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Abstract 
Woodland restoration is a complex endeavour, and restoration ecology as a scientific 

discipline requires constant re-assessments and adjustments if it is to improve outcomes 

and better provide for biodiversity. The promise of effective restoration is often used to 

justify destructive processes that affect many of the world’s ecosystems. It is therefore 

imperative that those promises can be met, which comes down to restoration ecologists’ 

and land managers’ capacity to predict and facilitate desirable ecological changes in a timely 

and socio-economically responsible manner. As perspectives have changed, and knowledge 

has been gained over the past few decades there have been several fundamental shifts in 

how restoration is done. Efforts to ‘beautify’ degraded areas through the planting of fast 

growing non-native species is no longer thought of as responsible restoration practice. We 

have a better understanding of ecological thresholds, the creation of novel ecosystems and 

the ways ecosystems move between stable states through transitional processes. Yet many 

restoration projects still fail to deliver positive outcomes for certain taxonomic groups. 

Fauna are an important component of biodiversity, and yet ecological filters and traps 

remain common in restored habitats. 
 

To date, the focus in restoration has been biased towards restoring flora, while fauna have 

been under-appreciated and under-utilised. This is likely due to a lack of clarity around how 

fauna can be used to assess restoration success. This study sought to address that issue by 

exploring ways fauna could be used to assess habitat quality, and evaluate whether they 

could fit into existing restoration management tools like a state-and-transition model. 

Variation in habitat quality was assessed using a number of biodiversity measures and 

behavioural patterns. This study used Rottnest Island in Western Australia, a mosaic 

landscape with a woodland restoration program that has been running for over 50 years. 

The Island’s woodland areas support a resident population of red-capped robins Petroica 

goodenovii, which was the focal species of this study. The robins are typically ground- 

foraging insectivores that generally have been found to respond negatively to 

anthropocentric land use changes. 
 

The suitability of the Island’s robin population as an indicator for the larger avian community 

was assessed to determine whether management and monitoring could simply focus on 

improving conditions for robins. Unfortunately, robins were found to be a poor indicator of 

the larger avian community. Factors that were positively correlated with estimated robin 
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density, like woodland area and time since last fire, were negatively correlated with density 

of other avian species of conservation significance. 

 

Invertebrate assembly was surveyed as a measure of food resource availability. There was a 

significant difference between woodland and heathland areas and to a lesser, but still 

significant, extent between restored woodland areas of different ages and remnant 

woodland. A major finding of this study was that Coleoptera were scarcely encountered in 

ground samples outside of remnant patches, but were among the most common orders in 

arboreal samples, specifically in old restoration. Given that this order is a major component 

of numerous insectivore diets, it is likely that this difference is influencing foraging habitat 

quality. This conclusion is supported by difference detected in the birds’ foraging behaviour, 

as birds in remnants foraged predominantly on the ground, while in restored areas birds 

were frequently observed collecting prey items from vegetation. 

 

Aside from changing their foraging behaviour, the birds were also found to rarely display 

breeding related behaviours while in restored habitat. This mimicked a significant difference 

in juvenile robin population density between restored and remnant patches during the 

breeding season. As such, it appears robins readily use restored areas for feeding resources, 

but remnants remain a crucial component of their functional habitat requirements, 

providing important breeding habitat. 

 

Behaviour was found to be a useful tool in explaining and verifying measured differences in 

habitat quality, and in this case, could easily be incorporated into pre-existing fauna 

monitoring programs. Robins weren’t found to be a suitable indicator species for the bird 

community, and given the small species pool on the island, management may need to 

consider all species of conservation significance separately. 
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Preface 
This manuscript has been written in the form of a cohesive single document to be presented 

for the degree of Doctor of Philosophy at Edith Cowan University. It is organised into five 

chapters, each of which contributes to an overarching narrative that explores a central idea 

of using animal based metrics to assess restored habitat quality. Each chapter is also written 

in such a way that they can stand alone, and with minor alterations, I will seek to publish 

them in peer review journals in the near future. 

