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Abstract 
Joseph John Thomson discovered and proved through a series of experiments the existence of 

electrons. His work earned him a Nobel Prize in 1906 and initiated the era of mass spectrometry 

(MS). In the intervening time, other researchers have also been awarded the Nobel Prize for 

significant advances in MS technology. The development of soft ionization techniques was 

central to the application of MS to large biological molecules and led to an unprecedented 

interest in the study of biomolecules such as proteins (proteomics), metabolites (metabolomics), 

carbohydrates (glycomics) and lipids (lipidomics), allowing a better understanding of the 

molecular underpinnings of health and disease. The interest in large molecules drove 

improvements in MS resolution and now the challenge is in data deconvolution, intelligent 

exploitation of heterogeneous data and interpretation, all of which can be ameliorated with a 

proposed IMass technology. We define IMass as a combination of mass spectrometry (MS) and 

artificial intelligence (AI) with each performing a specific role. IMass will offer advantages 

such as improving speed, sensitivity and analyses of large data that are presently not possible 

with MS alone. Here, we present an overview of the MS considering historical perspectives 

and applications, challenges as well as insightful highlights of IMass. 

HISTORICAL PERSPECTIVES OF MS   

Mass spectrometry (MS) is an analytical technique that ionizes chemical species and sorts 

the ions based on their mass-to-charge ratio (De Hoffmann & Stroobant, 2007; Sheynkman et 

al., 2016). By analyzing the ions, information including molecular mass, chemical structure 

and fragmentation pattern of a molecule is obtained (De Hoffmann & Stroobant, 2007; 

Lehmann, 2016). Although the pioneering work of MS has been attributed to Joseph John 

Thompson, history has shown that other scientists such as Eugen Goldstein (1886) and Johann 

Wilhelm Hittorf (1869) began such experiments long before him. Since then, several important 

events initiated by different scientists have taken place (Cooks et al., 2006; Danikiewicz, 2013; 
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Fridriksson et al., 1999; Hurst et al., 1998; Karas & Hillenkamp, 1988; Kauppila et al., 2006; 

Salih et al., 1998; Veenstra, 1999; Wilkins et al., 1999), many of which are shown in Table 1. 

Most notable in the context of this review is the 2002 Nobel Prize to Fenn and Tanuka for their 

work on soft ionization methods, electrospray ionization (ESI) and matrix assisted laser 

desorption ionization (MALDI), which expanded the capability of MS to include large 

biological molecules. In ESI, a buffer of an analyte is dispersed by an electrospray into an 

aerosol. The aerosol undergoes repeated solvent evaporation, and as the electric field increases, 

offspring droplets are formed which split into multiply charged ions (Hoffmann & Stroobant, 

2001). MALDI on the other hand, involves the application of laser pulse to analyte-matrix 

crystals causing them to sublime into gaseous ions. The gaseous ions then migrate to the 

analyser under the influence of an electric field (Hoffmann & Stroobant, 2001). Surface 

enhanced laser desorption ionisation (SELDI) is a variant form of MALDI where proteins of 

interest bind to a surface before subsequent laser ionisation and MS analyses. The interaction 

with the surface can be specific to a protein/peptide and hence effective for pre-fractionation 

of protein mixtures (Hutchens & Yip, 1993; Poon, 2007).  

Mass analyzers  

As MS technology continued to evolve, there was a pressing need for instruments that 

improved the analyses of organic molecules in a more accurate and precise manner. 

Consequently, magnetic sector double focusing, time of flight (TOF), quadrupole and the 

Fourier transform ion cyclotron resonance (FT-ICR) mass analyzers were developed. Ernest 

Lawrence introduced the cyclotron in 1932 where charged particles were accelerated under 

magnetic and radiofrequency fields. After two decades, Hipple and his colleagues applied the 

cyclotron’s principle to design a mass analyzer with better trapping and detection called the 

Omegatron. In this technique, only ions with specific m/z were accelerated and was later called 

the ion cyclotron resonance (ICR) (Russell & Siuzdak, 2003). William E. Stephens developed 
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the TOF mass analyzer in 1946 where ions moved at different velocities towards a collector 

(Russell & Siuzdak, 2003). In the 1950s, Paul Wolfgang developed the quadrupole mass 

analyzer for which he received the Nobel Prize in 1989 (Paul, 1990). Here, an electric field 

triggered the formation of ions in a quadrupole. As the polarity was altered, the ions oscillated 

and those with specific m/z passed to the detector and were analyzed (Paul, 1990). 

Melvin Comisarow and Alan Marshall in 1974 further explained that accelerated ions 

generate currents as they hit the detector and that this current is Fourier transformed into a 

frequency spectrum, hence the name Fourier transform ion cyclotron resonance (FT-ICR) 

(Comisarow & Marshall, 1974). The FT-ICR is undoubtedly powerful and provides good 

resolving power and mass accuracy, but while it can operate in MS/MS mode it is not very 

sensitive due to lower pressure and hence poor collision efficiency of the collision cell 

(Makarov et al., 2006). These MS/MS experiments are completed very effectively using triple 

quadrupole MS technology. In it most classical mode, selected reaction monitoring (SRM), 

selected precursor ions pass through the first quadrupole and into the second quadrupole or 

collision cell where they are fragmented. The fragmented ions are resolved and directed to the 

detector for analysis. In some cases, the third quadruple is replaced with a linear ion trap (LIT), 

which allows further MS/MS experiments on the fragments (Makarov, 2000).  

The most recent innovation in MS is arguable the orbitrap, invented by Makarov. The 

orbitrap utilizes static electrostatic fields to cause the back and forth movement of ions around 

a spindle and the m/z ratios are obtained from harmonic axial oscillations. The axial motion of 

the ions generates currents which are detected while the accompanying signals undergoes 

Fourier transformation into a mass spectrum (Hardman & Makarov, 2003; Makarov, 2000; 

Makarov et al., 2006; Scigelova & Makarov, 2006). The Orbitrap has several advantages 

including: mass resolution of 240,000 FWHM at m/z 200; mass range of 50-6000 amu, large 

dynamic range, greater than 5000:1; and high mass accuracy of 1-3 ppm (Hu et al., 2005).  
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A plethora of hybrid mass spectrometers have been developed to extend the capability and 

functionality of instruments and include: quadrupoles in combination with TOF and orbitraps 

(Downard, 2007; Griffiths, 1997; Hardman & Makarov, 2003; Hevesy, 1948; Hu et al., 2005; 

Scigelova & Makarov, 2006; Thomson, 1906).  

