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Abstract: Forming complex geometries using the casting process is a big challenge for bulk metallic
glasses (BMGs), because of a lack of time of the window for shaping under the required high cooling
rate. In this work, we open an approach named the “entire process vacuum high pressure die casting”
(EPV-HPDC), which delivers the ability to fill die with molten metal in milliseconds, and create
solidification under high pressure. Based on this process, various Zr-based BMGs were prepared
by using industrial grade raw material. The results indicate that the EPV-HPDC process is feasible
to produce a glassy structure for most Zr-based BMGs, with a size of 3 mm × 10 mm and with a
high strength. In addition, it has been found that EPV-HPDC process allows complex industrial BMG
parts, some of which are hard to be formed by any other metal processes, to be net shaped precisely.
The BMG components prepared by the EVP-HPDC process possess the advantages of dimensional
accuracy, efficiency, and cost compared with the ones formed by other methods. The EVP-HPDC
process paves the way for the large-scale application of BMGs.

Keywords: bulk metallic glass; industrialized application; high pressure die casting

1. Introduction

Bulk metallic glass (BMG) is always regarded as one of the most promising materials because
of its ultrahigh strength, large elasticity, and excellent corrosion resistance, and thus can be applied
in wide range of fields [1,2]. However, a long-standing problem for this type of material is that it is
difficult to mold into complex shapes using the casting method. To overcome this bottleneck, several
alternative approaches, such as thermoplastic forming (TPF) [3,4] and additive manufacturing (AM)
process [5], were developed. Through these approaches, the BMG parts with complex geometric shapes
have been produced successfully [3–5]. However, some inherent problems, including crystallization,
cracking, relatively low efficiency (in AM process) [5,6], extremely narrow time window for shaping,

Materials 2018, 11, 2338; doi:10.3390/ma11112338 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-7247-0173
https://orcid.org/0000-0003-0661-2051
http://www.mdpi.com/1996-1944/11/11/2338?type=check_update&version=1
http://dx.doi.org/10.3390/ma11112338
http://www.mdpi.com/journal/materials


Materials 2018, 11, 2338 2 of 12

and difficulty in forming a hollow structure (in the TPF process) [7], were not well solved, impeding
the application of these methods in the mass production of BMGs. In order to achieve the industrial
production of BMG parts, some other methods, including low pressure die casting [8] and squeeze
casting [9], have also been reported in the past decade. However, up until now, only low fusion
point Mg-based [8] and Ca-based [10] BMG parts with simple geometries like rods or plates have
been fabricated successfully by these approaches. Currently, the main technology available for the
large-scale forming of BMG parts with a complex shape is the injection molding process developed by
Liquidmetal Technologies, Inc. [11]. In this approach, the mother alloy is melted by induction heating
in a horizontal cold-crucible, and then molten metal is confined to a specific area by a magnetic field.
When the metal is completely melted, the molten metal is injected into the mold using a plunger rod,
forming a BMG part. However, there is an Achilles heel in this approach, that is, the non-uniformity
of the temperature field during heating, mainly caused by the horizontal layout of the cold-crucible.
The non-uniformity of the heating would result in the sometimes-incomplete melting of the master
alloy, thereby weakening the glass forming ability [12] and inducing the instability of the product
quality [13,14]. Besides, as a commercialized technology, the injection molding of a BMG route is very
confidential, and few results have been reported in an academic paper, which is disadvantageous to
the prosperity of the related disciplines. Therefore, exploring a new but more general approach to
achieve the large-scale production of BMG parts becomes increasingly urgent and necessary.

