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Abstract

Background

To determine the validity of the lactate threshold (LT) and maximal oxygen uptake ( _VO2max)

determined during graded exercise test (GXT) of different durations and using different LT

calculations. Trained male cyclists (n = 17) completed five GXTs of varying stage length (1,

3, 4, 7 and 10 min) to establish the LT, and a series of 30-min constant power bouts to estab-

lish the maximal lactate steady state (MLSS). _VO2 was assessed during each GXT and a

subsequent verification exhaustive bout (VEB), and 14 different LTs were calculated from

four of the GXTs (3, 4, 7 and 10 min)—yielding a total 56 LTs. Agreement was assessed

between the highest _VO2 measured during each GXT ( _VO2peak) as well as between each LT

and MLSS. _VO2peak and LT data were analysed using mean difference (MD) and intraclass

correlation (ICC).

Results

The _VO2peak value from GXT1 was 61.0 ± 5.3 mL.kg-1.min-1 and the peak power 420 ± 55 W

(mean ± SD). The power at the MLSS was 264 ± 39 W. _VO2peak from GXT3, 4, 7, 10 underesti-

mated _VO2peak by ~1–5 mL.kg-1.min-1. Many of the traditional LT methods were not valid and

a newly developed Modified Dmax method derived from GXT4 provided the most valid esti-

mate of the MLSS (MD = 1.1 W; ICC = 0.96).

Conclusion

The data highlight how GXT protocol design and data analysis influence the determination

of both _VO2peak and LT. It is also apparent that _VO2max and LT cannot be determined in a sin-

gle GXT, even with the inclusion of a VEB.
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Introduction

Sampling of expired gas and blood data during a graded exercise test (GXT) to exhaustion per-

mits identification of the gas exchange threshold (GET), the respiratory compensation point

(RCP), the lactate threshold (LT), and maximal oxygen uptake ( _VO2max). These indices can dis-

tinguish cardiorespiratory fitness, and demarcate the domains of exercise [1, 2] that can be

used to prescribe exercise and to optimize training stimuli [3–6]. However, despite the popu-

larity of these indices, the methods used to determine them can differ substantially and there

has been little systematic investigation of their validity [7–9].

The recommended duration of a GXT to assess _VO2max is 8 to 12 minutes [10–13]. How-

ever, there is little consensus on an appropriate GXT protocol design, including duration,

stage length, or number of stages, needed to establish the LT. A stage length of at least 3 min-

utes has been recommended [13], although an 8-minute stage length has also been suggested

for blood lactate concentrations to stabilize [14]. The number of stages and GXT duration will

depend on the starting intensity and power increments. Power is typically increased identically

[15], regardless of sex or fitness, leading to a heterogenous GXT duration and number of stages

completed [16]. A customized approach to LT testing has been recommended to ensure a

more homogenous GXT duration [17].

More than 25 methods have been proposed to calculate the LT [18]; these include the

power preceding a rise in blood lactate concentration of more than 0.5, 1.0 or 1.5 mmol.L-1

from baseline [19], the onset of a fixed blood lactate accumulation (OBLA) ranging from

2.0 to 4.0 mmol.L-1 [20, 21], or the use of curve fitting procedures such as the Dmax or modi-

fied Dmax methods (ModDmax) [22, 23]. However, many of these ‘accepted’ methods are

influenced by GXT protocol design [8, 24] and their underlying validity has not been

reported.

Assessing the validity of a measurement requires comparison with a criterion measure.

The maximal lactate steady state (MLSS) represents the highest intensity where blood lac-

tate appearance and disappearance is in equilibrium and where energy demand is ade-

quately met by oxidative phosphorylation [25]. Exercise performed above the MLSS

results in accelerated blood lactate appearance and it has therefore been suggested as an

appropriate criterion measure for the LT [25, 26]. The primary advantages of the MLSS

test include its independence of participant effort, it’s submaximal and is reliable [27].

However, the disadvantage is the necessity of multiple laboratory visits and that it yields

only one index of performance.

_VO2max is considered the “gold standard” for assessing cardiorespiratory fitness [28]

and the highest recorded _VO2 from a GXT is often accepted as the _VO2max [10]. Establish-

ing the LT requires a GXT that typically exceeds 20 minutes [13]; however, in these

instances the highest _VO2 may underestimate the _VO2max [12] and is termed _VO2peak.

Recently, the use of a verification exhaustive bout (VEB) has been recommended to con-

firm the _VO2max. However, it is unknown if a VEB performed after a longer duration GXT

provides a valid estimate of _VO2max.

The aim of this study was to determine the validity of the LT and _VO2max derived from a sin-

gle visit GXT. We hypothesized that our results would yield one or more GXT stage length and

LT calculation method combination that provides a valid estimation of the criterion measure

of the LT (i.e., MLSS). We also hypothesized the highest _VO2 measured during longer duration

GXTs would underestimate _VO2max and that the highest _VO2 value measured during each VEB

would be similar to the _VO2peak measured during the 8- to 12-minute GXT.

Validation of a single visit graded exercise test
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Materials and methods

Ethical approval

All procedures were performed in accordance with the ethical standards of the institutional

and/or national research committee, and with the 1964 Helsinki declaration and its later

amendments or comparable ethical standards.

Participants/Experimental design

Seventeen trained male cyclists ( _VO2max 62.1 ± 5.8 mL.kg-1.min-1, age 36.2 ± 7.4 years, body

mass index (BMI): 24.1 ± 2.0 kg.m-2) volunteered for this study which required 7 to 10 visits to

the laboratory. Informed consent was obtained from all individual participants included in the

study.

