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Highlights 

 Effect of DC electric field on oxygen reduction in TEL was studied. 

 Ions migration by DC electric field thermodynamically promotes oxygen 
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reduction. 

 A more negative electrode potential by DC electric field boosts oxygen 

reduction. 

 A model for the effects of the DC electric field on oxygen reduction is 

proposed. 

 

 

Abstract:  

The effect of direct current (DC) electric field and electrolyte layer thickness on oxygen 

reduction in simulated atmospheric environment were investigated using electrochemical 

measurements. The results show that the limiting diffusion current density (ilim) decreases with 

increasing the thin electrolyte layers (TELs) thickness but it increases with increasing the DC 

electric field intensity. The potential shifts negatively with the DC electric field. It is found that 

the DC electric field enables OH- ions to quickly migrate from the solution/electrode interface 

to the electrolyte layer. All these features promote the cathodic reduction process thereby 

enhancing the metal corrosion rate. 

 

Keywords: Electrochemical measurements; Atmospheric corrosion; Oxygen reduction; 

Thin electrolyte layer (TEL); DC electric field  

 

1. Introduction 

Atmospheric corrosion can be considered as wet corrosion of materials under the thin 

electrolyte layers (TELs) formed on the surface of the material which is an electrochemical 

process [1]. The anodic process involves the dissolution of metal. Meanwhile, the oxygen 

reduction reaction is the most important cathodic reaction in atmospheric corrosion. 
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Considerable endeavours have been made to study the corrosion behaviour of metals in 

atmospheric environments, including outdoor exposure [2-5] and indoor simulated accelerated 

experiments [6, 7]. The influences of environmental parameters, such as temperature, humidity 

[3, 8], chemical compositions of materials [4] and corrosion products [2, 9], on atmospheric 

corrosion behaviour were extensively studied. In particular, the indoor simulated experiments 

have been focusing on the mechanism of the correlative factors in the process of metal 

atmospheric corrosion [6, 7, 10]. Since atmospheric corrosion behaviour is an essentially 

electrochemical behaviour and such a corrosion behaviour under TELs at later stages depends 

strongly on the initial corrosion behaviour, it is of importance to study the atmospheric 

corrosion in TELs at the initial stage using electrochemical methods. 

 In recent decades, there exist considerable reports on the atmospheric corrosion of metals 

under TEL systems [11-16]. Some processes can be affected by changing the TEL thickness, 

such as the mass transport of dissolved oxygen, the hydration of dissolved metal ions and the 

accumulation of corrosion products [17]. Stratmann et al. [18-20] reported a new technique 

based on the modified Kelvin Probe to investigate the corrosion behaviour of metals under 

TELs, by polarisation curves obtained using this new apparatus. Referred to the new apparatus, 

Nishikata et al [21] for the first time measured the electrochemical properties under TELs by 

using the electrochemical impedance spectroscopy (EIS) technique and found that the corrosion 

rate of copper has no relation to the TEL thickness, even under very thin layer thicknesses in 

Na2SO4 solution. In contrast, Liao et al. [22] found that the corrosion rate of copper increases 

with decreasing the TEL at initial stage. Zhong et al. [23] studied the electrochemical process of 

a tin electrode under a TEL and also found that the corrosion rate of tin increases with 

decreasing the TEL thickness at initial stage, due to oxygen diffusion being the main control 

process. As such, the inhibition effect of the metal cation on the anodic dissolution of tin 

mitigates the corrosion. Cheng et al. [24] found that the values of oxygen reduction current 

under a TEL and in the bulk solution were close when the layer thickness is greater than 200 

μm, and that the reduction current increased with decrease in the TEL thickness when the 

thickness was between 200 and 100 μm.  

