
Edith Cowan University Edith Cowan University

Research Online Research Online

Australian Information Security Management
Conference Conferences, Symposia and Campus Events

2018

Security vulnerabilities in android applications Security vulnerabilities in android applications

Crischell Montealegre
Edith Cowan University, mmonteal@our.ecu.edu.au

Charles Rubia Njuguna
Edith Cowan University, cnjuguna@our.ecu.edu.au

Muhammad Imran Malik
Edith Cowan University, muhammad.malik@ecu.edu.au

Peter Hannay

Ian Noel McAteer
Edith Cowan University, imcateer@westnet.com.au

Follow this and additional works at: https://ro.ecu.edu.au/ism

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Montealegre, C., Njuguna, C., Malik, M. I., Hannay, P., & McAteer, I. (2018). Security vulnerabilities in
android applications. DOI: https://doi.org/10.25958/5c5274d466691

DOI: 10.25958/5c5274d466691
Montealegre, C., Njuguna, C.R., Malik, M.I., Hannay, P., & McAteer, I.N. (2018). Security vulnerabilities in android
applications. In proceedings of the 16th Australian Information Security Management Conference (pp. 14-28).
Perth, Australia: Edith Cowan University.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ism/222

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/210552493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ism
https://ro.ecu.edu.au/ism
https://ro.ecu.edu.au/conference
https://ro.ecu.edu.au/ism?utm_source=ro.ecu.edu.au%2Fism%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ro.ecu.edu.au%2Fism%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.25958/5c5274d466691
https://doi.org/10.25958/5c5274d466691

SECURITY VULNERABILITIES IN ANDROID APPLICATIONS

Crischell Montealegre1, Charles Rubia Njuguna1, Muhammad Imran Malik1, Peter Hannay2, Ian Noel McAteer1
1School of Science, Edith Cowan University, 2Asterisk Information Security

Perth, Australia

mmonteal@our.ecu.edu.au, cnjuguna@our.ecu.edu.au, muhammad.malik@ecu.edu.au,

peter.hannay@asteriskinfosec.com.au, i.mcateer@ecu.edu.au

Abstract

Privacy-related vulnerabilities and risks are often embedded into applications during their development, with this

action being either performed out of malice or out of negligence. Moreover, the majority of the mobile applications

initiate connections to websites, other apps, or services outside of its scope causing significant compromise to the

oblivious user. Therefore, mobile data encryption or related data-protection controls should be taken into account

during the application development phase. This paper evaluates some standard apps and their associated threats

using publicly available tools and demonstrates how an ignorant user or an organisation can fall prey to such

apps.

Keywords

Android, vulnerability scan, APK, AndroBugs, Ostorlab, Social Media

INTRODUCTION

In recent times, organisations have been deploying mobile applications to facilitate their business processes.

Employees, customers, and vendors experience the exceptional exchange of services increasing productivity in

the working environment through sharing of real-time information, free mobility, and better functionality.

Notwithstanding mobile apps benefits, however, usage of mobile apps can potentially lead to severe security

hitches. Similar to obsolete enterprise applications, apps may contain vulnerabilities prone to attack. An attacker

may exploit these vulnerabilities to gain unauthorised access to an organisation’s information technology

resources or a user’s data (Quirolgico, Voas, Karygiannis, Michael, & Scarfone, 2015).

Literature Review

In the recent past, software delivery to an end user has taken a fundamental paradigm shift with easy-to-download,

install, and use applications from mobile app markets. High-end user demand for Android apps has led to an

increase in the production rate at which applications are developed and released in the market without overseeing

authority. Although these contribute to an equal playing ground for both small organisations and prominent

software development companies, the massive growth of new apps could equally compromise apps’ security.

Deploying new technology could have tragic consequences, causing a potential security threat to an organisation’s

IT resources, data, and users. ANZ Bank in rolling out their new ANZ app while retiring their GoMoney app is

asking users to download and install the new app with their previous registered credentials. While new

technologies may offer the promise of productivity gains and new capabilities, they may also present new risks.

It is vital for an organisation’s IT experts and users to be made fully aware of these risks and either develop plans

to mitigate them or accept their consequences (Coyne, 2018).

Most large active enterprise data has reported having been sporadically leaked from mobile apps. For instance,

Appthority Enterprise mobile security vendor scanned 1100 apps that use a communications Application

Programming Interface (API) marketed by Twilio. Figure 1 illustrates vulnerabilities in apps as exposed in

developers’ hard-coded logs, which shows usernames and passwords credentials in their code (Appthority, 2017).

