AOL, 2017), a network stream

visualisation and analysis tool. From this software per-host packet counts were obtained in addition

to visual flow structures of the traffic. It was revealed that the traffic is extremely regular, as the

majority of traffic is automated, based on time. Upon further analysis, it was determined that over
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78% of the traffic captured was not passing over the default BACnet port. Rather, the vendor of the

controller uses a proprietary middleware protocol to communicate with BACnet devices for point

configuration over a separate communication port. Point configuration, in this context consists of

Write property commands to devices. This poses a number of questions for intrusion detection in

BACnet-managed BAS. Given a portion of attacks operate using write commands, when a write

command is passed over the default BACnet port when running controllers from specific vendors, it

would be classed as anomalous, as write commands operate on the proprietary port. This reinforces

the requirement of learning each specific BAS network’s traffic profile for intrusion detection, rather

than developing a catch-all intrusion detection system for BAS. Thus, even though BACnet is an

open source protocol, there are fundamentally different proprietary elements dependent on the

vendor type of controllers and implementation. In addition to the wide range of technologies,

device versions and control strategies, a generic detection method does not seem suitable for all

BAS implementations. Further research is required to investigate vendor middleware protocols to

determine how they interface with BACnet, given the lack of network traffic dissectors, as attacks

could be propagated over the network using these middleware interfaces, if the protocol is reverse

engineered.

The original intention of collecting the real network data was to use this data for statistical

comparison to the synthetically-generated data for simulation validity and justification. Every

implementation of a BACnetwork is tailored to the specific building design. As such, each im-

plementation is different, given the wide range of devices, vendors and physical media which can

incorporate BACnet. Given that the research specifically looks at BACnet/IP, there are some limit-

ations to the real dataset collected. First, the design of the real buildings network does not have all

devices using BACnet/IP, rather only the controllers. All field devices used serial communications

from which it was not capable of capturing network traffic. Second, given the choice of vendor,

some of the network traffic was not dissectible due to a proprietary middleware implementation of

the BACnet protocol operating on the network. Therefore, a comparison between a network, which

only has one type of device, and utilises vendor specific protocol implementations compared to a

full BACnet/IP network was not a logical course of action. As such, the simulation design used for

the research was defined using a range of sources, discussed in §4.6.3.

4.6.3 Building simulations

There are two common use cases for simulation in building automation systems. One is network

analysis and protocol modelling, the focus of this research and other cyber security based projects

mentioned in §2. The second is for the building design domain, aimed at improving energy efficiency

through whole building modelling and simulation. A range of simulation and modelling software

exist for both use cases. For BACnet, network simulation software include SCADAengine (Scada

Engine, 2009a) and the BACnet open stack (Karg, 2017). Typically, data generated in these

simulators are simplistic, with the aim to generate network traffic rather than have meaningful

data inside these network transactions.
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For building design, simulations are used to generate data for load calculations, to give an

understanding of energy impact and building material longevity. Thus, simulation software and

languages, such as Modelica (Modelica, 2018) and Energyplus (EnergyPlus, 2018) used by building

designers, are focused on accurate data and energy calculations, with network traffic rarely, if

ever, implemented. For this research, the primary interest is network simulation, however, the

data held in network transactions are of interest for the context of feature selection. While the

data would ideally be realistic, the estimations generated by building design simulations have a

high degree of variability compared to real-world conditions. The variability can be accounted for

by the modeller’s bias, or underestimating the impact of occupant and heat emitting equipment

operating within the building spaces. As such, the American Society of Heating, Refrigerating and

Air-Conditioning Engineers (ASHRAE) define a building design model for an existing building to

be calibrated if it falls within ±10% of mean bias error and the coefficient of variation root mean

squared error falls within ±30% using hourly data, or ±5% using monthly data (ASHRAE, 2012b).

For modelling the internal systems of a building for energy simulation, a range of variables are

used, including local weather readings, occupancy models, building geometry details, construction

materials, internal equipment load, building occupancy schedule and HVAC type. Similarly, for

simulating a BACnetwork, appropriate digital representation of devices is required, in addition to

protocol defined network transactions.

Therefore, the simulation environment required for this research takes building design variables

into consideration, when developing a simulation scenario, to generate a simulation which accounts

for real-world data loads, as opposed to generating non-meaningful data for traffic analysis.

4.6.4 Simulation design

There are a number of interrelated parts operating as a control loop structure within BAS. Four

core requirements were identified for the generation of the simulation:

1. A system scenario;

2. Generation of environmental variables;

3. Definitions of devices;

4. Network communications.

These four requirements are split into corresponding simulation levels. The first level is the defini-

tion of a system scenario, which defines the user, and interaction of components in the other three

levels. The system scenario is defined in Section 4.6.5 The second level, defined as the physical

level describes how synthetic values will be representative of environmental phenomena. For this

to occur, a range of algorithms used in building energy simulation systems and HVAC engineering

were implemented, along with a range of core assumptions. Section 4.6.6 describes in detail the

physical level. The third level is the device level, which describes the BACnet representation of

devices which hold the synthetic data, and propogate the data around the system. Section 4.6.7
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describes this level. The fourth and final level is the network level, which outlines the network

topology for the simulation, and simulates data traversal over the network dependent on the com-

munication processes implemented between devices, described in Section 4.6.8. Additionally, the

network level describes the implemented attack framework for attack data generation, described in

Section 4.6.9

4.6.5 Simulation scenario

Scenarios are used in building energy simulations to represent a building planned for construction,

or a pre-existing building. In this case however, no building plan or pre-existing building exists,

and thus to derive values for a generic building, a scenario was defined. The scenario selected was

to represent a typical office building’s HVAC system in Perth, Australia. Building types are classed

based on their purpose, with design guidelines for construction materials, air changes and occu-

pancy levels defined by the National Construction Code of Australia (NCC) (NCC, 2016). An office

building is denoted as a Class 5 building in Australia, with many variables for the scenario taken

from the NCC Building Code of Australia Volume one and best practices guidelines (NCC, 2016).

A core requirement for the scenario is the size of the building, from which physical simulation calcu-

lations are derived. The details of the average office building sizes in Australia were retrieved from

the commercial buildings baseline study, undertaken by the Australian government Department of

the Environment and Energy (Phillips, 2014). From the provided dataset, Perth was selected for

the average floor space containing both real and predicted data. Given the research aim is cyber

security of BAS, not architecture or building energy simulation, the scenario building defined is ba-

sic, and representative of the minimum requirements for data generation, and subsequent network

traffic simulation. Similarly, no year is defined for the simulation, thus the average floor space for a

Class 5 office in Perth of 2912m2 is used as a comparative measure. The simulation is designed in

such a way, that each device is encapsulated in a virtual machine, therefore there were some limit-

ations in regards to the size of the scenario defined. The floor space is relatively large due to the

multi-tenant office buildings in the Perth CBD. When designing a simulation to represent an office

space this large, the number of virtual machines required were larger than could be accommodated

with the hardware capabilities at the researcher’s disposal. As such, the scenario size was reduced to

be a smaller subset representing a business which encompases 480m2, consisting of both offices and

computer laboratories. From the defined sizing and best practices, the Australian HVAC standards

defined by the Australian Institute of Refrigeration, Air Conditioning and Heating (AIRAH) were

applied to detail the devices to be used in the scenario (AIRAH, 2015a, 2015b). There are three air

handling units, each supplying cooling to one office zone, sized 120m2 and one computer laboratory

zone, sized 40m2 See Figure 4.12 for the defined HVAC system scenario layout, which is based on

a default Variable air volume (VAV) system defined in ASHRAE (2009)[pp19.23]. The scenario

simulates the operation of a BACnet/IP managed BAS for the month of January, which is summer

in the southern hemisphere.
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Figure 4.12: Building HVAC plan for defined scenario
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4.6.6 Physical level simulation

There are a range of devices which are controlled and monitored by a BAS. As part of a cyber-

physical system sensors measure various environmental phenomena. These values are then sent to

controlling devices over the network, where controlling devices use predefined logic to enact change

on the system. In HVAC engineering and building energy simulation, a range of equations are used

to describe the monitored phenomena. For the defined scenario, and subsequent devices acting in

the system, a range of data were identified to be generated for operation of the simulation. The

devices and data generated are detailed in Table 4.14.

Table 4.14: Identified devices to be modelled for the simulation

Device Generated Data

Temperature Sensor (External) External Temperature
Temperature Sensor (Pre-Coil) Pre-Coil Temperature
Temperature Sensor (Return Air) ReturnAir Temperature
Zone Thermostat Zone 1 Temperature
Zone VAV box Zone 1 Airflow Volume
Zone VAV Box Zone 1 Pressure
Zone VAV Box Zone 1 Damper Settings
Zone Thermostat Zone 2 Temperature
Zone VAV box Zone 2 Airflow Volume
Zone VAV Box Zone 2 Pressure
Zone VAV Box Zone 2 Damper Settings
Flow Sensor Supply Fan Air Volume
Supply Fan Supply Fan Speed
Flow Sensor Return Fan Air Volume
Return Fan Return Fan Speed
Damper Actuator Recycle Air Damper Settings
Damper Actuator Exhaust Air Damper Settings
Damper Actuator Supply Air Damper Settings
Valve Actuator Cooling Valve Actuator Settings
Valve Actuator Heating Valve Actuator Settings
Flow Sensor Intake Airflow Sensor
Pressure Sensor Pre-Coil Pressure

The majority of devices in the network are dependent on other devices for reporting data and

for control of the system to provide optimum performance. The relationships between these devices

can be described as control loops, of which the major control loops are the air handling unit, chiller

control and zone control. The air handling unit control loop defines how much air will be ejected,

recycled and taken into the system, based on the temperature of the air returning from the zones,

the external temperature, the minimum required fresh air flow rate, and the amount of air required

to cool the zones. The chiller control loop defines the degree to which the valves providing cooling

into the system are open. The degree is determined by the Pre-coil temperature, and the cooling

load of the system. In the final control loop the zone control describes how much cooled air is

to be provided to the zone based on the internal temperature of the zone. The thermostat in the

zone thus controls the zone damper to limit or increase air flow into the zone, which affects the
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resistance to air in the system. With altered resistance the pressure changes which requires action

from the supply fan to maintain a static pressure setpoint.

The relationship and impact of external and internal temperature on a building is complicated,

and is the focus of much research in the building simulation domain (ASHRAE, 2009). HVAC

systems are defined by two core concepts, the cooling load, which defines the amount of cooling

required to keep a building at a set point temperature, and the heat gain, which is the rate at

which heat is generated, or conveyed into a building. ASHRAE defines a range of heat gains for a

building classified as either external or internal gains. External gains are derived from the impact

of solar radiation on the construction materials such as walls, roofs and windows. Internal gains

are derived from the impact of occupants, lighting, and equipment emitting heat (ASHRAE, 2009).

Models exist for calculating both external and internal gains, based on relevant international and

national standards including the NCC, AIRAH, and ASHRAE, models for internal heat gains range

from simplistic hourly operational models to models derived from real building occupancy sensor,

equipment power drain and light/heat emission data. For the defined scenario, the schedules for

occupancy, equipment and lighting usage are derived from Specification JV of the NCC standard,

detailed in Table 4.15, whereby the schedules detail the expected percentage of maximum operation

percentage at a given time. The heat gain implied by these profiles are calculated based on values

provided by the NCC standard, NCC (2016, p402,p446), based on the class of room in operation,

which is 75W sensible gain per person, 50W latent heat gain per person, 9W gain for lights and 15W

for equipment. Equation 4.5 is used to calculate the equipment and lighting heat gains, Equation

4.6 is used to calculate the occupant sensible and latent heat gains.

Ht = CASt

where

Ht = heat gain at time t

C = Energy use in Watts based on space class

A = Area of space

St = Schedule percentage at time t

(Equation 4.5)

Ht = O(
A

P
)St

where

Ht = heat gain at time t

O = Energy use in Watts based on occupancy per m2

A = Area of space

P = Area per Person in m2

St = Schedule percentage at time t

(Equation 4.6)
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Table 4.15: Occupancy, Equipment and Light schedules used in the scenario,
adapted from Table 2b of NCC (2016, p394)

Time Period
Occupancy Lighting Equipment AirConditioning

Weekday Weekend Weekday Weekend Weekday Weekend Weekday Weekend

0:00-1:00 0% 0% 10% 10% 10% 10% Off Off
1:00-2:00 0% 0% 10% 10% 10% 10% Off Off
2:00-3:00 0% 0% 10% 10% 10% 10% Off Off
3:00-4:00 0% 0% 10% 10% 10% 10% Off Off
4:00-5:00 0% 0% 10% 10% 10% 10% Off Off
5:00-6:00 0% 0% 10% 10% 10% 10% Off Off
6:00-7:00 0% 0% 10% 10% 10% 10% Off Off
7:00-8:00 15% 0% 40% 10% 25% 10% On Off
8:00-9:00 60% 0% 80% 10% 70% 10% On Off
9:00-10:00 100% 0% 100% 10% 100% 10% On Off
10:00-11:00 100% 0% 100% 10% 100% 10% On Off
11:00-12:00 100% 0% 100% 10% 100% 10% On Off
12:00-13:00 100% 0% 100% 10% 100% 10% On Off
13:00-14:00 100% 0% 100% 10% 100% 10% On Off
14:00-15:00 100% 0% 100% 10% 100% 10% On Off
15:00-16:00 100% 0% 100% 10% 100% 10% On Off
16:00-17:00 100% 0% 100% 10% 100% 10% On Off
17:00-18:00 50% 0% 80% 10% 60% 10% On Off
18:00-19:00 15% 0% 60% 10% 25% 10% Off Off
19:00-20:00 5% 0% 40% 10% 15% 10% Off Off
20:00-21:00 5% 0% 20% 10% 15% 10% Off Off
21:00-22:00 0% 0% 10% 10% 10% 10% Off Off
22:00-23:00 0% 0% 10% 10% 10% 10% Off Off
23:00-24:00 0% 0% 10% 10% 10% 10% Off Off

Naturally, external temperature values form a cyclical pattern based on the time of day; which

impacts the internal temperature of a building. While the relationship is not linear, it is often

correlated (Degelman, 2004). When the temperature is high outside, the cooling required to main-

tain an internal setpoint is increased. When the temperature is lower, less cooling is required,

with some control strategies switching off to rely on natural cooling to save energy. The optimal

zone of operation, whereby the HVAC can regain energy, is called the deadband, which is set as a

one degree distribution from the setpoint. Further, a proportional band is defined, which is set as

one degree below the deadband for heating and two degrees above the deadband for cooling. The

proportional band defines the ramp time for heating or cooling from the HVAC. For this scenario,

the setpoint is set as the Australian standard for Perth of 23 Degrees Celsius AIRAH (2015a), the

control bands are detailed as Figure 4.13.

Modelling external heat gain is more complex, due to environmental phenomena and the various

thermal properties of construction materials. External heat gains use cooling factors and the

properties of construction material for defining the absorbance of the building. Further, long-term

weather data are used to calculate the heat gain. While the impact of reducing thermal load

from construction materials is important for building simulations relating to energy usage and air-
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Figure 4.13: Control bands and setpoint for scenario, defined by NCC (2016)

conditioning design, for the use in this research it provides added complexity to the calculations

which have an undetermined impact on the variance of variable values. As such, an assumption-

based approach has been used for determining the effect of solar radiation on the zone temperatures

as 10% of external temperature interacts with the internal zone temperature.

The cooling load is the total amount of energy a cooling system is required to produce to

maintain a specific setpoint temperature ASHRAE (2009, p18.1). The peak cooling load is derived

to select the appropriate equipment to use in a HVAC system. There are various methods for

deriving the cooling load defined by ASHRAE and AIRAH, with the ASHRAE recommended

methods being the heat balance (HB) method and the radiant time series (RTS) method (ASHRAE,

2009). From the nature of these methods, there are algorithms which explain complex natural

phenomena, based on the physical characteristics of a building, its location, and usage. Given

the purpose of the simulation is to generate network traffic, rather than accurate physical based

variables, an assumption based approach is taken to generating the cooling load. For energy

modelling, typically, the cooling load is generated at a per hour rate, however, for generating

network simulation data a fidelity level of seconds is required. ASHRAE states that the mean bias

error for energy simulations can be up to 30% for hourly values. It is also unclear which simulation

variables are of most importance for the design cooling load. For the purpose of this research,

generating data at a fidelity of seconds, the values generated using the prescribed methods, HB

or RTS may not be accurate. Thus to reduce the complexity of the calculations, an assumption

is made with the cooling output required for an office building defined as 180W/m2 (Curnow &

Curnow, 2014). The equation used to generate a synthetic cooling load for the scenario is shown

in Equation Equation 4.7. The cooling load per floor of the system is thus 28.8kW (160m
2×180

1000 ).
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§4.6.6.1 - §4.6.6.7 describe the models used for data generation in this research.

L =
AO

1000
in kW

where

L = Cooling load

A = Total area of space

O = Cooling Output constant180W/m2

(Equation 4.7)

4.6.6.1 External temperature generation

Degelman (2004) describes a Monte Carlo method of generating weather, using both deterministic

and stochastic models. The aim of the models in Degelman (2004) is the generation of synthetic

weather data for simulating building thermal loads, the flexible fidelity of the data generated by the

model provides the necessary level of data for the device logic designed for the network simulation.

Degelman (2004) notes two systems which have strong interrelationships which affect the majority of

financial impact of a building, namely, the thermal envelope of the building, and the air conditioning

system. The purpose of building energy performance simulation is thus for cost benefit analysis of

various operating profiles and lifecycles of a building. The most prominent mechanism of heat flow

in buildings is the climate in which the building is situated, making weather data an important

factor for simulation. Degelman’s model has two parts, a daily deterministic model representing

the cyclical diurnal pattern of temperature, and a stochastic model, which uses the Monte Carlo

method for deriving a sequence of days from the normalised cumulative distribution function of

real data recordings.

The model was applied to generate external temperature values for the simulated scenario.

Correlated, half-hourly weather readings from the Perth meteorological weather station (station

number 9021) were retrieved from Peterson (2013) for each day in January for the period 1998 to

2013. The external temperature readings were used to derive a range of descriptive statistics on a

per day basis.

The deterministic model used requires the sunrise time and solar noon, referred to as zenith

time henceforth. The typical values for January in Perth were retrieved from ‘Perth, Western

Australia, Australia - Sunrise, Sunset, and Daylength’ (2017) and an assumption was made to hold

the sunrise and zenith values constant on the hour for the month, with sunrise at 5am and zenith

at 12pm. Three algorithms, Equation 4.8, Equation 4.9, Equation 4.10 were used to calculate the

temperatures for a day in the deterministic model. The stochastic model generates the maximum

temperature and minimum temperature for each day, which is then chained together to form a
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simulated month of data.

Tt = Tave0 −
∆T

2
cos[π

(t− tR)

(Z − tR)
]

where

Tt = temperature at time t

tave0 = average morning temperature

∆T = temperature range

tR = sunrise time

Z = zenith time

(Equation 4.8)

Tt = Tave1 +
∆T ′

2
cos[π

(t− Z)

tR′+N
]

where

Tave = the average evening temperature

∆T ′ = the evening temperature range (Tmax − Tmin′)

tR′ = the time of sunrise the next day

N = constant

(Equation 4.9)

Tt = Tave1 +
∆T ′

2
cos[π

t+N

TR′+N
]

where

Tave = the average evening temperature

∆T ′ = the evening temperature range (Tmax − Tmin′)

tR′ = the time of sunrise the next day

N = constant

(Equation 4.10)

The probability density function (PDF) for dry-bulb temperatures almost always follow the

normal distribution curve (Degelman, 2004). The objective of the stochastic model is thus to

sample a mean which follows the PDF. For simulation purposes the integral cumulative density

function (CDF) is used, defined as the area under the PDF curve from left to right. Thus, the

lowest temperature will be positioned at the left of the CDF, and the highest temperature at the

right. To derive days based on the standard deviation of real temperatures over a period, the CDF

Y axis is manipulated to represent days in the month, rather than probability of occurrence, with

the X axis being the temperature minus the mean temperature. The result is 31 unique normalised

values from the mean, which represents each day of the month. By selecting each day from the
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CDF without repetition, the pattern of the CDF and therefore the PDF of actual temperature

occurrences can be replicated for the simulation. The values required for calculation are the mean

temperature for each day, and the standard deviation of daily temperature. The standard deviation

of daily temperatures is calculated over a range of years, following Equation 4.11.

σ =

√∑
x2i − nx̄2
n− 1

where

σ = the standard deviation of the period

n = number of days in sample xi

x̄ = the mean for the period studied (
∑ xi

n
)

(Equation 4.11)

The normalised deviations are then sampled using the Monte Carlo method with a seed value for

future repeatability, resulting in the monthly mean temperature pattern in Figure 4.14. To generate

minimum and maximum values corresponding to the simulated monthly pattern, Equation 4.12 and

Equation 4.13 were used.

Mind = X̄d − σ
∣∣∣ ˆ̄X
∣∣∣

where

X̄d = Mean on day d∣∣∣ ˆ̄X
∣∣∣ = absolute value of normalised mean

(Equation 4.12)

Maxd = X̄d + σ
∣∣∣ ˆ̄X
∣∣∣

where

X̄d = Mean on day d∣∣∣ ˆ̄X
∣∣∣ = absolute value of normalised mean

(Equation 4.13)

The minimum and maximum values generated using the stochastic model are used in the de-

terministic model to generate temperature values for every second of the simulated January, shown

as Figure 4.15. With these external values, the logic of the BAS devices can then call values at a

fidelity level of seconds.
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Figure 4.14: Daily average temperatures generated using the Monte Carlo al-
gorithm
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Figure 4.15: Graph of simulated January external temperature values over time
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4.6.6.2 Internal zone temperature

There are two points at which the internal room temperature is measured, representing the two

types of zone being simulated, namely, Office Zone and Lab Zone. As discussed in §4.6.6, there are

a range of factors which affect the internal temperature of a space. A model is required for each

factor, which can then be used to generate the internal zone temperature. Each zone type will have

differing heat gains, due to the differences in area, and area per person specified by (NCC, 2016).

The output of heat gain calculations is the power of the system used to convert this power to a

temperature effect for which Equation 4.14 and Equation 4.15 are used. The internal heat gains,

and subsequent temperature increases for the Office and Lab zones, are detailed in Figure 4.16

PT
m

cp

where

P = Power in kW

T = Time in seconds

m = Mass of air in kg

cp = Specifc heat of air 1.005kJ/kgC

(Equation 4.14)

m =
V

ρ

where

m = Mass of air in kg

V = Volume of air in space in kg

ρ = Density of Air 1.200kg/M3

(Equation 4.15)
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To determine the external gain the assumption that 10% of external temperature is the external

heat gain was made. The temperature effect of the internal and external gains are combined, per

zone, to form the impact of all heat gains to each zone. Given the external temperature values, the

power of the external temperature is derived via Equation 4.16

G = TcpV ρ

where

G = Gain in kW

T = Temperature in degrees C

cp = Specific heat of air 1.005kJ/kgC

V = Volume of zone in m3

ρ = Density of air 1.205kg/m3

(Equation 4.16)

Given the air makeup in the zone is a mix between the supplied vent air and the existing room

air, the internal temperature is generated using the following process. First, a potential temperature

is generated, using Equation 4.17, a constant supply air temperature of 13 Degrees (the standard

for Australia (AIRAH, 2015b)), and the previous room temperature with the current time slice

heat gains.

MAt =
(SAtSAP t) + (RAt(100− SAP t))

100

where

MAt = Mixed air temperature in degrees Celsius at time t

SAt = Supply air temperature in degrees Celsius at time t

SAP t = Percentage of supply air at time t

RAt = Room air temperature in degrees Celsius at time t

(Equation 4.17)

A control function is used, which increases or decreases the supply air percentage based on the

∆T between the setpoint temperature, and the generated potential temperature, resulting in the

selected percentage of air for the next temperature generation. The actual temperature is then

generated using Equation 4.17. Of the generated values, less than 70 values fall outside the range

20-26 degrees C, specified by AIRAH as acceptable temperature in an office in Australia (AIRAH,

2015a). A model incorporating control functions, such as ramp up and purge could account for the

sudden increase in load at the start of each work day. Alternatively, a model which uses a data

driven, realistic internal load schedule, rather than the NCC standard, would have reduced load

spikes.

130



4.6.6.3 Damper actuators

There exist two types of damper actuators in the system, those for control of air flow in the system,

termed Intake, Exhaust and Recycle, and the zone dampers controlled by the Thermostat. The

Intake, Exhaust and Recycle damper actuators form an integral part of the HVAC system. The

Intake damper defines the volume of air entering the building, equally, the Exhaust damper defines

the volume of air leaving the system. These dampers are intrinsically linked, as the equal volume

of air entering the system must also leave the system, while ignoring exfiltration loss through the

building envelope. The Recycle damper allows for part of the return air stream to re-enter the

HVAC process, reducing the amount of cooling and conditioning required. The total air makeup

of the system is controlled by the percent of air being recycled, given the air exiting the system

through the exhaust is equal to the air entering the system through the intake. Damper settings are

generally static setpoints, rather than having a high degree of control, to allow for system curves

to be generated for resistance in the air flow. In this system, the percentage the damper is open

has a linear relation to the percentage of air entering or exiting the system. A control function

was defined based on the difference in temperature between the return air temperature provided

by the recycle damper and the external temperature provided by air from the intake damper. The

function is detailed in Algorithm 1 and Algorithm 2.

The zone dampers are controlled by the zone thermostat. As the sensed temperature reaches

its defined setpoint the dampers close, which increases the resistance in the duct, which in turn

increases the fan speed to account for the pressure change. As the sensed temperature deviates

from the defined setpoint, the opposite control function occurs, the dampers open, which reduces

the resistance in the duct, which in turn reduces the fan speed to account for the pressure reduction.

Three zone damper positions are defined for the scenario, 10%, 50% and 100%. The current damper

position is determined based on the control function in Algorithm 3.

Algorithm 1: Exhaust and Intake Air Percentage Control Function

1 function CalculateAirPercent(MixedAirPercent)

Input : Mixed air percentage

Output: Exhaust air percentage, intake air percentage

2 ExhaustAirPercent← 100−MixedAirPercent

3 IntakeAirPercent← ExhaustAirPercent

4 return ExhaustAirPercent, IntakeAirPercent

4.6.6.4 Duct static pressure sensors

There are three pressure sensors in the system, one in each zone Variable Air Volume (VAV) box,

and one standalone sensor before the heating and cooling coils. Air flows from high pressure to low

pressure, thus HVAC systems are designed to have lower pressure in areas which air is to flow to,

such as zones. Static pressure is impacted by two major factors. The friction caused by the duct

131



Algorithm 2: Damper Percentage Control Function

1 function DamperControlFunction(ExternalTemperature,ReturnAirTemperature)

Input : Two temperature values, ExternalTemperature and ReturnAirTemperature

Output: Mixed air percentage, recycle damper percentage, exhaust damper percentage, intake

damper percentage

2 DT ← ExternalTemperature−ReturnAirTemperature
3 if −3 < DT < 3 then

4 MixedAirPercent← 50

ExhaustAirPercent, IntakeAirPercent← CalculateAirPercent(MixedAirPercent)

5 return MixedAirPercent, ExhaustAirPercent, IntakeAirPercent

6 else if DT <= −3 then

7 MixedAirPercent← 20

ExhaustAirPercent, IntakeAirPercent← CalculateAirPercent(MixedAirPercent)

8 return MixedAirPercent, ExhaustAirPercent, IntakeAirPercent

9 else if DT >= 3 then

10 MixedAirPercent← 70

ExhaustAirPercent, IntakeAirPercent← CalculateAirPercent(MixedAirPercent)

11 return MixedAirPercent, ExhaustAirPercent, IntakeAirPercent

12 RecycleDamper,ExhaustDamper, IntakeDamper ←
MixedAirPercent, ExhaustAirPercent, IntakeAirPercent

13 return RecycleDamper,ExhaustDamper, IntakeDamper

Algorithm 3: Zone Damper Percentage Control Function

1 function ZoneDamperControlFunction(ZoneTemperature)

Input : One temperature value, ZoneTemperature

Output: Zone damper position

2 if ZoneTemperature < 21.0 then

3 ZoneDamperPercent← 100

4 return ZoneDamperPercent

5 else if ZoneTemperature < 22.5 then

6 ZoneDamperPercent← 50

7 return ZoneDamperPercent

8 else if ZoneTemperature < 23.5 then

9 ZoneDamperPercent← 10

10 return ZoneDamperPercent

11 else if ZoneTemperature <= 25.0 then

12 ZoneDamperPercent← 50

13 return ZoneDamperPercent

14 else if ZoneTemperature > 25.0 then

15 ZoneDamperPercent← 100

16 return ZoneDamperPercent
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material, air filters and dampers over a length of ducting, and any deviations in ducting size or

curves in the duct. Fans introduce static pressure to the air stream, allowing the air to flow from

the fan to the zone areas. The fan’s aim is to maintain a constant static pressure at the point of

air proliferation to the zone. When a damper moves, the resistance in the system increases which

in turn changes the pressure in the system. The fan must account for this pressure change, and

increase or decrease fan speed to add the appropriate amount of pressure into the system. Given

dampers have set positions, the resistance added, and thus pressure changes can be described.