High pressure die casting (HPDC) is a metal forming process that is widely used in real industry
for forming aluminum, magnesium, zinc, and copper alloy components [15]. It possesses several
advantages, such as a high cooling rate, high productivity, and the ability to form near net shapes.
Therefore, the HPDC process is also considered as the one of the methods with the most potential to be
applied to the large-scale production of BMG components with sophisticated geometries. Recently,
low oxygen affinity Fe-based bulk metallic glass with a key-shape was produced successfully using a
traditional HPDC method in an open atmosphere [16]. However, most glass formers are extremely
oxidizable, and thus are difficult to be synthesized directly by this route. In order to form highly
oxygen-sensitive BMGs, Inoue et al. proposed a vertical vacuum HPDC solution, as shown in the
literature [17,18]. In this approach, the melting of mother alloy was conducted in a sealed sleeve
manufactured by steel. However, up until now, only low melting point Mg-based [18] and La-based
alloys [17] were prepared successfully using this approach. With regard to the most common Zr-based
BMGs, especially for Be-free glass formers, its forming by high pressure die casting still encounters
challenges because of the limitations of the molding methods. Therefore, developing a new HPDC
route enabling the formation of BMGs with a higher melting point and chemical activity would have
huge engineering and academic significance.

In this study, a novel HPDC method, named the entire process vacuum high pressure die casting
(EPV-HPDC), was developed by modifying just the existing traditional horizontal HPDC equipment.
Various Zr-based BMG plates with a critical thickness of 3 mm were successfully prepared using the
EPV-HPDC and industrial grade purity raw materials. Meanwhile, several industrial BMG parts
with complex shapes that are hard to form using the other forming processes were molded precisely
using the EPV-HPDC process. The results confirm that the EPV-HPDC process is feasible for casting
high-melting-point BMG parts with a higher chemical activity. We anticipate that the newly developed
EPV-HPDC process will facilitate the industrial production and large-scale application of Be-free
Zr-based BMGs.

2. Experimental

2.1. Entire Process Vacuum High Pressure Die Casting (EPV-HPDC) Equipment

The EPV-HPDC equipment was modified based on a standard horizontal cold chamber HPDC
machine (Eontec Co., Ltd, Dongguan, China) with a mold clamping force of 280 T. The schematic
diagram of the developed EPV-HPDC is presented in Figure 1. The entire casting processes,
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including the melting, pouring, filling die, and solidification, are integrated into an airtight chamber,
which ensures the formation of the components in an extreme vacuum environment. The sleeve,
plunger, and mold here were made from heat resistant steel (H13). Unlike the vertical HPDC solution
proposed by Inoue et al. [17,18], in the present horizontal EPV-HPDC, the melting of the mother alloy
is performed in an oxide crucible, which can avoid heating the metal by a sleeve and can improve
the operating temperature range of the equipment. The highest smelting temperature in the present
EPV-HPDC is 1773 K, and the highest casting temperature is 1533 K, which enables the formation
of most of the glass formers. The temperature of the molten metal is detected and controlled using
an infrared sensor. It should be emphasized here that the EPV-HPDC process is different from the
injection of a molding solution of BMGs [11], as well as from the traditional vacuum assisted HPDC [19].
The layout of the vertical and hot crucible in the present EVP-HPDC can guarantee a more uniform
and controllable temperature field during heating, compared with that in the solution of horizontal
and cold crucible proposed by Liquidmetal Technologies, Inc. (Rancho Santa Margarita, CA, USA) [11].
With regard to the traditional vacuum assisted HPDC, it cannot be used to prepare the materials that
are easily oxidized, because the vacuumizing in this process is triggered only when the molten metal
is about to be filled in a mold cavity [19].Materials 2018, 11, x FOR PEER REVIEW  3 of 12 
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Figure 1. Illustration of the EPV-HPDC equipment and operating mode: (a) loading materials and
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2.2. EPV-HPDC Experiment

Several metallic glass formers with a composition (at.%) of Zr55Cu30Ni5Al10 (Zr55),
Zr52.5Ti5Cu17.9Ni14.6Al10 (Vit105), Zr57Nb5Cu15.4Ni12.6Al10 (Vit106), and Zr46.5Cu47.5Al4Co1Sn1