 

INSERT TABLE 2 HERE 

 

The timeline of Nobel Prize awarded in MS technology field (Downard, 2007; Gault & 

McClenaghan, 2013; Griffiths, 1997; Hargittai, 2007; Hevesy, 1948; Konijnenberg, Butterer, 

& Sobott, 2013; Paul, 1990; Stahl, Steup, Karas, & Hillenkamp, 1991; Tanaka et al., 1988; 

Thomson, 1906) is shown in Table 3.  

INSERT TABLE 3 HERE 

Applications of MS 
MS technology was first used in gas analysis, while measuring stable isotopes of chemical 

elements and then applied to the analysis of complex hydrocarbon mixtures in petroleum 

fractions in the early 20th century. Early use of MS verified that positive and repeatable mass 

spectra can be obtained in MS analysis of organic molecules, enlightening researchers to 

elucidate the structure of organic compounds (Hsieh et al., 2015; Lehmann, 2016). From the 

mid-20th century, MS technology has been used in the life sciences and clinical medicine fields, 

for profiling and detecting complex macromolecules such as proteins, carbohydrates, lipids and 

metabolites (Aretz & Meierhofer, 2016; Blanksby & Mitchell, 2010). In fact, the MS 

technology has become the tool of choice in providing detailed information on how these 

biomolecules interact with each other during normal and diseased states (Hoffmann & 

Stroobant, 2001). Therefore, a larger part of this review will address the application of MS in 

three major fields of systems biology: proteomics, glycomics and lipidomics.
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1) Mass spectrometry in proteomics 

The proteome, introduced in 1994 (Wilkins et al., 1996), is defined as a 

collection of proteins expressed by the genome, cells and tissues at a given period or 

under a specified condition, and proteomics is the study of the large scale of proteins 

including their structure, functions and their role in health and diseases (Patterson & 

Aebersold, 2003). Proteins are abundant in mammalian cells (~2-4 million), occupying 

nearly half of the total cell mass and forming complex networks that control cell 

signalling, define cell function and interact with other molecules to manifest cell 

phenotype (Aebersold & Mann, 2016; Clancy & Hovig, 2014). Protein complexity is 

increased by a myriad of post-translational modification(s) (PTM) including: 

phosphorylation, ubiquitylation, glycosylation, sialylation, nitrosylation, lipidation, 

acetylation and methylation (Adua et al., 2017; Wang, 2016). For example, there are 

nearly 19,000 sites of ubiquitylation on almost 5,000 proteins (Kim et al., 2011; Larance 

& Lamond, 2015). Additionally, splice variants, protein stability/instability and 

dynamism, and transient protein interactions collectively make the protein more 

complex (Larance & Lamond, 2015; Mallick & Kuster, 2010).  

Many proteomics approaches, particularly those concerned with cell signalling 

and biomarker studies, are possible either via bottom up or top down MS analyses. In 

the bottom up approach, proteins are first digested with enzymes (e.g. trypsin) into 

peptides following which peptides are subjected to chromatographic separations. After 

ionisation and fragmentation, spectral analysis and structural assignments are 

performed by appropriate database matching (Hutchens & Yip, 1993; Karas et al., 1991; 
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Smith et al., 1991) (Figure 1). The top down approach aims to measure intact proteins 

(Aebersold & Mann, 2016; Liu et al., 2010; Patterson & Aebersold, 2003). 

 

INSERT FIGURE 1 HERE 

 

Both approaches have allowed studies on how proteins change in response to 

environmental influences or pathophysiological conditions (Shi et al., 2016). A typical 

illustration is the examination of peptides in type II diabetes mellitus (T2DM) patients 

and healthy controls (Meng et al., 2016). Briefly, serum samples were prepared from 

whole blood following which proteins were isolated and purified. After repeated 

washing of the supernatant in the presence of magnetic beads, the final samples were 

analysed on a MALDI-TOF-MS to generate MS peptide profiles. After data 

interpretation, amino acids of the candidate peptides were identified as being significant 

and potential biomarkers for T2DM (Wang et al., 2017).  

Similarly, MALDI-TOF-MS was used to identify serum peptides as potential 

biomarkers for colorectal cancer (Wang et al., 2017-In press). MALDI-TOF-MS was 

also used to profile ageing related proteins in the plasma (Lu et al., 2012). The study 

identified 44 peptides that were differentially expressed among the age groups and 

observed significant associations between age and three proteins: fibrinogen alpha 

(FGA), albumin (ALB) and apolipoprotein A-I (ApoA1). These proteins could be 

important biomarkers for ageing (Lu et al., 2012).  

In another study, SELDI-MS was used to profile peptides in the plasma of 

patients with ovarian cancer and age and gender-matched controls. With a sensitivity 

and specificity of 84% and 89% respectively, the authors detected protein peaks that 

were only expressed in the patients but not controls (Wu et al., 2006). 

Of late, it is becoming increasingly apparent that a single MS technology is not 

sufficient to comprehensively perform all proteomic measurements, especially for 

proteomics studies involving large populations (Gika et al., 2014; Patterson & 
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Aebersold, 2003). Coupling MS with separation techniques such as liquid 

chromatography (LC) and gas chromatography (GC) reduces the complexity of the 

sample by separating the proteins/peptides by time. For example, in a 2-year 

observational study, LC in tandem with a high resolution Orbitrap MS was used to 

profile peptides produced in acellular bronchoalveolar lavage (BAL) fluids of patients 

suspected to be suffering from lung cancer. After extensive interrogation of the LC-MS 

data and the literature, the researchers identified 133 differentially expressed proteins 

that could be potential biomarkers for lung cancer (Carvalho et al., 2017).  

For complex samples, the fragmentation pattern of the analytes is necessary to 

aid identification. Several MS/MS acquisition modes have been employed to capture 

and elucidate the complexity of the sample. One approach, data-dependant acquisition 

(DDA) involves preselecting the most intense ions and sending them sequentially to the 

collision cell, the resulting fragment ions are then analysed by the detector (Bauer et al., 

2014; Porter & Bereman, 2015). A limitation of this approach is that only the more 

abundant peptides are selected for MS/MS fragmentation, while an advantage is that 

the MS/MS pattern, or fragment ions, can be directly linked to the precursor ion. 

Another approach is data independent acquisition (DIA) where all the precursor ions at 

a given time are sent to the collision cell, or where the precursor ions within selected 

mass ranges are sequentially sent to the collision cell (Porter & Bereman, 2015). The 

advantage of this approach is more complete coverage of the peptide profile as all 

precursor ions are fragmented (Porter & Bereman, 2015). However, the data processing, 

or deconvolution of the data, is more complex as the relation between parent ion and 

MS/MS is lost.  