The pressure changes in a system can be determined from one pressure reading coupled with a

volumetric air flow reading using the second Affinity law, see Equation 4.18.

SP2 = SP1(
Q2

Q1
)2

where

SP2 = The pressure at air flow reading Q2 in Pascals

SP1 = The pressure at air flow reading Q1 in Pascals

Q2 = Next volumetric air flow in M3/s

Q1 = Current volumetric air flow in M3/s

(Equation 4.18)

Given the first pressure reading for each damper position, all pressure readings for the air flows

entering each zone can be calculated. When the system changes resistance due to a damper moving,

the pressure curve generated by Equation 4.18 moves, thus Equation 4.18 is seeded with each zone’s

assigned static pressure point. To generate the complete zone static pressure, the static pressure

from each curve is selected based on the current damper position using Algorithm 4, accounting

for the pressure loss caused by duct length. The pre-coil pressure sensor values are also generated

using the second affinity law from Equation 4.18, with a lower seed value to represent the lower

pressure value before the fan imparts additional pressure into the airstream.

4.6.6.5 Fans

There are two fans in the scenario system, one for supplying air the zones, and one for returning

air from the zones. Each has equal actions to allow for balancing of air supply and return, thus the

fan speed and static pressure from each fan is identical. When one fan speed is known, all future

fan speeds can be calculated using the first affinity law, see Equation 4.19. The fan speed of the

supply fan is calculated using the total supply air derived from the sum of both zones generated air

flows. The static pressure introduced into the airstream by the fan is calculated using the second

affinity law, replacing the air flow with the fan speed, see Equation 4.20. The seed fan speed was
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Algorithm 4: Zone static pressure sensor data generation

Input : Three lists of generated static pressure values, one list of the zone damper positions, one

list of supply air volume and the duct length to the zone,

ZonePressureDamper100, ZonePressureDamper50,

ZonePressureDamper10, ZoneDamperPercent, ZoneSupplyAirV olume,DuctLength

Output: Zone pressure sensor readings

1 Control← 10

2 Loss← DuctLength ∗ Control
3 Set ZonePressure to []

4 for i← 0 to len(ZoneSupplyAirV olume) do

5 if ZoneDamperPercent[i] == 100 then

6 ZonePressure[i]← ZonePressureDamper100[i]− Loss
7 else if ZoneDamperPercent[i] == 50 then

8 ZonePressure[i]← ZonePressureDamper50[i]− Loss
9 else if ZoneDamperPercent[i] == 10 then

10 ZonePressure[i]← ZonePressureDamper10[i]− Loss
11 end

12 return ZonePressure

set to 700RPM, the seed fan static pressure was set to 500 Pa.

RPM2 = RPM1(
Q2

Q1
)

where

RPM2 = Next fan speed in Revolutions Per Minute

RPM1 = Current fan speed in Revolutions Per Minute

Q2 = Next volumetric air flow in M3/s

Q1 = Current volumetric air flow in M3/s

(Equation 4.19)

SP2 = SP1(
RPM2

RPM1
)2

where

SP2 = The pressure at air flow reading Q2 in Pascals

SP1 = The pressure at air flow reading Q1 in Pascals

RPM2 = Next fan speed in Revolutions Per Minute

RPM1 = Current fan speed in Revolutions Per Minute

(Equation 4.20)
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4.6.6.6 Air flow

For this research, air flow is assumed to be turbulent flow, thus with a constant velocity per unit

time, inline with the assumptions posited by ASHRAE (2012a). Air flow is sensed at five points

in the system scenario, namely, the intake air flow, supply air flow, zone air flows and return air

flow. For each air flow, the supply air mass flow is calculated, using Equation 4.21. From the mass

flow, the volumetric flow is calculated using Equation 4.22. The supply air flow is the sum of both

air flows entering the zone. Similarly, the return air flow is the sum of the zone air flows leaving

the zone. The Intake air flow volume is generated based on the percentage of external air flowing

into the system, defined by the damper percentage. Thus, when the Temperature is cooler outside,

more air is pulled into the system due to the damper control functions. As air flow before and after

the fan must be equal, the Intake air flow is generated using Equation 4.23.

m =
H

cp∆(Tr − Ts)
where

m = The mass flow rate in kg/s

H = The sensible heat gain in kW

cp = Specific heat of air 1.005kJ/kgC

Tr = Room temperature in Degrees C

Ts = Supply temperature in Degrees C

(Equation 4.21)

V =
m

ρ

where

V = Volume flow rate in m3/s

m = The mass flow rate in kg/s

ρ = Density of air 1.205kg/m3

(Equation 4.22)

Qi = Ip(Qt)

where

Qi = Intake air flow in M3/s

Ip = Intake damper percentage

Qt = Total system air flow in M3/s

(Equation 4.23)

There are three different internal points at which temperature is recorded in the ventilation

system, defined as; Pre-coil, Post-coil, and Return-vent. The Pre-coil temperature is a mix of
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the return temperature and the temperature of the external fresh air. The percentage of air mix

is determined by the Intake and Recycle dampers detailed in §4.6.6.3. The temperature value

generated determines the cooling valve uptime for supply air cooling, detailed in Equation 4.24.

MAt =
(OAtOAP t) + (RAt(100−OAPt))

100

where

MAt = Mixed Air temperature in degrees Celsius at time t

OAt = Outside air temperature in degrees Celsius at time t

OAP t = Percentage of outside air at time t

RAt = Return air temperature in degrees Celsius at time t

(Equation 4.24)

The Post-coil temperature is the reading generated from the Pre-coil temperature passing across

the cooling and heating coils to reach a setpoint temperature, which is then supplied to the zones.

In Australia, the recommended supply temperature is 12-13 Degrees C (AIRAH, 2015b), as such,

a constant value of 13 Degrees C is used as the Post-coil temperature.

The Return-vent temperature is generated using the mixed air temperature Equation 4.24. The

air flow supplied to the zone is equal to the air flow exiting the zone into the return duct. As such,

the total amount of return air is the sum of the Office zone and Lab zone supply air. The percentage

of Office return and Lab return airs are calculated, and used in Equation 4.24 to generate the return

air temperature.

4.6.6.7 Valves

There are two valves with attached actuators in the scenario, controlling the heating coil valve and

cooling coil valve respectively. For the summer profile in this scenario, the heating coil is always

fully closed, thus the valve percentage is a constant value of 0%. The cooling coil is calculated

using a number of equations. First, the mass flow rate of the coolant in the pipe is calculated, see

Equation 4.25. Second, the sensible cooling of the chiller is calculated. As per ASHRAE (2009),

with the assumption that no heat is lost through the pipe, the calculation for the sensible cooling

of the chiller is equal to the heat removed from the air, and the heat absorbed by the coolant flow.

This value is calculated using Equation 4.26 taken from ASHRAE (2009)[p23.7 e2a, e2b]. Next, the

coolant output temperature is calculated using Equation 4.27, which also results in the maximum

heat absorbed by the coolant. Finally, the maximum heat absorbed is taken as a constant, solving
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Equation 4.28 to determine the valve percentage for the cooling coil valve.

ṁ = ρV A

where

ṁ = Mass flow rate in kg/s

ρ = Density of water in kg/m3

V = Velocity of water inside pipe in l/s

A = Cross-sectional area of pipe in m2

(Equation 4.25)

Q = 1000Wacp∆T

where

Q = Cooling capacity in W

Wa = 60ρAaVa

cp = Specific heat of air in kJ/kg

∆T = Intake Air Temperature - Output Air Temperature

ρ = Density of Air in kg/m3

Aa = Coil Face in m2

Va =
mair

Aa
in kg/s

(Equation 4.26)

Co = Ci +
Q

1000ṁcr

where

Co = Coolant Output in Degrees C

Ci = Coolant Intput in Degrees C

ṁ = Mass flow rate in kg/s

cr = Specific heat of water in Degrees C

(Equation 4.27)

V P t =
∆T

−C
where

V P t = Valve percentage at Time t

∆T = Co − Ci Air Temperature in Degrees C

− C =
Q

1000ṁcr
in Degrees C

(Equation 4.28)
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4.6.7 Device level simulation

For simulating a BACnetwork, appropriate digital representation of each device is required. In

addition to the devices which generate values, described in §4.6.6, a controller device is required

which controls and monitors the damper actuators operating in the air handling unit (AHU), in

addition to a human machine interface (HMI) device to view trends in the system. The BACnet

standard defines six device profiles in Annex L (SSPC-135, 2012), which defines the minimum set

of tasks a device must perform to be classed as a specific type of device. Analysis of the required

devices for the simulation reveal five types of profiles in use, detailed in Table 4.16.

Table 4.16: Simulation devices classified via device profile

Device Device Profile

AHU Controller Advanced Application Specific Controller
Zone1 Thermostat Application Specific Controller
Zone2 Thermostat Application Specific Controller
HMI Advanced Operator Workstation
Zone1 VAV box Smart Actuator
Zone2 VAV box Smart Actuator
Supply Fan Smart Actuator
Return Fan Smart Actuator
Recycle Damper Actuator Smart Actuator
Exhaust Damper Actuator Smart Actuator
Supply Damper Actuator Smart Actuator
Cooling Valve Actuator Smart Actuator
Heating Valve Actuator Smart Actuator
Temperature Sensor (External) Smart Sensor
Temperature Sensor (Pre-Coil) Smart Sensor
Temperature Sensor (Return Air) Smart Sensor
Supply Flow Sensor Smart Sensor
Return Flow Sensor Smart Sensor
Intake Flow Sensor Smart Sensor
Pre-Coil Pressure Sensor Smart Sensor

To define the devices, the analysis of extracted profiles undertaken in §4.6.7.1 was used to

construct a generic device type for each profile. Each device incorporates the most prominent

objects and services implemented.

4.6.7.1 Device profile extraction

Due to the object-based approach to constructing BACnet devices, each vendor implementation

can differ for devices of the same type. As such, the task of defining a generic device is complicated,

given there are over 1,000 registered BACnet vendors. In order for a BACnet device to be sold

compliance testing is undertaken with a resulting Protocol Implementation Compliance Statement

(PICS) generated for each device. The PICS details the device profile, supported network services,

objects and properties of the device, differentiating between required and optional. In addition,

the BACnet testing and compliance process generates a product listing, which also contains the
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PICS data. ASHRAE provides a wide range of vendors PICs, and subsequent product listings

BTL (2018). ASHRAE/BACnet international provides a standard template for generating a PICS,

however from analysis of the retrieved files, and confirmation via Esquivel-Vargas et al. (2017),

the variance in template is not restricted between vendors. Rather, the same vendor may have

multiple representations of a PICS between different devices. The common datatype between all

PICS was the file format of Portable Document Format (PDF). Thus, to extract the PICS data

in a programmatic form, the approach outlined in Esquivel-Vargas et al. (2017) was investigated,

namely, transformation of a PDF into a data structure which can be manipulated using string

comparison algorithms. After analysis of the data extraction processes for PICS, the product

listings were investigated which contain the same information on devices as the vendor generated

PICS, however, the product listings are in a more structured format. The product listing PDFs used

tables to represent the core information about each device, thus the PDFs were converted to html

format to utilise tags and manipulation libraries such as Python’s Beautiful Soup. The template

for data extraction was derived from the product listing, allowing for extraction of PICS data in a

structured way. A total of 389 product listings were retrieved for five device profiles, namely, smart

sensor, smart actuator, application specific controller, advanced application specific controller and

operator workstation. The location of the objects table is dependent on the number of services

the device offers, as each class of service is detailed in a separate table. As such, a template was

defined for each type of device profile. Following the process in Figure 4.17, 389 files were directly

converted to html using Adobe Reader Pro DC 2018 (Adobe, 2018). Of these files, 365 extracted

correctly using the defined template, and data extraction process. Data extraction was undertaken

with the Python library Beautifulsoup4, regular expressions and the Aho-Corasick algorithm for

string matching. Verification of extraction was undertaken using further regular expressions and

the Python package pandas. The files which did not extract according the template were due to a

range of discrepancies in the data, from required objects missing in the object table, to incorrect

table structures. Therefore, the 24 files were discarded. The objects in use by these device types

are detailed in Table 4.17.

Services were matched to devices based on the BIBB classifications, see Table 4.18. 13 non-

standard defined BIBBs were encountered. In some product listings, where a BIBB by definition did

not have corresponding client and server functionality, the client and server BIBB classifier, A and B

respectively were omitted, resulting in further classification of seven BIBBs. Two BIBBS contained

in one device listing erroneously listed the class of the BIBB, DS-TS-B/DS-UTC-B rather than

DM-TS-B/DM-UTC-B respectively, as such those values were updated accordingly. The remaining

four BIBBs contained the characters T-XXX-XXX, whose meaning could infer all BIBBS of the T

class, a placeholder which was not finalised, or a misprint. As such, these four BIBB types were not

converted to service functions. With the types of objects used in real devices defined, the objects,

properties and services used by these identified devices were then used to construct BACnet devices

for the simulation. From the derived profiles, the objects and services implemented in the BACnet

open stack were identified. All objects used in the Actuator, Controller, Sensor and Workstation
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Figure 4.17: Process diagram of BACnet device product listing statement data
extraction and transformation

are implemented. However, five objects from the Advanced Controller profile, namely, Notification

class, Calendar, Program, Loop and Event enrolment were not implemented, and thus omitted.
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Table 4.17: Object occurrence in device profiles retrieved from device product
listing statements

Objects Sensor Controller Actuator Advance
Control-
ler

Work station Sensor
Percent

Controller
Percent

Actuator
Percent

Advance
Con-
troller
Percent

Work sta-
tion Per-
cent

accumulator 3 2 4 3 0 21.43 0.78 23.53 5.56 0.00
alert-enrollment 0 4 0 2 0 0.00 1.56 0.00 3.70 0.00
analog-input 13 223 14 49 4 92.86 87.11 82.35 90.74 16.67
analog-output 2 133 10 44 4 14.29 51.95 58.82 81.48 16.67
analog-value 6 224 11 54 5 42.86 87.50 64.71 100.00 20.83
averaging 0 1 0 0 0 0.00 0.39 0.00 0.00 0.00
binary-input 5 195 12 45 4 35.71 76.17 70.59 83.33 16.67
binary-output 3 144 10 44 4 21.43 56.25 58.82 81.48 16.67
binary-value 3 194 11 52 5 21.43 75.78 64.71 96.30 20.83
bitstring-value 0 5 2 0 0 0.00 1.95 11.76 0.00 0.00
calendar 0 14 0 54 4 0.00 5.47 0.00 100.00 16.67
characterstring-value 0 2 0 1 0 0.00 0.78 0.00 1.85 0.00
command 0 5 0 3 0 0.00 1.95 0.00 5.56 0.00
date-value 0 1 0 0 0 0.00 0.39 0.00 0.00 0.00
device 14 256 17 54 24 100.00 100.00 100.00 100.00 100.00
event-enrollment 0 7 0 15 4 0.00 2.73 0.00 27.78 16.67
event-log 0 5 0 8 0 0.00 1.95 0.00 14.81 0.00
file 0 47 3 32 6 0.00 18.36 17.65 59.26 25.00
group 0 19 0 0 0 0.00 7.42 0.00 0.00 0.00
integer-value 0 2 0 3 0 0.00 0.78 0.00 5.56 0.00
loop 0 19 0 16 4 0.00 7.42 0.00 29.63 16.67
multi-state-input 0 62 2 22 2 0.00 24.22 11.76 40.74 8.33
multi-state-output 0 50 2 18 3 0.00 19.53 11.76 33.33 12.50
multi-state-value 3 119 6 45 4 21.43 46.48 35.29 83.33 16.67
notification-class 1 40 0 54 4 7.14 15.63 0.00 100.00 16.67
octetstring-value 0 3 0 0 0 0.00 1.17 0.00 0.00 0.00
positive-integer-value 0 9 0 5 0 0.00 3.52 0.00 9.26 0.00
program 0 29 0 19 2 0.00 11.33 0.00 35.19 8.33
schedule 0 23 1 54 4 0.00 8.98 5.88 100.00 16.67
structured-view 0 6 0 2 0 0.00 2.34 0.00 3.70 0.00
trend-log 0 16 0 29 4 0.00 6.25 0.00 53.70 16.67
trend-log-multiple 0 1 0 2 1 0.00 0.39 0.00 3.70 4.17
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Table 4.18: BIBBs and occurrences extracted from selected product listings

BIBBS Sensor Controller Actuator Advanced

Controller

Work sta-

tion

Sensor

Percent

Controller

Percent

Actuator

Percent

Advance

Controller

Percent

Work sta-

tion Per-

cent

AE-ACK-A 0 0 0 3 24 0.00 0.00 0.00 5.56 100.00

AE-ACK-B 1 30 0 54 4 7.14 11.72 0.00 100.00 16.67

AE-AS-A 0 0 0 0 24 0.00 0.00 0.00 0.00 100.00

AE-AVM-A 0 0 0 0 1 0.00 0.00 0.00 0.00 4.17

AE-AVN-A 0 0 0 0 11 0.00 0.00 0.00 0.00 45.83

AE-EL-I 0 5 0 8 0 0.00 1.95 0.00 14.81 0.00

AE-ELV-A 0 0 0 0 1 0.00 0.00 0.00 0.00 4.17

AE-N-A 0 0 0 1 24 0.00 0.00 0.00 1.85 100.00

AE-N-E 0 0 0 4 2 0.00 0.00 0.00 7.41 8.33

AE-N-I 1 37 0 54 4 7.14 14.45 0.00 100.00 16.67

AE-VM-A 0 0 0 0 24 0.00 0.00 0.00 0.00 100.00

AE-VN-A 0 0 0 0 24 0.00 0.00 0.00 0.00 100.00

DM-ADM-A 0 0 0 0 19 0.00 0.00 0.00 0.00 79.17

DM-ANM-A 0 0 0 0 17 0.00 0.00 0.00 0.00 70.83

DM-ATS-A 0 0 0 4 11 0.00 0.00 0.00 7.41 45.83

DM-BR-A 0 0 0 0 6 0.00 0.00 0.00 0.00 25.00

DM-BR-B 0 17 0 22 4 0.00 6.64 0.00 40.74 16.67

DM-DCC-A 0 0 0 0 7 0.00 0.00 0.00 0.00 29.17

DM-DCC-B 4 256 5 54 13 28.57 100.00 29.41 100.00 54.17

DM-DDB-A 1 62 0 52 24 7.14 24.22 0.00 96.30 100.00

DM-DDB-B 12 256 17 54 24 85.71 100.00 100.00 100.00 100.00

DM-DOB-A 0 4 0 14 9 0.00 1.56 0.00 25.93 37.50

DM-DOB-B 12 256 16 53 24 85.71 100.00 94.12 98.15 100.00

DM-LM-A 0 0 0 0 12 0.00 0.00 0.00 0.00 50.00

DM-LM-B 0 29 3 24 13 0.00 11.33 17.65 44.44 54.17

DM-MTS-A 0 0 0 1 24 0.00 0.00 0.00 1.85 100.00

DM-OCD-A 0 0 0 0 4 0.00 0.00 0.00 0.00 16.67
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continuation of Table 4.18

BIBBS Sensor Controller Actuator Advanced

Controller

Work sta-

tion

Sensor

Percent

Controller

Percent

Actuator

Percent

Advance

Controller

Percent

Work sta-

tion Per-

cent

DM-OCD-B 0 6 0 10 5 0.00 2.34 0.00 18.52 20.83

DM-R-B 0 20 3 14 3 0.00 7.81 17.65 25.93 12.50

DM-RD-A 0 0 0 0 9 0.00 0.00 0.00 0.00 37.50

DM-RD-B 5 137 5 52 11 35.71 53.52 29.41 96.30 45.83

DM-TS-A 0 2 1 3 18 0.00 0.78 5.88 5.56 75.00

DM-TS-B 3 121 7 54 11 21.43 47.27 41.18 100.00 45.83

DM-UTC-A 0 0 0 3 17 0.00 0.00 0.00 5.56 70.83

DM-UTC-B 0 61 6 45 12 0.00 23.83 35.29 83.33 50.00

DS-AM-A 0 0 0 0 3 0.00 0.00 0.00 0.00 12.50

DS-AV-A 0 0 0 0 4 0.00 0.00 0.00 0.00 16.67

DS-COV-A 0 18 0 15 17 0.00 7.03 0.00 27.78 70.83

DS-COV-B 3 110 11 43 4 21.43 42.97 64.71 79.63 16.67

DS-M-A 0 0 0 0 24 0.00 0.00 0.00 0.00 100.00

DS-RMP-B 0 1 0 0 0 0.00 0.39 0.00 0.00 0.00

DS-RP-A 0 36 0 28 24 0.00 14.06 0.00 51.85 100.00

DS-RP-B 14 256 17 54 24 100.00 100.00 100.00 100.00 100.00

DS-RPM-A 0 8 0 14 24 0.00 3.13 0.00 25.93 100.00

DS-RPM-B 11 211 14 54 15 78.57 82.42 82.35 100.00 62.50

DS-TS-B 0 1 0 0 0 0.00 0.39 0.00 0.00 0.00

DS-UTC-B 0 1 0 0 0 0.00 0.39 0.00 0.00 0.00

DS-V-A 0 0 0 0 24 0.00 0.00 0.00 0.00 100.00

DS-WP-A 0 35 0 30 24 0.00 13.67 0.00 55.56 100.00

DS-WP-B 14 256 17 54 16 100.00 100.00 100.00 100.00 66.67

DS-WPM-A 0 8 0 8 24 0.00 3.13 0.00 14.81 100.00

DS-WPM-B 1 126 5 54 13 7.14 49.22 29.41 100.00 54.17

NM-RC-B 0 2 0 0 0 0.00 0.78 0.00 0.00 0.00
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continuation of Table 4.18

BIBBS Sensor Controller Actuator Advanced

Controller

Work sta-

tion

Sensor

Percent

Controller

Percent

Actuator

Percent

Advance

Controller

Percent

Work sta-

tion Per-

cent

SCHED-

AVM-A

0 0 0 0 1 0.00 0.00 0.00 0.00 4.17

SCHED-E-B 0 0 0 16 4 0.00 0.00 0.00 29.63 16.67

SCHED-I-B 0 10 0 50 4 0.00 3.91 0.00 92.59 16.67

SCHED-R-B 0 4 0 0 0 0.00 1.56 0.00 0.00 0.00

SCHED-

VM-A

0 0 0 0 24 0.00 0.00 0.00 0.00 100.00

SCHED-

WS-A

0 0 0 0 8 0.00 0.00 0.00 0.00 33.33

SCHED-

WS-I

0 6 1 0 0 0.00 2.34 5.88 0.00 0.00

T-A-A 0 0 0 0 2 0.00 0.00 0.00 0.00 8.33

T-ATR-A 0 0 0 0 13 0.00 0.00 0.00 0.00 54.17

T-ATR-B 0 10 0 26 4 0.00 3.91 0.00 48.15 16.67

T-AVM-A 0 0 0 0 3 0.00 0.00 0.00 0.00 12.50

T-V-A 0 0 0 0 23 0.00 0.00 0.00 0.00 95.83

T-VMT-A 0 0 0 0 6 0.00 0.00 0.00 0.00 25.00

T-VMT-E 0 0 0 3 4 0.00 0.00 0.00 5.56 16.67

T-VMT-I 0 16 0 29 4 0.00 6.25 0.00 53.70 16.67
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4.6.8 Network level simulation

Historically, the network level of a BAS requires gateway devices to translate between protocols

to allow networking access between devices. Typically, a network controller connects multiple

application controllers together, which in turn are connected to a range of underlying sensors and

actuators. Protocol convertors and broadcast forwarders sit in between controllers and field devices,

or are embedded into the controllers. With a full BACnet/IP network, the topology can follow a

more traditional IP-based network. The network topology is considerably flat, with related sensors,

actuators and controllers all located within one subnetwork. Each air handling unit can be split

into separate subnetworks with BACnet-routers used for cross-subnet broadcasts, or, depending on

the size, the full system can be in one subnet. For this simulation, the entire building’s BAS is in

a single subnetwork. For network capture, all traffic is port forwarded to a capture port, where

Dumpcap (Combs, 2017) is used to capture the traffic. An external network connection exists to a

physical switch, whereby a deployment management system, and the external attacker device are

located. Further attacker information is defined in Section 4.6.9.

The BACnet devices and network traffic are defined using the BACnet open stack (Karg, 2017),

where the profiles described in section 4.6.7 were used to construct the devices which are deployed

into lightweight Ubuntu virtual machines. Using the BACnet open stack (Karg, 2017) allowed

the simulation to be defined in software, rather than being restricted based on the specific vendor

hardware controllers in use, providing a more generic simulation.

While the BACnet open stack (Karg, 2017) is the most complete of any identified open source

BACnet stack, it is described as a baseline system, with the requirement of customising the BACnet

open stack to implement into a device. A number of core functions were required to be implemen-

ted into the BACnet open stack to represent the behaviour of the devices for this scenario. These

included a method of handling CoV requests, identified in Johnstone et al. (2015) as being in-

complete, and ensuring each device was represented appropriately. The BACnet open stack was

amended in the following ways to be used in this scenario.

1. The CoV handler function for analog input values was defined in the analog input object

definition, by default, only the CoV handler for binary input values was defined.

2. The present value for analog outputs had a range restriction from 0.0 to 100.0, this was

removed to allow fan speeds in RPM defined in the scenario to be held in analog output

objects.

3. To allow for controller devices to subscribe to other devices, the confirmed CoV subscription

code was implemented into the device code.

The behaviour of the devices are defined based on best practices (‘Best Practices in HVAC

Controls’, 2012) and analysis revealed by the real data analysis undertaken in §5.2.1. Each air

handling unit controller manages a range of sensors and actuators. Namely, each air handling unit

polls each duct sensor for its analog input. The analog outputs are used to control the actuators
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and fans. The values of the analog outputs are calculated based on the input values from the

sensors using the control logic defined in §4.6.6. Each thermostat controls an associated VAV box

in its zone, where it reads the values of the pressure sensor and flow sensor, and uses the analog

output control to position the damper actuator in the VAV box. The communication paths are

further detailed in Figure 4.18.

Drawn from the analysis of the real captured data from the university network, the choice of

controller impacts heavily on the BACnet commands traversing the network, particularly Write

property commands. Vendors can implement proprietary middleware network protocols, which

encapsulate BACnet commands. These commands are often classed as commandable properties,

such as write commands. As the real network data captured relies on a closed source middleware

BACnet layer for Write property commands, it is unclear what real network behaviour would entail

for write commands. Thus the assumption is made that write commands to output values, whose

values command physical changes in systems do occur; while write commands to input values do

not occur given they are used to hold sensor reading values. This assumption aligns with the

default behaviour of the BACnet open stack (Karg, 2017), and was implemented as the normal

behaviour for the simulation scenario. Given the discrepancies between the simulation data, which

contains write commands in native BACnet, and the real dataset, which uses a proprietary protocol

to encapsulate the majority of BACnet write commands, the simulation data which involves write

commands has been omitted for statistical comparisons between the datasets.