(ZrCu-based, a marginal bulk glass former) were used in the present study to present the forming ability
of the EPV-HPDC method. The master alloys were prepared in 5 kg batches, by induction melting the
mixtures of the respective industrial grade purity elements (purity of zirconium 99.40%, and the others
were 99.99%) and 0.20 at.% rare earth yttrium in a high purity (99.99%) argon atmosphere, and then
were broken into granular feedstock with a size smaller than 30 mm in a general crusher. BMG plates
with different thicknesses (cross-sectional areas of 1 mm× 10 mm, 2 mm× 10 mm, and 3 mm× 10 mm)
were cast directly in a multi-cavity mold using the EPV-HPDC method. The detail EPV-HPDC process
involved several steps. Firstly, the granular feedstock was loaded into the airtight chamber and then
melted using an induction heating system with the vacuum pressure of 10 Pa (Figure 1a). Once the
alloy was fully viscous, it was poured into the shot sleeve with casting temperatures of 1233 K for
Zr55, Vit105, and Vit106, and 1313 K for the ZrCu-based alloy, and then forced into the mold using a
plunger with a velocity of 1.1 m/s (Figure 1b). After filling the die, the molten metal was frozen in the
mold under pressure (~40 MPa), forming a net-shape part (Figure. 1c). A die lubricant was not used in
the EPV-HPDC process. The casting process of the EPV-HPDC in the form of a video is displayed in
the Supplementary Materials.

2.3. Microstructural and Performance Characterization

The structures of the as-cast samples were measured using X-ray diffraction with Cu Kα radiation
(XRD, Brucker Advance D8, Bruker AXS, Billerica, Germany). The thermal stability and crystallization
behavior were characterized using differential scanning calorimetry (DSC, Parkin-Elmer DSC8000,
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Waltham, MA, USA) under a purified argon atmosphere with a heating rate of 20 K/min. The surface
roughness was measured by profilometer (KLA tencor D-300, KLA-Tencor Corporation, Milpitas,
CA, USA). The morphologies of the casting surfaces were observed using a laser scanning confocal
microscope (KEYENCE, VK-X250, Keyence Corporation, Osaka, Japan). The porosity distribution of
the as-cast samples was detected by using an X-ray fluoroscopy (YXLon, Y. Couger, YXLON, Hamburg,
Germany) and a three-dimensional X-ray computer tomography (CT) machine (Diondo, d2, diondo
GmbH, Hattingen, Germany). The compression tests were conducted on a mechanical testing system
with a strain rate of 5 × 10−4 s−1. The compressive samples with an aspect ratio 2:1 were removed
from the intermediate region of the plates with thickness of 1 mm. The fracture surface was observed
using a ZEISS SUPRA 55 Field Emission Scanning Electron Microscope (SEM, Carl Zeiss Microscopy
GmbH, Jena, Germany).

3. Results and Discussion

Figure 2 displays the XRD and DSC patterns of the BMGs prepared using EPV-HPDC. Figure 2a
shows that all of the samples have a board diffraction peak, and no diffraction peak corresponding
crystalline peak is seen, suggesting that an amorphous structure was produced successfully in the Zr55,
Vit105, and Vit106 specimens, with cross-sectional area of 3 mm × 10 mm, as well as in the ZrCu-based
alloy with a cross sectional area of 1 mm × 10 mm by using industrial grade purity raw materials
(Figure 2a). The DSC analysis shows that all of the specimens have a distinct glass transition followed
by a crystallization process (Figure 2b). Glass transition temperature, Tg, is 676 K, 654 K, 670 K, and 699
K, and the crystallization temperature, Tg, is 760.8 K, 730 K, 726 K, and 759 K for Zr55, Vit105, Vit106,
and ZrCu-based BMGs, respectively. The enthalpies of crystallization calculated by the areas of the
crystallization peak are 45.2 ± 2.5 J/g, 43.7 ± 2.8 J/g, 46.4 ± 1.8 J/g, and 53.76 ± 2.1 J/g for the Zr55,
Vit105, Vit106, and ZrCu-based BMGs, respectively. These values are equal to the corresponding ones
fabricated using copper mold suction-casting in the laboratory, confirming that fully glassy structures
have been obtained using the EPV-HPDC process, even in the ZrCu-based BMG with a marginal
glass-forming ability. Although the critical sizes of the BMGs prepared by the EPV-HPDC process
here are smaller than the reported values of the counterparts fabricated by high purity material in
laboratory [20,21], they are comparable to the ones prepared from the industrial purified raw materials.
For instance, a previous study showed that a 6 mm in diameter of rod was the critical size of the Zr55
BMG fabricated from industrial purified raw materials [22]. In this study, the EPV-HPDC process
was capable of forming amorphous plates with a size of 3 mm × 10 mm, of which the equivalent
diameter, determined by