The DIA approach was employed to profile proteins in hepatitis B virus-

associated hepatocellular carcinoma (HCC) and non-tumour cells (Gao et al., 2017). 

They identified and quantified a total of 4,216 proteins of which 338 were differentially 

expressed between the groups. In addition, 191 and 147 proteins were up-regulated and 

down-regulated respectively, in tumour cells. Further, the study identified important 
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metabolic pathways that were altered in HCC including the pentose phosphate pathway 

(PPP), glycolysis, gluconeogenesis, fatty acid synthesis and β-oxidation as well as other 

metabolic enzymes including glucose-6 phosphate dehydrogenase (G6PD) and 

phosphoenolpyruvate carboxykinase (PCK) (Gao et al., 2017). Similarly, the DIA 

approach was applied to profile proteins in the saliva of nasopharyngeal carcinoma 

(NPC) and healthy controls. Among the 1,414 proteins identified, 29 were differential 

expressed (Luo et al., 2017).  

 MS technology has improved biomarker discovery; however, proteomics analyses 

and interpretation of the raw MS data would not have been possible without dedicated 

processing software and online resources. Examples of such are Census, 

BioworksBrowser (Meng et al., 2016), Mascot, SEQUEST (Elias, Haas, Faherty, & 

Gygi, 2005), COMPASS, MaxQuant and Skyline (Cifani et al., 2017) amongst others, 

all of which have enabled peptide identification and quantification. These web 

resources are supported by statistical packages such as Statistical Package for Social 

Sciences (SPSS) and the R Software for analysis while visualisation and annotation are 

also possible with the Database for Annotation, Visualisation and Integrated Discovery 

(DAVID) (Huang et al., 2009).  

2) Mass spectrometry in metabolomics 

The metabolome refers to the collection of metabolites in cells, tissues and 

organs of an organism and a metabolite is defined as a substrate, an intermediate or a 

product of an enzyme catalysed biochemical reaction (Dunn et al., 2011; Mathew & 

Padmanaban, 2013; Tebani et al., 2016).  

Metabolites are abundant with 2,000 plus existing in mammals that range from 

50 to 1500 Da (Aretz & Meierhofer, 2016). Metabolites are important for the synthesis 

of adenosine triphosphate (ATP) and are key intermediates in cell signalling and 

regulation (Dunn et al., 2011). They exhibit different physicochemical properties such 

as solubility, half-life, molecular weight, acidity, basicity, hydrophobicity and 

hydrophilicity (Dunn et al., 2011). Moreover, unlike the transcriptome and the proteome 
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whose turn over occurs in minutes to hours, the synthesis and degradation of 

metabolites occur in seconds (Doerr, 2017).  

Compared to proteomics, metabolomics’ biological significance cannot be 

overemphasized. For example, unlike genes and proteins that can be influenced 

epigenetically and post-translationally respectively, metabolites are direct measures 

(substrates/products) of a biological activity and better linked with an individual’s 

phenotype (Patti et al., 2012). Additionally, they act as indicators of genetic and 

environmental change. As a result, information derived from metabolome is of several 

orders of magnitude greater than the genome, transcriptome and the proteome (Patti et 

al., 2012). 

Metabolomics refers to the system-wide study and analysis of the structure and 

function of a collection of metabolites and this can be achieved in two strategies (Li et 

al., 2016): targeted and non-targeted. The targeted approach involves measuring 

specific metabolites of interest and this is normally applied in pharmacologic research 

where the interest lies on therapeutic compounds. Untargeted metabolomics however, 

involves the measurement of the entire metabolome in a biological system (Patti et al., 

2012; Savolainen et al., 2015).  

Like proteomics, metabolomics analysis requires sophisticated analytical 

techniques that are accompanied by dedicated software for data handling and 

interpretation. MS has been the driver of modern metabolomics because of its ability to 

analyse complex metabolites with high performance (Ghaste et al., 2016). Usually, 

metabolomics profiling is performed using MS interfaced with a separation mode (GC, 

LC or capillary electrophoresis, CE) rather than MS alone (Savolainen et al., 2015; 

Zhang et al., 2016). Furthermore, for LC separations, samples are routinely separated 

using two columns, a reversed phase column to profile the non-polar metabolites and a 

hydrophilic interaction liquid chromatography (HILIC) column to capture the polar 

metabolites (Manaf et al., 2018-In press). Another approach used to optimally capture 

the metabolome, and which is also used in proteomics, is to use more than one MS 
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platform. For example, using both GC-MS and LC-MS or CE-MS to analyse the 

samples provides a more complete profile of the metabolome (González-Peña et al., 

2016; Psychogios et al., 2011).  

Recently, two platforms, GC-MS and nuclear magnetic resonance (NMR) were 

used to profile metabolites from the serum of patients with unstable angina (UA), ST-

elevation myocardial infarction (STEMI) and healthy controls. The study found 19 

unique metabolites that could be potential biomarkers for acute coronary syndrome (Ali 

et al., 2016). In another example, two complementary techniques, LC-QTOF-MS and 

GC-TOF-MS were used to examine urinary and blood metabolites in patients with 

obstructive sleep apnea, simple snorers and healthy controls. Here, 56 different 

metabolites including 4-, glycochenodeoxycholate-3-sulfate, arabinose, 

hydroxypentenoic acid, xanthine, isoleucine, serine, and xanthine, amongst others, 

were identified. Of the 56 metabolites, 21 were expressed in simple snorers and 31 in 

obstructive sleep apnea individuals. Interestingly, 24 of the detected metabolites were 

always higher or lower among the two groups when compared with controls, harnessing 

these metabolites can promote the diagnosis of polysomnography (PSG)-associated 

obstructive sleep apnea (Xu et al., 2016). Further, GC-MS was used to profile 

metabolites and examine abnormalities in the sera of traumatic brain injury patients 

with cognitive defects and without cognitive defects and healthy controls. They found 

nine metabolites including galactose, phenylalanine, linoleic acid, pyroglutamic acid, 

citric acid, palmitic acid, and 2, 3, 4-trihydroxybutyrate and arachidonic acids that were 

distinguishable among the three groups and this could advance the understanding on 

the mechanisms that underpin cognitive impairment (Yi et al., 2016). In another study, 

LC-MS was used to profile metabolites in the urine of patients with esophageal 

squamous cell carcinoma and healthy controls. Here, 19 of the 83 identified metabolites 

were potential biomarkers for esophageal squamous cell carcinoma diagnosis. Further, 

LC-MS helped to reveal purine and pyrimidine alterations in esophageal squamous cell 

carcinoma (Xu et al., 2016). 
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While providing insights on the biomarker potential of specific metabolites, this 

section cannot end without recognising databases or platforms that support data 

handling and interpretation. Examples are MetaboAnalyst (Xia et al., 2012; Xia et al., 

2015), MeltDB (Costa et al., 2015; Kessler et al., 2013) and Metabolite Set Enrichment 

Analysis (MSEA) (Xia & Wishart, 2010). Others include HMDB,’ ‘Metlin,’ ‘XCMS’ 

and ‘MzMine (Pluskal et al., 2010). 