Internally, for the simulation to operate the controllers need to make decisions based on the

data it holds on each sensor it manages. The logic of each device is defined in §4.6.6. The data read

from each sensor is stored in a corresponding input object, which informs the value to be written

to actuators from the output objects in the controller. For the simulation, this internal process

is undertaken through reading datapoints into the object after receiving the current value from

the sensor. This is dependent on timing, as the data is read in every second based on the values

generated, while the polling occurs at intervals. The polling interval is different for each vendor and

implementation. For example, Shepard (2013) details a one second minimum polling interval, while

Thn (2017) defaults its polling interval at two seconds. The real traffic analysis identified a polling

interval of eight seconds on setpoint values. Polling is synchronous, the device polls one object

then the next in a list. If the network bandwidth is limited, or there are a large number of polls,

the network would constantly be polling for values. For this simulation, the values being polled are

not static setpoints, rather, sensor values. Additionally, there are three controllers polling seven

sensors and two thermostats each, six thermostats polling six VAV boxes, and the logger device

polling every device in the network every 15 minutes. As such, an interval of 10 seconds between

polls was selected, to reduce the network bandwidth consumed if the minimum polling time was

set, and to ensure polling is not a continuous action in the network. Revealed through analysis of

the real network traffic detailed in §5.2.1, each object subscription has a subscription duration of

five hours, with re-subscriptions occurring every 20 minutes. This behaviour was replicated in the

simulation scenario.
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Some BACnet systems implement a logging device, which retrieves values from other devices in

the network for long term storage, either in a database or flat file. This type of logging often relies

on the trendlog object being implemented in a device. As noted from the analysis of Internet-facing

devices in §4.2, only supervisory/control devices typically implement trendlog objects. Alternat-

ively, a logging device could use normal polling via the Read property or Read property multiple

service to retrieve values from sensors and actuators, in addition to controllers. The polling ap-

proach was undertaken for the simulation scenario, whereby a logging device polled the present

value property in each object in each device every 15 minutes.

The simulation was run on a VMware ESXI 6.0 Server, which had 32GB of RAM and an AMD

3GHz 8 core processor, totalling 24GHz processing power for the virtual machines housed on the

server. The normal simulation consisted of 59 virtual machines running for 31 days. There were

seven classes of virtual machine, six for the types of devices running in the simulator, and one type

for capturing the network traffic. The simulation consisted of 21 actuator devices, 21 sensor devices,

3 controllers, 6 thermostats, 6 VAV boxes, 1 workstation and 1 logging device. The specifications

for each device type are detailed in §3.7, Table 3.10. The average load of the ESXi Host CPU

per virtual machine was 200 MHz, the average load of the ESXi Host memory per virtual machine

was 150 MB for sensors, and 400MB for controllers and thermostats. With a baseline defined and

used to generate network traffic classed as normal, an attack framework was developed to generate

malicious traffic for this scenario.
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ing BACnet data structures
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4.6.9 Attack implementation

To generate malicious traffic for the purpose of testing intrusion detection methods, a range of

attacks were required to be implemented. Analysis of the attacks identified in §4.3, reveals which

attacks have previously been used in the literature to identify malicious activity. Of the 26 identified

known attacks, 8 have previously been used for testing anomaly detection methods. Many of the

identified attacks utilise application and network layer messages regarding BACnet routers. The

scenario testbed implemented does not implement BACnet routers, additionally, from the real

data collection, it was identified that router related commands are very rare, outlined further in

Table 5.3. Therefore, the 10 router based attacks are excluded from testing. Additionally, attacks

using malformed packets were discounted as the aim of the research is to identify normal packets

causing malicious actions. Further, the services create object and delete object are not implemented

services in the open BACnet open stack (Karg, 2017), used for the simulation testbed. Expansion of

these features was deemed out of scope for the research given the existence of more frequently used

services which could be deemed malicious, and thus two additional attacks were not investigated.

Finally, source manipulation for the Smurf attack identified was deemed very similar to a spoofing

attack using an I-am command, and thus exists as part of the I-am spoof attack. The remaining

identified attacks from §4.3, in addition to the priority array overwrite identified in §4.3.1 were used

to form the attack framework.

Some commands can have multiple potential behaviours. For example, a reconnaissance attack

using the Who-is command could request all devices at once, or each device individually with

pauses between requests. Therefore, behaviours for each attack were classified based on frequency

as outlined in Table 4.19.

As defined by the device profiles, only certain devices can initiate services by default. Specific-

ally, the majority of sensor and actuator devices analysed do not permit initiating commands which

cause action in other devices. The limited functionality of sensor devices reduces the risk they pose

to other devices in the network, however, it cannot be overstated that the device profiles outline

the minimum functionality defined for classification as the device type. Nothing prevents vendors

from implementing additional services into their devices (Distech, 2010). However, noted through

the analysis of Internet-accessible devices in §4.6.7.1, the number of sensors and actuators who can

initiate commands is low.

For the scenario in this research, there are three malicious devices in the network which all have

different capabilities due to their device classification.

1. One external device, which has not previously interacted with the system, and can undertake

reconnaissance and Denial of Service attacks.

2. One internal sensor, which has limited capabilities, but can undertake some reconnaissance

and flooding attacks.

3. One internal controller, which has initiate capabilities and thus can perform all classes of

attack.
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The internal devices continue to operate as normal, with sporadic malicious normal commands

occurring. To counter potential self bias, attacks are pseudo-randomly selected by the adversary

device prior to commencement. A random value is drawn form the Python random module and

set as the random seed for further random module calls for each attack instance. Each instance

of each command has a random seed generated for drawing from a range of random sleep times,

making the time between each malicious yet normal packet have no immediately similar pattern.

Further, the order in which properties are read by the attack code is also shuffled, to remove bias

from implementation. All seed values are recorded for future repeatability. Generating the attack

traffic dataset consisted of repeating the first week of the defined scenario with the addition of the

randomised malicious actions occurring.
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Table 4.19: Attack framework for simulation scenario, outlining attacks, ad-
versary launch point and network target

Type Class Command/Property Detail Adversary
Device

Target
Device

Anomaly Class

Frequency Flood Who-is - Controller,
Sensor

Network Known-Unknown

Frequency Flood I-am - Sensor Network Known-Unknown
Frequency Denial of Service I-am Smurf Attack Sensor Controller Known-Known
Frequency Reconnaissance Who-is Un-Restricted Who-is External,

Sensor
All Known-Unknown

Frequency Reconnaissance Who-has - External All Known-Known
Frequency Reconnaissance Read property multiple - Controller All Known-Known
Frequency Write Write property In Bounds Controller Actuator Known-Unknown
Frequency Write Write property Out of Bounds Controller Actuator Known-Known
Non-Frequency Denial of Service Subscribed Change of Value CoV Disconnect Controller Thermostat Unknown-Unknown
Non-Frequency Denial of Service Reinitialize device - External Controller,

Actuator
Known-Known

Non-Frequency Reconnaissance Who-is Individual Devices Controller,
Sensor

All Unknown-Unknown

Non-Frequency Reconnaissance Read property Individual Properties Controller All Unknown-Unknown
Non-Frequency Spoofing I-am - Sensor Controller Known-Unknown
Non-Frequency Write Write property Priority Array Controller Actuator Unknown-Unknown
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4.6.9.1 Flooding attack

The flooding attack class consists of repetitively sending a command across the network with the

aim of slowing traffic and/or preventing devices from operating correctly. In BACnet, any service

could be used for this purpose, however, for this scenario the I-am and Who-is services are selected.

The I-am service is used to answer unconfirmed broadcast messages from other BACnet devices

when queried for a device identifier from the Who-is service. As there is no authentication for

the I-am function, any device can claim to be any number of other device identifiers. Similarly,

the Who-is attack sends a wide range of device identifiers over the network, where legitimate

devices can then respond causing more traffic. The flooding attacks loop through a range of device

identifiers, requesting for each identifier, with the aim to disrupt the network. For the purpose of

this simulation, these attacks occur pseudo-randomly for a variable range of time.

4.6.9.2 Spoofing attack

For a more targeted attack, the I-am command is used to trick specific BACnet devices into sending

unintended traffic towards it. For this attack scenario, a specific device is selected to spoof, when

activated, the device claims to be a different device to cause traffic to be sent to itself. A potential

issue with the spoofing attacks is preventing the real device from sending back an I-am and the

interaction of two devices claiming a single device ID. It was expected that this behaviour will

be vendor device specific, as the BACnet standard claims no handling of misconfigured devices

(SSPC-135, 2012). For the BACnet open stack (Karg, 2017), if a device identifier was saved in

the address cache of the device, claiming to be a device did not change which device was sent the

message. If the device had no address cache, the first device to claim a device identifier was sent

the message.

4.6.9.3 Write attack

Three write attack class scenarios were defined for the framework. First, with in-bounds value sent

repeatedly to a specific device, similar to the attack undertaken in §4.4.1. Second, an out-of-bounds

write attack, where the values are not what should be expected by the device. To determine the

behaviour of the device defined in the simulation, a range of values were selected for writing to each

object in various data formats. One each of a control character, negative value, string value and

long integer were sent to the present value property of each object type operating in the simulation.

The BACnet open stack (Karg, 2017) provides error handling and range limits for some objects.

In total, 224 out-of-bounds command combinations were constructed, using the four data inputs,

seven object types and eight data type tags. Each command was sent to the default server device

in the BACnet open stack for testing (Karg, 2017). 24 out of bounds values were accepted by the

stack with varying changes to the input stored in the object, see Table 4.20. 22 of the commands

resulted in a null or zero value writing into the present value property of the object, regardless of

the input. One command written to the Analog value object was written directly, while another was
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incorrectly written due to a float precision error. Finally, the priority array write attack identified

in §4.3.1 and discussed in §4.3.2 was implemented.

Table 4.20: Results from out-of-bounds values sent to specific objects

Object Type Data Type Tag Value to Write Value sent

Analog Output 0 (Null) \x03 NULL

Analog Output 4 (Real) \x03 0

Analog Output 0 (Null) -1 NULL

Analog Output 0 (Null) a NULL

Analog Output 4 (Real) a 0

Analog Output 0 (Null) 9999999999999999-

9999999999999999

NULL

Analog Value 4 (Real) \x03 0

Analog Value 4 (Real) -1 -1

Analog Value 4 (Real) a 0

Analog Value 4 (Real) 9999999999999999-

9999999999999999

10000000331813535-

1409612647563264

Binary Input 9 (Enumerated) \x03 0

Binary Input 9 (Enumerated) a 0

Binary Output 0 (Null) \x03 NULL

Binary Output 9 (Enumerated) \x03 0

Binary Output 0 (Null) -1 NULL

Binary Output 0 (Null) a NULL

Binary Output 9 (Enumerated) a 0

Binary Output 0 (Null) 9999999999999999-

9999999999999999

NULL

Binary Value 0 (Null) \x03 NULL

Binary Value 9 (Enumerated) \x03 0

Binary Value 0 (Null) -1 NULL

Binary Value 0 (Null) a NULL

Binary Value 9 (Enumerated) a 0

Binary Value 0 (Null) 9999999999999999-

9999999999999999

NULL

4.6.9.4 Reconnaissance

An adversaries goal of reconnaissance can be achieved through a range of commonly operating

services. To determine which devices are operating on the network, five different scenarios were

constructed. The Who-is command was used without a limiting device range, with the aim of

requesting every device in the network to respond. Similarly, the Who-has command was used

to request a range of object identifiers, whereby devices which hold the specific object identifier

would respond. The Who-has is the object equivalent of the Who-is command, where a broadcast

is sent to request either object names or object IDs. Any device which has a request object name

or object ID will broadcast a response. For the purpose of this simulation, the range of object

identifiers to enumerate is restricted, as undertaking a full linear search of all device identifiers

and object identifiers in the simulation network would result in 13,363,049,358 requests. The range

is restricted to eight object types, and six object identifier numbers, resulting in 2,736 requests.
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The last frequency based reconnaissance command used was the Read property multiple command,

which reads all properties from a device in the network in one transaction.

The network typically requests specific device addresses using Who-is, as such a non-frequency

based command behaviour was defined which requested a range of existing device identifiers in a

random order, with different timing between each request. The same approach was taken with the

Read property command, where only existing properties are read from a device.

4.6.9.5 Denial of Service

A device can be denied service through sending a ReinitializeDevice service, which essentially

restarts a device. ReinitializeDevice is typically undertaken by a human operator through a work-

station machine, and it is recommended to be a password protected action. For this scenario, it

is an assumption that this password has been obtained by the adversary for the ReinitializeDevice

to occur. Given the lack of default encryption on BACnetworks, any device which is listening on

the network could easily capture the password when a legitimate ReinitializeDevice command is

used, as the password would be travelling unencrypted over the network. Given the sensitivity of

this service, alerts should be generated whenever this command is executed, making it far easier

to find than the other services, as it is a service that is only used in specific situations executed by

a human operator, and is thus uncommon. The BACnet open stack (Karg, 2017) implementation

of ReinitializeDevice does not restart the device, but provides the correct network transaction over

the network. This allows for the network action to be demonstrated, but not impact the device,

providing a means to capture this class of network attack without a long-term effect on the sim-

ulation environment. The last class of attack tested was the CoV subscription theoretical attack,

initially tested in Johnstone et al. (2015), and further modelled in Peacock et al. (2018). The

extended scenario discussed in Peacock et al. (2018) was undertaken, whereby multiple devices are

subscribed to the attacker devices target, to determine if a delay in CoV notifications to other

hosts occurs.
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4.7 Chapter summary

This chapter detailed phases one, two, and three of the research design as described in §3.5, with the

aim of understanding and identifying issues in the BACnet/IP protocol. First, the BACnet standard

was reviewed, identifying commands which could be used for malicious means. Next, device details

from three years of network scans were retrieved from Censys (Censys, 2018), and analysed for

device types, and profiles. Following, known attacks from the literature were retrieved, coupled

with the identified potential attacks, and formed into a threat model using the STRIDE threat

matrix. The threat model was then applied to a controller device, to identify which commands

used in each attack posed the largest threat to controller devices. The identified commands were

then compared to the device profiles extracted from the network scans to summarise the potential

risk posed to open BACnet devices. The section concludes with modelling and implementation

testing of the Priority Array overwrite attack.

Next, a range of BACnet/IP simulators were identified and tested for configurability to im-

plement a range of scenarios for data generation. To test each simulator, two datasets (trial and

theory-test) were generated using basic scenarios and some malicious traffic. The Trial Dataset was

used to evaluate if a machine learning algorithm could detect BACnet specific network attacks. A

back-propagation Artificial Neural Network was tested against a frequency based Write property

attack, with 100% detection rate. Further, a flow analysis method using command frequencies was

tested, with positive visual identification of the attack occurrences. The Theory Test Dataset was

generated to assess further simulators, and implement the theoretical CoV attack identified. The

results were positive, but required a larger dataset for further testing.

With the requirement for more data identified, data was collected from a real BACnetwork,

to understand generally how network controllers communicate. Further, a larger testbed for data

generation was designed and implemented, using a defined simulation scenario, algorithms to gen-

erate data, and a BACnet/IP network topology. Finally, an Attack Framework was defined from

the applicable attacks identified in §4.3. The Attack Framework was then generated and tested,

before being implemented into the testbed scenario for malicious traffic generation.

156



Chapter 5

Results

This chapter describes the application of a range of defined experiments undertaken against the

three major datasets, denoted as the Real Normal, Synthetic Normal and Synthetic Attack sets.

First, a generic preprocessing method is discussed for the network capture files used. Next, a

range of unsupervised methods were used to explore the structure of the Real Normal Dataset,

including community detection, a comparison of clustering approaches, and time series analysis.

Then, the results of the unsupervised methods applied to the Synthetic Normal Dataset, along

with a discussion comparing the two Normal Datasets are presented. Following, the unsupervised

methods were applied to the Synthetic Attack Dataset, with comparisons between the Synthetic

datasets drawn to highlight the differences between normal and malicious network traffic in the

simulation. With the differences stated, the results of building, training and testing a range of

Hidden Markov Models defined using ten equally-sized samples drawn from the Synthetic Normal

Dataset for training, and a shared testing sample from the Synthetic Attack dataset are elaborated

upon. Finally, a comparison of evaluation metrics for the six Hidden Markov Model approaches

are presented using six hosts as examples.

5.1 Preprocessing

Preprocessing was undertaken for each dataset to present the data in the necessary format for each

experiment. The raw data for each dataset consisted of multiple pcapng network capture files,

which contained both BACnet and other network protocol traffic. Each pcapng file was filtered and

split into files containing only BACnet traffic, and finally merged into a single file using Tshark.

The Wireshark native BACnet statistics plugin was then used via Tshark to output frequency

values at a service level. Further manipulation was undertaken using sed, before being loaded

into a Python Pandas dataframe for application of each method. For the real network dataset, IP

address anonymisation was undertaken using pycryptopan 0.01 a Python implementation of the

Crypto-PAn algorithm, a prefix-preserving anonymisation tool (Bauer, 2012). For each dataset,

flow records were generated using the CERT NetSA Security Suite utility YAF (Yet Another Flow

meter) (Trammell, 2018), into IPFIX format flows. Further, the bounded limits for generating
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the flows were set to 300 seconds for the Idle-Flow-Timeout and 1800 seconds for the Active-Flow-

Timeout.

5.2 Real Normal Dataset

The Real Normal Dataset is comprised of one month of real network data collected from an Aus-

tralasian university. All hosts in the network are controller-level devices, with no sensor data

represented. Additionally, part of the network implementation uses a proprietary middleware im-

plementation of BACnet/IP, which was out of scope of the research conducted.

5.2.1 Real Normal Dataset: Analysis

To visualise the full network, the service counts between hosts were derived from the data collected

and used to generate a directed network graph, detailed in Figure 5.1. Hosts were defined as nodes,

with network services, and network service counts used between each host as the edges, and edge

weights respectively. Community detection has been used in cyber security for identifying critical

nodes in a network, to better target defences. As such, a range of community detection algorithms

were explored and applied to the network. To identify the importance of hosts in the network, the

degree of centrality, and the eigenvector centrality were used. Further, modularity, a measure of

network and graph structure which can measure connections between nodes was used. Modularity

is the density measurement of edges inside a community compared to edges connected to outside

communities, minus the expected fraction if edges were distributed randomly, with values ranging

from -1 to +1. A positive value describes that the edges in the group exceeds the number expected

based on a random distribution of edges. The Louvain community detection unsupervised algorithm

(Blondel, Guillaume, Lambiotte & Lefebvre, 2008) was used against the network graph, revealing

three communities, with a modularity ranking of 0.238 using the standard modularity resolution

of 1.0. The eigenvector centrality was calculated with 100 iterations of the Gephi graph algorithm

package (Gephi, 2017). Larger nodes in the graph represent higher eigenvector centrality values.

The degree (total connections) and eigenvector centrality values for the network are detailed in

Table 5.1.

Figure 5.1 shows the observed connection between all hosts, the degree of interaction between

hosts, and the centrality of specific hosts. Specifically, it can be seen that host 246.35.6.57 sends

a significant amount of network traffic to the subnet broadcast address (anonymised to .254).

Unsurprisingly, the controllers of interest in the monitored building have the higher eigenvector

values. However, what was not anticipated was the regularity of individual controllers communic-

ating between controllers located in other buildings. Through evaluation of the network graph, the

large amount of outbound traffic from host 246.35.6.57 with no inbound connections was a prime

candidate for a misconfiguration, or potential network attack, and was investigated further. The

community detection algorithms applied identified a range of underlying, connected hosts, which

align with the understanding of the network.
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Table 5.1: Hosts exhibiting measures of centrality, modularity and clustering
coefficients for the Real Normal Dataset

IP Address Eigenvector
centrality

Indegree Outdegree Degree Modularity Class Clustering
Coefficient

246.35.6.165 1 27 23 50 2 0.29064
246.35.6.172 0.885535 21 18 39 2 0.359684
246.35.6.174 0.884594 13 15 28 2 0.52381
246.35.6.254 0.598651 65 0 65 1 0.017788
246.35.6.80 0.320134 8 10 18 2 0.266667
246.35.6.24 0.159789 2 7 9 1 0.238095
246.35.6.214 0.150417 2 3 5 1 0.666667
246.35.6.49 0.150417 2 4 6 2 0.666667
246.35.6.56 0.150417 2 7 9 2 0.285714
246.66.248.219 0.150417 2 4 6 2 0.666667
246.35.6.52 0.150417 2 6 8 2 0.266667
246.34.95.8 0.150417 2 7 9 2 0.190476
56.0.15.254 0.058332 8 0 8 0 0
246.35.6.71 0.052616 2 3 5 2 0.333333
246.35.6.160 0.052616 2 4 6 2 0.333333
246.35.6.15 0.03973 3 1 4 1 0.25
246.35.6.63 0.025817 3 2 5 2 0
246.35.6.57 0.014989 4 2 6 1 0
246.35.6.62 0.001163 1 3 4 1 0
246.35.6.25 0.001163 1 1 2 1 0
246.35.6.60 0.000832 1 2 3 1 0.333333
246.35.6.30 0 0 3 3 1 0.333333

Further analysis was undertaken through flow analysis of the network communication. A flow is

a series of frames describing a conversation between two hosts. Flow analysis ignores the content of

messages, and rather infers knowledge from the meta-properties of the conversation, such as start

time, end time, frame size and packet occurrences. Further information can be generated from these

properties, including session duration, and average packets per second. A total of 39,478,148 frames

were processed into 56,613 flows for the 51 communicating hosts, outlined in Table 5.2. 56% of these

flows (32,241) were uni-directional flows, which highlights the large amount of broadcast traffic in

BACnetworks. 31,560 flows reached the Active-Flow-Timeout value, and 25,028 flows ended due to

the Idle-Flow-Timeout being reached. The last 25 flows of the capture period ended prematurely

due to the end of the capture file being reached. As denoted in Table 5.2, host 246.35.6.57 has

a large proportion of total packets compared to total flows, indicating that each flow has a long

duration and many packets.

Analysis of the defined flows was undertaken using the Python Pandas library. The aim was to

identify common patterns and infer the sequences of commands being sent over the network from

these basic features. Each bi-directional flow can contain a sequence of commands occurring in

the network split by the flow specification features discussed (active and idle time). These natural

sequences defined by time could reveal contextual patterns for the specific network in terms of the

normal order of network commands between hosts.
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Figure 5.1: Real Normal Dataset directed network graph

To identify patterns in the network flows, unsupervised clustering was undertaken. Two clus-

tering algorithms were used with varying cluster sizes. First, k-means clustering was explored using

the two features; number of packets in flow and session duration. K-means requires the cluster size

a priori, as such, the count of unique commands each host used was selected as a näıve cluster size.

Further, a k-means cluster can be influenced by its starting random centroid position. As such, the

k-means clusters were calculated using 1,000 different seed values for each input. The occurrences

of each cluster counts was determined with the first seed value, which matches the highest occurring

cluster value set, selected. For example, for host 246.35.6.80 with four clusters, all 1,000 iterations

of the starting seed value returned the same clustering pattern, thus the random seed selected was

zero. An example of a k-means cluster for host 246.35.6.172 is detailed in Figure 5.3 top. With

a larger number of clusters, varying the starting state increased the variance in cluster labels, an

after effect of edge-cases between adjoining clusters. Thus the selection of starting state based on

näıve occurrence counts for cluster size was not as certain when larger cluster numbers are selected.

Of interest, host 246.35.6.11 held three flow records, consisting of nine packets which contained

two commands. The clustering size selected is thus two, however, upon inspection of the scatter

graph there appeared to be only one class. The k-means algorithm could not split this hosts traffic

into two clusters as they exhibit the same base properties for the selected features. This highlights

the limitations of clustering as a whole, the semantic meaning of the clusters are not necessarily
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Table 5.2: Outline of generated flows and packet counts for a range of hosts in
the Real Normal Dataset scenario, Host 246.35.6.57 has a high proportion of
total packets compared to flows

Host Flows Packets Total Flow % Total Packet %

246.35.6.80 13329 865020 23.54406% 2.19114%
246.35.6.24 10648 4040832 18.80840% 10.23562%
246.35.6.165 5194 2363202 9.17457% 5.98610%
246.35.6.174 4452 7012981 7.86392% 17.76421%
246.35.6.62 1518 1744548 2.68136% 4.41902%
246.35.6.164 1488 133800 2.62837% 0.33892%
246.35.6.173 1488 133794 2.62837% 0.33891%
246.35.6.175 1488 133800 2.62837% 0.33892%
246.35.6.18 1487 308184 2.62661% 0.78064%
246.35.6.27 1487 231114 2.62661% 0.58542%
246.35.6.16 1487 803085 2.62661% 2.03425%
246.35.6.19 1486 2137281 2.62484% 5.41383%
246.35.6.31 1486 1817463 2.62484% 4.60372%
246.35.6.30 1486 537453 2.62484% 1.36139%
246.35.6.57 1484 13567584 2.62131% 34.36733%
246.35.6.60 1482 1875513 2.61777% 4.75076%
246.35.6.172 1181 535355 2.08609% 1.35608%
246.35.6.71 1073 810329 1.89532% 2.05260%
246.35.6.68 857 102081 1.51379% 0.25858%
... ... ... ... ...

Total: 56,613 39,478,148

correct, based on the distinguishing features selected. Further features would be required, which

are not available from a basic network flow.

The second clustering algorithm explored was a Gaussian Mixture Model (GMM). The same

features, flow packet size and session duration, were also selected. A GMM can have the cluster

size defined a priori, or use a maximisation function to derive an appropriate number of clusters.

GMM clustering was undertaken using both methods. An example of GMM clustering using the

same cluster numbers as the k-means approach is detailed in Figure 5.4 top.

To improve on the näıve cluster values a model was constructed for each host with cluster sizes

between 1 and 30. The Akaike information criterion (AIC) and Bayesian information criterion

(BIC) were used to compare each model with the aim of identifying local and global optima in

cluster size selection. The comparison of the models for a range of hosts is detailed in Figure 5.2.

Of note, some hosts had insufficient flow records to fully enumerate a 30 cluster model, and thus

were explored with a smaller range of cluster sizes. The k-means and GMM clustering approaches

were then re-run using the selected global minima for each model, and detailed in Figure 5.3 and

Figure 5.4

The variance of state occurrences in host 246.35.6.71 causes each run to have a unique starting

state, and thus each run classifies the data differently. Originally, it was thought that a lack of flows

may be a cause of this, however host 246.35.6.24 has a maximum state occurrence of 5, but has an
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order of magnitude more flow data. With larger cluster sizes, the start state seems to have a more

prominent effect on the clustering approach, due to the added variance in classes. Analysis of the

GMM step clustering to determine optimal cluster size was informative, but also non-authoritative.

The maximisation clustering step-approach potentially overfits on some hosts.
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There is, however, a tradeoff to set between the number of clusters and a minimised error rate

criterion value. When the value differential is small, but the number of clusters between two points

is large, a selection is required based on interpretation. For example, in host 246.35.6.30, the

minimisation of the criterion for the number of clusters analysed is 30, but the difference between

six clusters and 30 clusters is 1,000, compared to the difference between five and six clusters being

28,000. In this scenario, a selection of six clusters, opposed to 30 clusters could be justified.

Based on the clustering schema for host 256.35.6.28, when using the selected commands of

size three, the next cluster size is a significant reduction, which also falls into a local minima.

As with the k-means method for host 246.35.6.11, the minimum clusters from the AIC/BIC is

one, however there are two commands from this host. The sample size is comparatively small

however (three flows), leaving little distinction between the two types of commands which have the

same characteristics in these occurrences. For hosts 246.35.6.78 and 246.35.6.77, the criterion is

minimised at the same cluster size as the number of commands issued by the host. Further, the

criterion increases after this point, inferring the commands sent by the host are distinguishable

enough to be used as the cluster size. For some hosts, the sample size is too small to derive robust

cluster sizes. The optimisation processes reduce down to each flow record classed as its own cluster,

specifically in host 246.34.95.8, there are seven commands used by the host and 12 flows, the AIC

and BIC minimise at 12 clusters. There is clearly information lost, however a number of flows are

closely grouped, implying the same type of command sequence.

A major problem with unsupervised methods can be the lack of ground truth. Specifically for

the flow data extracted, as each instance is a sequence of events and the sequences are constructed

using the same variables across the entire dataset, there is room for misclassification inside the

flows. Additionally, the initial cluster sizes are selected based on the number of commands the host

undertakes during the duration of the capture. As stated, flow records could contain more than

one command type, and thus the combinations of command sequences in each flow could increase

the number of unique clusters beyond the base value selected.

The purpose of clustering for this research was to discover natural groups in datasets. Flow

clustering has provided an overview of sequences of commands which occur in the network. How-

ever, with the various additional factors not captured by the flow data, the clustering approach is

not definitive for classifying network command sequences. Further insight was obtained through

investigating the sequences of individual packets in the network.