 

Chapters one and five are likely to be published as opinion pieces. Neither are reliant on 

quantitative data, and instead, both discuss the state of restoration ecology as a scientific 

discipline, and a land management practice. Chapter one takes a broad focus, looking at the 

innovation history of restoration ecology, and proposes a way to further the field through 

better integration of fauna into management planning. Chapter five on the other hand, 

focuses on the woodland management future of Rottnest Island, the specific study site 

where this research was conducted. This chapter includes a detailed summary of the 

management history of the Island, as well as recommendations for future restoration 

efforts. The Rottnest Island Authority (RIA) which manages the Island’s restoration program 

is in the process of developing a woodland management plan. The results of this work will 

contribute to that management plan, which will shape future restoration management 

decisions on the Island. 

 

The Rottnest Island woodland bird community, with a special focus on the red-capped robin 

Petroica goodenovii, is assessed in Chapter two. This work builds on previous work on the 

Island’s avian community, and was designed in such a way as to be useful in conjunction 

with Birdlife Australia’s ongoing Rottnest bush bird monitoring program. While the focus of 

this chapter is predominantly centred around the avian community on Rottnest, the 

chapter also explores the value and limitations of single-species/surrogate-species type 

studies in addressing the needs of the larger community, which is a concept that may have 

relevance internationally. 

 

Chapter three contains the first formal assessment of the response of terrestrial 

invertebrates to woodland restoration efforts on the Island. Invertebrates were assessed as 

they relate to food resource availability for insectivorous birds like the red-capped robin. I 

intend to seek publication of this work as both an inventory of orders encountered on the 
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island, and as an assessment of the effects the woodland restoration program is having on 

invertebrate assembly. 

 

The value of integrating animal behaviour assessment data with other forms of ecological 

assessments, such as biodiversity indices, habitat factor analysis and resource availability 

estimates, is demonstrated in Chapter four. This chapter provides a practical demonstration 

of the key ideas discussed in Chapter one. The key findings of Chapter four are then used to 

develop Chapter five’s conclusions relating to how a pre-existing state-and-transition model 

for the Island could be improved through the inclusion of animal behaviour assessments. 

 
As is the nature with many ecological studies, this project encountered a number of 

unanticipated complications. Some of these complications required fundamental changes in 

experimental design, while others were solved through minor adjustments to equipment or 

data gathering procedures. Where deemed relevant, those amendments to the 

experimental design are outlined in Appendices A and B. 



 
1 

Chapter 1: A critique on the merits of 
incorporating animal behaviour into 
restoration ecology 
 
1.1 Introduction 

Ecological restoration efforts typically focus on areas that have experienced degradation, 

damage or destruction, and aim to mitigate or reverse those processes and, thus, increase 

the resilience of biodiversity (Hilderbrand, Watts, & Randle, 2005; Wortley, Hero, & Howes, 

2013). Restoration is achieved by accelerating the successional processes of plant and 

animal communities after a disturbance, so that biodiversity and ecological processes are 

returned (Hobbs & Harris, 2001; Brudvig, 2011). 

 

An expanding human population and an economic system reliant on constant growth have 

resulted in many ecosystems becoming threatened. Consequently, restoration has become 

an increasingly important tool for protecting threatened ecosystems, and the biodiversity 

they contain (Hobbs & Harris, 2001; Hilderbrand et al., 2005; Brudvig, 2011). Restoration is a 

difficult practice and, unfortunately, many restoration efforts have failed to deliver the 

expected results (Hobbs & Harris, 2001; Choi, 2007; Munro et al., 2012; Perring et al., 2015; 

McDonald, Jonson, & Dixon, 2016). Consequently, the science and practice of how best to 

plan, implement, monitor and adapt restoration efforts is still an active and rapidly 

developing field of study and one of central importance. This chapter first outlines the 

recent progress and current limitations of the scientific field of restoration ecology. I then 

discuss the prospect of evaluating and improving restoration outcomes by incorporating 

animal behaviour, an under-utilised indicator of ecological processes and measure of habitat 

quality, into a pre-existing management tool. 

