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ABSTRACT 1 

Purpose: Increasing vegetable intake and diversity are recommended to maintain better health. Evidence for the health 2 

benefits of vegetable diversity, separate from total intake, is scarce. We aimed to investigate the associations of 3 

vegetable diversity with subclinical measures of atherosclerosis and atherosclerotic vascular disease (ASVD) mortality. 4 

Methods: Vegetable diversity was assessed within a validated food frequency questionnaire using a single question, 5 

‘How many different vegetables do you usually consume each day (<1 to ≥6 per day)’. Cox proportional hazards 6 

modelling was used to examine the association between vegetable diversity and ASVD mortality in 1,226 women aged 7 

≥70 years without clinical ASVD or diabetes mellitus at baseline (1998). In 2001, B-mode ultrasonography was used to 8 

measure common carotid artery intima-media thickness (CCA-IMT) (n=954) and carotid plaque severity (n=968).  9 

Results: Over 15 years (15,947 person-years) of follow-up, 238 ASVD-related deaths were recorded. For each 10 

additional different vegetable consumed per day there was a 17% lower hazard for ASVD mortality (HR=0.83, 11 

95%CI=0.78, 0.93, P=0.001); a 1.7% lower mean CCA-IMT (B ± SE: -0.013 ± 0.004, P<0.001); and a 1.8% lower 12 

maximum CCA-IMT (B ± SE: -0.017 ± 0.004, P<0.001). Further adjustment for total vegetable intake attenuated the 13 

association between vegetable diversity and ASVD mortality (P=0.114), but not CCA-IMT (P=0.024). No association 14 

was observed between vegetable diversity and carotid plaque severity (P>0.05).  15 

Conclusions: Vegetable diversity may contribute to benefits in lowering risk of ASVD in older women. The reduction 16 

in risk is partly explained by increased total vegetable consumption. 17 

Keywords: cardiovascular diseases, atherosclerosis, mortality, vegetables, diversity, older women   18 
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INTRODUCTION 19 

Atherosclerotic vascular diseases (ASVD), such as ischaemic heart disease and cerebrovascular disease, are the leading 20 

causes of morbidity and mortality worldwide [1]. Higher intakes of vegetables are consistently associated with a lower 21 

risk of atherosclerotic-related diseases [2-5]. This evidence has contributed to dietary recommendations around the 22 

world to increase vegetable intake for the prevention of chronic diseases. Despite widespread and long-running health 23 

promotion campaigns, vegetable intake amongst the population is still suboptimal. Efforts to increase vegetable intake 24 

are urgently required.  25 

Vegetables contain a wide range of vitamins, minerals, fibres and phytochemicals that contribute to vascular health [6]. 26 

In particular, meta-analyses have demonstrated that fibre [7], magnesium [8], potassium [9], and flavonoids [10] are 27 

associated with a reduced risk of vascular diseases. Furthermore, available data suggest vitamin K [11], vitamin C [12], 28 

nitrate [13,14], and organosulphur compounds [15] may also have vascular health benefits. These protective 29 

components are found in various concentrations in different vegetables. This is the basis for dietary recommendations to 30 

increase diversity of vegetables in the diet. However, few studies have investigated the direct relationship between 31 

vegetable diversity and health outcomes.  32 

Overall diet diversity has been shown to be associated with better health outcomes [16-18]. However, greater diet 33 

diversity does not necessarily equate to greater diet quality [19]. For example, greater diversity of unhealthy foods will 34 

compromise diet quality. Increasing total amount and diversity of vegetable intake are both considered integral 35 

components to diet quality. Previously epidemiological studies have shown inverse associations between vegetable 36 

diversity and cancer incidence [20] and inflammation [21]. However, there is limited evidence for ASVD-related 37 

outcomes, especially in older female populations [22,23]. Therefore, this study aimed to investigate the association of 38 

vegetable diversity in the diet of older women, with risk of ASVD mortality over 15 years of follow-up. We also 39 

investigated the association of vegetable diversity with subclinical measures of atherosclerosis in a subgroup of this 40 

population.  41 
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SUBJECTS AND METHODS 42 

Ethics 43 

The Perth Longitudinal Study of Aging in Women (PLSAW) was approved by the Human Ethics Committee of The 44 

University of Western Australia. Written informed consent was obtained from each participant. Human ethics approval 45 

for the use of linked data were provided by the Human Research Ethics Committee of the Western Australian 46 

Department of Health (project #2009/24). 47 

Study population 48 

This study consisted of participants within a 15-year prospective population-based cohort study (PLSAW) and has been 49 

described elsewhere [24]. Participants (n=1,500) were women aged 70-85 years at baseline (1998) living in Perth, 50 

Western Australia. Missing dietary data and exclusion of implausible energy intakes (<2,100kJ [500kcal] or >14,700kJ 51 

[3,500kcal]) resulted in 1,468 (97.9%) women being included for the assessment of baseline prevalence of ASVD and 52 

diabetes mellitus. Women with prevalent ASVD (n=152), diabetes mellitus (n=69) or both (n=21) at baseline were 53 

excluded, resulting 1,226 (81.7%) of participants being included for the ASVD mortality analysis. Of these women, 54 

carotid plaque was assessed in 968 (79.0%) women and common carotid artery intima-media thickness (CCA-IMT) was 55 

assessed in 954 (77.8%) women in 2001 (Figure 1). Baseline prevalence of ASVD and diabetes mellitus were a prior 56 

exclusion criteria as clinical diagnosis may have resulted in dietary changes and thereby attenuating the outcomes of 57 

interest. Baseline prevalence of ASVD was determined from principal hospital discharge diagnosis codes from 1980-58 

1998 using the Hospital Morbidity Data Collection, linked via the Western Australian Data Linkage System (WADLS). 59 

Diagnosis codes for ASVD have been described elsewhere [24]. Baseline prevalence of diabetes mellitus was 60 

determined from medication use and was coded (T89001-T90009) using the International Classification of Primary 61 

Care – Plus (ICPC-Plus) method [25]. 62 

Atherosclerotic vascular disease mortality assessment 63 

The primary outcome of this study was any death relating to ASVD. Linked mortality data were used to retrieve coded 64 

multiple cause of death data over 15 years, as previously described [24]. Any ASVD coded death from the primary or 65 

contributing causes of death were considered an ASVD-related death. Atherosclerotic vascular disease deaths were 66 

defined using diagnosis codes from the ICD-9-CM [26] and the International Statistical Classification of Diseases and 67 

Related Health Problems, 10th Revision, Australian Modification (ICD-10-AM) [27]. Diagnosis codes included deaths 68 

attributed to ischaemic heart disease (ICD-9-CM codes 410-414 and ICD-10-AM codes I20-I25); heart failure (ICD-9-69 