The dimensionality of data increases substantially when progressing from flow level to packet

level data. For the Real-Normal dataset, 39,478,148 BACnet packets were transmitted over the

network between the 51 hosts. The context provided by this data provides the level of detail for

increased analysis, as opposed to the flow data. As the packet level traffic is parseable and each

can be assigned a class based on a range of features labelling the packets in a semi-supervised

method is possible. Labelling can be undertaken using a range of data transformation methods,

examples include data structures such as JSON, XML or text-based representations which allow

the use of text searching methods such as regular expressions. Previous labelling was undertaken
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in §4.4.1 using JSON constructions of each packet for feeding an ANN for classification. The

dataset used for the proof of concept was significantly smaller, but resulted in large interim data

quantities when processing between formats. The analysis tool chosen for this dataset was the

Python library Pandas, which can use both raw text and JSON based data. A text based approach

was selected due to a reduced interim data size, with the largest non-reduced host capture text

file being 1.4GB, as opposed to the smaller dataset with greater than 1GB JSON files. Further,

the text data provided the possibility of using regular expressions and Unix commands such as

sed for labelling. The core features of interest for each packet were packet time of arrival, source

IP address, destination IP address, packet size, and BACnet contextual information including

command, and additional command properties such as sequence numbers, BACnet addresses and

object names. These features were extracted using Tshark, and parsed using regular expressions

and sed into comma separated value (csv) format files containing bi-directional packets for each

host. The major classification feature was the command sent by the source address.

Per host data was preprocessed to anonymise the network addresses. Scatter plots of destination

IP and packet size were created for each labeled command sent by the source IP. An example

scatter graph is defined in Figure 5.5 The scatter graphs identify very few size variances between

packets sent to the same host for each command. The size differences can be accounted for by the

address size of the BACnet object identifier being queried in the device, or the difference between

sending a Who-is broadcast command looking for a specific BACnet ID, or all BACnet devices.

The percentage breakdown of commands sent over the network is detailed in Table 5.3. Further

investigation at a packet level was undertaken to extract command frequencies. Figure 5.6 outlines

the breakdown of commands for host 246.35.6.172. For the outlined host, the CoV command traffic

is relatively static, while the Who-is command causes the change in phase.
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Table 5.3: Command breakdown of full network capture for the Real Normal
Dataset

Command Unique
Hosts

Count Total Com-
mand %

who-Is (Unconfirmed Service Request) 33 28,436,828 72.0318%
confirmedCOVNotification (SimpleAck) 5 4,222,241 10.6951%
confirmedCOVNotification (Confirmed Service Request) 6 4,154,232 10.5229%
i-Am (Unconfirmed Service Request) 47 881,131 2.2319%
subscribeCOV (Confirmed Service Request) 6 519,254 1.3153%
subscribeCOV (SimpleAck) 6 511,223 1.2950%
readProperty (Confirmed Service Request) 2 335,619 0.8501%
readProperty (ComplexAck) 1 334,488 0.8473%
writeProperty (Confirmed Service Request) 2 73,932 0.1873%
confirmedEventNotification (Confirmed Service Request) 2 4048 0.0103%
confirmedEventNotification (SimpleAck) 4 3294 0.0083%
ERROR:confirmedEventNotification 1 346 0.0009%
who-is-Router-to-Network (NPDU) 7 329 0.0008%
i-am-Router-to-Network (NPDU) 22 258 0.0007%
writeProperty (SimpleAck) 1 234 0.0006%
ICMP 3 192 0.0005%
readPropertyMultiple (ComplexAck) 2 167 0.0004%
readPropertyMultiple (Confirmed Service Request) 2 167 0.0004%
unconfirmedPrivateTransfer (Unconfirmed Service Request) 2 165 0.0004%
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So far, analysis has been concerned with the type of traffic transmitted across the network

and the destination of that traffic. Time series analysis methods were explored to identify when

traffic occurred. The primary aim for the time series analysis was to identify periodicity of net-

work traffic. Seasonal decomposition using the Python statsmodel implementation of a näıve Loess

function (Cleveland, Cleveland, McRae & Terpenning, 1990) was undertaken with a rolling win-

dow mean of one hour (referred to further as bins). Seasonal decomposition for each host was

undertaken, in addition to the the full network in Figure 5.7. For the full network decomposition

there is a large drop in traffic on the 22/01/18. Further investigation revealed a power outage on

the university campus during this period after which the traffic returned to its previous pattern.

Seasonal decomposition does not handle missing values, therefore sporadic traffic can be identified

through preprocessing the data into one hour bins. 29 hosts were identified as having sporadic

network activity, defined for this network as having less than 1,000 network flows over the duration

of the network traffic, or hosts which go six hours without a flow. Hosts 246.35.6.172, 246.35.6.57,

246.35.6.60, and 246.35.6.71 have over 1,000 flows, and infrequently have less than two flows per

hour. Hosts 246.35.6.57, 246.35.6.60 and 246.35.6.71 were missing one, two and six hour bins re-

spectively over the entire duration of the dataset. As such, time based interpolation was applied to

generate the missing bin values. For example, host 246.35.6.172 was missing values for 231 of 744

bins. However, on inspection 963 flows occur before 10:00/17/01/2018, after which 218 flows occur.

This causes a large discrepancy in averaging methods, with one missed value before 17/01/2018,

and 230 after this period. The periodic traffic changes volume, thus making interpolation over the

entire set not truly explanatory. Therefore, the traffic was split into weekly records further analysis.

The mean weekly traffic for the network is outlined in Figure 5.8, which details the diurnal

pattern of the network traffic, (the First of January in 2018 was a Monday). From the collection of

weekly graphs, not reproduced here, some of the periodic hosts exhibit clear diurnal network pat-

terns, while others have a static consistent packet count. Sporadic hosts are also clearly identified.

In total, 22 hosts are classified as periodic. Of note, host 246.35.6.172 has two distinct behaviours,

which prompted for further investigation of factors. A larger bin size of four hours was used for

seasonal decomposition, reducing the amount of interpolation required from 230 to 34. Compared

to the full dataset where the power outage can be seen, with traffic then returning to the regular

pattern, it is unclear why the phase change occurs in host 246.35.6.172. It is clearly not a power

outage, as the traffic does not return to a regular pattern, a larger network capture consisting

of multiple months may reveal further information. Näıve analysis of the network has revealed

interesting features for the Real Normal Dataset, which was applied to the synthetic datasets to

identify differences in behaviour between normal and malicious actions.
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Figure 5.7: Seasonal decomposition of the Real Normal Dataset
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5.3 Synthetic Normal Dataset

This section presents the community detection, clustering, and näıve time series analysis for the

Synthetic Normal Dataset. The Synthetic Normal Dataset consists of the network traffic from one

month of the simulator defined in §4.6.5. Through initial exploration of the command sequences

in the Synthetic Normal Dataset, 6 unexpected data troughs were identified. It was unclear what

caused these reductions in traffic with no distinct pattern identified between occurrences. As this

was not controlled behaviour, the data generation procedure was investigated, with the data in

these windows regenerated to test for repeatability. Regenerating the data at these points did not

replicate the unexpected troughs and may be an unexplained remnant of limitations in the base

hardware implementation of ESXi. Given that the data affected represents 0.8% (six hours) of total

traffic, investigating the cause of these unexpected reductions in traffic was deemed out of scope of

the research. As such, the data for all hosts encompassing these points, totalling 206,995 frames

were removed from the dataset.

5.3.1 Synthetic Normal Dataset: Analysis

The process described in §5.2.1 was also undertaken for the Synthetic Normal Dataset. The eigen-

vector centrality for the dataset describes the hosts which communicate the most with other hosts

in the network. Details of the community detection algorithm applied to a sample of the hosts is

outlined in Table 5.4. As the logger device at 192.168.10.91 consistently communicates with all

other known devices in the network, it has the highest degree, and thus an eigenvector centrality

of 1.0. The controllers are the second most connected, followed by the broadcast network address.

While the broadcast address of 255.255.255.255 is clearly not a host, it is the destination address

of 59 services in the network, as denoted by the Indegree value in Table 5.4, and as such has a

measure of centrality in the network. Further, as detailed in §5.4.1, the broadcast network address

is used in many BACnetwork attacks. Following the broadcast address, the thermostats and VAVs

are the next most connected. Finally, the sensors and actuators, which normally only communicate

with the managing controller, and the logging device are the least connected.

Six classes are defined with the Louvain algorithm, with a modularity ranking of 0.321 using

the standard modularity resolution of 1.0. One class describes the controller, and all its connected

sensors and actuators, in addition to the logger device, and one thermostat/VAV pair. A further

three thermostat/VAV pairings are classed separately. The next class describes a controller, its

sensors and the two remaining thermostat/VAV pairs. Finally, a class describes a controller, its

sensors and actuators, the broadcast address and some sensors from a different controller. There

are differences in the communication pathways between hosts from the design. It is of interest,

given each grouping uses the same data, but resolves to different classes. Reducing the resolution

of the Louvain algorithm increases the number of classes present in the network, as such a range

of resolution values were enumerated. Reducing the modularity resolution to 0.8 resulted in nine

classes with a modularity ranking of 0.323, where each thermostat/VAV pair is classed together,
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the two sets of controllers and actuators are classed together, one set of controllers, actuators and

sensors are classed with the logger device, and the broadcast address and remaining sensors are

classed together. For the Synthetic Normal Dataset, maximising the modularity ranking value

presented a classification of nodes which was closer to the topological design of the simulator

network. The network graph for the Normal Synthetic Dataset traffic at the maximised modularity

ranking value is detailed in Figure 5.9.

Table 5.4: Hosts exhibiting measures of centrality, modularity and clustering
coefficients for the Synthetic Normal Dataset

IP Address Eigenvector
centrality

Indegree Outdegree Degree Modularity Class Clustering
Coefficient

192.168.10.91 1 118 112 230 6 0.12662
192.168.10.102 0.558824 51 59 110 4 0.405367
192.168.10.100 0.555273 52 56 108 6 0.409702
192.168.10.101 0.552736 50 58 108 5 0.414096
255.255.255.255 0.223583 59 0 59 2 0.064874
192.168.10.190 0.124058 12 15 27 0 0.295238
192.168.10.130 0.123843 12 16 28 1 0.279167
192.168.10.195 0.123101 12 15 27 4 0.295238
192.168.10.160 0.122332 12 13 25 5 0.217949
192.168.10.165 0.122332 12 13 25 3 0.217949
192.168.10.131 0.121563 11 11 22 1 0.44697
192.168.10.191 0.121561 11 11 22 0 0.44697
192.168.10.136 0.117654 11 11 22 7 0.44697
192.168.10.196 0.117407 10 11 21 4 0.472727
192.168.10.166 0.117255 10 11 21 3 0.472727
192.168.10.161 0.117255 10 11 21 5 0.472727
192.168.10.135 0.106489 11 16 27 7 0.279167
192.168.10.186 0.096857 5 5 10 4 0.433333
192.168.10.185 0.096857 5 5 10 4 0.433333
192.168.10.184 0.096857 5 5 10 4 0.433333

Flow records were generated for the Synthetic Normal Dataset, using the settings described

in §5.1. 25,634,367 frames were processed into 406,426 flows for the 58 communicating hosts, see

Table 5.5 for an overview. 42.1% of these flows (171,101) were uni-directional flows. 48,521 flows

reached the Active-Flow-Timeout value, while 357,754 flows ended due to the Idle-Flow-Timeout

being reached. The last 151 flows of the capture period ended prematurely, due to the end of

the capture period being reached. Compared to the real network dataset there are far less active

timeout flows (11.94% vs 55.75%), primarily due to the lack of constant Who-Is commands from the

previously identified misconfigured device. Additionally, the inclusion of the logger device which

cycles through each device in the network and reads specific object’s properties causes a large

number of idle flows. Specifically, as only one property is read for sensor devices, a large portion

of network flows contain only two frames.

The command details for the full network of the Normal Synthetic Dataset are outlined in

Table 5.6. Of note, 95.6379% of the network traffic consists of polling values from the sensors by the
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controller, thermostat and logger devices, via Read property requests and acknowledgements. This

breakdown is quite different to the Real Normal Dataset, primarily due to the Real Normal Dataset

only encompassing controller devices. The Synthetic Normal Dataset has primarily sensor and

actuator devices, which are often not capable of CoV reporting, and thus have polling implemented

using the Read property command. A scatter graph of the destination, and byte size of the Write

property command for host 192.168.10.101 is shown in Figure 5.10. As detailed, the byte size of

each command packet is identical across the hosts, due to a low variance in requests, and a similarly

sized addressing scheme. If the addressing scheme for communicating devices differed, the byte size

of the Write property command to each host may differ, or be unique per host such as in the Real

Normal Dataset in Figure 5.5. The full breakdown of commands for the duration of the simulation

for host 192.168.10.101 (a controller) is detailed in Figure 5.11.
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Table 5.5: Outline of generated flows and packet counts for a range of hosts in
the Synthetic Normal Dataset scenario

Host Flows Packets Total Flow % Total Packet %

192.168.10.91 171100 1009053 42.0987% 3.9363%
192.168.10.100 32322 4911135 7.9527% 19.1584%
192.168.10.101 17399 4915843 4.2810% 19.1768%
192.168.10.102 17395 4913097 4.2800% 19.1661%
192.168.10.130 4430 1616197 1.0900% 6.3048%
192.168.10.160 4430 1616027 1.0900% 6.3041%
192.168.10.190 4429 1614971 1.0897% 6.3000%
192.168.10.135 4428 1614377 1.0895% 6.2977%
192.168.10.165 4427 1614480 1.0893% 6.2981%
192.168.10.195 4426 1612874 1.0890% 6.2918%
192.168.10.186 2961 7166 0.7285% 0.0280%
192.168.10.156 2960 6752 0.7283% 0.0263%
192.168.10.181 2953 4044 0.7266% 0.0158%
192.168.10.150 2952 3687 0.7263% 0.0144%
192.168.10.191 2952 11026 0.7263% 0.0430%
192.168.10.196 2952 11030 0.7263% 0.0430%
192.168.10.185 2951 3314 0.7261% 0.0129%
192.168.10.182 2951 3316 0.7261% 0.0129%
192.168.10.180 2951 3320 0.7261% 0.0130%
192.168.10.161 2951 9940 0.7261% 0.0388%
192.168.10.152 2951 3316 0.7261% 0.0129%
192.168.10.151 2951 3316 0.7261% 0.0129%
192.168.10.112 2951 2952 0.7261% 0.0115%
192.168.10.113 2951 2952 0.7261% 0.0115%
192.168.10.136 2951 9942 0.7261% 0.0388%
192.168.10.131 2951 9940 0.7261% 0.0388%

Total 406426 25634367

177



0

25

50

Complex-ACK, readProperty, Count = 47171

0

2000

Confirmed-REQ, readProperty, Count = 2382391

0

20

Confirmed-REQ, subscribeCOV, Count = 19943

0

50

100
Confirmed-REQ, writeProperty, Count = 9319

0

2

Error, readProperty, Count = 29

0

1

2
Reject, unrecognized-service, Count = 18

0

50

100
Simple-ACK, confirmedCOVNotification, Count = 26403

0

25

50

Unconfirmed-REQ, i-Am, Count = 47200

2018-01-03

2018-01-06

2018-01-09

2018-01-12

2018-01-15

2018-01-18

2018-01-21

2018-01-24

2018-01-27

2018-01-30

TimeStamp

0

2000

All Network Traffic

C
om

m
an

d 
C

ou
nt
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Table 5.6: Command breakdown of full network capture for Synthetic Normal
Dataset

Command Unique
Hosts

Count Total Com-
mand %

readProperty(Confirmed-REQ) 10 12,258,404 47.8202%
readProperty(Complex-ACK) 57 12,257,753 47.8177%
i-Am(Unconfirmed-REQ) 57 336,302 1.3119%
who-Is(Unconfirmed-REQ) 1 336,299 1.3119%
confirmedCOVNotification(Confirmed-REQ) 33 104,569 0.4079%
confirmedCOVNotification(Simple-ACK) 9 104,459 0.4075%
subscribeCOV(Confirmed-REQ 9 86,440 0.3372%
subscribeCOV(Simple-ACK) 33 86,435 0.3372%
writeProperty(Confirmed-REQ 9 31,643 0.1234%
writeProperty(Simple-ACK) 24 31,643 0.1234%
readProperty(Error) 9 341 0.0013%
unrecognized-service(Reject) 7 79 0.0003%

A comparison of clustering approaches taken on the Synthetic Normal Dataset is detailed

in Table 5.7. As the optimised clustering sizes increase in size, the start state tends to have a

higher impact on the clustering, as can be seen when comparing the start state occurrences for the

1,000 selected state values. For example, the controllers and logger device (hosts 192.168.10.100,

192.168.10.101, 192.168.10.102, and 192.168.10.91, respectively) which optimise to over 25 states

have low state occurrence rates and as such are heavily affected by the starting state for cluster-

ing each flow. It can be seen in Figure 5.12, where the AIC and BIC diverge in maximising the

function that lowering the cluster size increases the occurrence of generating the same classifica-

tions from different starting states. Of interest, identified in Figure 5.12, many of the sensor and

actuator hosts which contain multiple types of commands have reduced cluster sizes when applying

the AIC and BIC. This implies the relationship between commands and cluster size is closer in

the sensor and actuator devices than the controllers; perhaps due to the reduced variance in com-

mands for sensors and actuators compared to controllers. A non-global optimums, or evaluating

further cluster sizes with the AIC and BIC algorithms may reveal a better fitting cluster model

for the higher interactive hosts, such as the controllers and logger. Additionally, using a simple

max occurrences selection criteria does not necessarily identify the most appropriate start state,

when evaluating using 1,000 differing start states. Some start states have similar occurrence rates,

further enumeration of start state values may result in different starting state seed values when

using an occurrence based selection criteria.

Due to the necessity of removing the unknown network data, interpolation was required for the

seasonal decomposition of the network flows. Looking at the weekly breakdown of traffic is more

descriptive in this case, (see Figure 5.16) highlighting the relatively steady state of the network

during normal operation. The broken troughs in the network traffic are due to the six hours of

removed traffic, outlined in §5.3. Further, the variation in packets per hour outlined in Figure 5.15,

shows the cyclical nature of the traffic.
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Table 5.7: Comparison of start states and occurrences with AIC/BIC selected
cluster sizes for select Normal Synthetic Dataset hosts

IP Näıve

State

Näıve Oc-

currences

Cluster

Size

AIC

State

AIC Occur-

rences

AIC Cluster

Size

BIC

State

BIC Occur-

rences

BIC Cluster

Size

Samples

(flows)

192.168.10.100 0 492 8 277 1 27 277 1 27 32322

192.168.10.101 0 795 8 167 2 30 167 2 30 17399

192.168.10.102 1 369 8 397 3 30 397 3 30 17395

192.168.10.110 0 1000 5 0 1000 1 0 1000 1 2950

192.168.10.111 0 1000 5 0 1000 1 0 1000 1 2950

192.168.10.112 0 1000 5 0 1000 2 0 1000 2 2951

192.168.10.113 0 1000 5 0 1000 2 0 1000 2 2951

192.168.10.114 0 1000 5 0 1000 1 0 1000 1 2950

192.168.10.115 0 1000 5 0 1000 1 0 1000 1 2950

192.168.10.116 0 1000 4 0 1000 1 0 1000 1 2950

192.168.10.120 0 1000 2 0 1000 1 0 1000 1 2950

192.168.10.121 0 1000 2 0 1000 1 0 1000 1 2950

192.168.10.122 0 1000 2 0 1000 1 0 1000 1 2950

192.168.10.123 0 1000 2 0 1000 1 0 1000 1 2950

192.168.10.124 0 1000 2 0 1000 1 0 1000 1 2950

192.168.10.125 0 1000 2 0 1000 1 0 1000 1 2950

192.168.10.126 0 1000 2 0 1000 1 0 1000 1 2950

192.168.10.130 0 999 10 14 29 30 13 144 22 4430

192.168.10.131 0 347 5 0 706 4 0 706 4 2951

192.168.10.135 0 986 10 21 26 30 1 23 29 4428

192.168.10.136 2 559 5 0 723 4 0 723 4 2951

192.168.10.140 0 1000 3 0 1000 1 0 1000 1 2950

192.168.10.141 0 1000 3 0 1000 1 0 1000 1 2950

192.168.10.142 0 1000 3 0 1000 1 0 1000 1 2950

192.168.10.143 0 1000 3 0 1000 1 0 1000 1 2950

192.168.10.144 0 1000 3 0 1000 1 0 1000 1 2950

192.168.10.145 0 1000 3 0 1000 1 0 1000 1 2950

180



continuation of Table 5.7

IP Näıve

State

Näıve Oc-

currences

Cluster

Size

AIC

State

AIC Occur-

rences

AIC Cluster

Size

BIC

State

BIC Occur-

rences

BIC Cluster

Size

Samples

(flows)

192.168.10.146 0 1000 2 0 1000 1 0 1000 1 2950

192.168.10.150 0 1000 4 0 1000 3 0 1000 2 2952

192.168.10.151 0 1000 4 0 1000 2 0 1000 2 2951

192.168.10.152 0 1000 4 0 1000 2 0 1000 2 2951

192.168.10.153 0 1000 4 0 1000 1 0 1000 1 2950

192.168.10.154 0 1000 4 0 1000 1 0 1000 1 2950

192.168.10.155 0 1000 4 0 1000 1 0 1000 1 2950

192.168.10.156 0 990 4 0 1000 11 0 1000 2 2960

192.168.10.160 1 720 9 6 48 30 6 48 30 4430

192.168.10.161 1 455 5 2 954 3 2 954 3 2951

192.168.10.165 4 284 9 83 31 29 83 31 29 4427

192.168.10.166 1 559 5 1 707 4 1 707 4 2950

192.168.10.190 0 929 10 18 74 30 18 74 30 4429

192.168.10.191 1 699 5 3 423 6 3 423 6 2952

192.168.10.195 3 694 10 39 48 30 23 60 28 4426

192.168.10.196 0 818 5 9 289 9 0 983 4 2952

192.168.10.91 0 1000 2 885 1 29 343 2 22 171100
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Figure 5.12: Comparison of AIC and BIC cluster size optimisations for a range
of hosts in the Synthetic Normal Dataset

182



0

100

200

300

400

0 250 500 750 1000 1250 1500 1750
Duration in seconds

0

100

200

300

400

B
i-D

ire
ct

io
na

l P
ac

ke
ts

 in
 fl

ow

Figure 5.13: Comparison between näıve (k=8) and
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Figure 5.14: Comparison between näıve (k=8) and
optimised (k=30) GMM clustering approach for host

192.168.10.101

183



50

60

70

80

M
ea

n 
N

um
be

r o
f P

ac
ke

ts
 P

er
 H

ou
r Observed

62.0

62.5

63.0

63.5

64.0

Tr
en

d 
of

 P
ac

ke
ts

 P
er

 H
ou

r

Trend

1.0

0.5

0.0

0.5

V
ar

ia
tio

n 
of

 P
ac

ke
ts

 P
er

 H
ou

r

Seasonal

01-02
01-05

01-08
01-11

01-14
01-17

01-20
01-23

01-26
01-29

start-time

20

10

0

10

U
ne

xp
la

in
ed

  P
ac

ke
t b

eh
av

io
ur

P
er

 H
ou

r

Residuals

Figure 5.15: Seasonal decomposition of the Synthetic Normal Network
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5.4 Synthetic Attack Dataset

The Synthetic Attack Dataset is constructed of a re-run of the first week of the network simulation

with the attack framework defined in §4.6.9 implemented. In total, 163 attacks were launched

against the simulation network over the one week duration from three adversarial hosts, one con-

troller, one sensor and one external. The occurrence time, duration, and specific attack launched

by each adversarial host were pseudo-randomly selected using the Python random function. The

attack occurrences classed by attack and adversary type are outlined in Table 5.8.

Table 5.8: Ground truth attack occurrences in Synthetic Attack Dataset

Attack Class Controller Sensor External

CovAttack 2 - -
IamFlood - 34 -
IamFloodSpoofIP - 2 -
IamSpoofIP - 5 -
PriorityArrayWrite 4 - -
ReadPropertyAll 1 - -
ReadPropSneak 3 - -
RestartController - - 4
RestartDevice - - 18
WhoHasRecon - - 19
WhoIsFlood 8 4 -
WhoIsRecon - 3 19
WhoIsReconSneak 2 1 -
WritePropInBounds 32 - -
WritePropOutBounds 2 - -

Total Per Device Type 54 49 60

Total 163

5.4.1 Synthetic Attack Dataset: Analysis

5,977,356 frames were processed into 93,755 flows for the 60 communicating hosts in the Synthetic

Attack Dataset, see Table 5.10 for an overview. 42.68% of these flows (40,014) were uni-directional

flows. 11,028 flows reached the Active-Flow-Timeout value, and 82,579 flows ended due to the

Idle-Flow-Timeout being reached. The last 148 flows of the capture period ended prematurely,

due to the end of the capture file being reached. Compared to the Synthetic Normal Dataset,

there is a similar split for active (11.76% vs 11.94%) and idle (88.08% vs 88.03%) flow timeout’s.

Highlighting that cumulatively, the malicious commands in the Synthetic Attack Dataset do not

cause large deviations in traffic type breakdown.

Six classes are identified with the Louvain algorithm with a modularity ranking of 0.179 using

the standard modularity resolution of 1.0. Two classes are defined which represent individual

thermostat/VAV pairings. Two further thermostat/VAV pairs are classed together. Two controllers

and their associated sensors are classified as individual classes. Finally, a controller, the logging
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device, the external adversary, the broadcast address and the majority of actuators are in the final

class. With a lower modularity ranking value the modularity resolution was reduced to investigate

improved classification schemas. Optimising for the highest modularity resolution, a resolution of

0.9 or 0.8 can be used, where the modularity ranking increased to 0.228, with seven classes defined.

The network graph for the Synthetic Attack dataset with modularity resolution 0.9 is presented

in Figure 5.17. Comparing the network graph for the Synthetic Attack Dataset in Figure 5.17 to

that of the Synthetic Normal Dataset in Figure 5.9, there are clear differences. The broadcast

address becomes the central node to the network for the Synthetic Attack Dataset as outlined

by the eigenvector centrality in Table 5.9. The increase can be attributed to the implemented

network attacks as many of the attacks used the broadcast address to proliferate to all hosts. This

is unlike both the Synthetic Normal and Real Normal Datasets, even with 75% of network traffic

in the Real Normal Dataset directed at the broadcast address. When maximising the modularity

ranking value, the number of classes reduces to seven from nine between the Synthetic Attack and

Synthetic Normal graphs. It was expected that more classes would be defined when introducing

more communication paths between hosts, however, the opposite occurred, with the malicious

devices blurring the classes. Further, evident through visually comparing the two graphs, the

Synthetic Attack Dataset graph is loosely clustered whereas the Synthetic Normal Dataset graph

is tightly clustered. This suggests that the network attacks have had an effect on the underlying

structure of the network, and thus presents a difference in the network pattern between normal and

attack data.

The percentage breakdown of commands for the full Synthetic Attack Dataset is detailed in

Table 5.11. There is little variation compared to the Synthetic Normal Dataset in Table 5.6 for

the commands which were used in both datasets, due to the quantity of commands used in the

attacks. To present individual results of the clustering and time series analysis the malicious

controller host 192.168.10.101 was selected. The data size and destination for each command sent

by host 192.168.10.101 is outlined in Figure 5.18. There is a variation in packet sizes between same

destinations for some commands, unlike in the Synthetic Normal Dataset. This variation can be

used as a distinguishing feature, however, it should be noted that the lack of size variance is due

to the addressing scheme selected for the research. As can be seen in the Real Normal Dataset in

Figure 5.5, where a higher variance in addressing exists, variance in packet size increases. However,

packet size may still be a useful discriminator in networks with higher variance in packet sizes, with

the caveat of a higher signal-to-noise ratio.