√
4ab/π, is about 6.1 mm, where a and b are the length and width of the

plate, respectively. The results indicate the glass forming ability of EVP-HPDC without drastically
declining, compared with that of suction casting [22], even though the mold temperature in the present
process (533 K) is far higher than that in laboratory (293 K). The relative high glass forming ability
in the EVP-HPDC process is mainly ascribed to the established larger heat transmission coefficient,
resulting from a better thermal contact between the mold and molten metal under pressure [23].

In the past few years, even though various Mg-, La- and Fe-based BMGs have been fabricated
successfully by high pressure die casting process [17], the preparation of the Zr-based BMG by HPDC
is still difficult and is rarely reported, because of the relatively high melting point and oxygen affinity.
In this work, the success in forming Be-free Zr-based BMGs, especially the ZrCu-based glass former,
confirms that the EPV-HPDC process is feasible to fabricate Zr-based BMGs for applications.

Figure 3a displays an image of the typical Zr55 castings (including runner system). It is clearly
seen that the BMG part displays a good surface luster (Figure 3a). Figure 3b displays the local contour
measured by a profilometer. The roughness shows that the Zr55 BMG casting has a low Ra value
(~0.26 µm), which is the same as that of the die cavity (Figure 3b). By comparing the design sizes, it is
found that the dimensional deviation of the various thicknesses of the BMG plates is within ± 0.25%,
of which the magnitude is usually common for the productions manufactured by computer numerical
control (CNC) machining. The high dimensional accuracy and low surface roughness are mainly
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attributed to the characteristics of the EPV-HPDC method, as well as the solidification nature of the
glass forming liquid. On the one hand, the filling and solidification of EPV-HPDC always proceed
under high pressure. As such, the molten metal has the capacity to precisely pattern the complex mold
cavity. On the other hand, the molten metal during cooling is able to maintain the as-filled morphology
with little shrinkage, because of the lack of phase transformation for glass forming liquid during the
vitrification process [4].
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Figure 3. (a) Image of BMG sample (Zr55Cu30Ni5Al10, Zr55) fabricated by the EPV-HPDC process.
The red arrow indicates from where the samples were taken for X-ray diffraction, and the DSC
measurements. All of the breadths of the plates are 10 mm; (b) Profilogram of surface of casting;
(c) detail of a miniature embossing character in the surface of casting; (d) X-ray images from the
representative regions of casting in (a).
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Furthermore, it is found that the EPV-HPDC process can cast even the fine surface feature, such as
the character “2”, with minimum thickness of 250 µm (Figure 3c). Previous studies reported that the
minimum molding section thickness of HPDC for traditional materials, such as aluminium alloys, was
about 2–2.5 mm [24]. The ability to form parts with a thickness of 0.25 mm here indicates that the
present EPV-HPDC process has a huge advantage in casting BMG components with a fine construction.
The high forming ability here is ascribed to the character of the high mold-filling capacity of the glass
former under a low temperature. With regard to a traditional casting alloy, such as an Al-Si alloy,
the filling must be finished before the solidification. Otherwise, the primarily quenched solid would
obstruct the runner of the casting system, leading to the abortion of the shaping of complex structural
especially thin-walled parts. Therefore, the available temperature window for shaping should be
within the casting temperature, Tc, and solidus temperature, Ts [25]. For the glass former, however,
the solidus temperature, Ts, can be as low as Tg (i.e., ~680 K for Zr55). The available temperature
window for shaping is about 557 K, which is several times larger than that of the traditional materials
(~150 K), such as an Al-Si alloy. Therefore, the mold-filling capacity of the bulk metallic glass in the
HPDC process is far larger than that of the traditional casting alloy, and thus has the ability to form a
fine structure with a small thickness.