CM code 428 and ICD-10-AM code I50); cerebrovascular disease, excluding haemorrhage (ICD-9-CM codes 433-438 70 
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and ICD-10-AM codes I63-I69, G45.9); and peripheral arterial disease (ICD-9-CM codes 440-444 and ICD-10-AM 71 

codes I70-I74). 72 

Common carotid artery intima-media thickness and carotid plaque severity 73 

Ultrasounds were conducted by the same sonographer using an 8.0‐mHz linear array transducer attached to an Acuson 74 

Sequoia 512 ultrasound machine (Mountain View, CA, USA) and a standard image acquisition protocol [28]. To 75 

account for asymmetrical wall thickening, images were taken from three different angles (anterolateral, lateral and 76 

posterolateral) of the far walls of the distal 2 cm of the left and right common carotid arteries. The same technician 77 

conducted off-line analyses on all end-diastolic images using a semi-automated edge-detection software program. The 78 

mean and maximum CCA‐IMT (mm) from each of the six images (three on either side) were averaged to give an 79 

overall mean CCA‐IMT and maximum CCA-IMT. A short-term precision study was undertaken in 20 non-trial subjects 80 

using the same sonographer and technician. Repeated IMT measurements were made between 0 and 31 days apart 81 

(mean 10.3 days). The coefficient of variation for the repeat measures was 5.98% (calculated using the root-mean-82 

square method) [29]. Focal plaque was then determined by examining the entire carotid tree (common carotid artery, 83 

carotid bulb, internal and external carotid). Carotid plaque severity was categorised according to the degree of stenosis: 84 

none to less advanced (<25% stenosis) or more advanced (≥25% stenosis) [30]. 85 

Dietary intake assessment 86 

A semi-quantitative food frequency questionnaire (FFQ) developed by the Cancer Council of Victoria [31] was used to 87 

assess dietary intake at baseline (1998), 5 years (2003), and 7 years (2005). The FFQ has been validated against two 7-88 

day weighed food records and was found to have reasonable correlations for all nutrients, except retinol [32]. The poor 89 

agreement for retinol was due to the inclusion of liver in the two weighed food records. Liver was not an item on the 90 

FFQ. Although total vegetable intake has not been specifically validated for this FFQ, beta-carotene, fibre and vitamin 91 

C all had reasonably good agreement [32]. Furthermore, the average servings of vegetable intake in this cohort (mean 92 

2.6 servings) is the same for the Australian population of the same sex and similar age (75 years and over) [33].  93 

The questionnaire comprised of 74 food items (including 25 vegetable items) and used four photographs of commonly 94 

consumed foods (potato, vegetables, steak, and casserole) to estimate portion size. In total there were 24/25 vegetable 95 

items listed in the FFQ that were used to estimate total vegetable intake (g/d) (Supplemental Table 1). The estimation 96 

of total vegetable intake did not include ‘Potatoes, roasted or fried, including hot chips’ as hot chips are not 97 

recommended as part of a healthy diet. ‘Potatoes cooked without fat’ were included. Energy (kJ/d), alcohol (g/d), and 98 

nutrient intakes were calculated by the Cancer Council of Victoria using the NUTTAB95 food composition database 99 

[35] and other data where necessary. Participants were supervised whilst completing the FFQ. Food models, food 100 
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charts, measuring cups, and measuring spoons were provided to improve accuracy of reported food consumption. 101 

Vegetable diversity (number/d) was obtained within the FFQ using the question, ‘How many different vegetables do 102 

you usually eat per day?’. Responses ranged from <1 different vegetable per day to ≥6 different vegetables per day and 103 

were coded from 0 to 6.  104 

Nutrient-Rich Foods Index 105 

We assessed diet quality using the Nutrient-Rich Foods Index [36]. This index was calculated using the Nutrient 106 

Reference Values (NRVs) for Australia and New Zealand based on adult females aged >70 y [37], as previously 107 

described [13]. 108 

Baseline demographic and clinical assessment 109 

Body weight (kg) and height (m) were measured using digital scales and a wall-mounted stadiometer. Level of physical 110 

activity (kJ/d) was assessed using a questionnaire and calculated using a validated method, as previously described [24]. 111 

Smoking history was coded as non-smoker or prior/current smoker if they had consumed more than one cigarette per 112 

day for more than three months. Socioeconomic status (SES) was calculated using the Socioeconomic Indexes for Areas 113 

developed by the Australian Bureau of Statistics [38], as previously described [24]. A detailed list of medications was 114 

obtained from each participant. Medication use was coded using the ICPC-Plus method [25]. Antihypertensive, statin 115 

and low-dose aspirin medications were used to adjust for cardiovascular risk factors such as hypertension and 116 

dyslipidaemia. Blood pressure was measured in 1,190 (97.1%) participants. Participants were rested for 5 minutes 117 

before blood pressure was taken on the right arm using a mercury column manometer whilst participants were in an 118 

upright position [39]. Baseline serum creatinine was analysed in 1,106 (90.2%) participants using an isotope dilution 119 

mass spectrometry (IDMS) traceable Jaffe kinetic assay for creatinine on a Hitachi 917 analyser (Roche Diagnostics 120 

GmbH, Mannheim, Germany). Estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney 121 

Disease Epidemiology Collaboration (CKD-EPI) equation [40]. Total cholesterol, high-density lipoprotein (HDL) 122 

cholesterol, and triglyceride concentrations were analysed in 895 (73.0%) participants using a Hitachi 917 auto analyser 123 

(Roche Diagnostics, Mannheim, Germany). Low-density lipoprotein (LDL) cholesterol was calculated in 888 (72.4%) 124 

participants using the Friedewald’s method [41].  125 

Framingham 10-year general cardiovascular risk scores 126 

The Framingham risk scores (FRS) were calculated using body mass index data in 1,188 participants based on the 127 

publication by D’Agostino and others [42], as previously described [24]. Scores were confirmed using an online 128 

calculator developed by D’Agostino and Pencina [42]. 129 

Statistics 130 
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Statistical significance was set at a 2-sided Type 1 error rate of P<0.05. All data were analysed using IBM SPSS 131 

Statistics for Windows, version 21.0 (IBM) and STATA, version 15.1 (StataCorp LLC). Descriptive statistics of 132 

normally distributed continuous variables were expressed as mean ± standard deviation (SD); non-normally distributed 133 

continuous variables were expressed as median and interquartile range; and categorical variables as number and 134 

proportion (%). Differences in baseline characteristics across vegetable diversity categories were tested using one-way 135 

ANOVA for normally distributed continuous variables and the Kruskal-Wallis test for non-normally distributed 136 

variables. Chi-squared test for independence was used to test for differences in baseline characteristics among vegetable 137 

serving groups for categorical variables. 138 

The primary outcome of the study was any death relating to ASVD. Complete follow-up of death records were available 139 

for all participants that remained residents in Western Australia. The follow-up time for each participant was calculated 140 

in days from their baseline visit until their last day of follow-up, which was their date of death or 15-years of follow up. 141 