3) Mass spectrometry in glycomics 

The glycome comprises a collection of glycan structures in the cell. The glycan 

structure is complex, and it is made up of least ten monosaccharides that join each other 

stereochemically (Igl et al., 2011). They are dynamic and post-translationally bind to 

proteins in glycosylation (Zoldoš et al., 2013; Sebastian et al., 2016, Liu et al., 2018; 

Liu et al., 2018b). Glycosylation affects nearly 8,000 proteins altering their function, 

secretion, folding, degradation and clearance (Adua et al., 2017; Fiedler & Simons, 

1995; Helenius & Aebi, 2001, 2004; PARODI, 2000). Thus far, four main types of 

glycans are recognized and these are N-glycans that bind to asparagine (Asn) residues 

in Asn-X-threonine [Thr]/Serine [Ser], sequon; O-glycans that bind to Ser and Thr 

residues; glycosaminoglycans (GAGs) that attach to proteins in a sequon (Gly)-X-Gly 

(X≠proline) and C-glycans that bind to peptides via carbon-carbon bonds in a 

tryptophan (Trp)-X-X-Trp sequon (X≠proline). While recognizing all these glycan 

types, this review will centre on N-glycans (Adua et al., 2017; Wang, 2016).  

N-glycosylation is an ordered event that occur via the interplay of glycosidases 

and glycotransferases as they transverse the secretory pathway. This process is not 

template driven, and not directly encoded by genes. As such, N-glycans are products of 
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an extensive protein modification whose structures are many orders of magnitude more 

complex than the proteins (Adua et al., 2017; Wang, 2016; Yu et al., 2016). N-glycans 

regulate and control cellular function as well as an underlying disease (Ge et al., 2018; 

Hebert & Molinari, 2007; Liu et al., 2018a; Russell et al., 2018). Therefore, the study 

of glycan structure and function (glycomics) has been the focus of a cutting-edge 

research in the post-genomics era. N-glycans are stable, up to a year and only change 

in response to external stimuli. It is therefore not unexpected that N-glycans are altered 

in many chronic diseases such as cancer (Bones et al., 2010; Lau & Dennis, 2008; Llop 

et al., 2016; Mereiter et al., 2016), diabetes (Itoh et al., 2007; Testa et al., 2015), 

metabolic syndrome (Lu et al., 2011; McLachlan et al., 2016), hypertension (Wang et 

al., 2016), Alzheimer’s (Gizaw et al., 2017) and Parkinson’s disease (Russell et al., 

2017).  

Like proteomics, the successful application of glycomics in many of these 

chronic diseases have been powered by MS. MS allows structural assignments of 

constituent monosaccharides within a complex oligosaccharide, and in conjunction 

with exoglycosidase digestions, the full structural and linkage analysis are made 

(Figure 2). It is however important to realize the type of N-glycans under investigation 

since acidic and neutral glycans require distinct ways of analyses. While a 2, 

5-dihydroxybenzoic acid (2, 5-DHB) matrix in positive ion mode is sufficient to ionize 

neutral glycans and generate a good MS spectrum, acidic glycans are better ionized in 

a negative ion mode with either 2, 4, 6-trihydroxyacetophenone (THAP) or 6-aza-2-

thiothymine matrices (Snovida & Perreault, 2007; Wada et al., 2007).  
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INSERT FIGURE 2 HERE 

Employing the state-of-the-art MALDI-TOF-MS and hydrophilic interaction 

liquid chromatography (HILIC) technology, a study investigated the N-glycosylation 

and IgG profiles in the plasma of mothers and the umbilical cord of their newborns 

(Jansen et al., 2016). Briefly, IgG was isolated from the plasma with IgG Fc beads, after 

which 20µL was transferred onto a 96 well plate. Proceeding this were multiple washing 

steps, while the eluent was transferred onto another plate and centrifuged. IgG N-

glycans and plasma N-glycans were released in a stepwise manner using peptide N-

glycase F (PNGase F) in phosphate buffered saline (PBS). This was followed by 

esterification while the samples were separated and purified on HILIC. The purified 

and esterified samples were added to an MTP anchor Chip 800/384 MALDI plate and 

measured on MALDI-TOF-MS. The generated spectrum was then processed and 

analysed using MassyTools software. Utilising this method, the authors quantified 37 

IgG N-glycans and 45 total plasma N-glycans in the plasma of mothers and their 

newborns. Additionally, the study observed a reduced sialylation, and galactosylation 

and an increased fucosylation in plasma of the umbilical cord (Jansen et al., 2016).  

In another study involving the simultaneous application of four methods for 

analysing immunoglobulin G (IgG) N-glycans, it was shown that MS methods 

(MALDI-TOF-MS and nanoLC-ESI-MS) when compared to UPLC combined with 

fluorescence detection and capillary gel electrophoresis with laser induced florescence 

detection, had a higher throughput, was suitable for site specific glycosylation and 

provided detailed structural information with highly sensitivity (Huffman et al., 2014). 
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In glycomics, the software supports for data handling and interpretation include: 

GlycoBase (Hizal et al., 2014), GlycoExtractor (Artemenko et al., 2010), 

EUROCarbDB (von der Lieth et al., 2011), GLYCOSCIENCE.de (Lütteke et al., 2006), 

GlycomeDB (Ranzinger et al., 2011), MassyTools (Jansen et al., 2015) and 

GlycoWorkBench (Ceroni et al., 2008; Yu et al., 2013). 