 

1.2 A history of innovation: How restoration ecology has improved 

through time 

At the beginning of the twenty first century, the field of restoration ecology as a scientific 

discipline was no more than 20 years old (Jordan and Lubick, 2011). Problems with 

inappropriate goal setting, and unrealistic promises were already becoming apparent (Hobbs 

and Norton, 1996; Hobbs & Harris, 2001; Hilderbrand et al., 2005; Hayward 2012). The 



 
2 

reasons for these problems can be attributed to a number of causes, such as: the extent of 

disturbance having breached one or more ecological thresholds; poorly defined and 

unrealistic targets and goals; a lack of adequate monitoring as the restoration developed; 

and insufficient scientific knowledge on ecological processes associated with restoration. 

These factors resulted in an overreliance on ad-hoc management without adequate 

understanding of the implications of many management decisions (Bash & Ryan, 2002; 

Miller & Hobbs, 2007; McDonald & Williams, 2009; Parkes et al., 2012). A consequence of 

these decisions has been the creation of numerous hybrid and novel ecosystems containing 

unusual species assemblages with non-traditional interactions (Williams & Jackson, 2007; 

Hobbs, Higgs, & Harris, 2009). 

 

Despite the failures of many restoration programs to meet expectations, land clearing and 

other activities that degrade habitat frequently use the promise of effective restoration 

management to gain approval for developments that would otherwise not be seen as 

acceptable (Hilderbrand et al., 2005). The assumption that restoration can completely 

reverse damage and return ecosystems to some idealised harmonious state is unrealistic, 

and has been described as potentially harmful when used to guide conservation policy 

(Hobbs et al., 2010; Hobbs et al., 2011). Hobbs et al. (2011) argued that restoration is better 

seen as a form of ecosystem intervention that can be used within a conservation framework 

to adjust the trajectory an area is moving along. 

 

Oversights in restoration projects can take a long time to become apparent, as some 

features don’t develop naturally for decades or even centuries (Craig et al., 2012; Van Andel 

& Aronson, 2012). Given the long timescale required for restored areas to mature, and the 

relative infancy of restoration ecology as a scientific field, the guiding principles and 

conceptual models still see regular revisions (Hobbs & Harris, 2001; Hilderbrand et al., 2005; 

Jordan & Lubick, 2012; Higgs, 2012a; Higgs, 2012b; Hobbs, Higgs, & Hall, 2013; Higgs et al., 

2014). Unfortunately, the destructive processes that are currently applying pressure to 

ecological systems across the world will not wait for the science to catch up. This means that 

most research is conducted at a local scale in an ad-hoc manner in conjunction with the 

destructive processes, or in a post-hoc manner in degraded areas, where only limited 

information is available about the pre-disturbance state (Hilderbrand et al., 2005). 
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Through the study of successional processes associated with restoration, it became apparent 

that simply returning plant species without considering the return of structure or ecological 

processes was not enough (Hilderbrand et al., 2005; Lindenmayer et al., 2010; Hobbs et al., 

2011). Numerous restoration ecologists have argued that management of restoration needs 

to move beyond simply revegetating (McAlpine et al., 2016) and assuming that animals will 

recolonise as the vegetation matures; this is the basis of the ‘Field of Dreams’ hypothesis, 

which states that ‘if you build it they will come’ (Palmer, Ambrose, & Poff, 1997). We now 

understand that failure to adequately return key habitat characteristics and processes, can 

inadvertently lead to the creation of habitat filters (Martin et al., 2004; Hilderbrand et al., 

2005; Kanowski et al., 2006; Hobbs et al., 2009; Craig et al., 2012). Habitat filters restrict 

species from recolonising an area, which can have profound ecosystem-wide consequences 

when those species fulfilled an important role within the system (e.g. the loss of pollinator 

services and changes to seed dispersal [Caves et al., 2013; Ritchie et al., 2017]). For this 

reason, there has been a growing awareness of the need to improve restoration 

management to accommodate the faunal component of biodiversity (Schier & Needleman, 

2009). 