Proceedings of the 16th Australian Information Security Management Conference (2018) 14

mailto:cnjuguna@our.ecu.edu.au
mailto:peter.hannay@asteriskinfosec.com.au

Figure 1 - Apps Exposing Hardcoded Credentials (Appthority, 2017)

Access from the hardcoded credentials gives the attacker the ability to run a mass surveillance operation at a scale

typically only available to governments and carriers. The scale, measured by total app installs, is likely to be in

the hundreds of millions of impacted mobile users whose calls and text messages may all be accessed.

The changing trend has contributed to mobile devices becoming indispensable components of our daily lives and

integral parts of organisational culture. The current development of advanced processing, connectivity

capabilities, and the ability for Android to host multi-purpose third-party applications, is a paradigm shift in

organisation transformation that needs to be addressed. While mobile applications provide business agility, it also

poses security challenges. Security threats for mobile apps have become common with more evidence of apps

affected with malware in the Android market. Table 1 shows the list of malicious apps that were recently removed

from the official Google Play Store. The mobile banking trojans concealed as device cleaners, boosters, or

horoscopes have the capabilities to impersonate banking apps, intercept and send SMS, or install other applications

(Stefanko, 2018).

Table 1 - Mobile Application Malware (Stefanko, 2018)

App Name Package Name Installs

Power Manager com.puredevlab.powermanager 10+

Astro Plus com.astro.plus 0+

Master Cleaner - CPU Booster bnb.massclean.boost 5,000+

Master Clean - Power Booster mc.boostpower.lf 100+

Super Boost Cleaner cpu.cleanpti.clo 500+

Super Fast Cleaner super.dupclean.com 500+

Daily Horoscope For All Zodiac Signs ui.astrohoro.t2018 100 +

Daily Horoscope Free - Horoscope

Compatibility

com.horochart.uk 500+

Phone Booster - Clean Master ghl.phoneboost.com 1,000+

Speed Cleaner - CPU Cooler speeeed.cool.fh 100+

Ultra Phone Booster ult.boostphone.pb 1,000+

Free Daily Horoscope 2019 fr.dayy.horos 50+

Free Daily Horoscope Plus - Astrology Online com.dailyhoroscope.free 1,000+

Phone Power Booster pwr.boost.pro 1,000+

Ultra Cleaner - Power Boost ua.cleanpower.boost 50+

Proceedings of the 16th Australian Information Security Management Conference (2018) 15

App Name Package Name Installs

Master Cleaner - CPU Booster bnm.massclean.boost 5,000+

Daily Horoscope - Astrological Forecast gmd.horobest.ty 1,000+

Speed Cleaner – CPU Cooler speeeed.cool.gh 0+

Horoscope 2018 com.horo2018i.up 1,000+

Meu Horóscopo my.horoscop.br 1,000+

Master Clean - Power Booster mc.boostpower.cf 50+

Boost Your Phone boost.your.phone 1,000+

Phone Cleaner - Booster, Optimizer phone.boost.glh 1,000+

Clean Master Pro Booster 2018 pro.cleanermaster.iz 10+

Clean Master - Booster Pro bl.masterbooster.pro 5,000+

BoostFX. Android cleaner fx.acleaner.e2018 50+

Daily Horoscope day.horocom.ww 1,000+

Daily Horoscope com.dayhoroscope.en 1,000+

Personal Horoscope horo.glue.zodnow 1,000+

Background

The purpose of this study is to establish security issues in Android smartphone applications. Android smartphones

store diverse data such as multimedia, sensor data, communication logs, and data created or consumed by

applications, and so on. An Android user carries the device over multiple locations throughout the day and allows

connections to various networks that are often not secure. As the same device may be used for both work and

leisure purposes, installed Android applications often contain a combination of valuable personal and business

data. Exposing potential security vulnerabilities in commonly used Android applications will help understand the

risk associated with mobile apps within corporate premises.

Android smartphones extend the business perimeter, while existing security and privacy perimeter-oriented

mechanisms are inadequate and easily compromised. In this context, the importance of Android applications

interacting with corporate assets, make them economically attractive to attackers. This attraction happens because

most people rarely consider Android-application threats when downloading from the Google Play Store.

Furthermore, most vulnerability-assessment methods are not intended for individuals, but mainly for businesses.