Visit one included risk stratification using the American College of Sports Medicine Risk

Stratification guidelines [29], written informed consent, self-reported physical activity rating

(PA-R) [30], measurement of height and body mass, and completion of a cycling GXT with

1-minute stages (GXT1) followed by a VEB. The remaining visits consisted of four cycling

GXTs with varying stage length (3-, 4-, 7- and 10-min stages) and a series of 30-min constant

power bouts to establish the MLSS. The GXTs and constant power bouts were performed in an

alternating order and the order of the GXTs was randomised. Prior to each GXT and the con-

stant power bouts a 5-min warm up was administered at a self-selected power followed by 5

min of passive rest. Participants performed each test at their preferred cadence determined

during the initial visit. Antecubital venous blood (1.0 mL) was sampled during all visits

(excluding GXT1) at rest, and at the end of every stage during the GXTs or every 5 min during

the constant power exercise bouts. All participants self-reported abstaining from the consump-

tion of alcohol and caffeine or engaging in heavy exercise 24 h prior to each visit. Participants

were given at least 48 h between visits and all tests were completed within 6 weeks. The Victo-

ria University Human Research Ethics Committee approved all procedures (HRE 017–035).

Equipment/Instruments

All exercise testing was conducted using an electronically-braked cycle ergometer (Lode Excal-

ibur v2.0, The Netherlands). A metabolic analyser (Quark Cardiopulmonary Exercise Testing,

Cosmed, Italy) was used to assess oxygen uptake ( _VO2) on a breath-by-breath basis, and heart

rate was measured throughout all tests. Antecubital venous blood was analysed using a blood

lactate analyser (YSI 2300 STAT Plus, YSI, USA).

GXTs with verification exhaustive bout

Demographic data, PA-R, and measurements of height and body mass were used to estimate

_VO2max [31] and maximum power output _Wmax [30, 32].

Est:VO2max ¼ 56:363þ ð1:921 x PA � RÞ � ð0:381 x AGEÞ � ð0:754 x BMIÞ þ ð10:987 x SEX; 1
¼ MALE;0 ¼ FEMALEÞ

_Wmax ¼ f½ðVO2max � 7Þ x BM�=1:8g=6:12 Eq 2

Where _VO2max is expressed in millilitres per kilogram per minute, BMI is in kg.m-2, and _Wmax

is in Watts.

A custom GXT protocol with a desired time limit of 10 min was then designed for each par-

ticpant using: _Wmax=10 min = 1-min intensities (W.min-1). Additional customized protocols

Eq 1

Validation of a single visit graded exercise test
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were designed for each of the remaining GXTs based on a percentage of the measured _Wmax

from GXT1. The predicted _Wmax was 80%, 77%, 72% and 70% for GXT3, GXT4, GXT7, and

GXT10, respectively. The target number of stages for each participant was nine; the initial stage

and subsequent stages of the remaining GXTs were determined using the following equations:

Stage 1 Power ¼ Predicted _Wmax � 0:25 Eq 3

Subsequent power increments ¼ ðPredicted _Wmax � Stage 1Þ=8Þ Eq 4

where stage 1 power and predicted _Wmax subsequent power increments are expressed in Watts.

A 5-min recovery was administered after each GXT, followed by a VEB performed at 90%

of _Wmax measured from GXT1 to measure the highest measured _VO2 measure ( _VO2peak) [17].

Constant power exercise bouts to establish the maximal lactate steady state

The power associated with the respiratory compensation point (RCP) from GXT1 was used in

a regression equation (Eq 5) to estimate the MLSS (RCPMLSS) and the first constant power

exercise [33]. The RCP was determined as the average of the power output associated with: 1)

the break point in ventilation relative to expired carbon dioxide ( _VE=
_VCO2), 2) second break

point in _VE and 3) the fall in end-tidal carbon dioxide (PETCO2) after an apparent steady state

[34–36].

Estimated MLSSðRCPMLSSÞ ¼ 23:329þ ð0:79127 x RCPÞ Eq 5

where the RCPMLSS and RCP are expressed in Watts

Participants performed 3 min of baseline cycling at 20 W prior to each constant power

bout. The MLSS was established as the highest intensity where blood lactate increased <1.0

mmol.L-1 from the 10th to the 30th minute [26]. If the blood lactate concentration increased

>1.0 mmol.L-1 the power was decreased by 3%, otherwise the power was increased by 3% [27].

This process continued until the MLSS was obtained.

LT and respiratory compensation point calculations

The LTs were calculated from GXT3,4,7 and 10 using 14 methods (4 GXTs � 14 LTs = 56 LTs in

total), and the RCP and the RCPMLSS were also calculated from GXT1 (56 LTs + RCP and

RCPMLSS = 58 total estimates) (Fig 1):

1. Log-log: The lactate curve was divided into two segments and the intersection point of the

two lines with the lowest residuals sum of squares was taken as the LT [37].

2. OBLA value of 2.0, 2.5, 3.0, 3.5, or 4.0 mmol.L-1 [1, 24, 38].

3. Baseline + absolute value(s) (B + mmol.L-1): The intensity at which blood lactate concentra-

tion increased 0.5, 1.0 or 1.5 mmol.L-1 above baseline value(s) [39, 40].

4. Dmax: The point on the third order polynomial regression curve that yielded the maximum

perpendicular distance to the straight line formed by the two end points of the curve [23].

5. Modified Dmax (ModDmax): The intensity at the point on the third order polynomial regres-

sion curve that yielded the maximal perpendicular distance to the straight line formed by

the point preceding the first rise in blood lactate concentration of>0.4 mmol.L-1 lactate

and the final lactate point [22].

Validation of a single visit graded exercise test
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6. Exponential Dmax (Exp-Dmax): The point on the exponential plus-constant regression curve

that yielded the maximum perpendicular distance to the straight line formed by the two

end points of the curve [41, 42].

7. Log-log Modified Dmax (Log-Poly-ModDmax): The intensity at the point on the third order

polynomial regression curve that yielded the maximal perpendicular distance to the straight

line formed by the intensity associated with the log-log LT and the final lactate point.

8. Log-log Exponential Modified Dmax method (Log-Exp-ModDmax): The intensity at the

point on the exponential plus-constant regression curve that yielded the maximal perpen-

dicular distance to the straight line formed by the intensity associated with the log-log LT

and the final lactate point.

9. RCP: refer to Constant Power Exercise Bouts to Establish the Maximal Lactate Steady State

method section.

10. The estimated MLSS was based on a regression equation based on the RCP from GXT1

(RCPMLSS) (Eq 5).