Moreover, studies on the corrosion environments of metals under TELs have been 

attracting more attention. Corrosion environments of metals is one of the important factors that 
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affect the corrosion behavior of metals in the TEL. Vera et al. [25] investigated the influence of 

atmospheric pollutants on the corrosion behaviour of metals and found that high SO2 

concentration resulted in a high corrosion rate. It was also reported that the Cl- concentration in 

the TEL has a significant impact on the electrochemical migration (ECM) behaviour of tin. Tin 

dendrites and precipitates can coexist with each other in low and high chloride concentrations, 

however, only precipitates but no dendrites were observed at an intermediate Cl concentration 

[26]. Huang et al. [27] investigated the atmospheric corrosion behaviour for copper printed 

Circuit Board (PCB-Cu) under a TEL and proposed that the cathodic current density was 

proportional to the relative humidity. With respect to galvanic corrosion, it was found that the 

current density and potential distribution of a zinc/steel couple under a TEL were strongly 

determined by the thickness of the TEL and by the gap between both metals [28]. In addition, 

Tsai et al. [29] simulated the oxygen transport process in a gas diffusion layer (GDL) of proton 

exchange membrane fuel cell (PEMFC) using a theoretical model. According to their two-

dimensional model, using a thinner GDL could improve the cell performance of PEMFC, 

indicating that a thicker GDL can result in a higher resistance for oxygen transport toward the 

electrode surface. Damjanovic and Brusic investigated the electrode kinetics of oxygen 

reduction on oxide-free platinum electrodes and found a substantial difference in the pH 

dependence between in acid solution and in alkaline solution [30]. As discussed above, 

atmospheric corrosion under TELs is very common in different service environments of many 

metals.  

However, it is noted that there are some other important service environments in which 

metal parts are applied. A significant amount of metal parts subjective to atmospheric corrosion 

with electric fields is present in transmission towers, substation equipment in power 

transmission networks as well as in electronic equipment. For example, galvanised steel 

transmission towers are widely used in China as one of the key parts in power transmission 

grid. The reliability of a transmission tower is of vital importance to the safety operation of the 

power transmission grid. In recent years, there exist some reports on the effect of electric fields 

on the process of metal corrosion [31-36]. Dai et al. [37] studied the atmospheric corrosion 

behaviour of steel under a DC electric field and proposed that the electric field promotes steel 

corrosion because it can change the composition and structure of the corrosion products of the 
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steel. Yuan et al. [38] reported the effects of electric field on the electrochemical process of zinc 

under a TEL and found that the effects of the DC electric field on the corrosion of zinc could be 

ascribed to the negative shift of the corrosion potential, increased cathodic polarisation current, 

and the synergistic effect of the DC electric field and the thickness of the electrolyte layer. 

These effects can accelerate the cathodic process of metal corrosion. The corrosion behaviour of 

metals has been studied in soil or in aqueous solution. Preliminary investigations have shown 

that the corrosion behaviour of metals in electric fields is very different from that in normal 

conditions. Guo et al. [35, 36] investigated the atmospheric corrosion of copper under a TEL in 

the application of an electric field and concluded that the effects of electric field on the 

corrosion of copper under a TEL can be attributed to the effects of electric field on the ion 

transfer process and oxide film damage. The latest researches [39, 40] suggest that transmission 

towers corrode at an accelerated rate in an electric field, which is generated around high-voltage 

transmission lines. Lalvani et al. [31] showed that metal corrosion rate was significantly 

influenced by the peak potential. Chin et al. [32] and Zhang et al. [33] investigated metal 

corrosion under an alternating current and found that the corrosion was attributed to the 

asymmetry of the anodic and cathodic polarisations of the metal. Kim et al. [34] also discussed 

the effect of an alternating current electric field on metal corrosion and concluded that an 

external alternating current accelerated the corrosion rate of the metal, thereby destabilising the 

passive layer. The corrosion behavior of metals in atmospheric environment under the electric 

field also gets more and more attention. Unfortunately, the effect of the DC electric field on 

oxygen reduction under TELs has rarely been reported.  