Thus, a targeted vulnerability assessment of Android applications is useful in assessing smartphone threats in a

considerably more specific approach. We contribute towards this direction by identifying security threats on

commonly used social media applications and compare different vulnerability-scanning frameworks tailored for

Android applications.

METHODS

Static analysis

Static analysis is performed without executing the application on the provided or decompiled source code and

accompanying APK files (Velu, 2016). This method indeed proves to be more thorough when using AndroBugs

and Ostorlab frameworks, and cost-efficient with the ability to detect critical and non-critical threats to apps from

the Google Play Store. Static analysis also unearths weakness that would not emerge in a dynamic test. Static

analyses using frameworks are used for:

 Scanning of Android APK files

 Determination of possible vulnerabilities

 Reporting of any identified vulnerabilities

Proceedings of the 16th Australian Information Security Management Conference (2018) 16

By demonstrating the effectiveness of different vulnerability-scanning frameworks and reporting the outcomes of

mobile-app weaknesses and testing tools, organisations could use the same procedures to expose and determine

the appropriateness of apps for deployment on an organisation's mobile devices. Ultimately, an organisation’s

security requirements could then be followed to determine the environment for deployment, usage, and ideal

mobile technologies. For instance, hospital or airline environments could consider a more comprehensive apps-

vetting process compared to a media or marketing company. This paper highlights some findings that are

particularly important to consider before apps are approved for submission to the Play Store or Google Play

markets.

Google Play Apps

Social networks are presently the most significant media spot in the world, and the most widely used channel for

data, video and voice. Reporting and risk assessments generated by scanning frameworks demonstrate some

exciting results. Table 2 below considers mobile applications downloaded from Google Play.

Table 2 - Android Apps Used in Testing

Apps PackageName Version Size

(MB)

Hash MD5 / SHA1

Facebook com.facebook.katana 129.0.0.2

9.67

68 eb68e95931dbfe27bd096220919a6cb2

79b882db8cbfde5c04301f4e0c8c110e821

e9a7f

IMO com.imo.android.imoi

m

9.8.00000

0006751

7.3 955a28e1b3a67ac3b0fa6a3a7f073b06

ca3b0291a478cdf3780d10eb533c7e96e66

c021d

Instagram com.instagram.android 10.26.0 27 48a284d59ff0f9affb7013962d5accfd

80d103aaf6bae88c749f87321bf1e80c19b

04a1a

LinkedIn com.linkedin.android 4.1.61 27.4 47d198045715829fd73ac5134bf889c8

44ac8bce52e60352ab251702c5ab16ea81

309374

Viber com.viber.voip 6.9.5.9 30.8 c9376fe2f5fc6d928bedd95c1b87299a

f48d2a4fcf2b4ea944bc0077106e570b3ce

5eb88

WhatsApp com.whatsapp 2.17.231 35 b26bf9b3ddb2aab5af342ac463076047

33eae8c80c1b8f157af3d91d104c608b45f

95993

Twitter com.twitter.android 7.0.0 34.2 e803a8f19ac3ddda5accbc6db87dd2e4

5b36e1a22003ffcec88e7bea05f2e644cc36

4193

WeChat com.tencent.mm 6.5.8 40 cf237d05ab4782081ac70cbd2210ee3e

32ff65d4ee3cbce62d1a1e924a98ddfef1da

7e06

Planning

The study compared and analysed the outcomes of three different application-scanning frameworks to broadly

gain an understanding of the various risks and vulnerabilities linked with the usage of leading social-media

applications within business perimeters. However, on submission only the results of two frameworks have been

analysed. The application-testing frameworks are:

 AndroBugs Terminal Framework

 OstorLab Cloud Framework

Proceedings of the 16th Australian Information Security Management Conference (2018) 17

AndroBugs Terminal Framework

AndroBugs is an Android app-vulnerability scanner that provides an advanced security assessment for Android

apps and uncovers potential critical issues relating to user applications. AndroBugs checks every component in

the app to ascertain flaw-security and correct logic that would instead be exploited by hackers. Security problems

can still perpetuate within the Android environment, because:

 Google may never employ app security that enforces or rates the security of an app.

 Google may never take down vulnerable apps from Google Play.

 Google already knows some security problems in certain Android applications.

 There are too many applications that use vulnerable APIs.