Data analysis

Breath-by-breath data were edited individually with values greater than three standard devia-

tions from the mean excluded [43]. The data was interpolated on a second-by-second basis

and averaged into 5- and 30-s bins [44, 45]. The highest measured _VO2 value from every GXT

and VEB was determined as the highest 20-s rolling average. The _VO2max was computed as the

Fig 1. Representative blood lactate curve with 14 LTs calculated from GXT4 (participant #9). The power of the MLSS was 302 W and the

blood lactate concentration was 2.85 mmol.L-1. Log-log = power at the intersection of two linear lines with the lowest residual sum of

squares; log = using the log-log method as the point of the initial data point when calculating the Dmax or Modified Dmax; poly = Modified

Dmax method calculated using a third order polynomial regression equation; exp = Modified Dmax method calculated using a constant plus

exponential regression equation; OBLA = onset of blood lactate accumulation; B + absolute value = the intensity where blood lactate

increases above baseline.

https://doi.org/10.1371/journal.pone.0199794.g001
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highest _VO2 measured from any GXT or VEB. The _VO2peak for each GXT was defined as the

highest measured _VO2 from either the GXT or the subsequent VEB.

The _Wmax for every GXT was determined as the power from the last completed stage plus

the time completed in the subsequent stage multiplied by the slope (Eq 6). The _VO2 response

at the MLSS was determined by the average _VO2 value during the last two minutes of the

30-minute constant power bout.

_Wmax ¼ Power of Last Stage ðWÞ þ ½slope ðW:s � 1Þ � time ðsec:Þ� Eq 6

Calculated LTs were excluded if the mean difference between the MLSS and calculated LT was

greater than the error of the measurement of the MLSS [coefficient of the variation (CV%) = 3%,

7.9 W] [27], the effect size (ES) was greater than 0.2, or the Pearson Product moment correlation

coefficient (r) was less than 0.90. Using these criteria, 10 of the 56 LTs and the RCPMLSS (Eq 5)

were included in the analysis (Table 1).

Also shown is the mean difference (MD), the Pearson product moment correlation (r) and

effect size (ES) of the difference when compared with the MLSS. (log = using the log-log

method as the point of the initial data point when calculating the Dmax or Modified Dmax;

poly = Modified Dmax method calculated using a third order polynomial regression equation;

exp = Modified Dmax method calculated using a constant plus exponential regression equation;

OBLA = onset of blood lactate accumulation, B + = baseline lactate value plus an absolute lac-

tate value). Bold represents the LT that met the three criteria for inclusion in our final analysis:

mean difference less than 7.9 Watts, Pearson moment product correlation >0.90, and a less

than trivial ES difference from the MLSS (ES<0.2)

Statistical analysis

A one-way analysis of variance with repeated measures was used to assess significant differences

between the MLSS and the calculated LTs. Agreement between the MLSS and the calculated LTs

was evaluated using a two-way mixed intraclass correlation coefficient (ICC), standard error of

the measurement (SEM), Lin’s concordance correlation coefficient (pc) [46], Bland-Altman plots

[47], (r), CV% [48, 49] and a magnitude-based inference approach involving standardised differ-

ences (ED) [50, 51]. Differences between _VO2peak values measured during each GXT were assessed

using ES, p-values, and the CV%. Agreement between _VO2 measured during each GXT and sub-

sequent VEB was evaluated using intraclass calculation coefficient (ICC), SEM, and CV% [49].

Descriptive statistics are reported as the mean ± SD. Alpha was set to P� 0.05.

Results

MLSS

The power associated with the MLSS was 264 ± 39 W, and the blood lactate concentrations at

the 10th and 30th min were 2.8 ± 0.8 and 3.3 ± 0.8 mmol.L-1, respectively. The blood lactate val-

ues at 3% above the MLSS (272 ± 41 W) at the 10th and 30th min were 3.6 ± 0.8 and 5.0 ± 0.9

mmol.L-1, respectively. The _VO2 at the MLSS was 81.4 ± 4.7% of _VO2max (3892 ± 441 mL.min-1;

50.5 ± 4.0 mL.kg-1.min-1). For each GXT the _VO2 at the MLSS and the power at the MLSS are

shown in Table 2.

Validity of LT estimates

Comparisons of the 58 estimations of the MLSS and the calculated MLSS are detailed in

Table 1. Fig 2 displays the standardized difference of the 13 LTs calculated for each GXT (52 in
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Table 1. The mean ± standard deviation (SD) of the 14 lactate thresholds calculated from the 4 prolonged graded exercise tests (i.e., GXT3, GXT4, GXT7 and

GXT10), and the respiratory compensation point (RCP) and the maximal lactate steady state (MLSS) estimated from the RCP (RCPMLSS) calculated from GXT1.