4) Mass spectrometry in lipidomics 

The lipidome comprises a collection of lipids in the cells of an organism (Sandra 

& Sandra, 2013; Shevchenko & Simons, 2010). Lipids are abundant, and it is estimated 

that the eukaryotic cell comprises 10,000 to 100,000 lipid species from different lipid 

classes (Van Meer et al., 2008). These lipid classes are sphingolipids [e.g. sphingosine 

phosphate and ceramides (CER)] and glycerophospholipids [e.g. phosphatidylcholines 

(PC), lyso-phosphatidylcholines (LPC), phosphatidylserines (PSs) and 

phosphatidylethanolamines (PEs)], glycerolipids [(monoacylglycerols (MAGs), 

diacylglycerols (DAGs) and triacylglycerols (TAGs)] (Shevchenko & Simons, 2010; 

Wenk et al., 2015). Taken together, these lipids make up the matrix of the cell membrane 

and are responsible for many cellular processes including membrane trafficking, 

biological reproduction, cell division, cellular architecture, signalling, cell-cell 

interaction, efficient fuelling and energy schemes for the cell (German et al., 2007; 

Kontush & Chapman, 2010; Van Meer et al., 2008). Also, lipids are responsible for 

maintaining subcellular compartmentalization, generation of 1st and 2nd messengers 

during signal transduction and for ensuring a balance in electrochemical gradient (Hu 
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et al., 2009; Rai & Bhatnagar, 2017).  

Lipidomics refers to the system-wide study of lipids including their structures, 

regulation and function within the cell (Blanksby & Mitchell, 2010; Schwudke et al., 

2011). Introduced in 2003, lipidomics has been a frontier in recent research owing to 

their agricultural, pharmaceutical and clinical relevance (Wenk, 2005). Like proteomics, 

lipidomics analysis can be achieved by two main strategies: targeted and non-targeted 

lipidomics. While targeted lipidomics is restricted to identifying and quantifying known 

single lipid species using specific methods, non-targeted lipidomics on the other hand, 

relies on appropriate methods for the simultaneous identification and relative 

quantification of all lipids in a system (Sethi & Brietzke, 2016).  

Lipidomics analysis is challenging and regardless of the strategy employed, a 

powerful analytical tool is required. GC with flame ionization detection (FID) was 

widely used, and in fact, is still used for separating targeted well identified lipids such 

as the fatty acids because it is relatively cheap and simple to operate (Wenger, 2014). 

NMR has emerged as a useful tool because it can complete analysis within a short 

analytical run and importantly, did not require extensive sample pre-separation prior to 

detection. However, NMR can only detect the most abundant lipid species/metabolite 

within the sample (Gika et al., 2014). 

However, MS based techniques are superior both in coverage and identification. 

In addition to the already mentioned MS techniques for proteomics and glycomics, 

lipidomics can also be performed using MALDI-FT-ICR-MS (Stübiger et al., 2012). 

However, regardless of the technique employed, MS characterizes lipid species in two 
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ways. The first stage involves the determination of the intact mass of the molecules 

while the second involves collision of lipid ions with inert gases followed by 

dissociation into structural fragments. Comprehensive information such as 

classification, nomenclature and identification are obtained with the help of online 

resources such as the LIPID maps, Lipid Profiler (Ejsing et al., 2006), Lipid Inspector 

(Schwudke et al., 2006), LipidXplorer and Lipid Data Analyser (Hartler et al., 2011).  

Taken together, advances in MS technology and the accompanying software 

have revealed the role of lipids in various chronic conditions. For example, a study 

profiled lipid in the plasma of early stage cancer patients and individuals with benign 

breast disease (Chen et al., 2016). Briefly, lipids were isolated from plasma and 

centrifuged. Following this was the addition of internal standards and proceeded by 

injection into the LC system. Lipid profiling was then accomplished by LC-ESI-

MS/MS while data analysis was performed using Applied Biosystems Analyst. With 

this technology, the study was able to quantify 15 lipid species that could be potential 

biomarkers for breast cancer (Chen et al., 2016). In another study, the MALDI-TOF- 

MS technique was used to quantify 157 lipid species in plasma, 171 in high density 

lipoprotein cholesterol (HDL), 182 in low density lipoprotein (LDL) and 148 in very 

low density lipoproteins (VLDL)(Serna et al., 2015). 

 

INSERT FIGURE 3 HERE 

 

Similarly, while performing a global lipidomics profiling in prostate cancer 

(PCa) and benign prostate hyperplasia (BPH) patients using LC-MS, a total of 350 lipid 
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species comprising 6 cholesterol ester (CE), 7 DAG, 9 hexosylceramide (HexCer), 24 

free fatty acids, 10 Cer, 10 LPE and 10 LPC, amongst others, were identified, all of 

which could be potential biomarkers for prostate cancer (Li et al., 2016). Another study 

combined LC-ESI-SRM and MALDI-QIT-TOF-MS/MS to conduct a targeted 

lipidomics analyses in 13 patients with familiar combined hyperlipidaemia (FCH) and 

found many significant associations between atherogenic LPC species and VLDL 

(Figure 3) (Stübiger et al., 2012). Similarly, a targeted lipidomics profiling in the sera 

of chronic hepatitis B (CHB) patients, hepatitis B virus associated cirrhosis (HCV) and 

hepatocarcinoma (HCC) using UPLC-MS and identified 140 lipid species which could 

be potential biomarkers (Wu et al., 2017). 

While MS technology has been a propeller for many “OMICS” studies, there 

are some prevailing challenges. Therefore, the remainder of this manuscript is dedicated 

to revealing these challenges and highlighting the need for innovation. 

Summary of existing problems in MS 

Having provided a comprehensive review of the MS technology and its 

applications, there is the need to recap the main limitations that characterize this 

technology. For example, the MALDI-TOF-MS is limited by signal suppression effects 

and narrow dynamic ranges of detectors (Poon, 2007). These problem seem to be 

ameliorated with the advent of the SELDI-TOF MS, however, SELDI-TOF has the 

following limitations: poor resolution for large proteins (e.g. markers with molecular 

weight > 20kDa); enormous amount of time required for purifying all significant 

SELDI peaks; lack of reproducibility; 4) serum/plasma proteins < μg/ml cannot be 
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detected; susceptibility to identifying false-significant biomarkers (Poon, 2007). These 

challenges have largely been addressed by exploring multiple hyphenated MS 

platforms and other techniques (e.g. NMR). Although these complementary approaches 

have improved sensitivity, accuracy, run times and analytical coverage, there are still 

problems relating to identification of low abundant analytes, sequencing speed (e.g. 

proteomics), deconvolution, handling and performing large data analysis, inadequate 

information from spectra to produce sequence identifications, data standardization and 

data fusion across multiple analytical platforms (Gika et al., 2014; Liu et al., 2010).  

Given the prevailing challenges, it is time to shift towards extreme automation 

powered by information technology (IT) or computer science. IT promises to solve 

many complex problems using conventional algorithms and neural networks. Moreover, 

IT can enable intelligent exploitation of heterogeneous data, translational research and 

provide solution for implantation science (Combi, 2017; Özdemir & Hekim, 2018). 