Cox proportional hazards modelling was used to assess the association between baseline vegetable diversity (number/d) 142 

and ASVD mortality using four models of adjustment: (i) unadjusted; (ii) age- and energy intake-adjusted; (iii) 143 

multivariable-adjusted; and (iv) multivariable-adjusted plus total vegetable intake (g/d). Covariates included in the 144 

multivariable-adjusted model were selected on an a priori basis and included age (years), BMI (kg/m2), physical 145 

activity (kJ/d expended), alcohol intake (g/d), smoking history (yes/no), socioeconomic status (ordinal), the CAlcium 146 

Intake Fracture Outcome Study (CAIFOS) supplementation group of calcium vs. placebo, anti-hypertensive medication 147 

(yes/no), statin medication (yes/no), low-dose aspirin (yes/no), CKD-EPI eGFR (ml/min/1.73m2), and energy intake 148 

(kJ/d). The randomisation of participants to the CAIFOS supplementation group of calcium vs. placebo from the first 5 149 

years of the study was included as a covariate to take into account any confounding introduced. Vegetable diversity 150 

(number/d) was further explored by separating the variable into three groups (≤3 number/d, 4 number/d, and ≥5 151 

number/d) and entered as a categorical variable in the three models of adjustment. The three groups were based on an 152 

approximately equal number of women in each of the three response categories. We tested for a trend using the median 153 

number of vegetable diversity within each group in separate Cox proportional hazards models. Cox proportional 154 

hazards assumptions were tested using the Schoenfeld’s global test. No violations were detected (P=0.359).  155 

Linear regression was used to investigate the association between CCA-IMT (mean and maximum) and vegetable 156 

diversity. The association of focal plaque severity (none/minimum versus moderate/high) and vegetable diversity was 157 

assessed using binary logistic regression.  158 

Sensitivity analyses 159 
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Reverse causality bias was explored for ASVD mortality by excluding all deaths that occurred in the first 24 months of 160 

follow-up and the multivariable-adjusted analysis repeated. To adjust for the estimated 10-year risk of developing 161 

cardiovascular disease, the FRS was used in multivariable-adjusted models for ASVD mortality and CCA-IMT (mean 162 

and maximum). The multivariable-adjusted model consisted of all previously described covariates except for age, BMI, 163 

antihypertensive medication and smoking history as the FRS takes into account the participants’ age, BMI, untreated 164 

systolic blood pressure and current smoking status. 165 

The relationship between vegetable diversity (number/d) and total vegetable intake (g/d) was investigated using 166 

Spearman’s rank-order correlation (rho). An interaction term between vegetable diversity (number/d) and total 167 

vegetable intake (g/d) was evaluated for ASVD mortality and CCA-IMT (mean and maximum) using the multivariable-168 

adjusted model. The interaction was further explored by running the multivariable-adjusted analysis for vegetable 169 

diversity (number/d) stratified by low (<2 servings), moderate (2 to <3 servings) and high (≥3 servings) total vegetable 170 

intakes.  171 

Since vegetable diversity may be a surrogate marker for a healthier diet, in separate multivariable-adjusted models for 172 

ASVD mortality and CCA-IMT (mean and maximum), we further adjusted for diet quality using the Nutrient-Rich 173 

Foods Index. We also considered the impact of individual dietary confounders by including intakes of fish, nuts, fruit 174 

[43], fibre, potassium, magnesium, vegetable-derived nitrate [13,14] and red meat on a variable-by-variable basis in 175 

multivariable-adjusted models for ASVD mortality and CCA-IMT (mean and maximum). We also considered the 176 

impact of fish, nuts, fruit and red meat entered together in a multivariable-adjusted model for ASVD mortality and 177 

CCA-IMT (mean and maximum). To account for possible change in vegetable diversity during the 15 years of follow-178 

up, the average of vegetable diversity across baseline (1998), 5 years (2003), and 7 years (2005) was used in a 179 

multivariable-adjusted Cox proportional hazards model for ASVD mortality. To explore whether the relationship 180 

between vegetable diversity and any ASVD-related death, assessed using multiple cause of death data, was not due to 181 

vegetable diversity being associated with other causes of death, all-cause mortality and non-ASVD related mortality 182 

were investigated in multivariable-adjusted Cox proportional hazards models. Since vitamin D has been associated with 183 

subclinical atherosclerosis [44], we excluded participants that had received 1.2 g calcium carbonate plus 1000 IU of 184 

vitamin D (n=28) and repeated the multivariable-adjusted analyses for ASVD mortality and CCA-IMT (mean and 185 

maximum).  186 
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RESULTS 187 

Characteristics of study population 188 

The flow chart for participant selection is presented in Figure 1. Baseline participant demographics, medication use and 189 

biochemical analyses of all 1,226 study participants and by categories of vegetable diversity are presented in Table 1. 190 

These data did not identify any major differences in baseline cardiovascular risk. Most dietary intakes were significantly 191 

different across vegetable diversity categories (P<0.05) (Table 2). In particular, the high diversity group consumed 192 

more fish, nuts, fruit, fibre, potassium, and magnesium. The median (IQR) number of different vegetables consumed 193 

each day was 4.0 (3.0-5.0) and mean (SD) total vegetable intake was 196.5 (78.9) g/d (~2.6 servings/d).  194 

Atherosclerotic vascular disease mortality 195 

Over 15,947 person-years of follow-up (mean 13 years), there were 238 (19.4%) deaths relating to ASVD. Vegetable 196 

diversity (number/d) was inversely associated with ASVD mortality (P≤0.001). In the multivariable-adjusted model, for 197 

each additional different vegetable consumed per day there was a 17% lower hazard for ASVD mortality (Table 3). 198 

This relationship was attenuated after further adjustment for total vegetable intake (P=0.114) (Table 3). In categorical 199 

analyses (≤3 number/d, 4 number/d, and ≥5 number/d), there were significant trends between vegetable diversity and 200 

ASVD mortality in unadjusted (Ptrend<0.001), age- and energy intake-adjusted (Ptrend=0.001), and multivariable-adjusted 201 

(Ptrend=0.001) models (Table 3; Figure 2). This relationship was attenuated after further adjustment for total vegetable 202 

intake (P=0.074) (Table 3). 203 

When excluding participants who died in the first 24 months of the study (n=17), vegetable diversity (number/d) 204 

remained inversely associated with ASVD mortality (multivariable-adjusted HR=0.84, 95%CI 0.75, 0.94, P=0.003). 205 

Separate analysis that adjusted for the FRS did not change the interpretation of the association between vegetable 206 

diversity (number/d) and ASVD mortality (HR=0.81, 95%CI 0.73, 0.91, P<0.001).  207 

There was a strong, positive correlation between vegetable diversity (number/d) and the total amount of vegetables (g/d) 208 

consumed (rho=0.77, P<0.001). There was also weak evidence for an interaction between vegetable diversity 209 