The ilim can be used to estimate the maximum value of reaction rate of the oxygen 

reduction which is controlled by the limiting diffusion process. Electrochemical measurements 

are considered accurate for determining the ilim value and have been widely used for TELs [1, 

22, 28, 41]. Frankel et al. [41] studied the ilim on stainless steel in TELs with the help of 

electrochemical measurements. Zhang et al. [28] used electrochemical measurements to 

determine the ilim value of the cathodic reaction on the steel and galvanic corrosion of zinc 

under a TEL. It was clearly seen that the galvanic current values of zinc and steel in a TEL are 

related to the thickness of the layer. Liao et al. [22] also used the ilim to describe the corrosion 

degree of copper in a TEL. Zhang et al. [1] studied the ilim for the cathodic process of iron and 
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copper under a TEL using electrochemical measurements. According to the above analyses, it is 

reasonable to believe that electrochemical measurements are an accurate method for 

determining the ilim value. 

In this work, an electrochemical cell was developed to study the effects of the DC electric 

field and TEL thickness on the ilim value for the oxygen reduction process under a TEL. All 

these measurements were conducted to achieve further understanding of the atmospheric 

corrosion of metals under a DC electric field environment. 

 

2. Experimental 

2.1. Material preparation and experimental setup  

    To avoid a large amount of corrosion products having influence on the oxygen reduction, it 

is appropriate to use Pt as the working electrode instead of other metals. Furthermore, there 

existed many studies on the oxygen reduction process using Pt [29, 42-44]. The working 

electrode (WE) was mechanically cut from pure Pt rod (99.9%) and embedded into nylon, 

leaving a 0.5 cm2 working area exposed. Prior to testing, the Pt electrode was gradually ground 

by silicon carbide papers down to 2000 grits, polished with 2.5 μm diamond paste, then, 

degreased with acetone, rinsed with distilled water and dried in air.  

Fig. 1 shows the schematic diagrams of the experimental arrangement for oxygen 

reduction tests under the DC electric field. This equipment arrangement was improved based on 

the previous studies on the atmospheric corrosion [18, 20, 22]. A vacuum desiccator with an 

electrochemical cell was placed on a horizontal stage. The position of the electrochemical cell 

could be adjusted using a spirit level. The test temperature was 20±0.1 oC and the relative 

humidity (RH) was maintained at 60±1%. Specifically, a beaker was placed above the spirit 

level, into which water-glycerol mixtures were injected in a glycerine and water mixture ratio of 

3:1 to obtain the required relative humidity at around 60±1%. The difference between this 

arrangement and those in previous literature was that a pair of stainless steel plates were set 

opposite, with a gap of 5 cm, as external electrode plates. The plate on the bottom was grounded 

with the Pt working electrode, to simulate the ground mode of a transmission tower. The other 

plate was connected with a high voltage power supply. 
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A high voltage power supply (DC, LSL-BI, China) was employed to generate stable high 

voltage (20 kV). With the application of the voltage divider, 4 voltage levels, i.e. 5, 10, 15 and 

20 kV, could be distributed to a pair of electrode plates respectively. Correspondingly, a series 

of DC electric field intensities of 100, 200, 300 and 400 kV/m were obtained. It should be noted 

that the stability of the DC voltage was good enough to avoid the generation of an induced AC 

field due to the ripple of the voltage (ripple factor:<0.005%). Furthermore, taking into account 

the practical DC electric field environment in which the metal was located, the electrode plate 

on the bottom was connected to the earth-wire through the electrical wire.  

The Pt wire with 0.5 mm in diameter acted as the counter electrode and the WE was 

surrounded by the Pt wire, as shown in Fig. 1(a). It should be noted that a U-shape salt bridge, 

which was full of 0.35 wt.% NaCl solution, was placed between the WE and RE. A saturated 

calomel electrode (SCE) was used as the RE. Such a configuration could decrease the Ohmic 

drop between the WE and RE. After the apparatus was established, the electrolyte was injected 

in the electrochemical cell and the TEL was formed. The electrolyte used in the experiment was 

a 0.35 wt.% NaCl solution, which was prepared from deionised water and an analytical reagent 

NaCl (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China). The pH of the NaCl solution 

was about 6.8. 