GXT3 GXT4 GXT7 GXT10

Log-log LT Mean SD (W) 211 ± 43 202 ± 38 200 ± 40 196 ± 41

MD (W) 53.1 62.8 64.8 68.3

r 0.84 0.89 0.87 0.78

ES 1.28 1.63 1.62 1.70

OBLA 2.0 Mean SD (W) 262 ± 40 249 ± 39 247 ± 39 245 ± 37

MD (W) 2.1 15.1 17.3 19.6

r 0.86 0.94 0.94 0.93

ES -0.05 -0.38 -0.44 -0.50

OBLA 2.5 Mean SD (W) 276 ± 42 262 ± 40 258 ± 40 255 ± 38

MD (W) -11.9 2.0 6.7 9.2

r 0.89 0.95 0.94 0.93

ES 0.30 -0.05 -0.17 -0.23

OBLA 3.0 Mean SD (W) 288 ± 43 273 ± 41 267 ± 41 264 ± 39

MD (W) -23.2 -8.8 -2.2 0.4

r 0.90 0.96 0.95 0.93

ES 0.59 0.22 0.06 -0.01

OBLA 3.5 Mean SD (W) 297 ± 45 282 ± 41 274 ± 41 272 ± 40

MD (W) -32.8 -18.1 -10.0 -7.3

r 0.91 0.96 0.95 0.93

ES 0.83 0.46 0.25 0.19

OBLA 4.0 Mean SD (W) 306 ± 46 291 ± 42 281 ± 42 279 ± 41

MD (W) -41.3 -26.3 -16.8 -14.2

r 0.91 0.97 0.95 0.93

ES 1.05 0.67 0.43 0.36

Baseline + 0.5 Mean SD (W) 235 ± 38 229 ± 40 228 ± 41 225 ± 37

MD (W) 29.4 35.6 36.6 39.5

r 0.74 0.81 0.83 0.82

ES -0.75 -0.90 -0.93 -1.00

Baseline + 1.0 Mean SD (W) 255 ± 39 239 ± 40 236 ± 39 235 ± 39

MD (W) 9.5 25.3 27.9 29.1

r 0.88 0.92 0.93 0.91

ES -0.24 -0.64 -0.71 -0.74

Baseline + 1.5 Mean SD (W) 270 ± 41 254 ± 41 250 ± 39 248 ± 39

MD (W) -6.0 10.1 14.7 16.8

r 0.90 0.94 0.94 0.92

ES 0.15 -0.26 -0.37 -0.43

Dmax Mean SD (W) 246 ± 34 232 ± 36 223 ± 31 216 ± 33

MD (W) 18.6 31.9 41.6 48.8

r 0.94 0.97 0.96 0.95

ES -0.47 -0.81 -1.06 -1.24

Modified Dmax Mean SD (W) 278 ± 37 267 ± 39 255 ± 40 248 ± 37

MD (W) -13.2 -2.9 9.7 15.9

r 0.90 0.91 0.93 0.92

ES 0.33 0.07 -0.25 -0.40

Log-Poly-MDmax Mean SD (W) 280 ± 42 265 ± 42 255 ± 39 248 ± 40

MD (W) -15.5 -1.1 9.5 16.5

(Continued)
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total) and the MLSS (all log-log methods were excluded given an ES> 1.0). Ten of the calcu-

lated LTs and the RCPMLSS met our inclusion criteria for final analysis—detailed comparisons

with the MLSS are provided in Table 3 and Fig 3. Figs 3–7 shows Bland-Altman plots of the 11

estimations included in our analysis; the newly developed ModDmax LT calculations (Fig 5

Panel C and D; Fig 6 Panel C) had the lowest limits of agreement with the MLSS. The log-log

polynomial modified Dmax (Log-Poly-ModDmax) method derived from GXT4 provided the

best estimation of the MLSS (Fig 5 Panel C). There was an inverse relationship between the

power calculated for each of the 14 LTs and stage length (Tables 1 and 4).

_Wmax and _VO2max

There was an inverse relationship between GXT duration and both _Wmax and _VO2peak

(Table 5). The _VO2peak values derived from GXT3 and GXT4 were similar to the _VO2peak mea-

sured during GXT1 (Table 6); however, the values were outside the variability of the measure-

ment (CV > 3%) [27]. _VO2peak values from GXT1 and the corresponding VEB had the highest

agreement (MD = 0.5 mL.kg-1.min-1, ICC = 0.96, SEM = 1.1 mL.kg-1.min-1 and CV = 2.0%)

compared with any GXT and corresponding VEB. The remaining GXTs and corresponding

Table 1. (Continued)

GXT3 GXT4 GXT7 GXT10

r 0.94 0.96 0.96 0.92

ES 0.39 0.03 -0.24 -0.42

Exp-Dmax Mean SD (W) 256 ± 35 243 ± 36 234 ± 34 228 ± 35

MD (W) 8.0 21.8 30.8 36.8

r 0.92 0.97 0.96 0.94

ES -0.20 -0.55 -0.78 -0.93

Log-Exp-MDmax Mean SD (W) 286 ± 42 271 ± 42 260 ± 39 253 ± 40

MD (W) -21.7 -7.0 4.3 11.1

r 0.94 0.97 0.96 0.93

ES 0.55 0.18 -0.11 -0.28

GXT1

RCPMLSS Mean SD (W) 271 ± 39

MD (W) -6.71

r 0.92

ES -0.17

RCP Mean SD (W) 315 ± 40

MD (W) -50.4

r 0.91

ES 1.27

https://doi.org/10.1371/journal.pone.0199794.t001

Table 2. Mean, standard deviation, and range of the _VO2 and power associated with the maximal lactate steady state (MLSS) expressed as a percentage of the maxi-

mal power ( _Wmax) and _VO2peak measured during each GXT. Note: The _VO2 at the MLSS was 81.4 ± 4.7% of the _VO2max. (Defined as the highest measured _VO2 during

any GXT).

GXT1 GXT3 GXT4 GXT7 GXT10

_VO2 at MLSS

(% of _VO2peak)

83.0 ± 4.5

[75.5–90.7]

84.7 ± 4.7

[76.6–91.9]

86.1 ± 5.9

[73.9–94.2]

88.4 ± 6.0

[77.4–103.2]

90.2 ± 5.3

[78.7–99.9]

Power at MLSS

(% of _Wmax)

62.9 ± 3.9

[56.8–71.7]

78.4 ± 4.3

[69.8–84.4]

82.4 ± 3.6

[73.7–88.8]

87.3 ± 4.4

[79.8–96.0]

89.6 ± 4.7

[81.6–98.1]

https://doi.org/10.1371/journal.pone.0199794.t002
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VEB had a CV of 3.3, 2.0, 3.5 and 5.2%, for GXT3, GXT4, GXT7 and GXT10, respectively. The

VEB performed following the longer duration GXTs (GXT3-10) underestimated the _VO2peak

from GXT1 (Table 6).

Discussion

The main findings of the present study are as follows. Only 11 of the 58 threshold values met

our inclusion criteria as valid estimates of the MLSS. Of the 11 methods included in our analy-

sis, three of the ModDmax methods yielded the most favourable estimations of the MLSS, and

the Log-Poly-ModDmax derived from GXT4 provided the best estimation of the MLSS. There

was an inverse relationship between stage length and LT, and this effect was larger in all Dmax

methods compared with the OBLA and baseline plus absolute lactate value methods. The

_VO2peak values measured during the longer duration GXTs (GXT3-10) underestimated the

_VO2max and the _VO2peak values obtained from GXT1 (MD = 1.2 to 4.8 mL.kg-1.min-1). Finally,

contrary to our hypothesis, the VEB after the longer duration GXTs did not yield _VO2peak val-

ues comparable to the _VO2peak derived from GXT1.