AndroBugs could help improve Android security, although companies need to give mobile security the same

attention given to Web security by following Android-security researchers’ exercise of responsible disclosure and

acknowledge vulnerability reports they receive. Figure 2 below demonstrates how apps could be verified before

being approved for installation by the end user (Quirolgico et al., 2015).

Figure 2 - Application Verification Process (Quirolgico et al., 2015)

Ostorlab Web-Based Framework

Ostorlab is a cloud-based application scanner framework for Android or iOS apps, and gives detailed information

on the findings. An APK file is uploaded as an attachment to the framework which generates a security scan report

in a few minutes. Figure 3 illustrates the Ostorlab scanning process in a web environment (Spreitzenbarth, 2013).

Proceedings of the 16th Australian Information Security Management Conference (2018) 18

Figure 3 - Ostorlab Web-Based App Scanning Framework (Spreitzenbarth, 2013)

Scanning Process

The scanning process comprises of three main steps:

1. Generating APK files.

2. Scanning using AndroBugs.

3. Ostorlab framework.

Downloading APK files

All APK files were downloaded from Google Play using a web-services downloader. Following are the steps to

download the APKs:

1. Open Evozi website (https://apps.evozi.com/apk-downloader/).

2. On a separate web browser, open Google Play (https://play.google.com).

3. Search and view the apps.

4. On the apps page, right-click on the “Install” button and select copy address (This step may be different

depending on the web browser. We were using Opera).

5. Going back to Evozi, past the URL on the Google Play URL (see Figure 4).

6. Click Generate Download Link.

7. Click ‘Click here to download <app package name> now.

8. Verify MD5 hashes.

Proceedings of the 16th Australian Information Security Management Conference (2018) 19

https://apps.evozi.com/apk-downloader/

Figure 4 - Evozi Web Service: Download APK

Scanning using Ostorlab

1. Go to Ostorlab website (https://www.Ostorlab.co) and click the scan icon.

2. Fill in the fields, select your APK file and click scan (see Figure 5).

3. Ostorlab will email the link of the result.

Figure 5 – Scanning on Ostorlab

Scanning using AndroBugs

1. Using Kali Linux, unzipped AndroBugs to the directory.

2. Open a terminal and execute the command:

Python androbugs.py –f apk file -o output result

Figure 6 demonstrates how to execute the command:

Proceedings of the 16th Australian Information Security Management Conference (2018) 20

https://www.ostorlab.co/

Figure 6 - Running Androbugs

RESULTS AND FINDINGS

Vulnerability Findings

Vulnerabilities from the frameworks used have been categorised in order of priority and potential impact to the

end user. Table 3 shows the categorisation used for both tools:

Table 3 - Risk Categorization

AndroBugs Ostorlab

Critical High / Potentially

Warning Important

Notice Medium

Info Note

The following vulnerabilities were discovered after running the eight mobile apps. Table 4 summarises the

results from AndroBugs. Vulnerabilities with an Info categorisation, which indicates that there was no issue

found on the specific static analysis, were not included in this table. Table 5 illustrates the results from Ostorlab.

Proceedings of the 16th Australian Information Security Management Conference (2018) 21

Table 4 - AndroBugs Result

Title Category Facebook IMO Instagram LinkedIn Twitter Viber WhatsApp WeChat

<SSL_Security> SSL Connection Checking Critical true true true true true true true true

<WebView><Remote Code Execution><#CVE-2013-

4710#> WebView RCE Vulnerability Checking:

Critical true true true true true true true

<Implicit_Intent> Implicit Service Checking Critical true true true true true true

 AndroidManifest ContentProvider Exported Checking Critical true true true

<SSL_Security> SSL Certificate Verification Checking Critical true true true

<SSL_Security> SSL Implementation Checking

(Verifying Host Name in Custom Classes)

Critical true true

App Sandbox Permission Checking Critical true true true true true

<Hacker> Base64 String Encryption Critical true true

<#CVE-2013-6272#> AndroidManifest Exported Lost

Prefix Checking

Critical true

<Command> Runtime Command Checking Critical true true true true

<KeyStore><Hacker> KeyStore Protection Checking Critical true

AndroidManifest Dangerous ProtectionLevel of

Permission Checking

Critical true

<#BID 64208, CVE-2013-6271#> Fragment Vulnerability

Checking

Critical true

External Storage Accessing Warning true true true true true true true

AndroidManifest Exported Components Checking Warning true true true true true true true true