The TEL thickness on the Pt electrode surface was determined using a setup which 

includes a self-designed micrometer (Fig. 1(b)), a Pt needle with a 0.5 mm in diameter and an 

ohmmeter [20, 22, 23]. The Pt needle was welded on the micrometer. The scale value on the 

micrometer, based on the position of the Pt needle, was recorded firstly when the Pt needle 

touched the electrode surface without the electrolyte. A sudden change in the radian on the 

electrolyte layer could be seen when the Pt needle touched the electrolyte layer and the scale 

value on the micrometer was recorded again. The difference of both scale values was the value 

of thickness of the TEL. This technique enabled the TEL thickness measurement to have an 

accuracy of 5 μm. In this work, the thickness of the TEL was varied between 100 μm and 1000 

μm. In addition, a vacuum desiccator with an electrochemical cell was covered with a lid. A cup 

of NaCl solution of the same concentration as the test solution was placed at the bottom of the 

vacuum desiccator to maintain the TEL thickness stability during the electrochemical 

measurements. 
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2.2. Electrochemical measurements 

The potentiodynamic measurements under different TEL thicknesses, with or without the 

DC electric field, were carried out with a Chi660c electrochemical workstation (Chenhua 

China). A three-electrode system was used in this experiment. All the potentials were with 

respect to the SCE. The Pt electrode was covered by the 0.35 wt.% NaCl solution for enough 

time to make the open circuit potential stable before measurements. The scan range of the 

potential was from 0.4 to -1.3V at a scan rate of 0.166mV/s. This electrochemical test was 

performed at room temperature (20±0.1 oC). All the measurements were repeated at least three 

times for reproducibility. 

In addition, supplementary experiments were done to verify that the potentiodynamic 

measurements were under steady state diffusion control. The experimental preparation was like 

the previous one. The potentiodynamic measurements under different TEL thicknesses, with or 

without the DC electric field, were carried out with a Chi660c electrochemical workstation 

(Chenhua China). The scan range of the potential was from -0.1 to -1.0V at different scan rates 

of 0.332, 0.664, 0.996, 1.328, 1.66mV/s. This electrochemical test was performed at room 

temperature (20±0.1 oC). All the measurements were repeated at least three times for 

reproducibility.   

  

3. Results  

    Fig. 2 show the cathodic polarisation curves of the Pt electrode under various thicknesses 

of TEL containing 0.35 wt% NaCl under different DC electric field intensities. Each cathodic 

polarisation curve can be divided into three regions with the negative shift of potential. That is, 

Region I corresponds to the oxygen reduction controlled by electrochemical polarisation; 

Region II is the oxygen reduction region controlled by the limiting diffusion process; Region III 

is attributed to the hydrogen evolution reaction [22]. In Region II, the ilim for dissolved oxygen 

reduction increases with decreasing the electrolyte thickness. 

From the results of the cathodic polarisation of the Pt electrode in the TEL thickness range 

from 100 μm to 1000 μm under different DC electric field intensities, the smaller the thickness 
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of the electrolyte layer is, the higher the value of the ilim is. When the electrolyte thickness is 

higher than 300 μm, slight changes are found for the ilim. On the contrary, significant changes 

are found when the electrolyte thickness is less than 300 μm. These results are in good 

agreement with those reported in Ref [28]. Usually, the ilim value is a function of inverse 

solution thickness, according to the Nernst-Fick equation [1, 20, 28, 41]: 

ilim =
   

soln

n

d

FDC
                                               (1) 

where ilim is the limiting diffusion current density; n represents the number of electrons in the 

oxygen reduction; F is the Faraday constant; D is the diffusion constant; C represents the 

concentration of dissolved oxygen and dsoln is the solution layer thickness. The number of the 

electrons in the oxygen reduction process is 4; the value of dissolved oxygen concentration in 

0.35% NaCl solution is 1.95×10-4 mol/l [45] and the oxygen diffusion coefficient 1.9×10-5 cm2s-

1 (20 oC) [28]. Therefore, the value of the ilim can be calculated based on the Nernst-Fick 

equation. 