Furthermore, the porosity distribution in the casting was detected using an X-ray fluoroscopy,
as shown in Figure 3d. Most of the regions display a very uniform structure. No obvious gas pores
were observed in the samples, except for the head region. The relative densities of the BMG samples
fabricated using the EPV-HPDC process are measured to be above 0.98, which is much higher than
the values reported previously in the BMGs (about 0.8) fabricated by the developed die casting
process [17,18], as well as higher than that of the aluminum and magnesium alloy components formed
by the traditional HPDC process [26]. The relative high density is mainly ascribed to using the
optimized process parameters and high vacuum degree during the entire casting process (~10 Pa),
which is far higher than that in the vacuum assisted HPDC (~5 × 103 Pa) [21].

Figure 4a displays the engineering stress–strain curves of the BMGs cast using the EPV-HPDC process.
The fully glassy structural Zr55 BMG displays an ultrahigh strength of 2105± 50 MPa, and a plastic strain
of 1.8 ± 1.4% (Figure 4a). Less plastic strains are detected in the other samples. The fracture strengths
for the Vit105, Vit106, and ZrCu-based BMGs are measured to be 1750 ± 130 MPa, 1720 ± 84 MPa,
and 1950 ± 100 MPa, respectively. These values are comparable to those of the samples cast in the
laboratory (Figure 4b), further confirming that the porosities of the castings are low. But the plasticity
for all of the samples is far lower than that of the castings fabricated by copper mold suction casting.
In the EVP-HPDC process, the molten metal solidifies under a relatively lower cooling rate and
higher solidification pressure compared with the suction casting in the laboratory. The lower cooling
rate provided more time for the supercooling liquid to relax to an “ideal state” possessing less free
volume [27,28]. Furthermore, the high solidification pressure also facilitates the forming of a denser
structure [12]. Studies indicate that the decreasing free volume in the as cast BMGs results in the
formation of less shear bands during deformation, thereby causing a decrease of plasticity [28,29].
Therefore, the BMGs fabricated by EPV-HPDC display a lower plasticity. Figure 4c,d displays the
fracture morphologies of the sample Vit106 and Vit105 fabricated using the EPV-HPDC process.
The fractography displays abundant peak-to-peak dimple patterns, which are typical characteristic
of BMGs. The size of the dimple-like structures on the fracture surface, which can be defined as
average spacing between ridges of dimples surrounding the center of each dimple zone, is ~5 µm and
~7 µm for Vit106 and Vit105, respectively. These values are close to the reported value of the Vitreloy
alloy [30]. Moreover, very few pores were observed in the fractography, which is consistent with the
X-ray images (Figure 3d).
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Figure 4. (a) Engineering stress–strain curves for the Zr55Cu30Ni5Al10 (Zr55), Zr52.5Ti5Cu17.9 Ni14.6Al10

(Vit105), Zr57Nb5Cu15.4Ni12.6Al10 (Vit106), and Zr46.5Cu47.5Al4Co1Sn1 (ZrCu-based) BMG samples,
respectively; (b) comparison of the fracture strengths of BMGs prepared by suction casting and the
EPV-HPDC process by using industrial grade purity elements; (c) SEM of the fracture morphologies of
the sample Vit106; (d) SEM of fracture morphologies of the sample Vit105.