While it is beyond the scope of this review to discuss in detail these concepts, a brief 

introduction and definition of terms will be necessary. 

IMass  

IMass is a term coined by us that incorporates traditional MS technology and 

Artificial intelligence (AI). Here, experimental methods are accomplished with MS 

while AI performs data processing and analysis. The IMass will help to answer complex 

scientific questions and generate ideas that were not previously possible with MS 

technology alone.  
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1) Information technology 

     IT is a generic term that encompasses information management, retrieval, data 

manipulation and processing. Information systems and application software are 

designed, exploited, installed and carried out by computer science and communication 

technology. IT includes sensor technology, computer technology, AI technology, 

communication technology and internet technology. 

Nowadays, IT has improved tremendously. Internet of Things (IoT) and cloud 

computing are typical representations (Özdemir & Hekim, 2018). IoT Internet of things 

are wireless connected network of objects or devices that interact with each other via 

embedded systems and ubiquitous intelligence (Xia et al., 2012). IoT is an important 

part of the new generation IT, changing information and communication based on 

Internet and extending the user sides to stereo dimension. By using information sensing 

devices including radio frequency identification (RFID) infrared sensors, global 

positioning system (GPS), laser scanner amongst others, internet of things is able to 

connect relayed events according to agreed protocols that in turn facilitate the 

identification, location, monitoring and management of objects (Kopetz, 2011; Sun, 

Song et al., 2016; Weber & Weber, 2010; Xia et al., 2012). 

    Cloud computing is defined as an internet-based computing that allows the storage 

and sharing of data and resources with other computers and devices. It shares 

characteristics with grid computing, parallel computing and utility computing 

(Armbrust et al., 2010; Buyya et al., 2009; Dikaiakos et al., 2009). Multiple PCs with 

relatively low cost are integrated to a system with powerful computing capacity. Results 
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of the system are then fedback to end users through advanced business model such as 

SaaS, PaaS, IaaS and MSP (Lenk et al., 2009).  

2) Artificial intelligence  

AI is an important branch of computer science. It was officially put forward by 

McCarthy in Dartmouth Society in 1956 as “artificial system with certain degree of 

intelligent behavior that applies studies in human intelligence activity (Hamet & 

Tremblay, 2017; Nilsson, 2014; Patel et al., 2009; Russell & Norvig, 1995)”. AI has 

undergone many developmental stages since the 1950s. Alan Turing proposed the 

theoretical model which established the theoretical foundation of modern computers, 

and the famous Turing guidelines, which has been the most important standard of 

intelligent machine (Castelfranchi, 2013).  The era of AI gave rise to the idea that 

instead of programming computers to perform tasks, they could teach themselves or 

learn to perform tasks without being explicitly programmed to do so. This concept was 

later referred to as machine learning (ML). ML applies set of rules called algorithms to 

solve a problem and it easily adapts to changes in data, scalable and efficient compared 

to those programmed by humans. An extension of ML is deep learning (DL) which is 

based on data representations and designed to learn from an input data and apply to 

other data (Cohen & Feigenbaum, 2014; Nilsson, 2014). 

    Knowledge-based expert systems have been developing rapidly and its application 

range has provided enormous benefits across all human fields. Nowadays, AI has 

advanced into large-scale distributed expert cooperative systems, parallel deduction and 

multiple expert system development tools (Wenger, 2014). The year 2016 was known 
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as “The primary era of AI” because of massive developments of AI which was also 

characterized by several landmark events. For instance, AI program AlphaGo designed 

by Google DeepMind defeated human Go champion Lee Chang-ho in March 2016. 

IBM WATSON HealthCare passed the United States Medical Licensing Examination 

(USMLE) and got medical license in the same year. Moreover, the first self-driving car 

designed by EasyMile (France) and Citymobil2 (European Union) was tested in 2016 

(Figure 4). With the rapid advances in software programming, electronic speed and 

capacity, it is obvious that IT will not only impact society and daily life but also, the 

intelligence of computers will someday surpass that of humans (Hamet & Tremblay, 

2017). However, the compelling question is how the concepts and applications of AI or 

IoT can be impactful in MS and OMICS analysis?  

3) Application of IMass to MS 

The MS systems resulted in an increased operational complexity and overwhelming 

experimental data were obtained from a single analysis. This increasing and enormous 

amount of information demanded an optimization of the instrument’s operational 

conditions to acquire the most significant data (Place, 1995; Wong, 1984). This 

triggered the need to incorporate AI to MS instrumentation during the early 1970s and 

several developments have followed over the years (Figure 4). The first-generation 

intelligent software, alongside AI algorithms including Bayesian algorithm, Vector 

Support Machine, Decision Tree, Random Forest and Artificial Neural Network were 

all developed to support MS (Kondrat et al., 1978; RA et al., 1979). Expect system, 

described as computer program that houses a high quality and specialized knowledge 
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to solve complex problems was developed. It was designed to build upon the problem-

solving abilities of human experts and in some cases, apply complex reasoning to solve 

problems that is beyond the capabilities of human experts. Neural networks that mimic 

the pattern-recognition and parallel processing of human experts were also developed 

(Place, 1995; Wong, 1984).  

Over the years, it has been shown that AI has enormous potential to transform the 

efficiency of MS. The incorporation of MS to AI and expert system, not only will it 

adapt and respond to situations quickly, but also it will utilize the power of reasoning 

and inference to effectively perform tasks and interpret correct the data to meet the 

researcher’s experimental targets. AI was applied for tuning the triple quadrupole mass 

spectrometer (TQMS). This was to allow analytical chemists to tune the instrument 

over small mass ranges to increase the sensitivity for each ion. Here, two approaches 

were employed; an expert system and algorithmic approach. It was shown that AI 

powered tuning increased the sensitivity, was faster compared to manual tuning 

methods which is time consuming. Further, while analysing 12 sulphur compounds 

using TQMS, it was shown that more time was required by a human expert to manually 

tune for each parent/daughter ion compared to an AI tuning system (Brand and Wong, 

1986). 

For example, in 1990, expert system alongside Bayesian algorithm and AI 

software were employed to detect low resolution mass spectra (Scott, 1991). The expert 

system obtained a canonical representation of structures and a new heuristic for 

incorporating constraints of the mass spectrum (Sridhar et al., 1991). The MS combined 



                                                IMass Time: the future, in future! 

24 
 

with AI and expert system were utilized for optimizing and controlling MS performance, 

detector signal collection as the function of m/z and improved overall data analysis.  