Fig. 3 shows the relations between the ilim and 1/dsoln with various DC electric field 

intensities. This figure includes the calculated values based on the Nernst-Fick equation and the 

measured values according to the cathodic polarisation curves under different TEL thicknesses 

without DC electric field. For thicker TELs, with the TEL thickness of from 400 μm (i.e. 

1/dsoln=0.0025) to 1000 μm (i.e. 1/dsoln=0.001), the measured values gradually deviate from the 

calculated one under a TEL thickness of more than 300 μm (i.e. 1/dsoln=0.0033). In contrast, the 

calculated value agrees well with the measured one for thinner TELs less than 300 μm (i.e. 

1/dsoln=0.0033). One obtains 300 μm as the effective diffusion layer thickness in TEL based on 

the above experimental results. This is in good agreement with the previous results in Ref [28]. 

When the TEL thickness is less than the effective diffusion layer thickness, the measured value 

is close to the calculated one. When the TEL thickness is higher than the effective diffusion 

layer thickness, the measured value has the more deviation from the calculated one. Moreover, 

it is obvious that the ilim increases with increasing the DC electric field intensity (Fig. 3). For 

example, when the thickness is 400 μm without the DC electric field, ilim is about 45 µA·cm-2; 

the ilim value reaches 52 μA·cm-2 when the DC electric field intensity is 100 kV/m; and when 

the DC electric field intensity is increased to 400 kV/m, the ilim reaches 89 μA·cm-2.  
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    Fig. 4 presents the relationship between the effect of different DC electric field intensities 

and the various TEL thicknesses, which is fitted from the dependence of the ilim on the DC 

electric field intensities under various TEL thicknesses (Fig. 4 inset). In general, the slope value 

(dilim/dE) represents the effect of the DC electric field intensities. It can be clearly seen that the 

dilim/dE value decreases as the TEL thickness increases. It is interesting to note that the 

increased rate of (dilim/dE) is prominent when the TEL thickness is less than 300 μm. 

Meanwhile, the (dilim/dE) value exhibits a high value when the thickness is less than 300 μm but 

a low value when the TEL thickness is greater than 300 μm. 

     Fig. 5 (a-c) show the cathodic polarisation curves at different scan rates under different 

TEL with various DC electric field intensities. It is prominent that under TEL of 100μm and 

600μm without the DC electric field, the value of current density(ilim) is independent of the 

sweep rate. It is the same in the condition of TEL of 400μm with the DC electric field of 

100kV/m. That is, these potentiodynamic measurements of different scan rates under different 

TEL with various DC electric field intensities are all under steady state diffusion control. 

 

4. Discussion 

4.1. Oxygen reduction under the TEL without the DC electric field 

As obtained in Fig. 2, the results from cathode polarisation curves show that the ilim 

increases as TEL thickness decreases under no DC electric field. This is in good agreement with 

the conclusions by other researchers [1, 28, 41]. The ilim increases significantly when the 

thickness is less than 300 μm. As for thicker TELs, when TEL thickness is higher than the 

effective diffusion layer thickness (300 μm), the ilim varies somewhat (Fig. 3). Stratmann et al. 

[20] reported that the oxygen diffusion from the electrolyte layer to the electrolyte/electrode 

interface is the rate determining step in thinner TELs. Zhang et al. [1] pointed out that the ilim 

value for the cathodic process depends on the TEL thickness when the thicknesses are greater 

than 100 μm. It was also reported that the reduction rate of O2 is affected by the change in 

electrolyte thickness, when the thickness of the TEL is less than the diffusion layer thickness 

[28]. As illustrated in Fig. 2 and Fig. 3, the smaller the TEL thickness is, the higher the ilim is for 

TEL thicknesses less than 300 μm. Based on these results, it is reasonable to believe that for 
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TEL thicknesses close to or less than the effective diffusion layer thickness, the dependence of 

the ilim on the TEL thickness is attributed to the effect of the changes in TEL thickness on the 

oxygen transfer rate. As observed in Fig. 2, the reduction reaction is controlled by the diffusion 

of oxygen to the electrode surface. In other words, when the TEL thickness is near or less than 

the effective diffusion layer thickness, the oxygen reduction rate is dependent on the diffusion 

rate of oxygen through the TEL [1, 20, 28].  