(number/d) and total vegetable intake (g/d) for ASVD mortality in the multivariable-adjusted model (Pinteraction=0.081). 210 

ASVD mortality was therefore further explored by running the multivariable-adjusted analysis stratified by low (<2 211 

servings), moderate (2 to <3 servings) and high (≥3 servings) total vegetable intakes. Benefits of vegetable diversity 212 

(number/d) were most evident among women with low total vegetable intakes (≤2 servings/d) (Table 4). However, 213 

given the lack of a statistically significant interaction in addition to overlapping confidence intervals in the stratified 214 

analysis, no definite differences can be confirmed. 215 
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Additional adjustment for diet quality, using the Nutrient-Rich Foods Index, did not change the interpretation of the 216 

association between vegetable diversity (number/d) and ASVD mortality (multivariable-adjusted HR=0.88, 95%CI 217 

0.77, 0.99, P=0.038). Separate analyses that adjusted for individual dietary confounders (fish, nuts, fruit, fibre, 218 

potassium, magnesium, vegetable-derived nitrate and red meat) did not augment or attenuate the association between 219 

vegetable diversity (number/d) and ASVD mortality (Table 5).  220 

To account for possible change in vegetable diversity during the 15 years of follow-up, the average was calculated 221 

across all three time points (baseline, 5 years, and 7 years) and entered in a multivariable-adjusted Cox proportional 222 

hazards model for ASVD mortality. This did not alter the interpretation of the association between baseline values and 223 

ASVD mortality (HR=0.80, 95%CI 0.70, 0.92, P=0.001). To explore whether the relationship between vegetable 224 

diversity and any ASVD-related death, assessed using multiple cause of death data, was not due to vegetable diversity 225 

being associated with other causes of death, non-ASVD related mortality was investigated in a multivariable-adjusted 226 

Cox proportional hazards model. Vegetable diversity (number/d) was inversely associated with all-cause mortality 227 

(n=473) (multivariable-adjusted HR=0.89, 95%CI 0.82, 0.92, P=0.002), but not associated with non-ASVD mortality 228 

(n=235) (multivariable-adjusted HR=0.94, 0.84, 1.05, P=0.285). Lastly, exclusion of participants that had received 1.2 g 229 

calcium carbonate plus 1000 IU of vitamin D (n=28) did not change the interpretation of the association between 230 

vegetable diversity (number/d) and ASVD mortality (multivariable-adjusted HR=0.84, 95%CI 0.75, 0.94, P=0.003). 231 

Common carotid artery intima-media thickness 232 

At year three of the study, mean (SD) mean CCA-IMT was 0.778 (0.129) mm and mean (SD) maximum CCA-IMT was 233 

0.922 (0.152) mm. In linear regression, for all models of adjustment, vegetable diversity (number/d) was inversely 234 

associated with mean and maximum CCA-IMT (Table 6). For each increase in different vegetable consumed per day 235 

there was an associated 0.013 mm (1.8%) lower mean CCA-IMT (P<0.001) and 0.017 mm (1.8%) lower maximum 236 

CCA-IMT (P<0.001) in multivariable-adjusted models. These relationships were independent of total vegetable intake 237 

(P<0.05 for both) (Table 6). Participants consuming ≥5 different vegetables per day had approximately 0.037 mm 238 

(4.8%) lower mean CCA-IMT and 0.047 mm (5.1%) lower maximum CCA-IMT compared to participants consuming 239 

≤3 different vegetables per day. This relationship was attenuated after further adjustment for total vegetable intake 240 

(P>0.05 for both) (Table 6).  241 

Separate analyses that adjusted for the FRS did not change the interpretation of the association between vegetable 242 

diversity (number/d) and mean CCA-IMT (unstandardized ß ± SE: -0.013 ± 0.003, P<0.001) and maximum CCA-IMT 243 

(unstandardized ß ± SE: -0.017 ± 0.004, P<0.001). In multivariable-adjusted models, there was no evidence of an 244 
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interaction between vegetable diversity (number/d) and total vegetable intake (g/d) for mean CCA-IMT 245 

(Pinteraction=0.848) and maximum CCA-IMT (Pinteraction=0.678).  246 

Additional adjustment for diet quality, using the Nutrient-Rich Foods Index, did not change the interpretation of the 247 

association between vegetable diversity (number/d) and mean CCA-IMT (unstandardized ß ± SE: -0.012 ± 0.004, 248 

P=0.003) and maximum CCA-IMT (unstandardized ß ± SE: -0.016 ± 0.005, P=0.001). Separate analyses that adjusted 249 

for individual dietary confounders (fish, nuts, fruit, fibre, potassium, magnesium, vegetable-derived nitrate and red 250 

meat) did not augment or attenuate the association between vegetable diversity (number/d) and CCA-IMT (mean and 251 

maximum) (Table 7). 252 

Exclusion of participants that had received 1.2 g calcium carbonate plus 1000 IU of vitamin D (n=28) did not change 253 

the interpretation of the association between vegetable diversity (number/d) and mean CCA-IMT (unstandardized ß=-254 

0.013, SE=0.004, P<0.001) and maximum CCA-IMT (unstandardized ß=-0.017, SE=0.004, P<0.001). 255 

Carotid plaque severity 256 

Moderate to severe carotid stenosis (≥25% stenosis) was present in 120/968 (12.4%) of participants and none to 257 

minimal carotid stenosis (<25% stenosis) was present in 848/968 (87.6%). Vegetable diversity was not associated with 258 

carotid plaque severity (Table 8).   259 
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DISCUSSION 260 

In this prospective cohort study of older adult women, we demonstrated that diversity of vegetable intake was inversely 261 

associated with ASVD mortality and CCA-IMT, a subclinical measure of atherosclerotic arterial wall thickening. These 262 

relationships were independent of lifestyle and cardiovascular risk factors as well as the intake of nutrient-rich foods 263 

associated with cardiovascular health. There was evidence that vegetable diversity was independent of total vegetable 264 

intake for CCA-IMT. However, this was not evident for ASVD mortality. There was some evidence to suggest that 265 

vegetable diversity might provide the greatest benefit for those consuming low vegetable intakes.  266 

Diet diversity has been recommended for decades for its health benefits towards lowering risk of chronic diseases 267 

[19,45-48]. The rationale behind public health messages to increase diversity within the diet is that different foods 268 

contain different types and amounts of vitamins, minerals, fibres and phytochemicals that have been individually linked 269 

with lower chronic disease risk. Although many studies have linked diet diversity with chronic disease risk reduction, 270 

the benefits of diversity within the diet have not been fully elucidated. For example, some studies have linked higher 271 

diet diversity with excess energy intake and adverse health outcomes [49]. It is important to note, higher diet diversity 272 

does not necessarily equate to higher diet quality, which is likely a more important determinant for health outcomes 273 