The use of five GXT protocols, 14 common LT methods, the RCP and RCPMLSS resulted in

58 unique thresholds. However, despite their common use, we observed that only 11 of these

values met our criteria for inclusion (MD < 7.9 W; ES< 0.2; r> 0.90). Of the four Dmax meth-

ods included in our analysis, one consisted of the traditional ModDmax method [22]. This had

the poorest agreement relative to the other ModDmax methods included in our analysis. The

remaining three Dmax methods are new variations of the ModDmax method, and the Log-Poly-

Fig 2. (A-D) Forrest Plots of the difference (ES ± 95% CI) between the MLSS and the power calculated from the 13

lactate thresholds derived from (A) GXT3, (B) GXT4, (C) GXT7 and (D) GXT10 (52 in total and excluding log-log). The

solid vertical bar represents no difference from the MLSS and the dashed vertical bars represents the threshold between

a trivial and small difference (ES = 0.2) established by Cohen (50) and Hopkins (49). log = using the log-log method as

the initial data point when calculating the Dmax or Modified Dmax; poly = Modified Dmax method calculated using a

third order polynomial regression equation; exp = Modified Dmax method calculated using a constant plus exponential

regression equation; OBLA = onset of blood lactate accumulation.

https://doi.org/10.1371/journal.pone.0199794.g002

Table 3. Mean ± standard deviation, mean difference (MD), intraclass correlation coefficient (ICC), Lin’s concordance correlation coefficient (ρc), standard error

of the measurement (SEM), effect size (ES) with 95% confidence limits, and coefficient of the variation (%CV) between the maximal lactate steady state (MLSS) and

the eleven thresholds included in our analysis. (RCPMLSS = MLSS estimate based on the respiratory compensation point; log = Modified Dmax method using the log-log

method as the point of the initial lactate point; poly = Modified Dmax method calculated using a third order polynomial regression equation; exp = Modified Dmax method

calculated using a constant plus exponential regression equation; OBLA = onset of blood lactate accumulation).

Mean ± SD

(W)

MD

(W)

ICC [95% CI] ρc SEM [95% CI]

(W)

ES [95% CI] CV [95% CI] (%)

MLSS 264 ± 39

GXT1 RCPMLSS 271 ± 39 6.7 0.92 [0.78–0.97] 0.90 11.2 [8.3–17.0] 0.17 [-0.04–0.38] 6.0 [4.4–9.4]

GXT3 Baseline + 1.5 mmol.L-1 270 ± 41 6.0 0.90 [0.75–0.97] 0.90 12.5 [9.3–19.0] 0.15 [-0.08–0.38] 6.6 [4.9–10.4]

GXT4 OBLA 2.5 mmol.L-1 262 ± 40 -2.0 0.95 [0.87–0.98] 0.95 8.7 [6.5–13.2] -0.05 [-0.21–0.11] 5.3 [3.9–8.4]

Modified Dmax 267 ± 39 2.9 0.91 [0.76–0.98] 0.90 11.7 [8.7–17.9] 0.07 [-0.15–0.29] 7.0 [5.1–11.0]

Log-Poly-MDmax 265 ± 42 1.1 0.96 [0.90–0.99] 0.96 7.9 [5.8–12.0] 0.03 [-0.11–0.17] 4.4 [3.2–6.9]

Log-Exp-MDmax 271 ± 42 7.0 0.97 [0.91–0.99] 0.95 7.5 [5.6–11.4] 0.18 [0.04–0.32] 4.1 [3.0–6.3]

GXT7 OBLA 2.5 mmol.L-1 258 ± 41 -6.7 0.94 [0.85–0.98] 0.93 9.4 [7.0–14.3] -0.17 [-0.34–0.00] 4.9 [3.6–7.7]

OBLA 3.0 mmol.L-1 267 ± 41 2.2 0.95 [0.86–0.98[ 0.95 9.2 [6.9–14.1] 0.06 [-0.11–0.23] 5.1 [3.7–8.0]

Log-Exp-MDmax 260 ± 39 -4.3 0.96 [0.89–0.99] 0.95 7.8 [5.8–11.9] -0.11 [-0.25–0.03] 4.1 [3.0–6.4]

GXT10 OBLA 3.0 mmol.L-1 264 ± 39 -0.4 0.93 [0.82–0.98] 0.93 10.2 [7.6–15.5] -0.01 [-0.20–0.18] 5.5 [4.0–8.6]

OBLA 3.5 mmol.L-1 (n = 16) 275 ± 39 6.9 0.93 [0.82–0.98] 0.91 10.3 [7.7–15.7] 0.19 [0.00–0.38] 5.5 [4.0–8.7]

https://doi.org/10.1371/journal.pone.0199794.t003
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ModDmax derived from GXT4 had the highest correlation and lowest mean difference with the

MLSS. These variations of the ModDmax method use the power at the log-log LT as the initial

intensity to calculate the ModDmax and then either the traditional third-order polynomial or

exponential plus-constant regression curve to fit the lactate curve [23, 41]. Although the valid-

ity of these three methods has not previously been assessed, the favourable estimations of the

MLSS may be related to the greater objectivity with which they determine the intensity that

corresponds with the initial rise in blood lactate concentration [37].

Fig 3. Bland-Altman plots displaying agreement between measures of the power associated with the RCP

regression equation (RCPMLSS) calculated from GXT1 and the MLSS. The differences between measures (y-axis) are

plotted as a function of the mean of the two measures (x-axis) in power (Watts). The horizontal solid line represents

the mean difference between the two measures (i.e., bias). The two horizontal dashed lines represent the limits of

agreement (1.96 x standard deviation of the mean difference between the estimated lactate threshold via the RCPMLSS

and the maximal lactate steady state). The dotted diagonal lines represent the boundaries of the 95% CI for MLSS

reliability (CV = 3.0%; 95%; CI = 3.8%) calculated from Hauser et al., 2014) (RCP = respiratory compensation point).

https://doi.org/10.1371/journal.pone.0199794.g003

Fig 4. Bland-Altman plots displaying agreement between measures of the power associated with the baseline plus

1.5 mmol.L-1 calculated from GXT3 and the MLSS. The differences between measures (y-axis) are plotted as a

function of the mean of the two measures (x-axis) in power (Watts). The horizontal solid line represents the mean

difference between the two measures (i.e., bias). The two horizontal dashed lines represent the limits of agreement

(1.96 x standard deviation of the mean difference between the lactate threshold and the maximal lactate steady state).