Evaluating Figure 5.19, compared to the Synthetic Normal Dataset in Figure 5.12, the optimised

cluster sizes for all hosts are significantly larger, due to the wider range of messages passing over

the network. This infers that clustering the flow traffic can distinguish between different BACnet

commands sent over the network. However, a similar trend follows whereby the controller hosts

with a high variance of commands have lower occurrence rates, regardless of sample size, outlined in

Table 5.12. The AIC and BIC for sensor hosts (192.168.10.110-115 inclusive) in Figure 5.19 however

suggests smaller sized clusters, and identify potential non-global optima when using larger cluster
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Table 5.9: Hosts exhibiting measures of centrality, modularity and clustering
coefficients for the Synthetic Attack Dataset

IP Address Eigenvector
centrality

Indegree Outdegree Degree Modularity Class Clustering
Coefficient

255.255.255.255 1 402 0 402 5 0.087071
192.168.10.91 0.511762 115 162 277 5 0.125776
192.168.10.101 0.310557 58 115 173 3 0.332876
192.168.10.102 0.281355 51 72 123 2 0.434551
192.168.10.100 0.276146 51 71 122 5 0.42234
192.168.10.151 0.139735 15 8 23 3 0.316993
192.168.10.183 0.128872 14 8 22 3 0.330882
192.168.10.112 0.12853 14 14 28 3 0.34632
192.168.10.145 0.088325 9 11 20 3 0.367647
192.168.10.160 0.087015 14 18 32 0 0.345029
192.168.10.182 0.076697 8 14 22 2 0.380952
192.168.10.165 0.075681 13 17 30 1 0.356209
192.168.10.161 0.074783 11 14 25 0 0.47619
192.168.10.130 0.074618 13 18 31 5 0.356725
192.168.10.131 0.072662 11 14 25 5 0.47619
192.168.10.190 0.07255 13 17 30 2 0.356209
192.168.10.136 0.071255 11 14 25 4 0.47619
192.168.10.135 0.066711 12 17 29 4 0.356209
192.168.10.195 0.064528 12 19 31 2 0.356725
192.168.10.154 0.06262 6 7 13 3 0.472222
192.168.10.155 0.06262 6 7 13 3 0.472222
192.168.10.156 0.06262 6 7 13 3 0.472222
192.168.10.150 0.06262 6 7 13 3 0.444444
192.168.10.152 0.06262 6 7 13 3 0.472222
192.168.10.153 0.06262 6 7 13 3 0.472222
192.168.10.180 0.05956 6 7 13 2 0.472222
... ... ... ... ... ... ...
192.168.10.66 0.00895 2 51 53 5 0.038431

sizes, specifically for hosts 192.168.10.110 and 192.168.10.114. As expected, the BIC generally

suggest simpler clustering models compared to the AIC. For host 192.168.10.101, the AIC and BIC

both minimised to a 30 cluster size. As such, only the AIC is presented in Figures 5.20 and 5.21. It

is difficult to evaluate the effectiveness of increasing the clustering size. For host 192.168.10.101 the

error rate differential between the näıve and optimised cluster sizes (11 and 30) is 978.8 for the BIC

and 1697.6 for the AIC from a cluster size increase of 19. This is not a large increase, and perhaps

the optimised cluster size should not be selected. However, this is unlike host 192.168.10.100, where

the error rate differential is 48729.3 for the BIC and 49557.7 for the AIC between the näıve and

optimised cluster sizes (10 and 30). A different approach is required to identify the optimal cluster

sizes for this dataset to reduce potential overfit. As can be identified in Figures 5.20 and 5.21, there

seems to be little added benefit for understanding the breakdown of flows for using a 30 cluster size

approach.

Figure 5.22 details the command breakdown over time for the malicious controller host 192.168.10.101.

For the Write property command, a number of spikes can be identified which relate to frequency
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Table 5.10: Outline of generated flows and packet counts for a range of hosts
in the Synthetic Attack Dataset scenario

Host Flows Packets Total Flow % Total Packet %

192.168.10.91 38976 229857 41.57218% 3.84546%
192.168.10.100 7388 1119081 7.88011% 18.72201%
192.168.10.101 4063 1193926 4.33364% 19.97415%
192.168.10.102 4007 1121788 4.27391% 18.76729%
192.168.10.130 1025 367687 1.09328% 6.15133%
192.168.10.190 1025 368494 1.09328% 6.16483%
192.168.10.165 1024 367036 1.09221% 6.14044%
192.168.10.135 1024 367489 1.09221% 6.14802%
192.168.10.160 1024 368451 1.09221% 6.16411%
192.168.10.195 1023 367241 1.09114% 6.14387%
192.168.10.182 707 2731 0.75409% 0.04569%
192.168.10.145 698 23572 0.74449% 0.39435%
192.168.10.144 697 1489 0.74343% 0.02491%
... ... ... ... ...
192.168.10.66 87 1002 0.09280% 0.01676%

Total 93755 5977356

Table 5.11: Command breakdown of the Synthetic Attack Dataset

Command Unique
Hosts

Count Total Com-
mand %

readProperty (Confirmed-REQ) 10 2,790,724 46.69%
readProperty (Complex-ACK) 57 2,790,182 46.68%
i-Am (Unconfirmed-REQ) 57 137,961 2.31%
who-Is (Unconfirmed-REQ) 5 100,078 1.67%
writeProperty (Confirmed-REQ) 9 32,400 0.54%
writeProperty (Simple-ACK) 24 32,001 0.54%
confirmedCOVNotification (Confirmed-REQ) 33 23,750 0.40%
confirmedCOVNotification (Simple-ACK) 9 23,709 0.40%
subscribeCOV (Confirmed-REQ) 9 19,741 0.33%
subscribeCOV (Simple-ACK) 33 19,738 0.33%
i-Have (Unconfirmed-REQ) 57 5,216 0.09%
who-Has (Unconfirmed-REQ) 1 912 0.02%
readProperty (Error) 13 466 0.01%
writeProperty (Error) 2 399 0.01%
unrecognized-service (Reject) 3 31 0.00%
reinitializeDevice (Confirmed-REQ) 1 22 0.00%
reinitializeDevice (Simple-ACK) 2 22 0.00%
readPropertyMultiple (Complex-ACK) 1 1 0.00%
readPropertyMultiple (Confirmed-REQ) 1 1 0.00%
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Figure 5.17: Synthetic Attack Dataset directed network graph, malicious hosts
are identified in red

attacks launched by the controller against other hosts in the network. When compared to host

192.168.10.102 in Figure 5.23, a non-malicious controller, the Write property command difference

is clear. For frequency-based attacks, as noted in §4.4.1, counts over time are a useful measure. The

trend analysis in Figure 5.24 shows the corresponding peaks in network traffic, and the increasing

trend of data until the network attacks finish. Comparing the trend analysis in Figure 5.24 to the

first week of average weekly packets in the Synthetic Normal dataset in Figure 5.16, there are clear

differences from the steady state.
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Table 5.12: Comparison of start states and occurrences with AIC/BIC selected
cluster sizes for Synthetic Attack Dataset hosts

IP Näıve

State

Näıve Oc-

currences

Cluster

Size

AIC

State

AIC Occur-

rences

AIC Cluster

Size

BIC

State

BIC Occur-

rences

BIC Cluster

Size

Samples

(flows)

192.168.10.100 0 168 10 876 2 30 485 2 29 7388

192.168.10.101 11 249 11 598 2 30 598 2 30 4063

192.168.10.102 12 53 9 347 3 22 347 3 22 4007

192.168.10.110 3 508 6 3 219 21 1 444 9 689

192.168.10.111 0 921 6 0 665 30 0 901 15 689

192.168.10.112 1 486 7 0 246 15 0 246 15 687

192.168.10.113 0 265 6 0 785 30 10 201 10 688

192.168.10.114 0 786 6 0 501 23 0 573 14 689

192.168.10.115 1 517 6 0 877 30 2 352 11 688

192.168.10.116 2 477 5 0 934 30 0 934 30 689

192.168.10.120 0 1000 3 0 798 30 0 872 9 689

192.168.10.121 0 999 3 3 512 30 0 605 10 688

192.168.10.122 0 1000 3 0 802 30 0 845 9 688

192.168.10.123 0 927 4 1 587 30 1 465 10 689

192.168.10.124 0 1000 3 0 768 30 0 799 8 688

192.168.10.125 0 999 3 0 823 30 0 802 8 689

192.168.10.126 0 1000 3 0 822 30 6 298 9 689

192.168.10.130 0 568 10 0 411 19 3 170 17 1025

192.168.10.131 0 725 6 1 638 13 1 638 13 691

192.168.10.135 0 942 10 0 508 19 0 508 19 1024

192.168.10.136 2 420 6 0 621 11 0 621 11 690

192.168.10.140 0 989 4 0 767 30 4 244 11 688

192.168.10.141 0 997 4 4 293 30 2 392 13 689

192.168.10.142 2 369 4 0 632 14 0 632 14 687

192.168.10.143 0 988 4 0 859 30 0 875 28 688

192.168.10.144 0 299 5 3 308 12 3 308 12 697

192.168.10.145 0 999 5 1 271 25 1 271 25 698
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continuation of Table 5.12

IP Näıve

State

Näıve Oc-

currences

Cluster

Size

AIC

State

AIC Occur-

rences

AIC Cluster

Size

BIC

State

BIC Occur-

rences

BIC Cluster

Size

Samples

(flows)

192.168.10.146 0 1000 3 0 658 30 0 734 13 689

192.168.10.150 0 556 5 0 976 30 1 483 12 690

192.168.10.151 2 431 6 0 973 30 0 497 12 687

192.168.10.152 1 514 5 0 920 30 0 911 9 688

192.168.10.153 0 626 5 0 969 30 0 291 12 689

192.168.10.154 3 265 5 0 710 30 1 635 10 688

192.168.10.155 0 260 5 0 951 30 0 612 10 688

192.168.10.156 0 988 5 0 912 30 0 543 14 690

192.168.10.160 0 547 11 0 854 21 1 358 16 1024

192.168.10.161 5 417 6 0 573 14 0 561 11 689

192.168.10.165 0 580 10 0 393 18 0 393 18 1024

192.168.10.166 1 266 6 0 796 16 0 589 11 689

192.168.10.180 0 463 5 0 924 30 0 858 9 689

192.168.10.181 1 315 5 0 897 30 1 687 13 688

192.168.10.182 0 366 7 26 37 17 26 37 17 707

192.168.10.183 0 579 6 3 568 30 0 810 10 688

192.168.10.184 0 615 5 2 830 30 2 458 13 689

192.168.10.185 2 235 5 0 958 30 1 673 9 688

192.168.10.186 4 383 5 0 929 30 0 902 9 687

192.168.10.190 1 447 10 0 297 23 4 376 17 1025

192.168.10.191 3 219 6 0 617 13 2 592 11 688

192.168.10.195 0 629 10 1 421 18 3 163 13 1023

192.168.10.196 1 405 6 1 865 16 1 865 16 690

192.168.10.66 0 1000 3 0 1000 5 0 1000 4 87

192.168.10.91 0 1000 2 469 2 25 0 808 10 38976
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Figure 5.19: Comparison of AIC and BIC cluster size optimisations for a range
of hosts in the Synthetic Attack Dataset
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optimised (k=30) GMM clustering approach for host
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optimised (k=30) GMM clustering approach for host
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Figure 5.24: Seasonal decomposition of the Synthetic Attack Dataset
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5.4.2 Synthetic Dataset comparisons

While comparing the two dataset clusters side-by-side distinctly reveals many of the network at-

tacks, this is not a realistic approach for real network detection. Without a ground truth, as would

be faced when applying exploratory analysis to real network data, the differences between legitimate

and malicious traffic have limited contextual meaning.

From this unsupervised exploration of the Synthetic Normal and Synthetic Attack Datasets,

known BACnet attacks have a clearly distinguishable network pattern. For the simulated data,

many of the commands do not occur normally, and as such can be identified when used for a

malicious purpose. Comparing the use of these identifiable commands to the command breakdown

of the Real Normal Dataset, commands such as Who-has, and I-have, are low in quantity, or non-

existent. Thus, for these types of commands, existence is enough for identification and investigation.

Other core commands, such as Read property, Write property, I-am and Who-is can be identified by

distinguishable patterns based on frequency, or variable packet sizes. These patterns are highlighted

through the difference in cluster structure between Synthetic Normal and Synthetic Attack results

in Figures 5.13 and 5.20. The clusters formed for host 192.168.10.101 in the Synthetic Normal

Dataset forms a linear function from low duration, low packet count flows to high duration, high

packet count flows. Comparatively, host 192.168.10.101 in the Synthetic Attack Dataset, does not

follow a linear function, with clusters forming around low duration low packet count, low duration

and high packet count, and high duration and low packet count. Given a large proportion of the

implemented network attacks increase the frequency of packets in short bursts, clustering these

features, and taking a comparison between the two synthetic datasets reveals a distinction between

the network data when malicious commands exist in the network. As noted, with a higher variance

of BACnet address lengths, and data requests in the network, there will be a higher signal-to-

noise ratio in packet sizes which will require further investigation. Due to the previously discussed

proprietary middleware protocol implementation, it was not possible to compare a higher variance

of packet sizes given the Write property commands which caused the variance in the Synthetic

Datasets was not accessible in the Real Normal Dataset.

5.5 Hidden Markov Models

This section details the use of Hidden Markov Models (HMMs) to identify malicious network

transactions in the Synthetic Datasets generated using the simulator defined in §4.6.5.

5.5.1 Preprocessing for Hidden Markov Model

Hidden Markov Models require transition probabilities between emissions to define a model, and

sequences of emissions to train and test the model. Therefore, preprocessing was required to

transform the categorical data of each network packet into an emission label, generate sequences

of these labels, and then define the transition probabilities between each emission. Two emission

labelling schemata were developed from a number of features from each packet. First, the features
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source IP, destination IP, command, and command type were used to define a unique emission

for each packet henceforth referred to as the CMD schema. Second, the LEN schema was defined

which supplemented the features used in the CMD schema with the byte length feature, to evaluate

the use of packet length as a discriminative feature. Each packet in the Synthetic Normal Dataset,

and the Synthetic Attack Dataset was assigned two emission labels based on the two schemata.

Sequences were defined using a fixed time length window. Two time lengths were initially

investigated. First, sequences were derived using a 2 second window, then a 30 second window. Due

to the periodic bursts of traffic, a feature of polling and CoV reporting, the 30 second window would

capture two polling sequences in each window, and was thus discarded in favour of the 2 second

window size. Using a time window rather than a fixed sequence length allows for variable length

sequences to be generated, which better reflects the bursts in traffic on the network. A number

of low occurring sequences were generated due to multiple communication sequences overlapping

relating to the same host. For example, take normal sequences (a, b, c, d) and (e, f, g), if they

occur in the same time window, a new sequence such as (a, b, e, f, c, d, g) may be derived. These

sequences would not necessarily be identified if deriving the sequences from a purely theoretical

model, or when inserting defined malicious sequences into a normal sequence, and as such increases

the robustness of the sequencing time window approach.

Sequences were constructed at a host level specificity due to the number of emission symbols

generated using the schemata. For the CMD schema, 460 and 524 emission symbols were identified

in the Synthetic Normal and Synthetic Attack Datasets respectively, while the LEN schema gen-

erated 460 and 597 emission symbols. The difference only existing in the Synthetic Attack dataset

symbols indicates that the length of the packet can be a distinguishing feature between normal and

malicious traffic for this dataset. A limitation of the HMM implementation was that only unary

symbols could be passed as a sequence, and as such, 525 and 598 unique emission symbols would

be required for the CMD and LEN schemas respectively. As such, a network level HMM is left for

future work.

Sequences were generated for both the Synthetic Normal and Synthetic Attack datasets based

on the two schemata, for each host, resulting in two sets of sequences per host which represent the

same data. The Synthetic Normal sequences were used for training each HMM, while the Synthetic

Attack sequences were used to test each HMM, for each respective schema.

For the full Synthetic Normal and Synthetic Attack datasets for each host, the majority of

dataset pairs had between a 22.6% and 27.8% proportional split in size. One host (the target of

many attacks) had a 38.1% split. Given the differences in proportion between each dataset pair,

the number of samples used for each model was normalised to have a 80% training and 20% testing

data split. Further, to reduce potential sampling bias for the training dataset, each full Synthetic

Normal Dataset for each host was split into ten equally-sized training sets. Each training set was

then used to train a HMM resulting in ten HMMs for each host. The proportionally-sampled

Synthetic Attack dataset was kept constant for testing each hosts ten models.

When a HMM is faced with an emission in the testing set which was not encountered in the
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training set, a transition probability is not defined. Following the approach of Ariu et al. (2007), the

unique emission symbols in the testing set which do not occur in the any of the training sets were

changed to a wildcard symbol. The wildcard symbol is added as a transition in each model with

a zero emission transition probability from every other emission symbol. This allows the model to

clearly identify emission symbols which have not been encountered previously. As noted by Ariu et

al. (2007), if the emission symbols are highly representative of the dataset, then it is appropriate for

the wildcard emissions to be referred to as an anomaly. Given that the Synthetic Normal Dataset

only contains normal network commands, while the Synthetic Attack Dataset contains both normal

and attack traffic, wildcard symbols are classed as known anomalies as they are distinct from the

normal commands on the network. For classification problems with a HMM, each class to be

identified requires a separate model (Ariu et al., 2007). Given the binary classification pursued in

this research (normal or anomalous), only a normal model is generated for each training dataset

and used to classify presented sequences from the testing dataset. To classify each sequence in the

testing set as normal or anomalous, the log likelihood probability of each test sequence was derived

from the trained model, with a range of discriminating thresholds used.

The accuracy of HMMs can be affected by the initial hidden state transition probabilities, the

number of hidden states, and the size of the dataset (Ariu et al., 2007). For the defined models, the

hidden state transition probability matrix for each model was generated pseudo-randomly using

the Python numpy random function using a seeded value for repeatability. Further, the effect of

altering the hidden model size on the classification ability of the HMM was explored using models

of 10, 20 and 30 hidden states. As such, 580 models were generated for the CMD schema, and an

additional 580 models for the LEN schema, for the three hidden state model types, totalling 3480

models.

The HMM’s were implemented using the Python library pomegranate (Schreiber, 2018). Each

model was trained using the Baum-Welch algorithm until the emission transition probabilities

converged, or 100 iterations of training was completed, whichever occurred first. As noted by

Schreiber (2018), parallelisation can be used for training, however it has a detrimental effect on

training times when using small numbers of states. This detrimental behaviour occurred when

training the 10-state models with an increase in time relative to the number of jobs given to

the queue. For the 20-state, and 30-state models, parallelisation was used with two jobs with

a significant reduction in training time compared to the 10-state model. The training times for

selected models are detailed in Table 5.13.

5.5.2 Defining the testing set ground truth

Only two hosts initiate both normal and malicious traffic, host 192.168.10.101 the malicious control-

ler, and host 192.168.10.182 the malicious sensor device. Host 192.168.10.66 is the external device

which generates only malicious traffic and as such does not have normal behaviour traffic defined.

A network level model could identify this type of adversary with the proposed labelling schema

as the new host and commands will have new defined unique emission labels. Further, previous
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Table 5.13: Hidden Markov Model training and classification durations for se-
lected hosts

IP Hidden
States

Training
Time (s)

Classification
Time (s)

Training Sequence
Length

Labelling
Schema

192.168.10.100 10 217.264 12 8207 CMD
192.168.10.100 20 28.980 112 8207 CMD
192.168.10.100 30 66.299 263 8207 CMD
192.168.10.101 10 285.080 14 8255 CMD
192.168.10.101 20 28.915 111 8255 CMD
192.168.10.101 30 63.805 262 8255 CMD
192.168.10.160 10 208.427 18 13,714 CMD
192.168.10.160 20 22.915 39 13,714 CMD
192.168.10.160 30 39.662 90 13,714 CMD
192.168.10.161 10 145.948 12 8133 CMD
192.168.10.161 20 8.330 32 8133 CMD
192.168.10.161 30 21.763 71 8133 CMD
192.168.10.126 10 62.253 6 8021 CMD
192.168.10.126 20 6.738 6 8021 CMD
192.168.10.126 30 13.106 10 8021 CMD
192.168.10.182 10 66.097 5 8076 CMD
192.168.10.182 20 7.034 7 8076 CMD
192.168.10.182 30 13.609 10 8076 CMD
192.168.10.100 10 232.877 11 8207 LEN
192.168.10.100 20 29.553 116 8207 LEN
192.168.10.100 30 64.470 258 8207 LEN
192.168.10.101 10 273.899 14 8255 LEN
192.168.10.101 20 32.188 118 8255 LEN
192.168.10.101 30 56.237 261 8255 LEN
192.168.10.160 10 203.398 17 13,714 LEN
192.168.10.160 20 24.735 40 13,714 LEN
192.168.10.160 30 32.659 84 13,714 LEN
192.168.10.161 10 140.170 12 8133 LEN
192.168.10.161 20 10.323 32 8133 LEN
192.168.10.161 30 16.818 69 8133 LEN
192.168.10.126 10 63.022 5 8021 LEN
192.168.10.126 20 7.316 8 8021 LEN
192.168.10.126 30 8.775 11 8021 LEN
192.168.10.182 10 65.249 5 8076 LEN
192.168.10.182 20 9.984 6 8076 LEN
192.168.10.182 30 10.600 11 8076 LEN
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work in the literature has focused on identifying out-of-bounds threats from new hosts, such as that

by Tonejc et al. (2016) with graph analysis. As such, the analysis of the external hosts malicious

sequences was not undertaken using the HMM approach as there was no defined training data, and

a model defined for this host would consist of each transition probability between emissions to be

zero, and thus classify all traffic as malicious; which, while accurate, is not particularly interesting.

Many of the other hosts, however, contain malicious sequences generated through responding to

the malicious initiators.

All hosts had a semi-supervised method applied for identifying and classifying the malicious

sequences in the testing dataset for defining the ground truth of the system. As part of the

implemented attack framework when each attack launched the start and end times were recorded.

This provided the duration of the attack, allowing each hosts testing data-frame to be sliced based

on the periods defined by the attack framework. Each slice was adjusted to start and end on an

even number to fit the 2 second window sequence generation method. The sequencing approach was

then applied to each slice, generating sequences which were classed as malicious. This approach was

taken for every host in the network for the malicious initiator hosts, 1244, 133, and 53 sequences

were defined for the malicious controller, sensor and external device respectively for both the CMD

schema and LEN schema. The unique sequences generated for each malicious host were 257, 29 and

10 for the CMD schema, and 301, 27 and 10 for the LEN schema. To determine the accuracy of each

labelling approach each unique malicious sequence was searched for in the corresponding training

dataset which does not contain malicious traffic. Due to the length of some attacks, the duration

defined by the data-frame slice allows for some normal sequences to be contained in these slices,

resulting in mis-classed sequences. On average, 42.93% of the classified malicious sequences existed

in the training dataset. Consequently, these sequences were re-classified as normal sequences. The

remaining identified sequences were defined as the malicious sequences for each host. All other

sequences in the testing datasets for each host were then classed as normal to conclude the ground

truth dataset creation. This process was undertaken for each labelling schema dataset individually,

as the emission labels, sequence lengths and thus malicious sequences differ. For some hosts, the

change in labelling schema further differentiates the attacks sent and received by hosts. This is

evident from the size differences between same class Write property command attacks defined in the

attack framework, and the change in unique malicious sequences, but not total malicious sequences

between the two schemas. As such, different ground truth datasets are defined for each labelling

schema.

5.5.3 Selected models

For presenting the results of the HMMs six hosts were selected, one for each device type, in ad-

dition to the two internal malicious hosts. Of the selected hosts, 192.168.10.100, 192.168.10.101

and 192.168.10.160 have only known malicious traffic, identified as wildcard emissions. Hosts

192.168.10.126, 192.168.10.161, and 192.168.10.182 have unknown attacks defined as part of the

testing set, in addition to known attacks, further referred to as mixed traffic. Note that for this re-
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search unknown attacks are defined as a legitimate-yet-malicious command, which occurs normally

in the training dataset, but is also used for a malicious action in the testing dataset. An example

of this may be a Write property command which is sent between the same source and destination

pair, and for the sake of the LEN labelling schema also has the same packet length.

5.5.4 Evaluation of Hidden Markov Model classifiers

Depending on the purpose of the model an appropriate measure to evaluate the classification ability

of the model can be selected. For this research, the interest is in being accurate at distinguishing

between anomalies (True Positives), and normal traffic (True Negative), while reducing the number

of incorrectly classified traffic (False Positive and False Negative). Consequently, the True Positive

Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR) and False Negative Rate (FNR)

measures, defined in Equation 5.3-Equation 5.6 were selected for evaluating the performance of the

models. Given that anomaly detection datasets have imbalanced classes by design, certain measures

are more indicative of the performance of the classification model than others. Specifically, accuracy

is a poor selection measurement for binary classification as it does not take into account the sizes of

each class type (Powers, 2011). Often, the F1 measure is used to account for imbalanced datasets,

as it is the harmonic mean of precision and TPR (Bekkar, Djemaa & Alitouche, 2013). While the

F1 measure is an improvement over the accuracy measure, it does not evaluate the classification

with respect to the true negatives (Powers, 2011; Bekkar et al., 2013). Noted by Powers (2011)

and Bekkar et al. (2013), the Matthews Correlation Coefficient (MCC) (Matthews, 1975) is a single

performance measure which can be used for evaluating binary classifiers that is less influenced by

imbalanced classes within a dataset. Further, the MCC provides an evaluation metric of correctly

classifying both classes (True Positive and True Negative), unlike the F1 measurement. Hence, the

MCC measure defined in Equation 5.7 was selected as the core evaluation criterion. For comparison,

the Precision and Accuracy measures, defined in Equation 5.1 and Equation 5.2 are also included

when presenting results of each HMM.

Pr =
TP

TP + FP

where

Pr = Precision

TP = Quantity of True Positive

FP = Quantity of False Positive

(Equation 5.1)
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ACC =
(TP + TN)

(TP + TN + FP + FN)

where

ACC = Accuracy

TP = Quantity of True Positive

TN = Quantity of True Negative

FP = Quantity of False Positive

FN = Quantity of False Negative

(Equation 5.2)

TPR =
TP

(TP + FN)

where

TPR = True Positive Rate

TP = Quantity of True Positive

FN = Quantity of False Negative

(Equation 5.3)

TNR =
TN

(FP + TN)

where

TNR = True Negative Rate

TN = Quantity of True Negative

FP = Quantity of False Positive

(Equation 5.4)

FPR =
FP

(FP + TN)

where

FPR = False Positive Rate

FP = Quantity of False Positive

TN = Quantity of True Negative

(Equation 5.5)
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FNR =
FN

(TP + FN)

where

FNR = False Negative Rate

FN = Quantity of False Negative

TP = Quantity of True Positive

(Equation 5.6)

MCC =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where

MCC = Matthews Correlation Coefficient

TP = Quantity of True Positive

TN = Quantity of True Negative

FP = Quantity of False Positive

FN = Quantity of False Negative

(Equation 5.7)

5.5.5 Hidden Markov Model results for CMD schema

The average results for each model for the CMD schema stated hosts are outlined in Tables 5.14

- 5.19. Of note, the classification ability of the models stays constant when increasing the number

of hidden states from 20 to 30 for all models. This infers that, for this dataset, it is not optimal

to generate models with more than 20 hidden states given the increase in training time for no

increase in classification ability. Further, the optimal quantity of hidden states for the model lies

between 10 and 20 states. Seymore, Mccallum and Rosenfeld (1999), observed a plateau and then a

gradual decline in accuracy for the HMM when the number of hidden states was increased. Further

evaluation of the quantity of hidden states for this dataset is the interest of future work.

No defined classifier is optimal over all hosts in the CMD schema models. Similarly, no quantity

of hidden states is optimal for every host, rather, the classification ability is dependent on the

individual host data. The best result, in terms of the MCC, for host 192.168.10.100 was 0.902 from

C11 for hidden state model 20 with a TNR of 0.994, see Table 5.14b. Each classifier for both the

10-state and 20-state models correctly classifies each known anomaly in the network as outlined by

the TPR of 1.0 for all classifiers in Table 5.14. For hosts 192.168.10.101 and 192.168.10.160, C11 is

also the optimal classifier, with a MCC of 1.0 in both the 10-state and 20-state models as outlined

in Tables 5.15 and 5.16, respectively. The results from these three hosts support H3: Machine

learning is capable of identifying one or more known attacks against BACnet/IP networks, where

the TPR is 1.0.
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For Host 192.168.10.161, classifiers C9-C11 for the 10-state model in Table 5.17a, and classifiers

C10-C11 for the 20-state model in Table 5.17b obtain the same MCC and TPR values of 0.851 and

0.750 respectively. Similarly, classifiers C3-C9 and classifiers C4-C10 for the 10-state and 20-state

models for host 192.168.10.126, outlined in Tables 5.18a and 5.18b, generate the same MCC value

of 0.802 with a TPR 1.0. Unlike models for hosts 192.168.10.161 and 192.168.10.126, the models for

host 192.168.10.182 are capable of obtaining a MCC of 1.0 for classifier C10, detailed in Table 5.19a.

This result supports H4: Machine learning is capable of identifying one or more unknown attacks

against BACnet/IP networks, as the classifier can correctly identify a number of unknown attacks

in the dataset with a FPR of 0.000.