 

4.2. Oxygen reduction under the TEL with the DC electric field 

As seen in Fig. 2 and Fig. 3, the application of the DC electric field enhances the ilim. 

Oxygen reduction is the main process in the cathodic polarisation curve [1, 25, 41]. Meanwhile, 

oxygen reduction reaction including some processes is controlled by diffusion process in 

solution system. But in the thin electrolyte layer, oxygen transmission turns to one-dimensional 

transmission when the TEL thickness of electrolyte layer is smaller. So the kinetic process of 

oxygen reduction reaction in the thin electrolyte layer changes greatly compared with that in the 

usual solution system. The equation for oxygen reduction is: 

2H2O+O2+4e→4OH-                                         (2) 

With the effect of the DC electric field, the anion OH- can migrate from the electrode 

surface to the layer surface. According to thermodynamic principles, it can also accelerate the 

reduction of oxygen when the OH- anions transfer out of the solution/electrode interface more 

quickly with the DC electric field, thereby increasing the ilim value. As seen in Fig. 3, for the 

same thickness, the higher the DC electric field intensities, the higher the ilim value. This means 

the electric field can influence the oxygen reduction under TELs by promoting the relevant shift 

of ions out of the electrode/solution interface. The migration rate is faster with the addition of 

increased DC electric field intensity [46]. Dai et al. [37] pointed out that the DC electric field 

breaks the coexistence of ions in the electrode/solution interface, and the shift of the anion away 

from the electrode/solution interface is favourable for loose corrosion product. As can be seen in 

the cathodic polarisation curves (Fig. 2), the thinner the thickness of the electrolyte layer, the 

higher the current of the oxygen reduction. The related content of migration of OH- ion that is 

referred to is from the view point of thermodynamics. The OH- ions derived from the reduction 
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of oxygen can increase the reduction of dissolved oxygen in thermodynamic. Therefore, the 

concentration of OH- ion can affect the reduction of dissolved oxygen. Thus, it is believed that 

the higher the DC electric field intensity, the more OH- ions shift out of the electrode/solution 

interface therefore the higher the ilim value.  

On the other hand, the evolution of electrode potential value from the cathodic polarisation 

curves under TELs of various thicknesses with different DC electric field intensities can be seen 

from Fig. 6. It is remarkable that little change occurred to the electrode potential value in TELs 

under weaker DC electric field intensity (0-100kV). When the DC electric field intensity is 

higher than 200 kV/m, the electrode potential shifts negatively with increasing the DC electric 

field intensities. Meanwhile, in the same DC electric field intensities, for thicker TELs from 400 

μm to 1000 μm, the change in the TEL thickness has weaker influence on the potential value. 

By contrast, for thinner TELs (100-300 μm), the thinner the TEL thickness is, the more negative 

the electrode potential can be. Huang et al. [36] reported that the potential shifted negatively in 

the electric field because of the imbalance between the anode and the cathode processes. It is 

pointed out that the charge density at the electrode/solution interface may increase when the DC 

electric field is exerted. As a result, the electrode potential can be shifted negatively [38]. With 

increasing the DC electric field intensity, the charge density at the electrode/solution interface 

may increase. As a result, the electrode potential becomes more negative. Therefore, oxygen 

reduction could be performed further, and more OH- ions are produced. With the decrease in the 

TEL thickness, the concentration of OH- in the TEL is increased. Thus, the value of pH of the 

TEL become larger. According to the Pourbaix diagram, the higher the concentration of OH- is, 

the more negative the electrode potential is. These results explain why the electrode potential of 

the Pt electrode becomes negative with decreasing the TEL thickness for those cases with 

thinner TELs. By contrast, for thicker TELs, the change in the TEL thickness has little influence 

on the potential value.  