<Sensitive_Information> Getting ANDROID_ID Warning true true true true true true true true

<WebView> WebView Local File Access Attacks

Checking

Warning true true true true true true true

Dynamic Code Loading Warning true true true true true

<WebView> WebView Potential XSS Attacks Checking Warning true true true true true true

Codes for Sending SMS Warning true

Proceedings of the 16th Australian Information Security Management Conference (2018) 22

Title Category Facebook IMO Instagram LinkedIn Twitter Viber WhatsApp WeChat

<Sensitive_Information> Getting IMEI and Device ID Warning true true true true

AndroidManifest "intent-filter" Settings Checking Warning true

<SSL_Security> SSL Certificate Verification Checking Warning true

AndroidManifest Normal ProtectionLevel of Permission

Checking

Warning true

<Database><#CVE-2011-3901#> Android SQLite

Databases Vulnerability Checking

Notice true true true true true true true

<Signature><Hacker> Getting Signature Code Checking Notice true true true true true true true

Native Library Loading Checking Notice true true true true true true

<Hacker> APK Installing Source Checking Notice true true true true true

File Unsafe Delete Checking Notice true true true true true true true true

AndroidManifest Exported Components Checking 2 Notice true true true true true true true true

<Command> Executing "root" or System Privilege

Checking

Notice true true true true true true

<Debug><Hacker> Codes for Checking Android Debug

Mode

Notice true true true

<KeyStore><Hacker> Possible KeyStore File Location Notice true

 AndroidManifest Adb Backup Checking Notice true

<KeyStore><Hacker> KeyStore File Location Notice true

<KeyStore><Hacker> KeyStore Protection Information Notice true

<Database> Android SQLite Databases Encryption

(SQLite Encryption Extension (SEE))

Notice true true

Proceedings of the 16th Australian Information Security Management Conference (2018) 23

Table 5 - Ostorlab Results

Title Category Facebook IMO Instagram LinkedIn Twitter Viber WhatsApp WeChat

Virustotal malware analysis (MD5 based search) High true

Services declared without permissions Potentially true true true true true true true

Backup mode enabled Potentially true true

Insecure Filesystem Access Potentially true

Intent Spoofing Potentially true

Exported activites, services and broadcast receivers list Important true true true true true true true true

Decompiled source code Important true true true true true true

ELF binaries do not enforce secure binary properties Medium true true true

Application code not obfuscated Medium true

Hardcoded SQL queries list Note true true true true true

Hardcoded urls list Note true true true true true

APK files list Note true true true true true true true true

APK attack surface Note true true true true true true true true

Virustotal malware analysis (MD5 based search) Note true true true true true true true

Hardcoded strings list Note true true true true true true true true

Android Manifest Note true true true true true true true true

List of JNI methods Note true true true true true true true true

Implementation of a FileObserver Note true true

Obfuscated methods Note true true true true true true

Call to XML parsing API Note true true true true true

Call to native methods Note true true true true true true

Application checks rooted device Note true true true true true

Implementation of a WebViewClient Note true true true true true

Call to Inter-Process-Communication (IPC) API Note true true true true true true

Proceedings of the 16th Australian Information Security Management Conference (2018) 24

Title Category Facebook IMO Instagram LinkedIn Twitter Viber WhatsApp WeChat

Call to External Storage API Note true true true true true true

Call to dangerous WebView settings API Note true true true true true true

Call to Socket API Note true true true true true true

Call to logging API Note true true true true true true

Application components list Note true true true true true true

Call to SSL/TLS API Note true true true true true

Application certificate information Note true true true true true

Call to Reflection API Note true true true true true true

Call to Crypto API Note true true true true true true

Call to Random API Note true true true true true true

Call to SQLite query API Note true true true true true true

Call to dynamic code loading API Note true true true true true true

Call to command execution API Note true true true true

MoPub Framework detected Note true

URL Scheme listURL Scheme list Note true true true

Proceedings of the 16th Australian Information Security Management Conference (2018) 25

Vulnerability and Risk Assessments

Based on the findings generated by the above tools, eighty different social media applications that are commonly

used in Android smartphones were analysed. The result indicates various risk levels that exist in Android mobiles

and therefore putting the user in high risk of leaking both individual and organisational data when interfacing with

installed apps from Google Play. Consequently, this merits targeted specific app-vulnerability assessment.

Threats on vulnerable apps are:

 Personal user data-leakage over a network, e.g. email, IMEI, GPS, MAC.