207



Table 5.14: Evaluation metrics for the normal controller 192.168.10.100 with
CMD labelling schema

(a) 10 Hidden State Model

Classifier TPR TNR FPR FNR Pr Accuracy MCC

C0 1.000 0.000 1.000 0.000 0.025 0.025 0.000
C1 1.000 0.045 0.955 0.000 0.026 0.069 0.034
C2 1.000 0.058 0.942 0.000 0.026 0.081 0.039
C3 1.000 0.064 0.936 0.000 0.027 0.088 0.041
C4 1.000 0.149 0.851 0.000 0.029 0.171 0.066
C5 1.000 0.209 0.791 0.000 0.031 0.229 0.081
C6 1.000 0.268 0.732 0.000 0.034 0.286 0.095
C7 1.000 0.293 0.707 0.000 0.035 0.311 0.101
C8 1.000 0.293 0.707 0.000 0.035 0.311 0.101
C9 1.000 0.673 0.327 0.000 0.073 0.681 0.221
C10 1.000 0.703 0.297 0.000 0.080 0.711 0.236
C11 1.000 0.993 0.007 0.000 0.787 0.993 0.884

(b) 20 Hidden State Model

Classifier TPR TNR FPR FNR Pr Accuracy MCC

C0 1.000 0.000 1.000 0.000 0.025 0.025 0.000
C1 1.000 0.000 1.000 0.000 0.025 0.025 0.000
C2 1.000 0.013 0.987 0.000 0.025 0.038 0.018
C3 1.000 0.033 0.967 0.000 0.026 0.058 0.029
C4 1.000 0.071 0.929 0.000 0.027 0.094 0.044
C5 1.000 0.088 0.912 0.000 0.027 0.111 0.049
C6 1.000 0.122 0.878 0.000 0.028 0.144 0.059
C7 1.000 0.135 0.865 0.000 0.029 0.156 0.062
C8 1.000 0.135 0.865 0.000 0.029 0.156 0.062
C9 1.000 0.295 0.705 0.000 0.035 0.313 0.102
C10 1.000 0.531 0.469 0.000 0.052 0.543 0.166
C11 1.000 0.994 0.006 0.000 0.820 0.994 0.902

(c) 30 Hidden State Model

Classifier TPR TNR FPR FNR Pr Accuracy MCC

C0 1.000 0.000 1.000 0.000 0.025 0.025 0.000
C1 1.000 0.000 1.000 0.000 0.025 0.025 0.000
C2 1.000 0.013 0.987 0.000 0.025 0.038 0.018
C3 1.000 0.033 0.967 0.000 0.026 0.058 0.029
C4 1.000 0.071 0.929 0.000 0.027 0.094 0.044
C5 1.000 0.088 0.912 0.000 0.027 0.111 0.049
C6 1.000 0.122 0.878 0.000 0.028 0.144 0.059
C7 1.000 0.135 0.865 0.000 0.029 0.156 0.062
C8 1.000 0.135 0.865 0.000 0.029 0.156 0.062
C9 1.000 0.295 0.705 0.000 0.035 0.313 0.102
C10 1.000 0.531 0.469 0.000 0.052 0.543 0.166
C11 1.000 0.994 0.006 0.000 0.820 0.994 0.902
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Table 5.15: Evaluation metrics for the malicious controller 192.168.10.101 with
CMD labelling schema

(a) 10 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.242 0.242 0.000
C1 1.000 0.012 0.988 0.000 0.244 0.251 0.049
C2 1.000 0.052 0.948 0.000 0.252 0.281 0.114
C3 1.000 0.081 0.919 0.000 0.257 0.303 0.144
C4 1.000 0.169 0.831 0.000 0.277 0.370 0.216
C5 1.000 0.213 0.787 0.000 0.288 0.403 0.248
C6 1.000 0.264 0.736 0.000 0.302 0.442 0.282
C7 1.000 0.299 0.701 0.000 0.313 0.468 0.306
C8 1.000 0.299 0.701 0.000 0.313 0.468 0.306
C9 1.000 0.641 0.359 0.000 0.470 0.728 0.549
C10 1.000 0.898 0.102 0.000 0.792 0.923 0.843
C11 1.000 1.000 0.000 0.000 1.000 1.000 1.000

(b) 20 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.242 0.242 0.000
C1 1.000 0.000 1.000 0.000 0.242 0.242 0.000
C2 1.000 0.011 0.989 0.000 0.244 0.250 0.052
C3 1.000 0.034 0.966 0.000 0.248 0.267 0.091
C4 1.000 0.077 0.923 0.000 0.257 0.300 0.141
C5 1.000 0.099 0.901 0.000 0.261 0.317 0.161
C6 1.000 0.143 0.857 0.000 0.271 0.350 0.197
C7 1.000 0.159 0.841 0.000 0.275 0.363 0.209
C8 1.000 0.159 0.841 0.000 0.275 0.363 0.209
C9 1.000 0.368 0.632 0.000 0.335 0.521 0.351
C10 1.000 0.615 0.385 0.000 0.453 0.708 0.528
C11 1.000 1.000 0.000 0.000 1.000 1.000 1.000

(c) 30 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.242 0.242 0.000
C1 1.000 0.000 1.000 0.000 0.242 0.242 0.000
C2 1.000 0.011 0.989 0.000 0.244 0.250 0.052
C3 1.000 0.034 0.966 0.000 0.248 0.267 0.091
C4 1.000 0.077 0.923 0.000 0.257 0.300 0.141
C5 1.000 0.099 0.901 0.000 0.261 0.317 0.161
C6 1.000 0.143 0.857 0.000 0.271 0.350 0.197
C7 1.000 0.159 0.841 0.000 0.275 0.363 0.209
C8 1.000 0.159 0.841 0.000 0.275 0.363 0.209
C9 1.000 0.368 0.632 0.000 0.335 0.521 0.351
C10 1.000 0.615 0.385 0.000 0.453 0.708 0.528
C11 1.000 1.000 0.000 0.000 1.000 1.000 1.000

209



Table 5.16: Evaluation metrics for the thermostat 192.168.10.160 with CMD
labelling schema

(a) 10 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.020 0.020 0.000
C1 1.000 0.043 0.957 0.000 0.020 0.062 0.030
C2 1.000 0.080 0.920 0.000 0.021 0.098 0.041
C3 1.000 0.163 0.837 0.000 0.023 0.179 0.062
C4 1.000 0.514 0.486 0.000 0.040 0.524 0.143
C5 1.000 0.753 0.247 0.000 0.075 0.758 0.238
C6 1.000 0.959 0.041 0.000 0.349 0.960 0.575
C7 1.000 0.980 0.020 0.000 0.500 0.980 0.700
C8 1.000 0.980 0.020 0.000 0.500 0.980 0.700
C9 1.000 0.980 0.020 0.000 0.500 0.980 0.700
C10 1.000 0.981 0.019 0.000 0.517 0.981 0.711
C11 1.000 1.000 0.000 0.000 1.000 1.000 1.000

(b) 20 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.020 0.020 0.000
C1 1.000 0.020 0.980 0.000 0.020 0.039 0.020
C2 1.000 0.120 0.880 0.000 0.022 0.137 0.052
C3 1.000 0.172 0.828 0.000 0.024 0.188 0.064
C4 1.000 0.320 0.680 0.000 0.029 0.333 0.096
C5 1.000 0.493 0.507 0.000 0.038 0.503 0.137
C6 1.000 0.650 0.350 0.000 0.054 0.657 0.187
C7 1.000 0.730 0.270 0.000 0.069 0.735 0.224
C8 1.000 0.730 0.270 0.000 0.069 0.735 0.224
C9 1.000 0.980 0.020 0.000 0.500 0.980 0.700
C10 1.000 0.980 0.020 0.000 0.500 0.980 0.700
C11 1.000 1.000 0.000 0.000 1.000 1.000 1.000

(c) 30 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.020 0.020 0.000
C1 1.000 0.020 0.980 0.000 0.020 0.039 0.020
C2 1.000 0.120 0.880 0.000 0.022 0.137 0.052
C3 1.000 0.172 0.828 0.000 0.024 0.188 0.064
C4 1.000 0.320 0.680 0.000 0.029 0.333 0.096
C5 1.000 0.493 0.507 0.000 0.038 0.503 0.137
C6 1.000 0.650 0.350 0.000 0.054 0.657 0.187
C7 1.000 0.730 0.270 0.000 0.069 0.735 0.224
C8 1.000 0.730 0.270 0.000 0.069 0.735 0.224
C9 1.000 0.980 0.020 0.000 0.500 0.980 0.700
C10 1.000 0.980 0.020 0.000 0.500 0.980 0.700
C11 1.000 1.000 0.000 0.000 1.000 1.000 1.000

210



Table 5.17: Evaluation metrics for the normal VAV 192.168.10.161 with CMD
labelling schema

(a) 10 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.125 0.125 0.000
C1 1.000 0.107 0.893 0.000 0.138 0.219 0.122
C2 1.000 0.107 0.893 0.000 0.138 0.219 0.122
C3 0.750 0.290 0.710 0.250 0.127 0.345 0.028
C4 0.750 0.541 0.459 0.250 0.184 0.567 0.190
C5 0.750 0.721 0.279 0.250 0.270 0.724 0.325
C6 0.750 0.862 0.138 0.250 0.429 0.848 0.489
C7 0.750 0.962 0.038 0.250 0.775 0.936 0.722
C8 0.750 0.962 0.038 0.250 0.775 0.936 0.722
C9 0.750 1.000 0.000 0.250 1.000 0.970 0.851
C10 0.750 1.000 0.000 0.250 1.000 0.970 0.851
C11 0.750 1.000 0.000 0.250 1.000 0.970 0.851

(b) 20 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.125 0.125 0.000
C1 1.000 0.107 0.893 0.000 0.138 0.219 0.122
C2 1.000 0.107 0.893 0.000 0.138 0.219 0.122
C3 0.750 0.276 0.724 0.250 0.125 0.333 0.019
C4 0.750 0.428 0.572 0.250 0.153 0.467 0.118
C5 0.750 0.621 0.379 0.250 0.214 0.636 0.245
C6 0.750 0.655 0.345 0.250 0.231 0.667 0.271
C7 0.750 0.655 0.345 0.250 0.231 0.667 0.271
C8 0.750 0.655 0.345 0.250 0.231 0.667 0.271
C9 0.750 0.966 0.034 0.250 0.750 0.939 0.716
C10 0.750 1.000 0.000 0.250 1.000 0.970 0.851
C11 0.750 1.000 0.000 0.250 1.000 0.970 0.851

(c) 30 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.125 0.125 0.000
C1 1.000 0.107 0.893 0.000 0.138 0.219 0.122
C2 1.000 0.107 0.893 0.000 0.138 0.219 0.122
C3 0.750 0.276 0.724 0.250 0.125 0.333 0.019
C4 0.750 0.428 0.572 0.250 0.153 0.467 0.118
C5 0.750 0.621 0.379 0.250 0.214 0.636 0.245
C6 0.750 0.655 0.345 0.250 0.231 0.667 0.271
C7 0.750 0.655 0.345 0.250 0.231 0.667 0.271
C8 0.750 0.655 0.345 0.250 0.231 0.667 0.271
C9 0.750 0.966 0.034 0.250 0.750 0.939 0.716
C10 0.750 1.000 0.000 0.250 1.000 0.970 0.851
C11 0.750 1.000 0.000 0.250 1.000 0.970 0.851
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Table 5.18: Evaluation metrics for the normal sensor 192.168.10.126 with CMD
labelling schema

(a) 10 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.143 0.857 0.000 0.333 0.400 0.218
C1 1.000 0.143 0.857 0.000 0.333 0.400 0.218
C2 1.000 0.414 0.586 0.000 0.423 0.590 0.418
C3 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C4 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C5 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C6 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C7 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C8 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C9 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C10 0.667 0.875 0.125 0.333 0.667 0.818 0.542
C11 0.333 1.000 0.000 0.667 1.000 0.833 0.522

(b) 20 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.300 0.300 0.000
C1 1.000 0.143 0.857 0.000 0.333 0.400 0.218
C2 1.000 0.143 0.857 0.000 0.333 0.400 0.218
C3 1.000 0.429 0.571 0.000 0.429 0.600 0.429
C4 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C5 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C6 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C7 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C8 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C9 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C10 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C11 0.333 1.000 0.000 0.667 1.000 0.833 0.522

(c) 30 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.300 0.300 0.000
C1 1.000 0.143 0.857 0.000 0.333 0.400 0.218
C2 1.000 0.143 0.857 0.000 0.333 0.400 0.218
C3 1.000 0.429 0.571 0.000 0.429 0.600 0.429
C4 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C5 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C6 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C7 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C8 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C9 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C10 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C11 0.333 1.000 0.000 0.667 1.000 0.833 0.522
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Table 5.19: Evaluation metrics for the malicious sensor 192.168.10.182 with
CMD labelling schema

(a) 10 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.320 0.320 0.000
C1 1.000 0.059 0.941 0.000 0.333 0.360 0.140
C2 1.000 0.235 0.765 0.000 0.381 0.480 0.299
C3 1.000 0.706 0.294 0.000 0.615 0.800 0.659
C4 1.000 0.871 0.129 0.000 0.785 0.912 0.827
C5 1.000 0.894 0.106 0.000 0.818 0.928 0.855
C6 1.000 0.894 0.106 0.000 0.818 0.928 0.855
C7 1.000 0.900 0.100 0.000 0.827 0.932 0.863
C8 1.000 0.900 0.100 0.000 0.827 0.932 0.863
C9 1.000 0.912 0.088 0.000 0.844 0.940 0.877
C10 1.000 1.000 0.000 0.000 1.000 1.000 1.000
C11 0.750 1.000 0.000 0.250 1.000 0.926 0.824

(b) 20 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.320 0.320 0.000
C1 1.000 0.059 0.941 0.000 0.333 0.360 0.140
C2 1.000 0.059 0.941 0.000 0.333 0.360 0.140
C3 1.000 0.471 0.529 0.000 0.471 0.640 0.471
C4 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C5 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C6 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C7 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C8 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C9 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C10 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C11 0.750 1.000 0.000 0.250 1.000 0.926 0.824

(c) 30 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.320 0.320 0.000
C1 1.000 0.059 0.941 0.000 0.333 0.360 0.140
C2 1.000 0.059 0.941 0.000 0.333 0.360 0.140
C3 1.000 0.471 0.529 0.000 0.471 0.640 0.471
C4 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C5 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C6 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C7 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C8 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C9 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C10 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C11 0.750 1.000 0.000 0.250 1.000 0.926 0.824
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5.5.6 Hidden Markov Model results for LEN schema

Identical to the CMD schema the 30-state models share the same results as the 20-state models

for the LEN schema. The results for the LEN schema are detailed in Tables 5.20-5.25. For host

192.168.10.100, classifier C11 for the 20-state model has the highest MCC with 0.892, however the

TPR is 0.8. The classifier with the highest MCC and TPR is C4 for the 10-state model, with 1.0

TPR, 0.075 MCC and 0.943 FPR. However, this FPR makes the classifier unusable for real network

detection purposes, as the resulting detection system would classify the majority of network traffic

incorrectly. Host 192.168.10.101 is optimal with classifier C11 for the 10-state and 20-state models,

with a 0.982 and 0.985 MCC values respectively. The TPR for classifier C11 in the 10-state model

is slightly higher than the classifier C11 for the 20 state model (0.986 vs 0.983). For a TPR of 1.0,

classifier C9 for both the 10-state and 20-state models are optimal, however they have a 0.342 and

0.605 FPR respectively. Of note, the LEN schema identifies the existence of unknown attacks in

hosts 192.168.10.100 and 192.168.10.101. This can be identified through comparing the results for

the TPR between the two schemata, where in the CMD schema, for each classifier the TPR is 1.0,

inferring all known attacks, while for the LEN schema, there is a reduction in TPR, outlined in

Tables 5.20a, 5.20b, 5.21a and 5.21b. The identified variance in TPR further supports hypothesis

H4, given the ability of the 10-state and 20-state models for host 192.168.10.100 and 192.168.10.101

to detect unknown attacks. Unlike hosts 192.168.10.100 and 192.168.10.101, host 192.168.10.160,

all the evaluated classifiers have a TPR of 1.0. Further, classifiers C9 through C11 for both the

10-state and 20-state models provide a 1.0 MCC value for host 192.168.10.160. As more than just

classifier C11 provides a MCC of 1.0, it infers that there are no normal sequences in the dataset

which have low occurrence probabilities.

Host 192.168.10.161 has three classifiers, C10 and C11 for the 10-state, and C11 for the 20-

state models which obtain an MCC of 0.603. However, these classifiers all obtain a TPR of 0.4.

Classifiers C1 and C2 for both the 10-state and 20-state models provide a TPR of 1.0, however

the accompanying MCC is 0.138 with a FPR of 0.889. The results for hosts 192.168.10.126 and

192.168.10.182 are identical between the two schemata. This occurs due to the lack of variance

in packet lengths for these hosts, inferring that for the unknown attacks in the dataset for hosts

192.168.10.126 and 192.168.10.182, the packet length is not useful for distinguishing between normal

and malicious commands.
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Table 5.20: Evaluation metrics for the normal controller 192.168.10.100 with
LEN labelling schema

(a) 10 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.031 0.031 0.000
C1 1.000 0.045 0.955 0.000 0.032 0.074 0.038
C2 1.000 0.057 0.943 0.000 0.033 0.086 0.043
C3 1.000 0.064 0.936 0.000 0.033 0.093 0.046
C4 1.000 0.155 0.845 0.000 0.036 0.181 0.075
C5 0.800 0.232 0.768 0.200 0.032 0.249 0.013
C6 0.800 0.297 0.703 0.200 0.035 0.312 0.037
C7 0.800 0.326 0.674 0.200 0.036 0.340 0.046
C8 0.800 0.326 0.674 0.200 0.036 0.340 0.046
C9 0.800 0.715 0.285 0.200 0.082 0.718 0.194
C10 0.800 0.742 0.258 0.200 0.089 0.744 0.209
C11 0.800 0.999 0.001 0.200 0.980 0.993 0.882

(b) 20 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.031 0.031 0.000
C1 1.000 0.000 1.000 0.000 0.031 0.031 0.000
C2 1.000 0.013 0.987 0.000 0.031 0.043 0.020
C3 1.000 0.033 0.967 0.000 0.032 0.063 0.032
C4 1.000 0.070 0.930 0.000 0.033 0.099 0.048
C5 1.000 0.088 0.912 0.000 0.034 0.116 0.054
C6 1.000 0.127 0.873 0.000 0.035 0.154 0.067
C7 1.000 0.140 0.860 0.000 0.036 0.167 0.071
C8 1.000 0.140 0.860 0.000 0.036 0.167 0.071
C9 0.800 0.355 0.645 0.200 0.038 0.369 0.056
C10 0.800 0.620 0.380 0.200 0.063 0.626 0.148
C11 0.800 1.000 0.000 0.200 1.000 0.994 0.892

(c) 30 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.031 0.031 0.000
C1 1.000 0.000 1.000 0.000 0.031 0.031 0.000
C2 1.000 0.013 0.987 0.000 0.031 0.043 0.020
C3 1.000 0.033 0.967 0.000 0.032 0.063 0.032
C4 1.000 0.070 0.930 0.000 0.033 0.099 0.048
C5 1.000 0.088 0.912 0.000 0.034 0.116 0.054
C6 1.000 0.127 0.873 0.000 0.035 0.154 0.067
C7 1.000 0.140 0.860 0.000 0.036 0.167 0.071
C8 1.000 0.140 0.860 0.000 0.036 0.167 0.071
C9 0.800 0.355 0.645 0.200 0.038 0.369 0.056
C10 0.800 0.620 0.380 0.200 0.063 0.626 0.148
C11 0.800 1.000 0.000 0.200 1.000 0.994 0.892
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Table 5.21: Evaluation metrics for the malicious controller 192.168.10.101 with
LEN labelling schema

(a) 10 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.242 0.242 0.000
C1 1.000 0.012 0.988 0.000 0.244 0.251 0.048
C2 1.000 0.051 0.949 0.000 0.251 0.280 0.113
C3 1.000 0.086 0.914 0.000 0.259 0.307 0.149
C4 1.000 0.192 0.808 0.000 0.283 0.388 0.233
C5 1.000 0.239 0.761 0.000 0.295 0.423 0.266
C6 1.000 0.285 0.715 0.000 0.308 0.458 0.296
C7 1.000 0.333 0.667 0.000 0.324 0.494 0.328
C8 1.000 0.333 0.667 0.000 0.324 0.494 0.328
C9 1.000 0.658 0.342 0.000 0.483 0.741 0.564
C10 0.997 0.867 0.133 0.003 0.730 0.898 0.793
C11 0.986 0.996 0.004 0.014 0.987 0.993 0.982

(b) 20 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.242 0.242 0.000
C1 1.000 0.000 1.000 0.000 0.242 0.242 0.000
C2 1.000 0.011 0.989 0.000 0.244 0.250 0.051
C3 1.000 0.033 0.967 0.000 0.248 0.267 0.090
C4 1.000 0.092 0.908 0.000 0.260 0.311 0.155
C5 1.000 0.114 0.886 0.000 0.265 0.328 0.173
C6 1.000 0.151 0.849 0.000 0.273 0.357 0.203
C7 1.000 0.168 0.832 0.000 0.277 0.369 0.215
C8 1.000 0.168 0.832 0.000 0.277 0.369 0.215
C9 1.000 0.395 0.605 0.000 0.345 0.541 0.369
C10 0.983 0.631 0.369 0.017 0.458 0.716 0.526
C11 0.983 0.998 0.002 0.017 0.995 0.995 0.985

(c) 30 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.242 0.242 0.000
C1 1.000 0.000 1.000 0.000 0.242 0.242 0.000
C2 1.000 0.011 0.989 0.000 0.244 0.250 0.051
C3 1.000 0.033 0.967 0.000 0.248 0.267 0.090
C4 1.000 0.092 0.908 0.000 0.260 0.311 0.155
C5 1.000 0.114 0.886 0.000 0.265 0.328 0.173
C6 1.000 0.151 0.849 0.000 0.273 0.357 0.203
C7 1.000 0.168 0.832 0.000 0.277 0.369 0.215
C8 1.000 0.168 0.832 0.000 0.277 0.369 0.215
C9 1.000 0.395 0.605 0.000 0.345 0.541 0.369
C10 0.983 0.631 0.369 0.017 0.458 0.716 0.526
C11 0.983 0.998 0.002 0.017 0.995 0.995 0.985
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Table 5.22: Evaluation metrics for the normal thermostat 192.168.10.160 with
LEN labelling schema

(a) 10 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.020 0.020 0.000
C1 1.000 0.045 0.955 0.000 0.021 0.064 0.031
C2 1.000 0.083 0.917 0.000 0.022 0.102 0.043
C3 1.000 0.150 0.850 0.000 0.024 0.167 0.060
C4 1.000 0.516 0.484 0.000 0.041 0.526 0.146
C5 1.000 0.767 0.233 0.000 0.082 0.771 0.251
C6 1.000 0.973 0.027 0.000 0.449 0.973 0.659
C7 1.000 0.990 0.010 0.000 0.667 0.990 0.812
C8 1.000 0.990 0.010 0.000 0.667 0.990 0.812
C9 1.000 1.000 0.000 0.000 1.000 1.000 1.000
C10 1.000 1.000 0.000 0.000 1.000 1.000 1.000
C11 1.000 1.000 0.000 0.000 1.000 1.000 1.000

(b) 20 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.020 0.020 0.000
C1 1.000 0.021 0.979 0.000 0.021 0.041 0.021
C2 1.000 0.125 0.875 0.000 0.023 0.143 0.054
C3 1.000 0.169 0.831 0.000 0.024 0.186 0.064
C4 1.000 0.323 0.677 0.000 0.030 0.337 0.098
C5 1.000 0.493 0.507 0.000 0.039 0.503 0.139
C6 1.000 0.646 0.354 0.000 0.056 0.653 0.189
C7 1.000 0.750 0.250 0.000 0.077 0.755 0.240
C8 1.000 0.750 0.250 0.000 0.077 0.755 0.240
C9 1.000 1.000 0.000 0.000 1.000 1.000 1.000
C10 1.000 1.000 0.000 0.000 1.000 1.000 1.000
C11 1.000 1.000 0.000 0.000 1.000 1.000 1.000

(c) 30 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.020 0.020 0.000
C1 1.000 0.021 0.979 0.000 0.021 0.041 0.021
C2 1.000 0.125 0.875 0.000 0.023 0.143 0.054
C3 1.000 0.169 0.831 0.000 0.024 0.186 0.064
C4 1.000 0.323 0.677 0.000 0.030 0.337 0.098
C5 1.000 0.493 0.507 0.000 0.039 0.503 0.139
C6 1.000 0.646 0.354 0.000 0.056 0.653 0.189
C7 1.000 0.750 0.250 0.000 0.077 0.755 0.240
C8 1.000 0.750 0.250 0.000 0.077 0.755 0.240
C9 1.000 1.000 0.000 0.000 1.000 1.000 1.000
C10 1.000 1.000 0.000 0.000 1.000 1.000 1.000
C11 1.000 1.000 0.000 0.000 1.000 1.000 1.000
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Table 5.23: Evaluation metrics for the normal VAV 192.168.10.161 with LEN
labelling schema

(a) 10 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.156 0.156 0.000
C1 1.000 0.111 0.889 0.000 0.172 0.250 0.138
C2 1.000 0.111 0.889 0.000 0.172 0.250 0.138
C3 0.800 0.264 0.736 0.200 0.163 0.345 0.052
C4 0.600 0.541 0.459 0.400 0.184 0.550 0.100
C5 0.600 0.721 0.279 0.400 0.270 0.703 0.242
C6 0.600 0.862 0.138 0.400 0.429 0.824 0.405
C7 0.400 0.947 0.053 0.600 0.567 0.869 0.403
C8 0.400 0.947 0.053 0.600 0.567 0.869 0.403
C9 0.400 0.967 0.033 0.600 0.667 0.886 0.458
C10 0.400 1.000 0.000 0.600 1.000 0.914 0.603
C11 0.400 1.000 0.000 0.600 1.000 0.914 0.603

(b) 20 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.156 0.156 0.000
C1 1.000 0.111 0.889 0.000 0.172 0.250 0.138
C2 1.000 0.111 0.889 0.000 0.172 0.250 0.138
C3 0.600 0.310 0.690 0.400 0.130 0.353 -0.068
C4 0.600 0.428 0.572 0.400 0.153 0.453 0.020
C5 0.600 0.621 0.379 0.400 0.214 0.618 0.159
C6 0.600 0.655 0.345 0.400 0.231 0.647 0.186
C7 0.600 0.655 0.345 0.400 0.231 0.647 0.186
C8 0.600 0.655 0.345 0.400 0.231 0.647 0.186
C9 0.600 0.931 0.069 0.400 0.600 0.882 0.531
C10 0.400 0.967 0.033 0.600 0.667 0.886 0.458
C11 0.400 1.000 0.000 0.600 1.000 0.914 0.603

(c) 30 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.156 0.156 0.000
C1 1.000 0.111 0.889 0.000 0.172 0.250 0.138
C2 1.000 0.111 0.889 0.000 0.172 0.250 0.138
C3 0.600 0.310 0.690 0.400 0.130 0.353 -0.068
C4 0.600 0.428 0.572 0.400 0.153 0.453 0.020
C5 0.600 0.621 0.379 0.400 0.214 0.618 0.159
C6 0.600 0.655 0.345 0.400 0.231 0.647 0.186
C7 0.600 0.655 0.345 0.400 0.231 0.647 0.186
C8 0.600 0.655 0.345 0.400 0.231 0.647 0.186
C9 0.600 0.931 0.069 0.400 0.600 0.882 0.531
C10 0.400 0.967 0.033 0.600 0.667 0.886 0.458
C11 0.400 1.000 0.000 0.600 1.000 0.914 0.603
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Table 5.24: Evaluation metrics for the normal sensor 192.168.10.126 with LEN
labelling schema

(a) 10 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.143 0.857 0.000 0.333 0.400 0.218
C1 1.000 0.143 0.857 0.000 0.333 0.400 0.218
C2 1.000 0.414 0.586 0.000 0.423 0.590 0.418
C3 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C4 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C5 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C6 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C7 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C8 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C9 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C10 0.667 0.875 0.125 0.333 0.667 0.818 0.542
C11 0.333 1.000 0.000 0.667 1.000 0.833 0.522

(b) 20 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.300 0.300 0.000
C1 1.000 0.143 0.857 0.000 0.333 0.400 0.218
C2 1.000 0.143 0.857 0.000 0.333 0.400 0.218
C3 1.000 0.429 0.571 0.000 0.429 0.600 0.429
C4 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C5 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C6 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C7 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C8 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C9 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C10 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C11 0.333 1.000 0.000 0.667 1.000 0.833 0.522

(c) 30 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.300 0.300 0.000
C1 1.000 0.143 0.857 0.000 0.333 0.400 0.218
C2 1.000 0.143 0.857 0.000 0.333 0.400 0.218
C3 1.000 0.429 0.571 0.000 0.429 0.600 0.429
C4 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C5 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C6 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C7 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C8 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C9 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C10 1.000 0.857 0.143 0.000 0.750 0.900 0.802
C11 0.333 1.000 0.000 0.667 1.000 0.833 0.522
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Table 5.25: Evaluation metrics for the malicious sensor 192.168.10.182 with
LEN labelling schema

(a) 10 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.320 0.320 0.000
C1 1.000 0.059 0.941 0.000 0.333 0.360 0.140
C2 1.000 0.235 0.765 0.000 0.381 0.480 0.299
C3 1.000 0.706 0.294 0.000 0.615 0.800 0.659
C4 1.000 0.871 0.129 0.000 0.785 0.912 0.827
C5 1.000 0.894 0.106 0.000 0.818 0.928 0.855
C6 1.000 0.894 0.106 0.000 0.818 0.928 0.855
C7 1.000 0.900 0.100 0.000 0.827 0.932 0.863
C8 1.000 0.900 0.100 0.000 0.827 0.932 0.863
C9 1.000 0.912 0.088 0.000 0.844 0.940 0.877
C10 1.000 1.000 0.000 0.000 1.000 1.000 1.000
C11 0.750 1.000 0.000 0.250 1.000 0.926 0.824

(b) 20 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.320 0.320 0.000
C1 1.000 0.059 0.941 0.000 0.333 0.360 0.140
C2 1.000 0.059 0.941 0.000 0.333 0.360 0.140
C3 1.000 0.471 0.529 0.000 0.471 0.640 0.471
C4 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C5 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C6 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C7 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C8 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C9 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C10 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C11 0.750 1.000 0.000 0.250 1.000 0.926 0.824

(c) 30 Hidden State Model

Classifier TPR TNR FPR FNR Pr ACC MCC

C0 1.000 0.000 1.000 0.000 0.320 0.320 0.000
C1 1.000 0.059 0.941 0.000 0.333 0.360 0.140
C2 1.000 0.059 0.941 0.000 0.333 0.360 0.140
C3 1.000 0.471 0.529 0.000 0.471 0.640 0.471
C4 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C5 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C6 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C7 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C8 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C9 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C10 1.000 0.941 0.059 0.000 0.889 0.960 0.915
C11 0.750 1.000 0.000 0.250 1.000 0.926 0.824
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5.6 Chapter summary

This chapter presented the core results of this research, relating to SQ2, SQ3 and SQ4. Three

datasets, the Real Normal Dataset, Synthetic Normal Dataset and Synthetic Attack Dataset were

evaluated. First, the Real Normal Dataset was explored using a range of unsupervised methods,

including the Louvain community detection algorithm, k-means and GMM clustering, and time

series analysis to describe the network and evaluate features which may be appropriate for clas-

sifying BACnetwork command data. Next, the Synthetic Normal Dataset and Synthetic Attack

Dataset, the outputs of the simulator designed in §4.6.5 were evaluated and compared using the

same unsupervised methods. The comparison of these sets revealed differences in the network pat-

terns of attack data, compared to normal data for known network attacks, supporting hypothesis

H2, and SQ2. Further, the defined unknown network attacks were not distinguishable with fre-

quency measures such as time series. Penultimately, the preprocessing for a set of Hidden Markov

Models for classification of BACnet/IP network attacks was defined. Finally, evaluation results for

the Hidden Markov Models were presented, highlighting the results of principal interest, namely

repeatable MCC and TPR values which identify the ability to detect both known and unknown

BACnet/IP attacks using a range of classification thresholds. These results provide evidence to

hypotheses H3, H4 and H5, which in turn support SQ3 and SQ4.
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Chapter 6

Discussion

This chapter identifies the relationships between results derived from experiments conducted in this

research to their corresponding hypotheses and research questions. The research questions defined

in Chapter 3 are re-stated, and then addressed through evaluating the results derived in Chapters

4 and 5 in the context of the existing literature. Next, the contribution to knowledge provided by

this thesis is stated with the implications outlined and elaborated. Finally, the chapter concludes

with a critical review of the research process identifying areas in which the study could have been

improved.