With different combination metrics, AI can transform the information extracted 

from the MS, interpret data from spectra and present such data in a visual and symbolic 

form.  It can be useful for identifying pre-analytical and analytical errors; AI can be 

applied to assess the performance of an MS instrument and can reveal whether the 

instrument’s performance is within algorithmically pre-determined specification; AI 

can enable the prediction of protein complexes and can provide machine learning 

algorithms such as in protein-protein interactions to reveal therapeutic targets (Hamet 

& Tremblay, 2017); Stabilization of spectrogram is the consistency of spectrograms of 

repeated experiments from the same sample. For MS, spectrograms of repeated 

experiments are usually unidentical, with relatively large coefficient of variation 

(French et al., 2014; Muddiman & Oberg, 2005; Ramakrishnan, Nair, & Rangiah, 2016). 

Data analysis of MS belong to multi-index evaluation system, characteristics of each 

index are different, and the dimensions differ by several orders of magnitude (Du et al., 

2016; Edmands et al., 2014; Hamm et al., 2012). Because of variation in the indices, 

there is a possibility of over-highlighting some while weakening others, especially 

those with relatively smaller numbers. However, with the higher computational power 

and the higher statistical strengths by AI, these problems can be solved (Du et al., 2016; 

Edmands et al., 2014; Hamm et al., 2012; Liao et al., 2014); Resolution of spectrum 

library is the ability to differentiate one spectral peak from another. Resolution of 

spectrum library of traditional MS is low, not only because of the limited computing 
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power to support high resolution and high accuracy, but also because only few 

spectrograms are generated in a single-instrument model. For example, traditional MS 

technology has been applied on microorganism identification studies (Carbonnelle et 

al., 2011; Seng et al., 2010). However, the results are not always consistent or 

reproducible and often unstable, as well as variations that cannot be accepted. By 

incorporating AI technology, IMass will be able to overcome these shortcomings and 

produce more stable results with less variation. For example, enabled by artificial neural 

network analysis of the mass spectra, streptomycetes was identified it was shown to be 

rapid, reliable and cost-effective (Howells et al., 1992; Chun, 1993).  

Over the years, other significant improvements have been made. Bayesian 

algorithm was introduced to the protein search engine to identify protein from protein 

databases by MS data mapping (Zhang et al., 2000). The vector machine was applied 

to classify peptide MS/MS spectra and SEQUEST score (Anderson, 2003). In 2004, 

Random Forest, also called decision forest, developed to standardize the mass spectra 

and for sample classification (Satten et al., 2004; Tong et al., 2004).  

INSERT FIGURE 4 HERE 

4) IMASS and Big Data analysis 

Thus far, research has advanced and multi-OMICS studies involving large 

population are increasing. Consequently, there is the influx of Big Data or large 

“OMICS-based” datasets that are often characterised by large volumes, variety, veracity, 

valorisation and velocity (Özdemir & Hekim, 2018). Moreover, Big Data is becoming 

complex comprising demographic, biomedical signals, genetic data, and clinical 
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pathways (Combi, 2017). Additional sources of challenge for OMICS analysis are 

consequence of poor experimental design, low signal-to noise ratio and high analytical 

variance. Other challenges also relate to real-time data gathering, mining storage, 

predictive data analytics, and visualization. The full potential of such Big Data can only 

be harnessed after real-time data analysis and cannot be possible with the old scientific 

practices. AI and IoT can be employed to translate Big Data into knowledge-based 

innovations (Özdemir & Hekim, 2018). For example, it can support the translation of 

science into a more decision-based tasks such as patient stratification, disease 

prediction, diagnosis, and therapy (Combi, 2017; McCudden, 2017). Also, ML methods 

can draw meaningful conclusions from relatively small data; transforming data into 

visualizable images (Grapov et al., 2018). ML methods may provide efficient 

integration of omics data integration, thereby amplifying significant biological variants 

and enabling full interrogation of biological systems. 

The size and complexity of data put a significant pressure on computers for analysis. 

IMass supported by cloud computing (Hoopmann & Moritz, 2013; Mohammed et al., 

2012; Schadt et al., 2010), makes it more suitable to analyze complex and large sample 

data. Cloud computing resources can be expanded and can provide additional power 

for data analysis, facilitate sharing of large data (Hoopmann & Moritz, 2013; 

Mohammed et al., 2012; Schadt et al., 2010). This will be an important step towards 

MS innovation; presently, comparing MS data to medical reference libraries will 

require data to be inputted manually (Cho et al., 2015; Schilling et al., 2011), which is 

often time consuming, labor intensive and less accurate. IMass can be connected to 
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medical and biological components information libraries directly, data can be combined, 

shared and stored for high throughput analysis. This innovation can significantly save 

time, energy and at the same time, increase accuracy.  

However, the main challenge for IMASS is that OMICS data are not amenable to 

certain assumptions of DL. As a result, domain specific approaches are usually required 

to deal with unrelated biological variance. In the context of protein-protein interaction, 

it will be challenging to represent peptide and protein in a meaningful way. Advanced 

studies will be required to ascertain novel ways to represent protein sequence 

information. Moreover, high-quality data, large amount of correctly labelled training 

data and high parameter neural networks will be required for IMASS and achieving this 

is expensive and time consuming. Further, IMASS is complex and understanding 

specific neural networks and interpreting models will be challenging for amateur 

researchers. In addition, how to apply or use deep learning methods to yield a more 

realistic model and how to employ the estimation method to develop the prior 

knowledge of the deep neural network is can be a challenging task. Nonetheless, 

IMASS will be highly relevant in the pursuit of translating MS based research into 

clinical diagnosis and prognosis of diseases.  

Conclusion and future directions  

It should be clear to readers by now that the advent of the MS technology has 

revolutionized medical research to a larger degree. It has provided an insight on the 

molecular intricacies that underlie many chronic diseases and has made it possible to 

perform large scale “OMICS” analyses. All the application of MS technology for 
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population-based studies cited in this review have mainly focused on single OMICS 

data. However, it is about time that scientists shift focus from single OMICS to 

integrated or multiple OMICS data. This has become necessary because the molecular 

complexities associated with many diseases cannot be unraveled with just a single 

“OMIC” data (Hasin et al., 2017). Additionally, single OMICS analysis only provides 

correlations between traits and diseases with limited information on causative changes. 