The dotted diagonal lines represent the boundaries of the 95% CI for MLSS reliability (CV = 3.0%; 95%; CI = 3.8%)

calculated from Hauser et al., 2014).

https://doi.org/10.1371/journal.pone.0199794.g004
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Although the original Dmax method is a commonly cited method for determining the LT

[23], we observed large mean differences (19 to 49 W) between the Dmax and MLSS. Three pre-

vious studies have purported to investigate the validity of this method to estimate the MLSS in

trained male cyclists [15, 52, 53]. One concluded that the Dmax method derived from GXT3

was a valid estimation of the MLSS (r = 0.97) [54]. We also observed a high correlation

between Dmax and the MLSS (r = 0.94 to 0.97) (Table 1), but, as indicated by the MD and other

measures, a high correlation is not sufficient to establish validity [55]. Another study examined

Dmax derived from two GXTs with similar durations (36 vs. 39 min), but with different stage

lengths (30-s vs. 6-min) [15]. The Dmax derived from GXT30s was not correlated (r = 0.51) with

the MLSS, even though the MD was 5 W, whilst the Dmax derived from GXT6 was correlated

(r = 0.85); however, it underestimated the MLSS (MD = 22 W). The third study concluded the

Dmax derived from GXT1 yielded poor estimates of the MLSS (r = 0.56; bias = -1.8 ± 38.1 W)

[53]. Thus, although some studies [15, 54] have used correlation analysis to suggest the Dmax

provides a valid estimate of the MLSS, this is not supported by the more comprehensive assess-

ment of validity performed in the present and other studies [53].

There were five fixed blood LT methods and one baseline plus an absolute value that met

our inclusion criteria, and, as previously reported [15, 24], these varied with the GXT protocol

used. The baseline + 1.5 mmol.L-1 was the only LT derived from GXT3 included in our analysis

(bias = -6 ± 35 W). This is consistent with the results of one previous study (bias = 0.5 ± 24

W), which also recruited trained male cyclists and had a similar GXT protocol design [56].

Consistent with our findings, this study also reported that an OBLA of 3.5 mmol.L-1 derived

from GXT3 did not provide a valid estimation of the MLSS. In contrast, another study con-

firmed the validity of the OBLA of 3.5 mmol.L-1 [52], despite recruiting trained cyclists and

using an identical GXT protocol. These conflicting results are likely attributable to the low

reproducibility of the OBLA methods [16].

While none of the OBLAs from GXT3 met our inclusion criteria, the OBLA methods of 2.5

mmol.L-1 derived from GXT4 and GXT7 provided valid estimations of the MLSS, as did the

OBLA of 3.0 mmol.L-1 derived from GXT7 and GXT10. The OBLA of 3.5 mmol.L-1 from

GXT10 was the highest fixed blood LT that identified the MLSS. There is no previous data

investigating the validity of these OBLA methods. However, it is worth noting that these five

methods provided superior estimations of the MLSS compared with the original ModDmax,

but were less favourable than the newly-developed ModDmax methods.

An OBLA of 4.0 mmol.L-1 is the most commonly-accepted fixed blood lactate value for esti-

mating the LT or MLSS. Three previous studies have attempted to validate use of an OBLA of

4.0 mmol.L-1 with cycle ergometry [15, 53, 57]. One study found that it overestimated the

MLSS (MD = 49 W) when derived from GXT1 [53]. The other study reported poor agreement

(bias 7 ± 49 W) when OBLA of 4.0 mmol.L-1 was derived from GXT4 [57]. The final study

observed a poor correlation between an OBLA of 4.0 mmol.L-1 and the MLSS (r = 0.71) [15].

Our results indicated the OBLA of 4.0 mmol.L-1 overestimated the MLSS across all GXTs.

Fig 5. (A-D) Bland-Altman plots displaying agreement between measures of the power associated with the (A) OBLA

2.5 mmol.L-1, (B) Modified Dmax, (C) Log-Poly-Modified Dmax, (D) Log-Exp-Modified Dmax calculated from GXT4

and the MLSS. The differences between measures (y-axis) are plotted as a function of the mean of the two measures (x-

axis) in power (Watts). The horizontal solid line represents the mean difference between the two measures (i.e., bias).

The two horizontal dashed lines represent the limits of agreement (1.96 x standard deviation of the mean difference

between the lactate threshold and the maximal lactate steady state). The dotted diagonal lines represent the boundaries

of the 95% CI for MLSS reliability (CV = 3.0%; 95%; CI = 3.8%) calculated from Hauser et al., 2014) (log = Modified

Dmax method using the log-log method as the point of the initial lactate point; poly = Modified Dmax method calculated

using a third order polynomial regression equation; exp = Modified Dmax method calculated using a constant plus

exponential regression equation; OBLA = onset of blood lactate accumulation.).

https://doi.org/10.1371/journal.pone.0199794.g005
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Fig 6. (A-C) Bland-Altman plots displaying agreement between measures of the power associated with the (A) OBLA

2.5 mmol.L-1 (GXT7), (B) OBLA 3.0 mmol.L-1 (GXT7), (C) Log-Exp-Modified Dmax calculated from GXT7 and the

MLSS. The differences between measures (y-axis) are plotted as a function of the mean of the two measures (x-axis) in

power (Watts). The horizontal solid line represents the mean difference between the two measures (i.e., bias). The two

horizontal dashed lines represent the limits of agreement (1.96 x standard deviation of the mean difference between the

lactate threshold and the maximal lactate steady state). The dotted diagonal lines represent the boundaries of the 95%
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Thus, in agreement with previous research, our results indicate; the OBLA of 4.0 mmol.L-1

does not accurately estimate the MLSS. It is also worth noting that the original authors cau-

tioned the use of this OBLA method, given the lack of a significant correlation when compar-

ing OBLA methods from a GXT and the MLSS [24].