6.1 Research question outcomes

The principal research question posed was explored through four defined sub-questions:

RQ1 How can known and unknown attacks against BACnet/IP based Building Automation Systems

be detected?

SQ1 Are BACnet devices exposed to known threats?

SQ2 Do known BACnet attacks have distinguishable network patterns compared to normal

BACnetwork traffic?

SQ3 Is machine learning applicable to identify known and unknown attacks against BACnet/IP

networks?

SQ4 How accurate are machine learning approaches in detecting known and unknown attacks

against BACnet/IP networks and devices?

To answer these sub-questions, a number of hypotheses were defined, with the results presented

in Chapters 4 and 5 providing evidence for the hypotheses, and thus answering the sub-questions

of this research. The relationships between the research sub-questions, and the derived hypotheses

are detailed in Table 6.1
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Table 6.1: Research sub-questions explored during the research, and related
hypotheses

Sub-question Related Hypotheses

SQ1: Are BACnet devices exposed to known

threats?

H1:BACnet devices are exposed to known

threats

SQ2: Do known BACnet attacks have distin-

guishable network patterns compared to nor-

mal BACnetwork traffic?

H2: Known BACnet attacks have distinguish-

able network patterns

SQ3: Is machine learning applicable to

identify known and unknown attacks against

BACnet/IP networks?

H3: Machine learning is capable of identi-

fying one or more known attacks against

BACnet/IP networks

H4: Machine learning is capable of identi-

fying one or more unknown attacks against

BACnet/IP networks

SQ4: How accurate are machine learn-

ing approaches in detecting known and un-

known attacks against BACnet/IP networks

and devices?

H5: Hidden Markov Models are more accur-

ate at detecting unknown BACnet/IP based at-

tacks than known BACnet/IP based attacks

6.1.1 SQ1: Are BACnet devices exposed to known threats?

Hypothesis H1: BACnet devices are exposed to known threats posited that BACnet devices are

exposed to known threats. While researchers such as Praus et al. (2016) and Gasser et al. (2017)

have presented data relating to the number of directly accessible BACnet devices over the Internet,

the threats posed to specific device types have not previously been explored. Further, Holmberg

(2003) presented threat models for the BACnet protocol, but did not define what classes of BACnet

devices can be affected by the defined threats. This research sought to evaluate the potential effect

a range of known threats can have on defined device profiles. The capabilities of five prominent

device profiles were examined through identifying the objects and services implemented in 368 real

devices. In §4.3, it was identified that the five most common commands are normally used by

97.8% of the retrieved devices. All five of these commands have one or more known malicious uses,

identified in Table 4.6.

To explore the impact of known threats to a BACnet device, a model of a controller device

was defined in Figure 4.3, with the developed STRIDE matrix of known threats applied. In total,

652 threat counts were identified as existing in the controller model, with denial of service the

most common threat faced. Further, the network services in use by the surveyed devices were

evaluated using the defined known attacks. It was found that control devices, which issue a greater
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variety of network commands are exposed to more commands which can be used for malicious

means. This aligns with current literature, whereby protection of controllers and workstations is

promoted over protection of sensors and actuators. With current network topologies, it is more

plausible for external adversaries to interact with controller devices, as many sensors and actuators

are still connected using serial media. However, it is expected that future buildings incorporated

into the Internet of Things and Smart City environments will have fully-native IP connectivity.

This is acknowledged by the recent proposals by the BACnet working group to implement a native

IP layer in the protocol to supplement the existing virtual IP layer (ASHRAE, 2018). As such,

identifying known threats to the prominent device profiles was justified. Hypothesis H1 is accepted,

given the identification of known threats in models of BACnet devices, the correlation of real-world

defined BACnet devices to exploitable services, and the 76,489 unique Internet exposed BACnet

devices over the past three years which utilise these services.

6.1.2 SQ2: Do known BACnet attacks have distinguishable network patterns

compared to normal BACnetwork traffic?

To evaluate SQ2, hypothesis H2: Known BACnet attacks have distinguishable network patterns

was defined with the assumption that BACnet attacks would affect network patterns enough to

be identifiable. To test this hypothesis, two simulated network datasets were developed based on

a defined BAS scenario described in §4.6.5. The first dataset, denoted Synthetic Normal Dataset,

contained only normal network data. Comparatively, the second dataset, denoted Synthetic Attack

Dataset, contained Normal, known attack and unknown attack network data. The two datasets

are statistically different, with the Wilcoxon signed-rank on a comparison of command frequencies

over the same period reporting a W value of 249,151.5 (p<0.1). Consequently, the Null hypothesis,

SyntheticNormal == SyntheticAttack was rejected. A range of unsupervised methods were used

to evaluate the two datasets, including unsupervised clustering, graph analysis and time-series

analysis.

K-means and Gaussian Mixture Model (GMM) clustering were undertaken to identify, and

compare patterns in network flows constructed from the two datasets. The k-means clustering ap-

proach identified different underlying structures for each dataset. The k-means result was validated

by the GMM clusters, which identified the same underlying structures. Clustering the Synthetic

Normal Dataset revealed a linear-based function for cluster placements, where flows moved from

low duration, low packet count clusters, to high duration, high packet count clusters, visible in

Figure 5.13. Similar behaviour was not replicated in the Synthetic Attack Dataset depicted in Fig-

ure 5.20, highlighting the inherrent differences between normal and malicious BACnet/IP traffic.

Further, a direct comparison between BACnet commands, and the packet size feature of these

commands was undertaken. Similar feature evaluation was performed in Kaur et al. (2015) and

Tonejc et al. (2016), where packet lengths were normalised as a feature for anomaly detection. The

packet lengths for each command in the Synthetic Normal Dataset and Synthetic Attack Dataset

packet were compared. Packet length was deemed appropriate for use as a feature for identifying
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a number of Write property class attacks in the Synthetic Attack Dataset. As noted in §5.4.1,

the variance in addressing scheme will increase the signal-to-noise ratio of using packet length as

a feature. However, the variations in packet lengths further supports that there are distinctions

between normal and malicious BACnet/IP network traffic.

Differences between the two datasets were evaluated with directed graph analysis and a time-

series analysis of network packets. The Louvain community detection algorithm revealed distinct

visual characteristics between the directed graphs of the two datasets. However, an expected in-

crease in modularity classes for the Synthetic Attack Dataset did not occur. Rather, the network

attacks diluted the certainty of the community detection classifiers due to the increase in commu-

nication between nodes, in addition to the normal communication actions. Time-series analysis of

the full network capture for each dataset clearly identifies frequency peaks when known network

attacks occur, as detailed in Figure 5.22. Graphical anomaly detection was previously conducted in

Tonejc et al. (2016), with encouraging results when identifying new malicious hosts. This research

extends graphical analysis of BACnet anomalies to identify previously normal hosts which also

send a range of malicious traffic. The cumulative result identified from each applied unsupervised

method proves that known BACnet/IP attacks have different network patterns to normal network

traffic, and thus H2 was accepted.

6.1.3 SQ3: Is machine learning applicable to identify known and unknown

attacks against BACnet/IP networks?

Unsupervised machine learning algorithms have previously been applied to BACnet anomaly de-

tection by Tonejc et al. (2016) for identifying known network attacks, such as new commands, new

hosts, and out of context values. Comparatively, this research explored the application of two fur-

ther machine learning algorithms, Artificial Neural Networks (ANNs) and Hidden Markov Models

(HMMs), to both known and unknown attacks. To provide an answer to the proposed research

question, two hypotheses were derived, namely, H3: Machine learning is capable of identifying

one or more known attacks against BACnet/IP networks and H4: Machine learning is capable of

identifying one or more unknown attacks against BACnet/IP networks.

Hypothesis H3 was accepted, based on the ability to classify known network attacks by the

two explored algorithms. In §4.4.2, an ANN was proven capable of identifying one class of known

network attack, supporting H3. Further, the mean results from 10 sampled HMMs for six BACnet

hosts, presented in Tables 5.14 - 5.25 identified the capability of HMMs to classify known attacks

at varying levels of accuracy. These results align with those presented in Tonejc et al. (2016),

stating that known attacks can be identified with unsupervised machine learning methods. Unlike

other studies, this research also investigated the ability to detect unknown BACnet/IP attacks.

In this context, unknown attacks are defined as a legitimate command, which occurs normally

in the training dataset, but can also be used for a malicious action in the testing dataset. An

example of this is a Write property command, which normally occurs between two hosts in the

training dataset, but is also used as an attack in the testing dataset. Outlined by the True Positive
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Rate values in Tables 5.17 - 5.19 and Tables 5.23 - 5.25, the implemented HMMs are capable of

identifying unknown BACnet/IP attacks with a range of defined classifiers. Further, evaluating the

effect of the two schemata revealed that the models for hosts 192.168.10.100 and 192.168.10.101

for the CMD schema also identified unknown network attacks. Classification of unknown malicious

BACnet commands is novel. Unlike other BACnet/IP anomaly detection studies, such as Tonejc et

al. (2016) and Esquivel-Vargas et al. (2017), which focussed on identifying deviations from learned

rules, this research has classified a range of in-bounds unknown attacks correctly, with acceptable

true negative, and false positive rates.

6.1.4 SQ4: How accurate are machine learning approaches in detecting known

and unknown attacks against BACnet/IP networks and devices?

Hypothesis H5: Hidden Markov Models are more accurate at detecting unknown BACnet/IP based

attacks than known BACnet/IP based attacks was defined to evaluate the accuracy of detecting

known and unknown BACnet/IP attacks using HMMs. Given that anomaly detection is generally

used to identify yet unknown threats (Goldstein & Uchida, 2016), the ability to detect unknown

attacks was selected as the test criterion for this hypothesis. As described in §5.5.1, two labelling

schemata, three hidden state model types and twelve classifier thresholds were used as compar-

ative measures for the HMM approach. The models for hosts 192.168.10.100, 192.168.10.101,

192.168.10.161, 192.168.10.126 and 192.168.10.182 evaluated both known and unknown attacks

in their datasets. The dataset for host 192.168.10.160 only contained known network attacks, and

thus models for host 192.168.10.160 only evaluated known network attacks.

For both schemata, all models which evaluated the unknown attacks were capable of detection

given the TPR result of 1.0, outlined in Tables 5.20,5.15, 5.17, 5.18 and 5.19. The most accur-

ate classifications for the CMD schema were C11 for the 10-state and 20-state models for host

192.168.10.101, with a MCC of 1.0. Comparatively, the most accurate classification for the LEN

schema was C10 for the 10-state model for host 192.168.10.182, also with a MCC of 1.0. Host

192.168.10.160 obtained a MCC of 1.0 for C11 in the 10-state and 20-state models for the CMD

schema. Additionally, host 192.168.10.160 obtained a MCC of 1.0 for C9, C10 and C11 for the 10-

state and 20-state models for the LEN schema. Of the presented models, four classifiers obtained

a MCC of 1.0 for only the known attacks, while three classifiers obtained a MCC of 1.0 for both

the known and unknown attacks. Due to the spread of attacks in the network, no examined host

evaluated only unknown attack traffic. As such, the models examined with the selected evaluation

metrics reported were independently, equally accurate at detecting both known and unknown at-

tacks in the examined dataset. These results do not support the premise of hypothesis H5, and as

such hypothesis H5 was rejected.

Unlike the results presented in Ariu et al. (2007), increasing the quantity of hidden states in this

research did not consistently increase the accuracy measurements of the model. For the results in

this study, all evaluation metrics plateau between the 20-state and 30-state models, with no change

recorded. Further inspecting the results in Ariu et al. (2007), identical behaviour can be identified
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where the 20-state and 30-state models for two examined classifiers output identical evaluation

metrics. This further validates the results of the applied HMM in this research, given the same

behaviour is represented in both studies.

The cumulative answers of the defined research sub-questions provide an answer to the primary

research question, RQ1: How can known and unknown attacks against BACnet/IP based Building

Automation Systems be detected?. Each method explored was capable of detecting known network

attacks against BACnet/IP devices at various levels of specificity. For a high-level view of network

patterns, time-series analysis of the network flows was useful for visual analysis of known network

attacks when compared to a known normal baseline. Both the clustering and graph analysis ap-

proaches were useful for identifying differences in network traffic between the Synthetic Normal

Dataset and the Synthetic Attack Dataset. However, both methods operating in an unsupervised

mode are only suitable for exploratory analysis, given the lack of ground truth. Tonejc et al. (2016)

has explored an unsupervised clustering approach for known network attacks with favourable res-

ults. Further work is required to increase the robustness of using solely a clustering or graph analysis

approach for detecting unknown network attacks. Conversely, the ANN deployed was effective at

identifying a known Write property attack, and should be explored further. The HMM approach

explored in this research was successful in detecting both known and unknown network attacks

in the examined dataset with acceptable evaluation measures. Specifically, the ability to detect a

range of unknown attacks in all of the examined hosts containing unknown attacks is promising.

6.2 Implications of the research

6.2.1 Threat modelling of BACnet devices

The research contributed to the existing threat modelling literature regarding BACnet systems in

§4.3. Previous works including Granzer et al. (2010), Fisk (2012), and Caselli et al. (2016) have

relied on the threat models presented in Holmberg (2003), however this work is not capable of

capturing the identified known BACnet attacks presented in the literature over the past 15 years.

The research collected a range of known attacks from the literature, and classified them using a

STRIDE threat matrix. To evaluate the threat model, the functions of a controller device were

modelled, with the defined threat model applied to generate threat impacts. The described threat

modelling approach was published in Peacock et al. (2018), and can be applied to other device

profiles using a model of each device.

6.2.2 Identification and evaluation of unknown network attacks

In §4.1, two potential vulnerabilities in the protocol were identified. The first vulnerability involved

the Change of Value (CoV) reporting function of the BACnet protocol, which describes how devices

disseminate values to other devices based on defined value thresholds. The research theorised that

variables which are set by the subscribing device could be exploited to cause a denial of service
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attack in the network, due to the inherent trust between devices in the network. The vulnerability

was evaluated using the developed threat model, obtaining the equal highest threat impact from

all evaluated known attacks. Further, CoV reporting is used in all of the evaluated device profiles,

outlined in Table 4.9. The vulnerability was examined using a testbed implementation described in

§4.4.4, where the theorised denial of service behaviour was observed. To evaluate the vulnerability

in a larger testbed, the vulnerability was incorporated into the attack framework defined in §4.6.9.

The impact of the CoV attack on the larger network remains unclear, as the attack was limited

in scope to prevent data generation failures from occurring in the defined scenario. However, the

attack was detected using the evaluated HMMs. Although the commands used to instigate this

attack were also used normally in the training dataset, additional emission symbols in the sequence

window were not normal, and thus caused the malicious labelled sequence referencing the CoV

attack to be identified using the wildcard emission symbol as an anomaly. Further evaluation of

the impact of this attack is required given the potential for vendor-specific limits in the number of

subscriptions each device holds.

The second identified vulnerability was in the Priority Array process of the BACnet protocol

for commandable properties identified in §4.1. Commandable properties are defined as those whose

value change causes physical action. The Priority Array can hold up to 16 values to be written to a

device, at 16 different priority levels. The BACnet 2012 standard states that undefined behaviour

may occur if more than one value is written to a device using the same priority level at the same

time. As such, the behaviour was modelled using the data representation of the Priority Array

in §4.3.1. The model identified that two devices may write to a third device at the same Priority

Array level, with only the second device’s value held by the array. To explore the Priority Array

attack using the BACnet open stack a simulation was developed which followed the same logic as

the defined model. The results in Table 4.11 report that the Priority Array behaviour is replicated

in the BACnet open stack. Given that there are no restrictions or enforcement on devices writing

to priorities by default in the BACnet 2012 standard, this exists as a significant issue for BACnet

devices. Further, the Write property command is a core function of the protocol, and exists in

all of the retrieved sensor, actuator, controller and advanced controller device descriptions. The

identification of this issue further reinforces the requirement for segregation and filtering of BACnet

devices connected to other networks, such as the Internet.

Similar to the CoV attack, the Priority Array attack was implemented in the attack framework

defined in §4.6.9. Further, the attack was successfully identified due to the emission symbol being

classed as anomalous, due to the target which was automatically selected by the attack framework

being a non-normal destination for the malicious controller device. It is expected that if the attack

was undertaken using a host which was normally communicated with, the evaluated schema would

not be appropriate for detecting the attack. Future work should examine further features, such as

inter-packet timings and contextual values such as a sliding window of known normal values written

to each device for identifying this class of attack.

The initial identification of both the two described network attacks were discussed in Peacock
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et al. (2017), and further expanded upon in Peacock et al. (2018).

6.2.3 Application of anomaly detection approaches for BACnet/IP networks

This research evaluated a range of approaches which were appropriate for identifying anomalies

in BACnet/IP traffic. The literature has identified methods of detecting out-of-bounds (known)

network attacks, where packet features deviate from normal. This research contributed out-of-

bounds network attack detection through applying an ANN to a known network attack using

time-based features. A further contribution to known network attack detection in BACnet/IP was

presented through the evaluation of HMMs.

The application of HMMs for BACnet/IP anomaly detection is a novel approach for both known

and unknown network attacks. Further, two methods were developed to apply the HMM approach

to BACnet/IP traffic. These methods are protocol agnostic, and can be utilised for other protocols

to apply a HMM. First, a method was developed to generate feature based emission symbols, which

provides a unique label for each specific BACnet packet. Two feature sets were implemented using

the approach, with the method robust enough to allow selection of specific packet features and

generate unique labels for each provided dataset. The method provides a means for comparing

feature selection sets for sequence-based models. Second, a semi-supervised labelling method was

developed which could enumerate and label generated sequences of emission symbols using pre-

defined ground truth data. The labelling method provided the means to evaluate the classification

capability of the HMMs. The HMMs deployed in this research provided promising results for

the defined simulated scenario at a host based specificity for classification of known and unknown

anomalous network traffic.

Three other anomaly detection methods were explored, namely, graph-analysis, unsupervised

clustering and time-series analysis. All three methods show promise, with the ability to distinguish

between datasets which contain normal and malicious network commands. The existing literature

has explored unsupervised clustering and time-series analysis for anomalous network classification,

and graph-analysis for known-bad hosts. Further tuning mechanisms are required to distinguish

between normal and unknown network attacks, and should be the focus of future studies.

The evaluation of the ANN and Write Property attack was presented in Johnstone et al. (2015).

6.3 Critical review of the research

The original design of the research as described in §3.5 was to use real network traffic as a com-

parison metric for the generated simulation scenario. However, the variability in real networks,

due to vendor specific device implementation, and the flexibility of the BACnet protocol made a

comparison to a generic defined simulation scenario difficult. Specifically, it was unclear until in-

spection of the captured network traffic that a vendor-specific middleware BACnet implementation

was also running on the network. This protocol seemed to undertake many normal functions of the

BACnet protocol, but provided a level of abstraction to existing network dissectors. Given that
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the research focus was on BACnet/IP and the proprietary nature of the discovered protocol, the

proprietary traffic was not evaluated. This reduced the ability to draw comparisons between the

simulated BACnet/IP implementation and the real BACnetwork traffic. Additionally, the topology

of the available real network did not provide the ability to capture sensor network data. The sensor

devices also did not communicate using BACnet/IP. As such, it was deemed not feasible to compare

the simulation scenario with the real network capture. However, this did not invalidate the selec-

tion of simulation as a research method for generating data. In other studies, such as Tonejc et al.

(2016) and Esquivel-Vargas et al. (2017), rather than using real network data to validate the design

of an implemented simulator, the real and simulated datasets are used to complement each other.

Thus, the research adapted to take this approach, where the analysis of the real network traffic

was useful for identifying the commands used in real networks, the structure and flow between

controllers, and the diurnal network patterns of the traffic. Further, the real data was used to trial

and evaluate a range of unsupervised methods to compare normal and malicious network traffic.

In addition, the task of generating data was underestimated, and as such required extensive

additional time and resources. To build the underlying data to drive the simulated network com-

munications a range of algorithms were implemented based on the defined scenario. The software

packages commonly used for architectural and air-conditioning design did not have the required

variable resolution to generate per second data. Further, through evaluation of the existing BACnet

simulators the only valid selection was the BACnet open stack as it was not restrictive for devel-

opment and deployment. However, for the purposes of this research, the network stack required a

number of features to be implemented to create the defined network scenario. These issues however,

could not realistically have been identified prior to the research commencement. Regardless, the

effect they had on the research was extensive.

Finally, the variance in generation of the BACnet/IP specific network attacks could be improved.

The attack framework was designed to be flexible and automated, primarily to eliminate the threat

of bias in generating the research data. As such, there is a lack of human interaction with the

generation of network attacks. Rabadia, Valli, Ibrahim and Baig (2017) suggest that automated

scripts and human interaction can be distinguished by the properties of the network attack. Thus,

the network patterns generated by the attack framework captures only automated attacks without

a human element. If generating a dataset using the attack framework again, the introduction

of human-driven attacks would be of interest for comparison between attack behaviour, and the

classification ability of the explored methods.
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Chapter 7

Conclusion

7.1 Research overview

This research aimed to investigate methods for identifying known and unknown network attacks

against BACnet/IP managed Building Automation Systems (BASs). The research area was defined

in Chapter 1, where the exploration of further anomaly detection approaches was identified, with

respect to existing approaches presented in the literature. The literature presented a number of

methods for detecting known network attacks in BACnet/IP networks. Focus has been on detecting

known attacks, where malicious traffic have distinct features, such as increased frequencies, illegal

byte values, or are sent out of sequence, when compared to normal network behaviour. Evaluating

the detection of legitimate-yet-malicious commands, those which operate normally but through the

protocols design or implementation can have malicious effect, has previously not been explored.

Further, limited existing research has explored machine learning methods for anomaly detection in

BACnet/IP networks.

Similar to other anomaly detection research areas, datasets for evaluating anomaly detection

approaches in BACnetworks are limited in scope and quantity. Given the criticality of BAS net-

works, existing studies evaluated datasets generated using simulation test-beds, or real datasets

with synthetic attacks implemented. Often these test-beds were small in scale, implement few

known attacks, or did not follow existing real-network topologies. Further, open source simulation

implementations were lacking in features, and require significant development to generate mean-

ingful datasets.

The research followed five phases. The first phase investigated the BACnet/IP protocol to

build an understanding of the protocol, and identify potential network commands which could

be used to cause malicious action. Further, the known attacks against BACnet were retrieved

from the surrounding literature for analysis in later phases. A range of existing BACnet simulator

and network generation solutions were collected for generating the required network data for the

research. Further, a range of existing Internet-wide scans of BACnet/IP devices were retrieved, in

addition to vendor-defined device specifications for analysis.

Phase two analysed the retrieved network scans, and identified the common services and objects
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used in deployed device profiles. From the retrieved known attacks and the protocol investigation

undertaken in phase one, a threat model was constructed. The threat model was applied to a

model of a BACnet/IP controller device, in addition to the identified services operating in the

vendor-defined device profiles. Further, to evaluate the retrieved network simulators, and trial

implementing known and unknown network attacks, two exploratory datasets were generated fol-

lowing the iterative process defined in Chapter 3. Ultimately, the BACnet open stack was selected

due to its flexibility. A range of algorithms and methods were selected for evaluation. These were,

Artificial Neural Networks (ANNs), Hidden Markov Models (HMMs), graph analysis, k-means clus-

tering, Gaussian Mixture Model clustering and time series analysis. Both ANNs and time series

analysis were conducted on the trial dataset with a defined known attack, providing encouraging

results.

Phase three consisted of collecting real BACnetwork data from an Australasian university,

and designing the simulation environment. A simulation scenario, underlying data generation

algorithms, network topology, and attack framework were designed. The simulation was then

deployed to generate and capture both normal and anomalous network traffic for evaluation. Two

datasets were generated, the Synthetic Normal Dataset, which consisted of one month of normal

network traffic, and the Synthetic Attack Dataset, consisting of one week of normal traffic with

pseudo-randomly generated anomalous network traffic drawn from the defined attack framework.

In phase four, experiments were conducted to evaluate the graph analysis, clustering, time series

and HMM approaches for detecting anomalous network traffic. Preprocessing was undertaken for

each dataset to allow the application of the selected algorithms and methods.

During the final phase, the outputs generated by each algorithm-dataset pairing were evaluated.

The results of this evaluation, in addition to the results generated in phase two, tested the posed

hypotheses and provided answers which supported the research questions. Further, the results

identified directions for future work.

7.2 Summary of contributions

7.2.1 Are BACnet devices exposed to known threats?

Existing literature has presented a range of attacks which can be used against BACnet devices.