In theory, beside the central dogma for DNA, RNA and proteins, the compelling 

question that is worth asking is what happens to the regulation of lipids and sugars and 

their glycosylation and how they are involved in health and diseases? Is there a para-

central dogma for encoding these functions? For practice, integration of different 

OMICS data will promote a comprehensive understanding on the flow of information 

that underpins chronic diseases (Hasin et al., 2017). For example, one study used 

genomics and glycomics data to show that hepatocyte nuclear factor alpha (HNF1α) is 

the master regular of fucosylation (Lauc et al., 2010). Similarly, another study 

combined glycomics and lipidomics data to shed light on the association between 

glycans and lipids in four European populations. Further, this study provided 

information on the interactive metabolic pathways that exist between glycans and lipids 

(Igl et al., 2011).  

While the MS technology has been pivotal in medical research, it has been limited 

in certain aspects. In theory, beside the central dogma for DNA, RNA and Proteins, 

what happens to the regulation of lipids and sugars and their glycosylation? Is there a 

para-central dogma for encoding these functions? In practice, from the past years to 
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date, then towards the future, the goals for MS technology must change from high 

resolution and high sensitivity to high stability and high repeatability, from focusing on 

single peaks to multiple peaks within a complex spectrogram, and from solving simple 

questions to solving more complex ones. Actualizing these demands require some 

innovations to the present MS technology. The incorporation of MS with AI is highly 

feasible and have broad prospects. For instance, incorporating MS technology with AI 

system platforms like AliCloud and IBM WATSON is such a great opportunity for 

researchers using MS to work out experimental data and use related algorithms 

exploited by AI technology to store and perform complex data analysis and processing. 

This is what researchers are expecting, and exactly what we are continuously working 

hard on and hoping it will come into fruition rather sooner than envisaged.  
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Abbreviations 

 

A-I    Apolipoprotein 

AI    Artificial intelligence  

ALB    Albumin  

ATP    Adenosine triphosphate  

CE    Capillary electrophoresis  

DAG    Diacylglycerols 

DAVID   Database for Annotation, Visualisation and Integrated Discovery 

DDA    Data-dependant acquisition 

DHB    Dihydroxybenzoic acid  

DIA    Data independent acquisition  

ESI    Electrospray ionization  

FGA    Fibrinogen alpha  

FID    Flame ionization detection  

FT-ICR   Fourier transform ion cyclotron resonance  

G6PD    Glucose-6 phosphate dehydrogenase  

GC    Gas chromatography  

GPS    Global positioning system 

HDL    High density lipoprotein cholesterol  

HILIC    Hydrophilic interaction liquid chromatography 

ICR    Ion cyclotron resonance  

IoT    Internet of things 

IT    Information technology 

LC    Liquid chromatography 

LIT    Linear ion trap  

LPC    Lyso-phosphatidylcholines 

MAG    Monoacylglycerols 

MALDI   Matrix assisted laser desorption ionization  

ML    Machine learning 

MS    Mass spectrometry  

NMR    Nuclear magnetic resonance  

NPC    Nasopharyngeal carcinoma  
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PC    Phosphatidylcholines  

PCK    Phosphoenolpyruvate carboxykinase  

PE    Phosphatidylethanolamine  

PPP    Pentose phosphate pathway 

PS    Phosphatidylserine  

PTM    Post-translational modification 

RFID    Radio frequency identification 

SELDI   Surface enhanced laser desorption ionisation  

SPSS    Statistical Package for Social Sciences  

SRM    Selected reaction monitoring  

T2DM    Type II diabetes mellitus  

TAG    Triacylglycerol  

TOF    Time of flight  

UPLC    Ultra-performance liquid chromatography  
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Table 1. Timeline of important events in development of MS technology 

 
 
 
 
 
 
 
 
 
 
 
 
 

Time Event           
1886 E. Goldstein observes canal rays        
1897 W. Wien demonstrates that canal rays can be deflected using strong electric and magnetic fields  

 J.J Thompson measures the mass-to-charge ratio of electrons      
1901 W. Kaufmann uses a mass spectrometer to measure the relativistic mass increase of electrons  
1905 J.J. Thompson begins the study of positive rays       
1913 J.J. Thompson is able to separate particles of different mass-to-charge ratios    
1919 F. Aston constructs the first velocity focussing MS with mass resolution of 130    
1931 E.O. Lawrence invents the cyclotron        
1934 J. Mattauch and R. Herzog develop the double-focussing MS      
1936 A.J Dempster develops the spark ionisation source       
1937 F. Aston constructs a mass spectrograph with resolution of 2000     
1942 E.O. Lawrence develops the cyclotron for uranium isotope separation     
1943 Westinghouse markets its MS and proclaims it to be " A new electronic method for fast, accurate gas analysis" 

1946 William Stephens ? presents the concept of a time-of-flight MS      
1954 A.J.C. Nicholson proposes a hydrogen transfer reaction that will come to be known as   

 the McLafferty rearrangement         
1959 Researchers at Dow Chemical interface a gas chromatograph to a MS     
1964 British MS society establishes as first dedicated MS society. It holds its first meeting in 1965 in London  
1966 F.H. Field and M.S.B. Munson develop chemical ionisation      
1968 M. Dole develops electrospray ionisation       
1969 H.D. Beckey develops field desorption        
1974 M.B. Comisarow and A.G. Marshall develop Fourier Transform Ion Cyclotron Resonance MS   
1976 R. MacFarlane et al., develop plasma desorption MS      
1984 J.B. Fenn et al., use electrospray to ionize biomolecules      
1985 F. Hillenkamp et al., describe and coin the term matrix-assisted laser desorption ionization   
1987 K. Tanaka uses the "ultra-fine metal plus liquid matrix method" to ionize intact proteins   
1999 A. Makarov presents the Orbitrap MS        
2004 Z. Takats et al., develop the Desorption Electrospray Ionisation (DESI) method    
2004 D.F Hunt et al., develop Electron Transfer Dissociation (ETD) method     
2005 R.B. Cody and J.A Laramee develop the Direct Analysis in Real Time (DART) ion source   



Table 2: Timeline of Nobel Prize awarded in MS technology field 
 
Time 

 
Event 

1906 J.J. Thomson is awarded the Nobel Prize in Physics “in recognition of the great merits of 
his theoretical and experimental investigations on the conduction of electricity by gases” 

1922 F. Aston is awarded the Nobel Prize in Chemistry “for his discovery, by means of his MS, 
of isotopes, in a large number of non-radioactive elements, and for his enunciation of the 
whole-number rule” 

1939 E.O. Lawrence is awarded the Nobel Prize in Physics for the cyclotron 
1989 W. Paul is awarded the Nobel Prize in Physics “for the development of the ion trap 

technique” 
2002 J.B. Fenn and K. Tanaka are awarded the Nobel Prize in Chemistry “for the development 

of soft desorption ionization methods for MS analyses of biological macro-molecules” 
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