[19]. Increasing amount and diversity of vegetables in the diet are both considered major components for increasing diet 274 

quality. Whether diversity of vegetable intake, separate from total amount and separate from fruit intake, is important 275 

for vascular health has yet to be established. Our study is one of only a few studies investigating the relationship of 276 

vegetable diversity, separate from fruit intake, with both subclinical and clinical vascular disease.  277 

In a large prospective study of 71,141 women from the Nurses’ Health Study and 42,135 men from the Health 278 

Professionals Follow-up Study, there was no evidence that quantity-adjusted fruit and vegetable diversity was 279 

associated with coronary heart disease (CHD) [50]. In another large prospective study (n=20,069 men and women), 280 

higher diversity of fruit and vegetables, independent of quantity, was not associated with CHD and stroke [51]. These 281 

results suggest quantity rather than diversity seem to be more important. However, it is hard to establish which one is 282 

more important, as quantity and diversity of fruit and vegetables are often highly correlated [51], and it is likely that 283 

both are important. More recently, studies have investigated vegetable diversity, separate from fruit intake. Conrad and 284 

colleagues found vegetable diversity and amount were both inversely associated with prevalent coronary heart disease, 285 

but not stroke or diabetes, in 38,981 adults from the National Health and Nutrition Examination Survey (NHANES) 286 

[52]. However, over a mean follow-up of 6.5 years greater vegetable amount, but not diversity, was inversely associated 287 

with all-cause, cardiovascular disease and coronary heart disease mortality [53]. 288 
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To our knowledge, no studies have evaluated the relationship between intake of vegetable diversity and subclinical 289 

measures of atherosclerosis. Several studies have evaluated the relationship of vegetable diversity with inflammatory 290 

biomarkers, such as C-reactive protein (CRP) [21,22]. Inflammation has been proposed as a major contributor in 291 

atherosclerosis progression [54,55]. In a cross-sectional study of Puerto Rican adults (45-75 years), fruit and vegetable 292 

diversity was inversely associated with serum CRP concentrations [22]. This relationship remained after adjustment for 293 

confounding factors including total fruit and vegetable intake. In another cross-sectional study investigating the 294 

relationship of fruit and vegetable diversity with low-grade inflammation in 412 adolescents, greater vegetable diversity 295 

(≥13 categories per month), but not fruit diversity, was associated with a lower odds of having higher serum CRP 296 

concentrations (≤6 categories per month) [21]. This relationship was independent of total vegetable intake. These 297 

studies suggest higher diversity of vegetable intake, independent of total amount, may lower inflammation. Whether 298 

this translates to reducing the progression of atherosclerosis is yet to be established. 299 

Although vegetable diversity has not been previously studied with subclinical measures of atherosclerosis, overall diet 300 

diversity has been investigated [56]. Hoebeeck et al [56] found higher diet diversity was inversely associated with 301 

femoral atherosclerosis in middle-aged (mean age: 46 years) men (n=1200) and women (n=1287). However, this 302 

relationship was not observed for carotid atherosclerosis, carotid plaque, carotid IMT, femoral plaque, or femoral IMT 303 

[56]. Other cardiovascular-related outcomes, such as type 2 diabetes have also been studied with overall diet diversity. 304 

Danquash et al [57] investigated the associations of between- and within- food group diversity with type 2 diabetes 305 

among Ghanaian migrants in Europe. The authors reported an inverse association between a constructed Food Variety 306 

Score (0-20) and type 2 diabetes adjusted for socio-demographic, lifestyle, and anthropometric factors. This Food 307 

Variety Score reflected the number of different food groups consumed on a weekly basis.  308 

There are several strengths to our study. Participants were consuming an average 2.6 servings of vegetables per day, 309 

which is the same for Australian women 75 years and over [33]. Such findings suggest that the results of our study may 310 

be applicable to a large proportion of Australian women. Dietary intake, including intake of vegetable diversity, was 311 

assessed at different time points throughout the 15-year follow-up period. Combining these data, which was completed 312 

as a sensitivity analysis, reduces bias associated with measurement error and misclassification. In addition, given the 313 

age of the participants and the extensive follow-up period, a high rate of deaths relating to ASVD was present, 314 

increasing the power to detect an association. Furthermore, follow-up of all death records for women that remained in 315 

Western Australia were obtained. This was likely most women given the age of participants and minimises the 316 

likelihood of loss to follow-up bias. 317 

Several limitations need to be considered when interpreting the findings from this study. When categorising participants 318 

into the vegetable diversity groups, this resulted in differences in other food and nutrient intakes, including total energy 319 
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intake. We attempted to address this by adjusting for total energy intake and other confounding factors in multivariable-320 

adjusted models. Although total energy intake was significantly higher among women consuming the highest diversity 321 

of vegetables, BMI was similar. This implies that individuals consuming higher vegetable diversity and hence higher 322 

energy intake should have been more physically active. However, physical activity levels were similar across the 323 

vegetable diversity groups. This suggests the physical activity questionnaire used in this study did not completely 324 

capture the entire amount of activity expended by participants, or that self-reported activity levels contributed to 325 

possible recall bias and measurement error [59]. In contrast, given the age of the participants, the women consuming 326 

high vegetable diversity could have lower muscle mass due to lower physical activity levels. There is also a possibility 327 

that recall bias could have occurred when assessing dietary intakes. Dietary intakes in this study were self-reported. 328 

Although participants were supervised whilst completing the FFQ on all occasions, recall bias and measurement error 329 

are possible leading to a biased estimate for the effect of vegetable diversity [59]. However, it is likely that any 330 

measurement error was non-differential, which would lead to an underestimate of the true effect of vegetable diversity. 331 

The last point to consider is that given the observational nature of the study, a causal relationship cannot be established 332 

and only the possibility of a causal relationship can be proposed. Results also cannot be generalised to older male and 333 

younger populations.  334 

Conclusions 335 

In this prospective cohort study, we found higher vegetable diversity was inversely associated with subclinical and 336 

clinical ASVD. There was evidence that vegetable diversity was independent of total vegetable intake for CCA-IMT. 337 

However, this was not evident for ASVD mortality. The reduction in ASVD risk was partly explained by higher total 338 

vegetable intake. There was also some evidence to suggest that vegetable diversity may provide the greatest benefits for 339 

those consuming low vegetable intakes. These findings should be interpreted with caution until they have been explored 340 

and replicated in other populations and in larger cohorts.   341 
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Table 1. Baseline characteristics of all study participants and by categories of vegetable diversity1. 