Additionally, Holmberg (2003) identified a range of threats to the BACnet protocol. Further, Praus

et al. (2016) and Gasser et al. (2017) identified that BACnet devices are openly accessible over the

Internet, and readily accessible through services such as Shodan. Existing research however, has

not explored the threats faced by specific BACnet device types. This research explored the impact

existing known threats from the literature could have on BACnet devices through the creation of a

STRIDE threat model. Further, two additional threats were identified and evaluated in the context

of the threat model. It was proven that BACnet devices are exposed to known threats. Further,

BACnet controller and workstation device types face more potential known threats than lower-

level sensor and actuator device types. This finding is in-line with current literature suggestions,
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where protection of controller and workstation devices is promoted over protection of sensor and

actuator devices. It is expected that future BASs, which will be connected to the Internet of Things

and Smart City environments will shift perceptions of importance in regards to device protection.

Therefore, future work should aim to protect all types of devices.

7.2.2 Do known BACnet attacks have distinguishable network patterns com-

pared to normal BACnetwork traffic?

This research identified distinguishable network patterns between generated normal and malicious

BACnet commands. Unsupervised clustering of network flows identified differences in packet quant-

ity and flow sizes between known BACnet attacks which involve changes in frequency, such as denial

of service and flooding attacks. These patterns were further identified using time series analysis,

where comparisons of command frequencies identified spikes when network attacks were undertaken.

Graph analysis using an unsupervised community detection algorithm detailed differences in net-

work structures between networks which have only normal commands, and those with a mixture

of normal and malicious commands. However, network hosts which conduct malicious commands

were not identifiable with only graph based analysis. The cumulative results from the explored

approaches support the existing research paradigm, where deviation from the normal properties of

BACnet packets are used to identify anomalies.

7.2.3 Is machine learning applicable to identify known and unknown attacks

against BACnet/IP networks?

Machine learning previously has had limited use in the domain of BACnet/IP anomaly detection.

Further, research conducted by Tonejc et al. (2016) focused solely on known network attacks. In

contrast, this research explored the application of ANNs for anomaly detection for known network

attacks, and HMMs for anomaly detection for both known and unknown network attacks. It was

concluded that both approaches are capable of detecting known network attacks with acceptable

certainty. In addition, HMMs were found to be capable of detecting unknown network attacks

in the evaluated dataset. The HMM results are promising and HMMs should be evaluated with

further datasets containing unknown network attacks to generalise the results of this research.

7.2.4 How accurate are machine learning approaches in detecting known and

unknown attacks against BACnet/IP networks and devices?

Previous applications of machine learning were found to be highly accurate in BACnet/IP anomaly

detection. The approaches explored in this research were selected due to their high accuracy rates

in other anomaly detection problems. Evaluation of the accuracy of the selected approaches was

undertaken using multiple metrics to further examine the suitability in classifying both normal and

anomalous traffic correctly. This research identified that both ANNs and HMMs are accurate at

detecting known network attacks with similar results to those presented in Tonejc et al. (2016),
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and can distinguish between known attacks and normal traffic. Further, the research discerns that

HMMs can be equally accurate at detecting unknown attacks, in addition to distinguishing between

unknown attack and normal network traffic. The HMM results presented follow the trend of those

presented Ariu et al. (2007).

The cumulative answers of the explored research sub-questions provided an answer to the

primary research question, RQ1: How can known and unknown attacks against BACnet/IP based

Building Automation Systems be detected?. As outlined in Table 7.1, four of the five hypotheses

were accepted. H5 was not supported, as the HMMs explored were equally accurate at detecting

both known and unknown network attacks. Rather, the HMMs explored were not more, or less,

accurate at detecting known and unknown attacks in the explored dataset. Ultimately, the results

of the study were positive, and contributed to the domain knowledge through the creation of a

generalisable threat model for BACnet, identification and evaluation of two unknown network at-

tacks, and the exploration of a range of anomaly detection techniques capable of detecting known

and unknown BACnet/IP network attacks.
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Table 7.1: Summary results of research sub-questions and related hypotheses
explored during the research

Sub-question Related Hypotheses Result

SQ1: Are BACnet devices exposed to known

threats?

H1:BACnet devices are exposed to known

threats

Accepted

SQ2: Do known BACnet attacks have distin-

guishable network patterns compared to nor-

mal BACnetwork traffic?

H2: Known BACnet attacks have distinguish-

able network patterns

Accepted

SQ3: Is machine learning applicable to

identify known and unknown attacks against

BACnet/IP networ9ks?

H3: Machine learning is capable of identi-

fying one or more known attacks against

BACnet/IP networks

Accepted

H4: Machine learning is capable of identi-

fying one or more unknown attacks against

BACnet/IP networks

Accepted

SQ4: How accurate are machine learn-

ing approaches in detecting known and un-

known attacks against BACnet/IP networks

and devices?

H5: Hidden Markov Models are more accur-

ate at detecting unknown BACnet/IP based at-

tacks than known BACnet/IP based attacks

Rejected
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7.3 Recommendations and future research directions

From the explored research it is recommended that BACnet devices have additional measures de-

ployed to mitigate potential cyber-physical attack. From a technical point of view these measures

should include network segregation of BACnet devices, source authentication and network monit-

oring. Cyber security considerations should be evaluated when connecting BACnet devices, and

in general BASs, to the Internet for remote monitoring and cloud-based analytics. There should

be some level of communication restriction through existing IP-based measures such as firewalls,

or customised BACnet methods such as those presented in Kaur et al. (2015). Further, ensuring

mutual trust between devices using source authentication measures will reduce the threat posed

by many known BACnet attacks which rely on exploiting the high trust between BACnet devices

in the guise of increased availability. Information Technology departments, network security de-

partments and mechanical services departments should increase communications to improve their

understanding of building control system networks which they manage. Deploying measures such

as IP network monitoring would assist in identifying both potential malicious traffic, and network

misconfigurations.

In terms of the future direction of research in BACnet/IP anomaly detection, identification and

exploration of additional existing machine learning approaches to anomaly detection are of interest.

To date, there are limited studies in terms of machine learning application to BACnet/IP, and there

are various existing algorithms which could be explored, such as Support Vector Machines. This

research presented an investigation into the application of HMMs and ANNs to the problem domain.

There are many additional approaches within these two algorithms to explore, including feature

selection tuning. Further application of an ANN to a diverse set of attacks, and deploying a network

level HMM, which can handle a non-unary emission symbols are also of interest.

Dataset generation can be improved as currently there are limitations in regards to simulations,

and attack generation. Research should focus on constructing testbeds using real BACnet/IP

devices to generate network data. However, given the variation in device descriptions between

vendors, using real devices is expected to be a costly exercise, and results may only be valid for

specific vendor types. Implementing a shared cyber-range of BACnet/IP devices could be a means

to improve research in this area where researchers can pool their implemented testbeds to increase

the rigour and validity of methods in future studies.

The flexibility of the BACnet protocol has aided in the widespread adoption of the protocol as

each vendor may design within the loose constructs of the protocol. It has however, made identifying

anomalies in BACnet/IP a larger task. Specification-based anomaly detection approaches, such as

those presented in Caselli et al. (2016) and Esquivel-Vargas et al. (2017) could be combined with

methods which evaluate in-bounds network traffic, such as those presented in this research.
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7.4 Further remarks

BACnet development has now identified the inherent lack of security in the protocol as an inhib-

iter of future BACnet use. Specifically, in June 2018 the BACnet working committee proposed

Addenda 135-2016bj for public review (ASHRAE, 2018). The aim of this review of the Addenda

was increasing the native security of BACnet implementations to fit with previous iterations of

the Addenda for expanding the use of native IP into the BACnet stack. The purpose of native

IP is to enable all BACnet devices to operate using IP as a medium, with the aim of integration

into the Internet of Things and cloud-based infrastructures. The proposal introduces the use of

websockets to provide TLS to BACnet devices, specifically focusing on encryption and source au-

thentication, allowing dynamic host address assignments. Additionally, the proposal identifies that

vendors should provide the ability to update hardware firmware and software. These are positive

steps that are long overdue in a slow moving but widely used protocol.

However, the proposal does not reduce the requirement for network monitoring in BACnet/IP

networks. With BACnet devices set to be connected to further diverse networks and devices,

detection capabilities must continue to improve to address future needs.
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Appendix A

BACnet Device Profiles

Table A.1: Definitions of sensor devices derived from the retrieved product
listing statements

SensorProfile

BIBBS DS-RP-B, DS-WP-B, DM-DDB-B, DM-DOB-B, DS-RPM-B, DM-RD-B, DM-DCC-
B, DM-TS-B, DS-COV-B

SERVICES ConfirmedCOVNotification-Initiate, DeviceCommunicationControl-Execute, I-Am-
Initiate, I-Have-Initiate, ReadProperty-Execute, ReadPropertyMultiple-Execute,
ReinitializeDevice-Execute, SubscribeCOV-Execute, TimeSynchronization-Execute,
UnconfirmedCOVNotification-Initiate, Who-Has-Execute, Who-Is-Execute,
WriteProperty-Execute

OBJECTS device, analog-input, analog-value, binary-input

Table A.2: Definitions of controller devices derived from the retrieved product
listing statements

ControllerProfile

BIBBS DS-RP-B, DS-WP-B, DM-DDB-B, DM-DOB-B, DM-DCC-B, DS-RPM-B, DM-RD-
B, DS-WPM-B, DM-TS-B, DS-COV-B, DM-DDB-A

SERVICES ConfirmedCOVNotification-Initiate, DeviceCommunicationControl-Execute,
I-Am-Execute, I-Am-Initiate, I-Have-Initiate, ReadProperty-Execute,
ReadPropertyMultiple-Execute, ReinitializeDevice-Execute, SubscribeCOV-
Execute, TimeSynchronization-Execute, UnconfirmedCOVNotification-Initiate,
Who-Has-Execute, Who-Is-Execute, Who-Is-Initiate, WriteProperty-Execute,
WritePropertyMultiple-Execute

OBJECTS device, analog-value, analog-input, binary-input, binary-value, binary-output,
analog-output, multi-state-value

250



Table A.3: Definitions of actuator devices derived from the retrieved product
listing statements

ActuatorProfile

BIBBS DS-RP-B, DS-WP-B, DM-DDB-B, DM-DOB-B, DS-RPM-B, DS-COV-B, DM-TS-
B, DM-UTC-B, DM-DCC-B, DM-RD-B, DS-WPM-B

SERVICES ConfirmedCOVNotification-Initiate, DeviceCommunicationControl-Execute, I-Am-
Initiate, I-Have-Initiate, ReadProperty-Execute, ReadPropertyMultiple-Execute,
ReinitializeDevice-Execute, SubscribeCOV-Execute, TimeSynchronization-Execute,
UTCTimeSynchronization-Execute, UnconfirmedCOVNotification-Initiate, Who-
Has-Execute, Who-Is-Execute, WriteProperty-Execute, WritePropertyMultiple-
Execute

OBJECTS device, analog-input, binary-input, analog-value, binary-value, binary-output,
analog-output, multi-state-value

Table A.4: Definitions of advanced controller devices derived from the retrieved
product listing statements

AdvancedControllerProfile

BIBBS DS-RP-B, DS-WP-B, DM-DDB-B, DS-RPM-B, DM-TS-B, DM-DCC-B, DS-WPM-
B, AE-N-I, AE-ACK-B, DM-DOB-B, DM-RD-B, DM-DDB-A, SCHED-I-B, DM-
UTC-B, DS-COV-B, DS-WP-A, T-VMT-I, DS-RP-A, T-ATR-B, DM-LM-B, DM-
BR-B, SCHED-E-B, DS-COV-A, DM-R-B, DS-RPM-A, DM-DOB-A

SERVICES AcknowledgeAlarm-Execute, AddListElement-Execute, AtomicReadFile-
Execute, AtomicWriteFile-Execute, ConfirmedCOVNotification-Execute,
ConfirmedCOVNotification-Initiate, ConfirmedEventNotification-Initiate,
DeviceCommunicationControl-Execute, I-Am-Execute, I-Am-Initiate, I-
Have-Execute, I-Have-Initiate, ReadProperty-Execute, ReadProperty-
Initiate, ReadPropertyMultiple-Execute, ReadPropertyMultiple-Initiate,
ReadRange-Execute, ReinitializeDevice-Execute, RemoveListElement-Execute,
SubscribeCOV-Execute, SubscribeCOV-Initiate, TimeSynchronization-Execute,
UTCTimeSynchronization-Execute, UnconfirmedCOVNotification-Execute,
UnconfirmedCOVNotification-Initiate, UnconfirmedEventNotification-Initiate,
Who-Has-Execute, Who-Has-Initiate, Who-Is-Execute, Who-Is-Initiate,
WriteProperty-Execute, WriteProperty-Initiate, WritePropertyMultiple-Execute

OBJECTS device, analog-value, schedule, notification-class, calendar, binary-value, analog-
input, binary-input, multi-state-value, binary-output, analog-output, file, trend-log,
multi-state-input, program, multi-state-output, loop, event-enrollment
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Table A.5: Definitions of workstation devices derived from the retrieved product
listing statements

Workstation Profile

BIBBS DS-RP-B, DM-DDB-B, DM-DOB-B, DM-DDB-A, DS-WP-A, DS-RP-A, DS-RPM-
A, DS-WPM-A, AE-ACK-A, AE-N-A, DM-MTS-A, AE-AS-A, AE-VM-A, AE-VN-
A, DS-M-A, DS-V-A, SCHED-VM-A, T-V-A, DM-ADM-A, DM-TS-A, DS-COV-
A, DM-UTC-A, DM-ANM-A, DS-WP-B, DS-RPM-B, DM-DCC-B, DS-WPM-B,
DM-LM-B, T-ATR-A, DM-UTC-B, DM-LM-A, DM-TS-B, DM-RD-B, DM-ATS-
A, AE-AVN-A, DM-DOB-A, DM-RD-A, SCHED-WS-A, DM-DCC-A, DM-BR-A,
T-VMT-A, DM-OCD-B

SERVICES AcknowledgeAlarm-Initiate, AddListElement-Execute, AddListElement-Initiate,
AtomicReadFile-Initiate, AtomicWriteFile-Initiate, ConfirmedCOVNotification-
Execute, ConfirmedEventNotification-Execute, CreateObject-Execute,
CreateObject-Initiate, DEPRECATED, DeleteObject-Execute,
DeviceCommunicationControl-Execute, DeviceCommunicationControl-
Initiate, GetAlarmSummary-Initiate, GetEnrollmentSummary-Initiate,
GetEventInformation-Initiate, I-Am-Execute, I-Am-Initiate, I-Have-
Execute, I-Have-Initiate, ReadProperty-Execute, ReadProperty-
Initiate, ReadPropertyMultiple-Execute, ReadPropertyMultiple-Initiate,
ReadRange-Initiate, ReinitializeDevice-Execute, ReinitializeDevice-Initiate,
RemoveListElement-Execute, RemoveListElement-Initiate, SubscribeCOV-
Initiate, TimeSynchronization-Execute, TimeSynchronization-Initiate,
UTCTimeSynchronization-Execute, UTCTimeSynchronization-Initiate,
UnconfirmedCOVNotification-Execute, UnconfirmedEventNotification-Execute,
Who-Has-Execute, Who-Has-Initiate, Who-Is-Execute, Who-Is-Initiate,
WriteProperty-Execute, WriteProperty-Initiate, WritePropertyMultiple-Execute,
WritePropertyMultiple-Initiate

OBJECTS device, file, analog-value, binary-value, schedule
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Appendix B

BIBB to Service Matching Tables

Table B.1: BIBB to services matching, adapted from SSPC-135 (2012)

BIBB Services

DataSharing

DS-RP-A ReadProperty (Initiate)

DS-RP-B ReadProperty (Execute)

DS-RPM-A ReadPropertyMultiple (Initiate)

DS-RPM-B ReadPropertyMultiple (Execute),

DS-WP-A WriteProperty (Initiate),

DS-WP-B WriteProperty (Execute),

DS-WPM-A WritePropertyMultiple (Initiate),

DS-WPM-B WritePropertyMultiple (Execute),

DS-COV-A SubscribeCOV (Initiate), ConfirmedCOVNotification (Execute), Unconfirmed-

COVNotification (Execute),

DS-COV-B SubscribeCOV (Execute), ConfirmedCOVNotification (Initiate), Unconfirmed-

COVNotification (Initiate),

DS-COVP-A SubscribeCOVproperty (Execute), ConfirmedCOVNotification (Execute), Un-

confirmedCOVNotification (Execute),

DS-COVP-B SubscribeCOVProperty (Initiate), ConfirmedCOVNotification (Initiate), Un-

confirmedCOVNotification (Initiate),

DS-COVU-

A

ConfirmedCOVNotification (Execute),

DS-COVU-B ConfirmedCOVNotification (Initiate),

DS-V-A ReadProperty (Initiate),

DS-AV-A ReadProperty (Initiate),

DS-M-A WriteProperty (Initiate),

DS-AM-A WriteProperty (Initiate),

DS-WG-A WriteGroup (Initiate),

DS-WG-I-B WriteGroup (Execute),

DS-WG-E-B WriteGroup (Execute), WriteProperty (Initiate)

AlarmSharing
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AE-N-A ConfirmedEventNotification (Execute),UnconfirmedEventNotification (Ex-

ecute),

AE-N-I-B ConfirmedEventNotification (Initiate),UnconfirmedEventNotification (Initi-

ate),

AE-N-E-B ReadProperty (Initiate),ConfirmedEventNotification (Initi-

ate),UnconfirmedEventNotification (Initiate), AcknowledgeAlarm (Execute),

GetEventInformation (Initiate), GetEventInformation (Execute)

AE-ACK-A AcknowledgeAlarm (Initiate),

AE-ACK-B AcknowledgeAlarm (Execute),

AE-ASUM-

A

GetAlarmSummary (Initiate),

AE-ASUM-

B

GetAlarmSummary (Execute),

AE-ESUM-

A

GetEnrollmentSummary (Initiate),

AE-ESUM-

B

GetEnrollmentSummary (Execute),

AE-INFO-A GetEventInformation (Initiate),

AE-INFO-B GetEventInformation (Execute),

AE-LS-A LifeSafetyOperation (Initiate), ConfirmedEventNotification (Ex-

ecute),UnconfirmedEventNotification (Execute), AcknowledgeAlarm (Ini-

tiate),

AE-LS-B LifeSafetyOperation (Execute), ConfirmedEventNotification (Initiate), Uncon-

firmedEventNotification (Initiate), AcknowledgeAlarm (Execute), GetEventIn-

formation (Execute)

AE-VN-A ConfirmedEventNotification (Execute),UnconfirmedEventNotification (Ex-

ecute),

AE-AVN-A ConfirmedEventNotification (Execute),UnconfirmedEventNotification (Ex-

ecute),

AE-VM-A ReadProperty (Initiate), WriteProperty (Initiate)

AE-AVM-A ReadProperty (Initiate), WriteProperty (Initiate), CreateObject (Initiate), De-

leteObject (Initiate),

AE-AS-A GetAlarmSummary (Initiate), GetEnrollmentSummary (Initiate), GetEventIn-

formation (Initiate),

AE-ELV-A ReadRange (Initiate),

AE-ELVM-

A

ReadRange (Initiate),ReadProperty (Initiate), WriteProperty (Initiate),

AE-EL-I-B ReadRange (Execute),

AE-EL-E-B ConfirmedEventNotification (Execute), UnconfirmedEventNotification (Ex-

ecute), ReadRange (Execute),

AE-NF-B A AddListElement (Initiate), RemoveListElement (Initiate), ConfirmedCOVNo-

tification (Initiate), UnconfirmedCOVNotification (Initiate), ConfirmedCOV-

Notification (Execute), UnconfirmedCOVNotification (Execute)
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AE-NF-I-B ConfirmedCOVNotification (Initiate) , UnconfirmedCOVNotification (Initi-

ate), AddListElement (Execute), RemoveListElement (Execute)

Schedule

SCHED-A ReadProperty (Initiate),WriteProperty (Initiate), DEPRECATED,

SCHED-I-B ReadProperty (Execute), WriteProperty (Execute), TimeSynchronization (Ex-

ecute), UTCTimeSynchronization (Execute),

SCHED-E-B ReadProperty (Execute), WriteProperty (Execute), TimeSynchronization (Ex-

ecute),UTCTimeSynchronization (Execute), WriteProperty (Initiate),

SCHED-R-B ReadProperty (Execute), TimeSynchronization (Ex-

ecute),UTCTimeSynchronization (Execute),

SCHED-

AVM-A

CreateObject (Initiate),DeleteObject (Initiate),ReadProperty (Initiate),

WriteProperty (Initiate),

SCHED-

VM-A

ReadProperty (Initiate), WriteProperty (Initiate),

SCHED-

WS-A

ReadProperty (Initiate), WriteProperty (Initiate),

SCHED-

WS-I-B

ReadProperty (Execute), WriteProperty (Execute), TimeSynchronization (Ex-

ecute) ,UTCTimeSynchronization (Execute)

Trending

T-VMT-A ReadRange (Initiate), DEPRECATED,

T-VMT-I-B ReadRange (Execute),

T-VMT-E-B ReadRange (Execute), ReadProperty (Initiate),

T-ATR-A ConfirmedEventNotification (Execute), UnconfirmedEventNotification (Ex-

ecute), ReadRange (Initiate),

T-ATR-B ConfirmedEventNotification (Initiate) , UnconfirmedEventNotification (Initi-

ate), ReadRange (Execute),

T-VMMV-A ReadRange (Initiate), DEPRECATED,

T-VMMV-I-

B

ReadRange (Execute),

T-VMMV-

E-B

ReadRange (Execute), ReadPropertyMultiple (Initiate),

T-AMVR-A ConfirmedEventNotification (Initiate) , UnconfirmedEventNotification (Initi-

ate), ReadRange (Execute),

T-AMVR-B ConfirmedEventNotification (Initiate) , UnconfirmedEventNotification (Initi-

ate), ReadRange (Execute),

T-V-A ReadRange (Initiate),

T-AVM-A CreateObject (Initiate), DeleteObject (Initiate), ReadProperty (Initiate),

ReadRange (Initiate), WriteProperty (Initiate),

T-A-A ConfirmedEventNotification (Execute), UnconfirmedEventNotification (Ex-

ecute), ReadRange (Initiate), ReadRange (Execute)

DeviceManagement

DM-DDB-A Who-Is (Initiate), I-Am (Execute),

DM-DDB-B Who-Is (Execute), I-Am (Initiate),
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DM-DOB-A Who-Has (Initiate), I-Have (Execute),

DM-DOB-B Who-Has (Execute), I-Have (Initiate),

DM-DCC-A DeviceCommunicationControl (Initiate),

DM-DCC-B DeviceCommunicationControl (Execute),

DM-TM-A ConfirmedTextMessage (Initiate),UnconfirmedTextMessage (Initiate),

DM-TM-B ConfirmedTextMessage (Execute), UnconfirmedTextMessage (Execute),

DM-TS-A TimeSynchronization (Initiate),

DM-TS-B TimeSynchronization (Execute),

DM-UTC-A UTCTimeSynchronization (Initiate),

DM-UTC-B UTCTimeSynchronization (Execute),

DM-RD-A ReinitializeDevice (Initiate),

DM-RD-B ReinitializeDevice (Execute),

DM-BR-A ReinitializeDevice (Initiate), CreateObject (Initiate), AtomicReadFile (Initi-

ate), AtomicWriteFile (Initiate),

DM-BR-B ReinitializeDevice (Execute), AtomicReadFile (Execute), AtomicWriteFile

(Execute),

DM-R-A UnconfirmedCOVNotification (Execute),

DM-R-B UnconfirmedCOVNotification (Initiate),

DM-LM-A AddListElement (Initiate), RemoveListElement (Initiate),

DM-LM-B AddListElement (Execute), RemoveListElement (Execute),

DM-OCD-A CreateObject (Initiate), DeleteObject (Initiate),

DM-OCD-B CreateObject (Execute),DeleteObject (Execute),

DM-VT-A VT-Open (Initiate), VT-Close (Initiate), VT-Data (Initiate), VT-Close (Ex-

ecute), VT-Data (Execute)

DM-VT-B VT-Close (Initiate), VT-Data (Initiate), VT-Open (Execute), VT-Close (Ex-

ecute), VT-Data (Execute),

DM-ANM-A Who-Is (Initiate), I-Am (Execute),

DM-ADM-A ReadProperty (Initiate),

DM-ATS-A TimeSynchronization (Initiate), UTCTimeSynchronization (Initiate),

DM-MTS-A TimeSynchronization (Initiate), UTCTimeSynchronization (Initiate),

NetworkManagement

NM-CE-A Establish-Connection-To-Network (Initiate), Disconnect-Connection-To-

Network (Initiate),

NM-CE-B Establish-Connection-To-Network (Execute), Disconnect-Connection-To-

Network (Execute),

NM-RC-A Who-Is-Router-To-Network (Initiate), Initialize-Routing-Table (Initiate), I-

Am-Router-To-Network (Execute), I-Could-Be-Router-To-Network (Execute),

Initialize-Routing-Table-Ack (Execute),

NM-RC-B Who-Is-Router-To-Network (Initiate), I-Am-Router-To-Network (Initiate),

Initialize-Routing-Table-Ack (Initiate), Who-Is-Router-To-Network (Execute),

I-Am-Router-To-Network (Execute), Initialize-Routing-Table (Execute)

NetworkSecurity

256



BIBB Services

NS-SD Security-Payload (Initiate), Security-Response (Initiate), Request-Key-Update

(Initiate), What-Is-Network-Number (Initiate), Network-Number-Is (Initiate),

Challenge-Request (Execute), Security-Payload (Execute), Security-Response

(Execute), Update-Key-Set (Execute), Update-Distribution-Key (Execute),

What-Is-Network-Number (Execute), Network-Number-Is (Execute),

NS-ED Security-Payload (Initiate), Security-Response (Initiate), Request-Key-Update

(Initiate), What-Is-Network-Number (Initiate), Network-Number-Is (Initiate),

Challenge-Request (Execute), Security-Payload (Execute), Security-Response

(Execute), Update-Key-Set (Execute), Update-Distribution-Key (Execute),

What-Is-Network-Number (Execute), Network-Number-Is (Execute),

NS-MAD Security-Payload (Initiate), Security-Response (Initiate), Request-Key-Update

(Initiate), What-Is-Network-Number (Initiate), Network-Number-Is (Initiate),

Challenge-Request (Execute), Security-Payload (Execute), Security-Response

(Execute), Update-Key-Set (Execute), Update-Distribution-Key (Execute),

What-Is-Network-Number (Execute), Network-Number-Is (Execute),

NS-DMK-A Request-Master-Key (Execute), Set-Master-Key (Initiate),

NS-DMK-B Request-Master-Key (Initiate), Set-Master-Key (Execute),

NS-KS Request-Key-Update (Execute), Request-Master-Key (Execute), Update-Key-

Set (Initiate), Update-Distribution-Key (Initiate), Set-Master-Key (Initiate),

Security-Payload (Initiate), Security-Response (Initiate), Request-Key-Update

(Initiate), What-Is-Network-Number (Initiate),Network-Number-Is (Initiate),

Challenge-Request (Execute), Security-Payload (Execute),Security-Response

(Execute), Update-Key-Set (Execute), Update-Distribution-Key (Execute),

What-Is-Network-Number (Execute), Network-Number-Is (Execute),

NS-TKS Request-Key-Update (Execute), Request-Master-Key (Execute), Update-Key-

Set (Initiate), Update-Distribution-Key (Initiate), Set-Master-Key (Initiate),

Security-Payload (Initiate), Security-Response (Initiate), Request-Key-Update

(Initiate), What-Is-Network-Number (Initiate),Network-Number-Is (Initiate),

Challenge-Request (Execute), Security-Payload (Execute),Security-Response

(Execute), Update-Key-Set (Execute), Update-Distribution-Key (Execute),

What-Is-Network-Number (Execute), Network-Number-Is (Execute),

NS-SR Security-Payload (Initiate), Security-Response (Initiate), Request-Key-Update

(Initiate), What-Is-Network-Number (Initiate), Network-Number-Is (Initiate),

Challenge-Request (Execute), Security-Payload (Execute), Security-Response

(Execute), Update-Key-Set (Execute), Update-Distribution-Key (Execute),

What-Is-Network-Number (Execute), Network-Number-Is (Execute),

NS-SP Security-Payload (Initiate), Security-Response (Initiate), Request-Key-Update

(Initiate), What-Is-Network-Number (Initiate), Network-Number-Is (Initiate),

Challenge-Request (Execute), Security-Payload (Execute), Security-Response

(Execute), Update-Key-Set (Execute), Update-Distribution-Key (Execute),

What-Is-Network-Number (Execute), Network-Number-Is (Execute),
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