 Unencrypted communication over the network.

 Having world-readable/writable files.

 Poor authorization and authentication.

 Information-stealing malware.

 Known vulnerabilities.

Sensitive data leakage

Sensitive data leakage can happen when an app is improperly storing user information. Mobile apps should avoid

unnecessary storage of data on a device. According to OWASP “Insecure data storage, occurs when development

teams assume that users will not have access to the phones file system and store sensitive pieces of information

in data-stores on the phone. Devices file systems are often easily accessible, and the user should expect a malicious

entity to be inspecting the data stores. Rooting or jailbreaking a device usually circumvents any encryption

protections, and in some cases, where data is not protected properly, all that is needed to view application data is

to hook the phone up to a computer and use some specialised tools ” (OWASP, 2014a).

Three apps may be susceptible to the Android SQLite Database Vulnerability (CVE-2011-3901). More so, it is

suggested that all of the apps are using an unsecured way to delete files. By using file.delete(), any attacker,

especially on rooted devices, may recover everything you delete. Also, almost all are using or have API calls to

external data storage. It is imperative to ensure that sensitive information is handled well. It is also worth noting

that the apps are reading the ANDROID_ID, IMEI and deviceID information.

Unencrypted communication

The most important feature of the client-server architecture is information exchange. When data is transmitted, it

may be exchanged through the carrier network or the Internet. While developing an application, if care is not

taken while sharing data between the client and server, there is a chance that the data may be compromised in

transit. The best way to protect data in transit is to encrypt it. Encryption prevents sniffed data from read,

particularly in the case of usernames, passwords, and credit card information. According to OWASP

“Unfortunately, mobile applications frequently do not protect network traffic. They may use SSL/TLS during

authentication, but not elsewhere, exposing data and session IDs to interception. Also, the existence of transport

security does not mean it is implemented to its full potential. Detecting basic flaws is easy. Just observe the phone's

network traffic. More subtle flaws require inspecting the design of the application and the application's

configuration” (OWASP, 2014b).

All apps include URLs that are not using SSL. Referencing the AndroBugs result, WeChat has the most number

of URLs (44), followed by Instagram (16), Twitter (11), IMO (6), Viber (5), LinkedIn and WhatsApp (4), and

Facebook (1). Also, Facebook, Instagram and WhatsApp do not check the validation of the SSL Certificate which

allows self-signed, expired or mismatched Common Name (CN) certificates for SSL.

Information disclosure read and writes

Disclosure of relevant data stored in apps such as passwords and credit card details, which should remain

hardcoded, is a requirement for any developer to prioritize because most applications developed for mobile

devices can reveal the code when reversed engineered. A hacker could access this sensitive information that to

further facilitate access to company resources compromising their reputation.

Five apps were found to have permitted "MODE_WORLD_READABLE" or "MODE_WORLD_WRITEABLE"

on some of the services, in particular in using Advertising ID API.

Proceedings of the 16th Australian Information Security Management Conference (2018) 26

Poor Authorization and Authentication

Authentication and authorisation refer to user privileges granted for using an application. In an application with

functionalities beyond publicly usable features, permission may be required for accessing free functions.

Authentication refers to who you are in an application. For instance, email: xyz@a.b.c | Website: www.abc.edu.

Authorisation points to what you are authorised to do in an application. When the authorisation and authentication

schema fails to protect the application, the privileged functions in the application are compromised, rendering it

vulnerable to attacks. Authorisation and authentication should be dealt with accurately while developing an

application to ensure that unauthorised users are not granted access to sensitive information. This can be achieved

by ensuring secure session-handling and login functions.

Information Stealing Malware

Mobile smartphones, in particular, Android devices, provide several ways for applications to be downloaded and

installed, for example from official Google Play Store, from other third-party marketplaces, or from APK-

downloading sites. Currently, most distribution of malware for smartphones have utilised third-party app stores.

Mainly, malware distributed through the third-party target to steal data from the mobile device (Kaspersky, 2016).

ZitMo is one of the most rampant pieces of mischievous code for a smartphone. It started in 2010 for Symbian

OS, and designed to forward SMS messages. ZitMo for Android targeted the SMS-based banking two-factor

authentication (Maslennikov, 2011) (Alliance, 2012).

Malware apps target information on Facebook accounts. The malicious apps try to collect data from Facebook. If

no account can be collected, it launches the spoofed Facebook login UI to steal user credentials. Once malware

connects to a real Facebook page, it takes full control of user profile (Zhang & Aimoto, 2018).