 All participants Vegetable diversity categories 

Participant demographics 

 

n = 1,226 

≤3 number/d 

n=415 

4 number/d 

n=379 

≥5 number/d 

n=432 

 

P value 

Age, years 75.1 ± 2.7 75.2 ± 2.7 75.0 ± 2.6 75.0 ± 2.6 0.286 

BMI, kg/m2  27.0 ± 4.6 27.0 ± 4.6 27.1 ± 4.6 26.9 ± 4.5 0.898 

Body weight, kg 68.1 ± 12.1 67.9 ± 12.0 68.4 ± 12.3 68.1 ± 11.9 0.822 

Physical activity, kJ/d, median (IQR) 460.5 (101.7-860.8) 419.8 (0.0-860.5) 454.9 (70.6-850.9) 493.4 (204.8-880.2) 0.091 

Alcohol intake, g/d, median (IQR) 2.1 (0.3-10.4) 1.5 (0.3-9.7) 2.0 (0.4-9.9) 3.0 (0.3-11.6) 0.163 

Smoking history2, n (%) 441 (36.0) 146 (35.4) 138 (36.6) 157 (36.6) 0.923 

Socioeconomic status3     0.865 

   Top 10% most highly disadvantaged, n (%) 41 (3.3) 14 (3.4) 10 (2.7) 17 (4.0)  

   Highly disadvantaged, n (%) 146 (11.9) 59 (14.3) 38 (10.1) 49 (11.5)  

   Moderate-highly disadvantaged, n (%) 194 (15.8) 68 (16.5) 62 (16.5) 64 (15.0)  

   Low-moderately disadvantaged, n (%) 185 (15.1) 62 (15.0) 57 (15.2) 66 (15.5)  

   Low disadvantage, n (%) 255 (20.8) 83 (20.1) 83 (22.1) 89 (20.9)  

   Top 10% least disadvantaged, n (%) 394 (32.1) 127 (30.8) 126 (33.5) 141 (33.1)  

Treatment with calcium supplements, n (%) 641 (52.3) 213 (51.3) 201 (53.2) 227 (52.5) 0.868 

Framingham risk score (%)4 20.6 ± 9.1 20.5 ± 9.2 20.6 ± 8.8 20.7 ± 9.2 0.946 

Blood pressure5      

   Systolic blood pressure, mmHg 137.7 ± 18.2 137.0 ± 18.2 138.6 ± 17.4 137.6 ± 18.9 0.499 

   Diastolic blood pressure, mmHg 73.4 ± 11.0 73.2 ± 11.0 74.0 ± 11.0 73.1 ± 11.1 0.509 

   Mean arterial pressure, mmHg 94.9 ± 11.9 94.5 ± 11.9 95.5 ± 11.7 94.6 ± 11.9 0.437 

Medication use      

Anti-hypertensive medication, n (%) 493 (40.2) 168 (40.5) 141 (37.2) 184 (42.6) 0.293 

Statin medication, n (%) 184 (15.0) 66 (15.9) 53 (14.0) 65 (15.0) 0.751 

Low-dose aspirin, n (%) 193 (15.7) 74 (17.8) 60 (15.8) 59 (13.7) 0.249 
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Biochemical analyses      

CKD-EPI eGFR6, ml/min/1.73m2 67.6 ± 13.0 67.7 ± 12.6 66.8 ± 13.1 68.1 ± 13.2 0.361 

Total cholesterol7, mmol/L 5.9 ± 1.1 6.0 ± 1.1 5.9 ± 1.0 5.8 ± 1.1 0.129 

HDL7 cholesterol, mmol/L 1.5 ± 0.4 1.5 ± 0.4 1.5 ± 0.4 1.4 ± 0.4 0.283 

LDL8 cholesterol, mmol/L  3.8 ± 1.0 3.8 ± 1.1 3.7 ± 0.9 3.7 ± 1.0 0.210 

Triglycerides7, mmol/L, median (IQR) 1.4 (1.0-1.9) 1.4 (1.0-1.9) 1.3 (1.1-1.8) 1.4 (1.0-1.9) 0.597 

1Vegetable diversity (number/d) was assessed by how many different vegetables consumed per day. P values are a comparison between groups using ANOVA, Kruskal-Wallis test 

and Chi-square test where appropriate. Values are presented as mean ± SD unless otherwise stated. 

2n=1,218.  

3n=1,215.  

4n=1,188. 

5n=1,190. 

6n=1,106. 

7n=895.  

8n=888. 

CKD-EPI, chronic kidney disease EPIdemiology; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; LDL, low-density lipoprotein. 
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Table 2. Dietary intakes of all study participants and by categories of vegetable diversity1. 

 All participants Vegetable diversity categories 

Dietary intakes 

 

n = 1,226 

≤3 number/d 

n=415 

4 number/d 

n=379 

≥5 number/d 

n=432 

 

P value 

Vegetable diversity, number/d, median (IQR) 4.0 (3.0-5.0) 3.0 (2.0-3.0) 4.0 (4.0-4.0) 5.0 (5.0-6.0) <0.001 

Vegetables, g/d 196.5 ± 78.9 129.4 ± 46.9 195.7 ± 48.2 261.5 ± 70.3 <0.001 

Energy, kJ/d 7,146.5 ± 2,091.9 6,790.4 ± 2,086.0 7,201.5 ± 2,053.9 7,440.2 ± 2,084.9 <0.001 

Total fat, g/d 64.7 ± 23.3 63.3 ± 23.4 64.9 ± 22.4 65.7 ± 24.1 0.313 

Saturated fat, g/d 25.8 ± 11.2 26.2 ± 11.4 25.8 ± 10.7 25.4 ± 11.4 0.606 

Monounsaturated fat, g/d  22.5 ± 8.7 21.6 ± 8.4 22.6 ± 8.4 23.3 ± 9.1 0.018 

Polyunsaturated fat, g/d 10.6 ± 4.8 10.2 ± 4.9 10.7 ± 4.6 11.1 ± 4.8 0.018 

Omega 3 fatty acids, g/d, median (IQR) 1.2 (0.9-1.7) 1.1 (0.9-1.5) 1.2 (0.9-1.7) 1.3 (1.0-1.7) <0.001 

Dietary cholesterol, mg/d 238.6 ± 99.6 232.8 ± 100.2 240.6 ± 94.0 242.6 ± 103.7 0.328 

Protein, g/d 79.5 ± 26.4 73.7 ± 26.6 80.1 ± 25.7 84.6 ± 25.8 <0.001 

Carbohydrate, g/d 191.1 ± 58.1 179.6 ± 57.0 193.3 ± 57.1 200.2 ± 58.3 <0.001 

Sugar, g/d 92.1 ± 31.9 85.9 ± 31.4 93.1 ± 31.4 97.2 ± 31.9 <0.001 

Fibre, g/d 22.8 ± 7.8 19.4 ± 6.9 23.2 ± 7.2 25.7 ± 7.8 <0.001 

Potassium, mg/d 2,948.9 ± 844.9 2,571.2 ± 772.0 2,986.5 ± 787.2 3,278.9 ± 815.6 <0.001 