The RCP derived from an 8- to 12-minute GXT consistently overestimates the MLSS [44,

53], and this was confirmed in our study (Table 1). Therefore, we used a regression equation

based on the RCP (RCPMLSS) (Eq 5) to estimate the starting intensity for establishing the

MLSS [33]. Our results indicate there was good agreement between the MLSS and RCPMLSS

CI for MLSS reliability (CV = 3.0%; 95%; CI = 3.8%) calculated from Hauser et al., 2014) (log = Modified Dmax method

using the log-log method as the point of the initial lactate point; exp = Modified Dmax method calculated using a

constant plus exponential regression equation; OBLA = onset of blood lactate accumulation.).

https://doi.org/10.1371/journal.pone.0199794.g006

Fig 7. (A-B) Bland-Altman plots displaying agreement between measures of the power associated with the (A) OBLA

3.0 mmol.L-1, (B) OBLA 3.5 mmol.L-1 calculated from GXT10 and the MLSS. The differences between measures (y-

axis) are plotted as a function of the mean of the two measures (x-axis) in power (Watts). The horizontal solid line

represents the mean difference between the two measures (i.e., bias). The two horizontal dashed lines represent the

limits of agreement (1.96 x standard deviation of the mean difference between the lactate threshold and the maximal

lactate steady state). The dotted diagonal lines represent the boundaries of the 95% CI for MLSS reliability (CV = 3.0%;

95%; CI = 3.8%) calculated from Hauser et al., 2014) (OBLA = onset of blood lactate accumulation.).

https://doi.org/10.1371/journal.pone.0199794.g007
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(Table 3). Nonetheless, for many participants the difference between MLSS and RCPMLSS

exceeded the CV% for the MLSS (Fig 3). Therefore, although the RCPMLSS can be used as a

convenient ‘starting point’ when establishing the MLSS, we recommend methods based on

blood sampling from the current study and assessing blood lactate kinetics in real time as rec-

ommended by Hering et al. [58] for a more accurate estimation of the MLSS.

Table 4. Mean difference (MD), effect size (ES), and p-value comparing the influence of graded exercise test stage length on all 14 lactate threshold methods.

3 vs. 4 3 vs. 7 3 vs. 10 4 vs. 7 4 vs. 10 7 vs. 10

Log-log LT MD (W) 10 12 15 2 6 3

ES 0.24 0.28 0.36 0.05 0.14 0.08

p-value 0.09 0.02 0.02 0.63 0.15 0.47

OBLA 4.0 mmol.L-1 MD (W) 15 24 27 9 12 3

ES 0.34 0.56 0.63 0.22 0.29 0.06

p-value 0.00 0.00 0.00 0.05 0.01 0.35

OBLA 3.5 mmol.L-1 MD (W) 15 23 25 8 11 3

ES 0.34 0.53 0.60 0.20 0.26 0.06

p-value 0.00 0.00 0.00 0.09 0.02 0.35

OBLA 3.0 mmol.L-1 MD (W) 14 21 24 7 9 3

ES 0.34 0.50 0.57 0.16 0.23 0.06

p-value 0.00 0.00 0.00 0.16 0.05 0.36

OBLA 2.5 mmol.L-1 MD (W) 14 19 21 5 7 2

ES 0.34 0.46 0.53 0.12 0.18 0.06

p-value 0.00 0.00 0.00 0.30 0.13 0.39

OBLA 2.0 mmol.L-1 MD (W) 13 15 18 2 4 2

ES 0.33 0.38 0.45 0.06 0.12 0.06

p-value 0.01 0.01 0.00 0.63 0.36 0.45

Baseline + 0.5 mmol.L-1 MD (W) 6 7 10 1 4 3

ES 0.16 0.18 0.27 0.03 0.10 0.07

p-value 0.25 0.27 0.10 0.85 0.46 0.50

Baseline + 1.0 mmol.L-1 MD (W) 16 18 20 3 4 1

ES 0.40 0.47 0.51 0.07 0.10 0.03

p-value 0.01 0.00 0.00 0.53 0.41 0.71

Baseline + 1.5 mmol.L-1 MD (W) 16 21 23 5 7 2

ES 0.39 0.52 0.57 0.12 0.17 0.05

p-value 0.00 0.00 0.00 0.27 0.14 0.49

Dmax MD (W) 13 23 30 10 17 7

ES 0.38 0.71 0.90 0.29 0.49 0.22

p-value 0.00 0.00 0.00 0.00 0.00 0.00

Modified Dmax MD (W) 10 23 29 13 19 6

ES 0.27 0.59 0.79 0.32 0.50 0.16

p-value 0.01 0.00 0.00 0.01 0.00 0.06

Log-Poly-ModDmax MD (W) 14 25 32 11 18 7

ES 0.35 0.62 0.78 0.26 0.43 0.18

p-value 0.00 0.00 0.00 0.00 0.00 0.02

Exp-Dmax MD (W) 14 23 29 9 15 6

ES 0.38 0.66 0.82 0.26 0.42 0.17

p-value 0.00 0.00 0.00 0.00 0.00 0.02

Log-Exp-ModDmax MD (W) 15 26 33 11 18 7

ES 0.35 0.64 0.80 0.28 0.44 0.17

p-value 0.00 0.00 0.00 0.00 0.00 0.01

https://doi.org/10.1371/journal.pone.0199794.t004
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Although a single GXT can be used to estimate both _VO2max and LT, the optimal test dura-

tion for each measure is different [11, 13]. To address this challenge, we added a supramaximal

VEB after each GXT, equivalent to that performed following GXT1, expecting all VEBs would

yield similar _VO2 values. However, the _VO2peak values from the VEB after the longer duration

GXTs underestimated the _VO2peak from GXT1. Although the _VO2peak values from GXT3 and

GXT4 were similar to GXT1, the differences were larger than the typical coefficient of variabil-

ity for _VO2peak (CV< 3%) [59]. Our results are consistent with previous recommendations

that longer duration GXTs are not optimal for establishing _VO2peak [10, 60]. Furthermore,

while a VEB can be used to verify that _VO2peak was achieved, it appears that a VEB following a

prolonged GXT cannot be used to establish _VO2max.