When downloading APKs, the Snapshot app was mistakably analysed instead of the Snapchat app. The lapse was

later discovered after receiving a different hash check. The error was due to a Google search result, which indexed

items being searched on the address.

Known Vulnerabilities

Table 6 shows the known vulnerabilities identified:

Table 6 - Known Vulnerabilities

Vulnerability Reference Apps Description Affected Platform

CVE-2013-6271

WhatsApp Allow an attacker to

remove the device locks

and bypass restrictions

("CVE-2013-6271," 2013)

Before Android 4.4 (API

19)

CVE-2011-3901 Viber / WhatsApp /

IMO

SQLite Journal Information

Disclosure vulnerability

("CVE-2011-3901," 2011)

Before Android 4.0

CVE-2013-4710

Facebook / IMO /

Viber / LinkedIn /

Twitter / Instagram /

WeChat

This method can be used to

allow JavaScript to control

the host application ("CVE-

2013-4710," 2013)

Prior to Android 4.2

CONCLUSION

Organisations face frequent threats to data security and privacy, and prioritising these in the noise of continuously

developing security concerns is difficult. The main focus of this research was to demonstrate vulnerabilities that

exist in commonly used social network apps and analyse the threats with the highest potential impact on the

business environment. The results highlight security issues to be considered by organisations and application

users.

A vulnerable app that has access to corporate data is a potential channel for such threats, and is rarely monitored

when interfacing with the restricted commercial environment. Google Play, with a high volume of apps, largely

Proceedings of the 16th Australian Information Security Management Conference (2018) 27

stores unmitigated mobile applications. App-data leakage, un-encrypted communication, and unauthorised access

vulnerabilities demonstrate the need for organisations to understand and protect against a broader set of app risks

to sensitive data. Both AndroBugs and Ostorlab frameworks show how simple errors by a developer can deluge

substantial amounts of data across hundreds of apps, opening the possibility for the mass data exposure and user

surveillance of an organisation.

REFERENCES

Alliance, C. S. (2012). Security Guidance for Critical Areas of Mobile Computing (CLOUD SECURITY

ALLIANCE Security Guidance for Critical Areas of Mobile Computing, V1.0), Mobile Working Group

Appthority. (2017). How a Mobile Developer Error is Exposing Millions of Conversations.

Coyne, A. (2018). ANZ retires Grow, goMoney apps. Retrieved from https://www.itnews.com.au/news/anz-

retires-grow-gomoney-apps-485437

CVE-2011-3901. (2011). Available from National Vulnerability Database Common Vulnerabilities and

Exposures. Retrieved from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3901

CVE-2013-4710. (2013). Available from National Vulnerability Database Common Vulnerabilities and

Exposures. Retrieved from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4710

CVE-2013-6271. (2013). Available from National Vulnerability Database Common Vulnerabilities and

Exposures. Retrieved from https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6271

Kaspersky. (2016). Mobile Malware Evolution 2016. Retrieved from

https://securelist.com/files/2017/02/Mobile_report_2016.pdf

Maslennikov, D. (2011). ZeuS-in-the-Mobile for Android. Retrieved from https://securelist.com/zeus-in-the-

mobile-for-android-10/29258/

OWASP. (2014a). Mobile Top 10 2014-M2. Retrieved from

https://www.owasp.org/index.php/Mobile_Top_10_2014-M2

OWASP. (2014b). Mobile Top 10 2014-M3. Retrieved from

https://www.owasp.org/index.php/Mobile_Top_10_2014-M3

Quirolgico, S., Voas, J., Karygiannis, T., Michael, C., & Scarfone, K. (2015). Vetting the Security of Mobile

Applications. doi:10.6028/nist.Sp.800-163

Spreitzenbarth, M. (2013). Forensic Analysis of Android and its malicious Applications.

Velu, V. K. (2016). Mobile Application Penetration Testing.

Zhang, M., & Aimoto, S. (2018). Android Malware Harvests Facebook Account Details. Retrieved from

https://www.symantec.com/blogs/threat-intelligence/android-malware-harvests-facebook-details

Proceedings of the 16th Australian Information Security Management Conference (2018) 28

	Security vulnerabilities in android applications
	Recommended Citation

	SECURITY VULNERABILITIES IN ANDROID APPLICATIONS