Magnesium, mg/d 298.9 ± 93.0 267.8 ± 89.4 303.5 ± 89.5 324.9 ± 90.9 <0.001 

Fruit, g/d 256.1 ± 131.5 212.7 ± 121.4 266.4 ± 124.3 288.7 ± 136.0 <0.001 

Nuts, g/d, median (IQR) 0.6 (0.2-2.7) 0.3 (0.0-1.8) 0.6 (0.2-1.9) 1.0 (0.2-4.3) <0.001 

Fish, g/d, median (IQR) 19.3 (9.3-35.7) 16.2 (7.6-30.4) 20.6 (9.8-35.3) 22.8 (11.5-44.0) <0.001 

Red meat, g/d, median (IQR) 42.2 (23.7-69.5) 37.8 (19.8-63.4) 43.9 (25.7-72.0) 44.9 (26.0-73.2) 0.009 

Processed meat, g/d, median (IQR) 10.4 (4.9-20.6) 10.1 (4.4-19.3) 11.2 (5.1-23.8) 9.8 (4.6-20.7) 0.123 

Nutrient-Rich Foods Index 75.2 ± 24.4 73.3 ± 22.8 75.8 ± 24.0 76.5 ± 26.1 0.146 

1Vegetable diversity (number/d) was assessed by how many different vegetables consumed per day. P values are a comparison between groups using ANOVA and Kruskal-Wallis 

test where appropriate. Values are presented as mean ± SD unless otherwise stated.  
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Table 3. The association between vegetable diversity (number/d) and ASVD mortality1 

 All participants Vegetable diversity categories  

 

HR (95%CI) 

n=1,226 

 

P value 

≤3 number/d 

n=415 

4 number/d 

n=379 

≥5 number/d 

n=432 

P for 

trend2 

Median vegetable diversity, number/d   3.0 4.0 5.0  

Atherosclerotic vascular disease       

   Deaths, n (%) 238 (19.4)  110 (26.5) 56 (14.8) 72 (16.7)  

   Unadjusted 0.82 (0.74, 0.91) <0.001 1.00 (Referent) 0.50 (0.36, 0.69) 0.57 (0.43, 0.77) <0.001 

   Age- and energy intake-adjusted 0.84 (0.76, 0.93) 0.001 1.00 (Referent) 0.53 (0.38, 0.73) 0.61 (0.45, 0.82) 0.001 

   Multivariable-adjusted3 0.83 (0.75, 0.93) 0.001 1.00 (Referent) 0.50 (0.35, 0.71) 0.60 (0.43, 0.83) 0.001 

   Multivariable-adjusted plus total vegetable intake 0.87 (0.73, 1.03) 0.114 1.00 (Referent) 0.53 (0.36, 0.78) 0.68 (0.42, 1.09) 0.074 

1Results are presented as HR (95% CI) per different vegetable consumed per day (number/d) using Cox proportional hazards modelling.  

2P values are a trend test using the median values of each vegetable diversity category in Cox proportional hazards models. 

3Multivariable-adjusted model included age, BMI, physical activity, alcohol intake, smoking history, socioeconomic status, the CAIFOS supplementation group of calcium vs. 

placebo, anti-hypertensive medication, statin medication, low-dose aspirin, CKD-EPI eGFR and energy intake.  

ASVD, atherosclerotic vascular disease; CAIFOS, Calcium Intake Fracture Outcome Study; CKD-EPI, chronic kidney disease EPIdemiology; eGFR, estimated glomerular 

filtration rate. 



26 
 

Table 4. The association between vegetable diversity (number/d) and ASVD mortality stratified by low (<2 

servings), moderate (2 to <3 servings), and high (≥3 servings) total vegetable intakes1 

  

Vegetable serving categories Deaths, n (%) Hazard Ratio (95%CI) P value 

≤2 servings/d 83/355 (23.4) 0.77 (0.61, 0.99) 0.042 

2 to <3 servings/d 98/486 (20.2) 0.84 (0.65, 1.09) 0.196 

≥3 servings/d 57/385 (14.8) 1.23 (0.85, 1.78) 0.265 

1Results are presented as HR (95% CI) per different vegetable consumed per day (number/d) using Cox 

proportional hazards modelling adjusted for age, BMI, physical activity, alcohol intake, smoking history, 

socioeconomic status, the CAIFOS supplementation group of calcium vs. placebo, anti-hypertensive medication, 

statin medication, low-dose aspirin, CKD-EPI eGFR and energy intake.  

ASVD, atherosclerotic vascular disease; CKD-EPI, chronic kidney disease EPIdemiology; eGFR, estimated 

glomerular filtration rate.  
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Table 5. Multivariable-adjusted HRs and 95% CIs for ASVD mortality for vegetable diversity (number/d) with 

individual additional adjustments for potential dietary confounders1 

 All participant 

n=1,226 P value  

Vegetable diversity   

   Multivariable-adjusted2 plus fish, g/d 0.83 (0.75, 0.93) 0.002 

   Multivariable-adjusted plus nuts, g/d 0.84 (0.75, 0.94) 0.002 

   Multivariable-adjusted plus fruit, g/d 0.83 (0.74, 0.93) 0.002 

   Multivariable-adjusted plus fibre, g/d 0.86 (0.76, 0.97) 0.014 

   Multivariable-adjusted plus potassium, mg/d 0.88 (0.78, 1.00) 0.048 

   Multivariable-adjusted plus magnesium, mg/d 0.87 (0.77, 0.98) 0.019 

   Multivariable-adjusted plus vegetable-derived nitrate, mg/d 0.83 (0.72, 0.95) 0.006 

   Multivariable-adjusted plus red meat, g/d 0.84 (0.75, 0.94) 0.002 

   Multivariable-adjusted plus fruit, nuts, fish and red meat, g/d 0.84 (0.75, 0.94) 0.003 

1Results are presented as HR (95% CI) per different vegetable consumed per day (number/d) using 

multivariable-adjusted Cox proportional hazards modelling with individual additional adjustments for potential 

dietary confounders for vegetable diversity (number/d) and ASVD mortality.  

2Multivariable-adjusted model included age, BMI, physical activity, alcohol intake, smoking history, 

socioeconomic status, the CAIFOS supplementation group of calcium vs. placebo, anti-hypertensive 

medication, statin medication, low-dose aspirin, CKD-EPI eGFR and energy intake.  