As the filling time of the molten metal into die can be completed within 50 ms in the EVP-HPDC
system, and the critical cooling rate for most of the BMG formers is at a magnitude of 102 K/s [31],
theoretically, any BMGs can be cast into the sophisticated geometries using EPV-HPDC process
to break through the limitation of the trade-off between the cooling rate and the available time
window of shaping. Herein, the EPV-HPDC is applied to produce a real smartphone frame in order
to test its ability to form the complex shape. Figure 5a displays an as-cast smartphone frame and
corresponding EPV-HPDC gating system. The boundary dimension of the smartphone is about
155 mm × 85 mm × 10 mm, and the minimum thickness is about 0.5 mm. It has been found
that the component is formed successfully and displays a good surface smoothness (Figure 5a).
A three dimensional X-ray computed tomography (CT) is employed to detect the defects in the part.
The distribution of the porosity is displayed in Figure 5b. It is found that the porosity is mainly
distributed in some bulges of the part, as indicated by the red arrows (Figure 5b). The morphologies of
the pores are displayed in Figure 5c. It shows that most of the gas pores are globular. The statistics
of the pore sizes are exhibited in Figure 5d. The existed pores mostly have a volume of less 0.1 mm3.
By summing the volumes of the pores, the porosity of the part is estimated to be ~0.9%, which is much
lower than the values reported previously in Mg-based [18], Ca-based [8], and La-based [17] BMGs
(porosity > 10%) fabricated using the developed die casting process.
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Figure 5. (a) Image of Zr55Cu30Ni5Al10 BMGs smartphone frame and the corresponding runner system;
(b) the 3D distribution of the porosity in the smartphone frame, A, B, C, and D denote different regions;
(c) morphologies of the gas pores; (d) statistics of the pores with a different size in casting.

Afterwards, the structure of the smartphone frame was characterized by XRD. Although there are
several pores in the part, the XRD tests from the thickest regions, indicated by the arrows, show that
the as-cast part possesses a completely glassy structure (Figure 6). Previous reports show that gas pores
in casting is an efficient heat-insulating medium that retards heat transfer in the melt, compared with
the regions without porosity, leading to a lower local solidification rate [26], which can thus induce
crystallization. The results indicate that the small number of pores present in the Zr55 BMG have
a negligible impact on the glass forming ability. The success in forming the smartphone frame here
demonstrates that the EPV-HPDC process is feasible to a near-net shape BMG part with sophisticated
geometries, and paves the way for the Zr-based BMGs to be applied in wider fields.
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Then, various Zr-based BMG parts were manufactured using the above glass formers and the
EPV-HPDC process, as shown in Figure 7. The maximum thicknesses of the parts here is smaller than
the corresponding critical size of glass formers, in order to ensure an amorphous structure. Figure 7a
displays a transmission with lots of location holes. In the past, because of the shrinkage of liquid
metal during solidification, a small part with lots of holes requiring a high center position accuracy
and dimensional accuracy is extremely hard or even impossible to be formed by the casting process,
and thus usually needs secondary processing, such as CNC. Our results show that the small shrinkage
of the BMG and high solidification pressure in the EPV-HPDC can ensure that this type of part will
be formed by just directly casting. In addition, it is well known that the thin-walled BMGs parts
with a hollow structure are hard to form using the existing casting process, even using glass formers
with an ultrahigh glass forming ability, such as Vit 1 containing toxic beryllium [4]. By using the
strategies of filling the die in milliseconds and of solidification under high pressure, some hollow
and thin-walled BMG parts, such as the earphone, are fabricated precisely using the EPV-HPDC
process, and are displayed in Figure 7b,c. With regard to implant materials, the most common metals
used are stainless steels, Co-Cr alloys, and titanium alloys [32]. BMGs are considered as a promising
alternative type of material because of their outstanding mechanical properties, and corrosion and
wear resistance [32]. Previously, because of the lack of corresponding molding methods, the excellent
properties of BMG were limited in biomedical applications. Figure 7d–f displays some images of
the amorphous implants shaped by the EPV-HPDC process. Some cases with a length dimension
of 270 mm and with some fine embossments were formed successfully in one step, as shown in
Figure 7e,f. According to the previous research, the cellular response to an implant intensively depends
on its surface topography [33,34]. The ease in fabrication of the controlled topographical features on
BMGs provides a practical possibility to functionalize the surfaces using the directly casting method
(Figure 7f), rather than secondary processing like imprinting and microfabrication.
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Figure 7. BMG parts with various shapes and used in different fields: (a) BMG transmission used in a
notebook computer fabricated by Vit106; (b) thin-walled and hollow BMG earphones (Vit106); (c) Vit
106 thin-walled BMG samples coated in different colors; (d–f) biomedical implants fabricated using
Vit105 BMGs.