Extending the duration of the GXT stages results in a lower _Wmax [61]. This has implica-

tions for exercise prescription, as it is common in sport and exercise science research to pre-

scribe exercise intensity as a percentage of _Wmax. For example, in the present study the MLSS

ranged from 63 ± 4% (range = 52 to 72%) of _Wmax from GXT1 to 82 ± 4% (range = 74 to 88%)

Table 5. Mean and standard deviation of _VO2max—highest measured _VO2 during any graded exercise test (GXT); GXT _VO2 -highest measured _VO2 during each

GXT; VEB _VO2 highest measured _VO2 during each verification exhaustive bout (VEB); _VO2peak, highest measured _VO2 during either the GXT or corresponding

VEB. Mean and standard deviation of GXT duration, max power (Watts) from each GXT, percentage of maximum power from the prolonged GXT expressed as a per-

centage of W maximum power from GXT1 and power of each VEB (Watts) from the GXTs. Relative power of the verification exhaustive bout expressed as a percentage

(%) of the maximal power measured during the GXT. The subscript (i.e., 1, 3, 4, 7 or 10) refers to the stage duration (minutes) for each test.

GXT1 GXT3 GXT4 GXT7 GXT10

_VO2max (mL.kg-1.min-1) 62.1 ± 5.8

GXT _VO2 (mL.kg-1.min-1) 60.6 ± 5.4 58.2 ± 5.3 57.3 ± 5.7 56.4 ± 5.2 54.9 ± 4.9

VEB _VO2 (mL.kg-1.min-1) 60.1 ± 5.8 58.9 ± 5.9 58.8 ± 6.1 56.4 ± 5.9 54.7 ± 6.6

_VO2peak (mL.kg-1.min-1) 61.0 ± 5.3 59.7 ± 5.4 58.9 ± 6.0 57.3 ± 5.4 56.2 ± 5.5

GXT Duration (min) 11.3 ± 0.9 26.8 ± 1.4 34.9 ± 1.9 59.2 ± 3.3 81.6 ± 4.6

Maximum Power (Watts) 420 ± 55 337 ± 46 321 ± 47 303 ± 43 295 ± 43

Percent _Wmax of GXT1 (%) 100 80.3 ± 2.9 76.4 ± 3.1 72.1 ± 3.6 70.3 ± 4.0

VEB (Watts) 378 ± 50

VEB (% of GXT _Wmax) 90 109.7 ± 3.8 118.4 ± 18.7 125.4 ± 19.3 128.8 ± 20.4

https://doi.org/10.1371/journal.pone.0199794.t005

Table 6. Mean difference (MD) and standard deviation, effect size (ES), coefficient of the variation (CV) and p-value (p) for the measured _VO2peak values from

GXT1 compared with the _VO2peak values from GXT3, GXT4, GXT7, and GXT10 and for the _VO2peak values from GXT1 compared with the _VO2peak values from the

VEB following GXT3, GXT4, GXT7, and GXT10. The subscript (i.e., 1, 3, 4, 7 or 10) refers to the stage duration (minutes) for each test.

GXT1 vs. GXT3 GXT1 vs. GXT4 GXT1 vs. GXT7 GXT1 vs. GXT10

MD (mL.kg-1.min-1) -1.2 ± 3.3 -2.1 ± 4.2 -3.7 ± 4.7 -4.8 ± 3.7

ES 0.23 0.36 0.69 0.88

CV (%) 3.8 4.9 5.6 4.6

p 0.13 0.06 < 0.01 < 0.01

GXT1 vs. VEB GXT3 GXT1 vs. VEB GXT4 GXT1 vs. VEB GXT7 GXT1 vs. VEB GXT10

MD (mL.kg-1.min-1) -2.1 ± 5.9 -2.1 ± 6.1 -4.6 ± 5.9 -6.2 ± 6.6

ES 0.37 0.37 0.81 1.04

CV (%) 4.2 4.9 6.1 5.9

p 0.02 0.98 0.03 0.03

https://doi.org/10.1371/journal.pone.0199794.t006
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of _Wmax from GXT4. Prescribing exercise in the current study cohort at a fixed percentage of

_Wmax (e.g., 73% of _Wmax), would result in all participants exercising above or below the MLSS,

GXT1 and GXT4, respectively. This is important as it has previously been reported that pre-

scribing exercise relative to LT results in a more homogenous physiological response than

when exercise performed relative to _Wmax [62]. This also highlights why it is important to con-

sider the GXT protocol and the method used to determine relative exercise intensity when

comparing results between studies.

The wide range of _Wmax for each GXT is also note-worthy, the _Wmax range for GXT1 was

320 to 517 W and the duration ranged from 9 to 12 minutes. Had we employed a standardized

GXT (e.g., 35 W increments), and assuming _Wmax stayed constant, the range would have been

9- to 15 min. Applying this to our longer duration GXTs resulted in a homogenous duration

(GXT4: 32- to 39 min), whereas a standardised approach (e.g., 35 W increments) would have

resulted in a range of 27- to 46 min [57]. Thus, individualizing GXT protocol design is a useful

approach to ensure homogenous test duration [17].

Conclusion

In conclusion, the traditional Dmax and OBLA of 4.0 mmol.L-1 did not provide valid estimates

of the MLSS. The best estimation of the MLSS was the Log-Poly-ModDmax derived from

GXT4. The validity of our newly-developed ModDmax model may relate to the objectivity for

determining the initial rise in blood lactate concentration. However, we must advise caution

with the use of our newly-developed method until future research investigates the reliability

and reproducibility. It is apparent that both _VO2max and LT cannot be determined in a single

GXT, even if the GXT is followed by a VEB. Therefore, to appropriately determine _VO2max the

optimum duration of a GXT is 8–12 minutes and the _VO2 values measured during the GXT

and VEB be within 3% = CV [63]. Our data also highlight how differences in GXT protocol

design and methods used to calculate the relative exercise intensity may contribute to the con-

flicting findings reported in the literature.
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