ASVD, atherosclerotic vascular disease; CAIFOS, Calcium Intake Fracture Outcome Study; CKD-EPI, chronic 

kidney disease EPIdemiology; eGFR, estimated glomerular filtration rate. 
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Table 6. The association between vegetable diversity (number/d) and CCA-IMT 

 All participants1 Vegetable diversity categories2 

 

B ± SE 

n=954 

 

P value 

≤3 number/d 

n=302 

4 number/d 

n=300 

≥5 number/d 

n=352 

 

P value 

Mean CCA-IMT, mm       

   Unadjusted -0.014 ± 0.003 <0.001 0.797 ± 0.007 0.780 ± 0.007 0.760 ± 0.007 0.001 

   Age- and energy intake-adjusted -0.013 ± 0.003 <0.001 0.795 ± 0.007 0.780 ± 0.007 0.762 ± 0.007 0.004 

   Multivariable-adjusted3 -0.013 ± 0.004 <0.001 0.795 ± 0.010 0.775 ± 0.010 0.758 ± 0.010 0.003 

   Multivariable-adjusted plus total vegetable intake -0.012 ± 0.005 0.023 0.792 ± 0.011 0.775 ± 0.010 0.761 ± 0.011 0.129 

Maximum CCA-IMT, mm       

   Unadjusted -0.018 ± 0.004 <0.001 0.948 ± 0.009 0.921 ± 0.009 0.900 ± 0.008 <0.001 

   Age- and energy intake-adjusted -0.017 ± 0.004 <0.001 0.946 ± 0.009 0.921 ± 0.009 0.901 ± 0.008 0.001 

   Multivariable-adjusted -0.017 ± 0.004 <0.001 0.945 ± 0.012 0.916 ± 0.012 0.898 ± 0.012 0.001 

   Multivariable-adjusted plus total vegetable intake -0.014 ± 0.006 0.024 0.938 ± 0.013 0.916 ± 0.012 0.904 ± 0.013 0.136 

1Results analysed by linear regression and are presented as unstandardised B and SE per different vegetable consumed per day (number/d). 

2Results analysed by linear regression and are presented as estimated mean and SE. 

3Multivariable-adjusted model included age, BMI, physical activity, alcohol intake, smoking history, socioeconomic status, the CAIFOS supplementation group of calcium vs. 

placebo, anti-hypertensive medication, statin medication, low-dose aspirin, CKD-EPI eGFR and energy intake.  

CCA-IMT, common carotid artery intima-media thickness; CAIFOS, Calcium Intake Fracture Outcome Study; CKD-EPI, chronic kidney disease EPIdemiology; eGFR, estimated 

glomerular filtration rate. 
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Table 7. Multivariable-adjusted linear regression analysis with individual additional adjustments for potential dietary confounders1 

 
Mean CCA-IMT, mm 

n=954 

Maximum CCA-IMT, mm 

n=954 

 B ± SE P value B ± SE P value 

Vegetable diversity     

   Multivariable-adjusted2 plus fish, g/d -0.012 ± 0.004 0.001 -0.016 ± 0.004 <0.001 

   Multivariable-adjusted plus nuts, g/d -0.013 ± 0.004 <0.001 -0.016 ± 0.004 <0.001 

   Multivariable-adjusted plus fruit, g/d -0.012 ± 0.004 0.001 -0.015 ± 0.004 <0.001 

   Multivariable-adjusted plus fibre, g/d -0.013 ± 0.004 0.001 -0.017 ± 0.005 <0.001 

   Multivariable-adjusted plus potassium, mg/d -0.010 ± 0.004 0.018 -0.012 ± 0.005 0.011 

   Multivariable-adjusted plus magnesium, mg/d -0.012 ± 0.004 0.002 -0.015 ± 0.004 0.001 

   Multivariable-adjusted plus vegetable-derived nitrate, mg/d -0.011 ± 0.005 0.045 -0.014 ± 0.006 0.030 

   Multivariable-adjusted plus red meat, g/d -0.013 ± 0.004 <0.001 -0.017 ± 0.004 <0.001 

   Multivariable-adjusted plus fruit, nuts, fish and red meat, g/d -0.012 ± 0.004 0.002 -0.015 ± 0.004 0.001 

1Results are presented as unstandardized B and SE per different vegetable consumed per day (number/d) using multivariable-adjusted linear regression with individual 

additional adjustments for potential dietary confounders for vegetable diversity (number/d) and CCA-IMT. 

2Multivariable-adjusted model included age, BMI, physical activity, alcohol intake, smoking history, socioeconomic status, the CAIFOS supplementation group of calcium 

vs. placebo, anti-hypertensive medication, statin medication, low-dose aspirin, CKD-EPI eGFR and energy intake.  

CCA-IMT, common carotid artery intima-media thickness; CAIFOS, Calcium Intake Fracture Outcome Study; CKD-EPI, chronic kidney disease EPIdemiology; eGFR, 

estimated glomerular filtration rate. 
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Table 8. The association between vegetable diversity (number/d) and carotid plaque severity1 

 All participants Vegetable diversity categories 

 

OR (95% CI) 

n=968 

 

P value 

≤3 number/d 

n=306 

4 number/d 

n=303 

≥5 number/d 

n=359 

P for trend2 

Median vegetable diversity, number/d   3.0 4.0 5.0  

Carotid plaque severity       

   Unadjusted 0.93 (0.79, 1.08) 0.335 1.00 (Referent) 0.85 (0.53, 1.37) 0.83 (0.53, 1.32) 0.439 

   Age- and energy intake-adjusted 0.93 (0.79, 1.09) 0.360 1.00 (Referent) 0.85 (0.53, 1.37) 0.84 (0.53, 1.33) 0.459 

   Multivariable-adjusted3 0.93 (0.78, 1.09) 0.360 1.00 (Referent) 0.89 (0.53, 1.50) 0.81 (0.49, 1.35) 0.419 

   Multivariable-adjusted plus total vegetable intake 0.81 (0.63, 1.05) 0.107 1.00 (Referent) 0.77 (0.43, 1.37) 0.61 (0.30, 1.24) 0.172 

1Results analysed by logistic regression and are presented as ORs (95%CI) per different vegetable consumed per day (number/d). 

2P values are a trend test using the median values of each vegetable diversity category in logistic regression models. 

3Multivariable-adjusted model included age, BMI, physical activity, alcohol intake, smoking history, socioeconomic status, the CAIFOS supplementation group of calcium vs. 

placebo, anti-hypertensive medication, statin medication, low-dose aspirin, CKD-EPI eGFR and energy intake.  

CAIFOS, Calcium Intake Fracture Outcome Study; CKD-EPI, chronic kidney disease EPIdemiology; eGFR, estimated glomerular filtration rate. 
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Figure 1.  Participant flow chart. ASVD, atherosclerotic vascular disease; CCA-IMT, common carotid artery 

intima-media thickness.  
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Figure 2. Multivariable-adjusted cumulative survival curves for atherosclerotic vascular disease mortality 

according to vegetable diversity categories. Multivariable-adjusted model included age, BMI, physical activity, alcohol 

intake, smoking history, socioeconomic status, the CAIFOS supplementation group of calcium vs. placebo, anti-

hypertensive medication, statin medication, low-dose aspirin, CKD-EPI eGFR and energy intake. CKD-EPI, chronic 

kidney disease EPIdemiology; eGFR, estimated glomerular filtration rate. 
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