 

4.3. Ideal model for the effect of the DC electric field on oxygen reduction  

    On account of the above results, a model for the effects of the DC electric field on oxygen 

reduction is thus proposed. Fig. 7 shows a schematic illustration of the distribution of ions in the 

ACCEPTED M
ANUSCRIP

T



13 

 

electrode/TEL system with and without the DC electric field. As seen from Fig. 7, the H+ 

cations migrate to the negative pole while the OH- anions migrate in the opposite direction 

under the DC electric field. Based on Equ. (2), the OH- anions transfer out of the 

solution/electrode interface more quickly with the application of the DC electric field. As a 

result, the oxygen cathodic reduction process can be accelerated. Therefore, the ilim value 

increases with increasing the DC electric field intensity. 

Alternatively, as can be seen in Fig. 6, when the TEL thickness is small, the electrode 

potential under a strong DC electric field can be shifted negatively. It is believed that the charge 

density at the electrode/solution interface may increase with the application of the DC electric 

field, which can result in a more negative electrode potential. Then, the negative shift of the 

electrode potential promotes the reduction of the cathodic process [38], suggesting that the ilim 

value can rise. Based on these results, the ideal model for the effects of the DC electric field on 

the oxygen reduction in the TEL can be expressed in two factors. The first factor is that the 

distribution change of the ions (the major ion is OH-) promotes the oxygen reduction in the 

TEL. The second one is that the oxygen reduction process can be accelerated by shifting the 

electrode potential negatively in the thin TEL. To be more exact, for thicker TELs (400-1000 

μm), the DC electric field has little effect on the ilim value. In contrast, for thinner TELs less 

than 300 μm, the ilim value is significantly influenced by the DC electric field. These results are 

in well agreement with the results obtained from Fig. 4. 

 

5. Conclusions 

The limiting current density value (ilim) is shown to increase by potentiodynamic 

measurements with the addition of direct current (DC) electric field intensity under thin 

electrolyte layers (TELs). The results show that the oxygen reduction on the Pt electrode is 

enhanced with the application of DC electric field under the TEL. For thicker TELs, the 

increasing rate of the ilim value is low and the DC electric field accelerates the oxygen reduction 

process on the Pt electrode under the thicker TEL due to the separation of the OH- ions. By 

contrast, for thinner TELs, the separation of the OH- ions and the negative shift of the electrode 

potential can work together, thereby accelerating the oxygen reduction process on the Pt 
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electrode. So, the increasing rate of the ilim value is high. When the ions quickly migrate out 

from the solution/electrode interface to the TEL surface and the electrode potential becomes 

more negative with the existence of DC electric field, the oxygen cathodic reduction process 

can be accelerated, resulting in a higher metal corrosion rate. 
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Figures: 

 

Fig. 1. Schematic diagrams of the experimental apparatus for oxygen reduction 

testing under DC electric field: (a) the electrochemical measurement in the TEL and 

(b) the determination of TEL thickness. 
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Fig. 2. Cathodic polarisation curves of the Pt electrode with various thicknesses of 

TEL, containing 0.35 wt% NaCl, at different DC electric field intensities. 

  

ACCEPTED M
ANUSCRIP

T



21 

 

 

Fig. 3. Dependence of the limiting current density, ilim, on the inverse solution layer 

thickness at various DC electric field intensities. 
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Fig. 4. The effect of DC electric field dilim/dE as a function of TEL thickness. 
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Fig. 5. Cathodic polarisation curves of different scan rates under different TEL 

thickness with various DC electric field intensities: (a) 100μm without the DC 

electric field, (b) 600μm without the DC electric field, (c) 400μm with the DC 

electric field of 100kV/m 
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Fig. 6. Evolution of electrode potential value from the cathodic polarisation curves 

under TELs of various thicknesses at different DC electric field intensities. 
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Fig. 7. Schematic illustrations of the migration of ions in a TEL: (a) without the DC 

electric field and (b) with the DC electric field. 
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