The production efficiency and part-cost economy are critical when a part is applied to engineering
in a large scale. For efficiency, the EPV-HPDC process enables most of the near-net shaped BMG parts to
be accomplished within 90 s, which is several times shorter than that using the existing method, such as
thermoplastic forming [35] and the additive manufacturing process [36,37], and is comparable to that
of the injection molding of BMGs. With regard to the economy, indeed, the raw material cost of BMGs
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is higher than that of the conventional materials, such as stainless steel, even though industrial-grade
materials were used here. After considering the machining cost, however, the cost of BMG parts is
competitive compared with that of a finished product manufactured using conventional materials and
their associated processing methods. Taking the BMG smartphone frame as a sample, it was usually
manufactured using the computer numerical control (CNC) machining of stainless steel in order to
gain a high dimensional accuracy, high strength, excellent scratch resistance, and corrosion resistance.
By this approach, tens of steps, including forging, heat treatment, machining, polishing, and so on,
are needed. Consequently, the processing of these parts is time-consuming and costly. By using the
EPV-HPDC process, it is found that equal or even higher levels of performance can be gained just by
using one-step molding, and subsequently, a polishing treatment. On account of the high accuracy,
efficiency, and economy of EPV-HPDC process, most of the above BMGs parts, such as the smartphone
frame (Figure 5), transmission (Figure 7a), and earphones (Figure 7f), are being mass-produced in
DongGuan Eontec Co., Ltd. (Dongguan, China). Our results show that the performance of the product
is extremely stable (finished product ratio > 90%), demonstrating that the layout of the vertical and hot
crucible in the present EVP-HPDC is reasonable and feasible for the industrial production of BMGs.

Finally, it should be emphasized that the heat conductivity of the used steel mold (~33 W/mK) is
only one-seventh of the copper mold (~230 W/mK) in suction casting [22], and an industrial purified
raw material was used in the present work. With further improvement on the performances of
the equipment, together with using a high purity material, the EPV-HPDC process can be used to
fabricate BMGs with a wide range of compositions. As a vacuum forming method, EPV-HPDC offers a
novel pathway for manufacturing other advanced materials, such as metallic glass matrix composites,
high-entropy alloys, and nanostructured materials, in complex shapes. Furthermore, the flowing
speed of the supercooled liquid and solidification pressure in the EPV-HPDC process can reach tens of
meters per second and hundreds of megapascal [16], which are orders of magnitude larger than that of
the common fabricating way of the BMGs, such as suction casting. Hence, the EPV-HPDC process
provides access to study some of the critical scientific issues, such as the extreme fluid dynamics of
glass forming liquid, shear-induced structural changes in fast-relaxing atomic liquids and melt [38,39],
and relaxation kinetics of supercooled glass forming liquid under pressure [40], which are fundamental
concerns for amorphous materials. As the EPV-HPDC equipment can be modified by standardized
HPDC, the present approach is able to be implemented or reproduced easier than that of the previous
reported routes [11,17,18]. Foreseeably, the EPV-HPDC process would have a huge impact on the
discipline of amorphous alloys, as well as on our daily life.

4. Conclusions

In the present work, a novel but more common forming approach, named the entire process
vacuum high pressure die casting (EPV-HPDC), was developed to prepare Zr-based BMGs possessing a
higher melting point and chemical activity. The results indicate that the EPV-HPDC process can be used
to produce a glassy structure for most of the common Zr-based bulk glass formers, even for marginal
bulk glass formers from industrial grade raw material without a deterioration of strength. Various
complex, especially thin-walled shaped Zr-based BMG parts, that are hard to be near-net shaped using
the existing technologies, are formed by the EPV-HPDC process. It has been found that the novel
forming approach has huge advantages over the dimensional accuracy of the as-cast parts, production
efficiency, and product cost, compared with the other existing approaches. The development of the
EPV-HPDC process paves the way for the large-scale industrial production and application of Zr-based
BMGs, as well as other advanced materials.
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