 

In a recent review article, McAlpine et al. (2016) addressed the issue of restoration projects 

frequently being undertaken with an overly narrow focus. The authors argued that many 

projects have used short-term performance monitoring strategies that assess plant 

establishment and diversity, rather than longer-term goals like structure, regeneration, self- 

sufficiency, and fauna habitat use, which are rarely assessed. Similar conclusions were 

reached a decade earlier in a meta-analysis, conducted by Ruiz-Jaen and Mitchell Aide 

(2005), on how restoration success is being measured. While the majority of studies used 

one or more of the following three general categories: diversity; vegetation structure; and 

ecological processes (Ruiz-Jaen & Mitchell Aide, 2005). Diversity measures were found to be 

by far the most common measure, predominantly flora richness surveys, with arthropod 

richness being the second most commonly used group. It was also found that most studies 

measured either flora or fauna, but that it was rare for restoration studies to measure both. 

This is likely a result of expertise being divided along taxonomic lines (Fraser et al., 2017). 
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1.3 Understanding and explaining successional processes in restoration 

Determining whether or not a restored area is developing towards a desired state can be 

complicated. State-and-transition models (STM) can be useful in providing intuitive 

depictions of restoration development that commonly relate to vegetation and habitat 

condition (Stringham, Krueger, & Shaver, 2003; Bestelmeyer et al., 2004; Rumpff et al., 

2011). By defining a set of desirable and deviated states that may occur as the restored area 

develops, managers are able to fine tune management procedures in response to the area’s 

regenerative progress (see Figure 1.1 for an example STM). Unfortunately most STMs are 

predominantly flora focused, and tend to exclude fauna from consideration (Fraser et al., 

2017). Grant (2006) developed one of the earliest STMs for restoration. The model 

described a series of processes surrounding forest restoration in retired bauxite mine pits in 

the Jarrah forests of Western Australia. Bauxite mining uses open cut techniques, which 

involve clear cutting the forest and breaking through the cap rock to expose the alumina rich 

bauxite. The mining process results in pits that are between 8-10 meters deep, and up to 40 

hectares in size (Koch, 2007). Consequently, restoration begins with soil preparation, where 

the pit floor is ripped, topsoil (enriched with a seed bank and propagules) is used to fill the 

pits, and the edges are smoothed for proper drainage (Koch, 2007). This kind of restoration 

aims to accelerate the recolonisation of native flora and fauna through regrowing the 

vegetation in the pit. Periodic, long-term monitoring of the flora and fauna provides insight 

into the development of the restored area over time. 

 

Grant’s (2006) STM was derived from vegetation successional processes, and identified a set 

of desirable and deviated successional states and the factors that caused transitions 

between those states. The model proved to be an effective method for identifying a number 

of potential biotic and abiotic issues as they emerged, and provided management 

suggestions to counteract those issues. However, the model was fairly limited, as the 

definitions of desired and deviated states needed to be severely simplified from their 

original design (Grant, 2006). Consequently, a large portion of collected data were not 

usable. In addition, a major limitation of the model was that fauna was completely 

overlooked. 

 

1.4 Fitting animals into existing models 

While fauna is rarely used in restoration modelling studies, a few notable examples have 

effectively incorporated animal-based metrics into restoration management plans (e.g. 

Bosire et al., 2008; Howes, Maron, & McAlpine, 2010; Fraser et al., 2017). Bosire 
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incorporated assessments of structure, regeneration, biomass, and composition of 

restored mangroves, as well as biodiversity measures of various vertebrate and 

invertebrate taxonomic groups to gain a more complete perspective on the extent to 

which functionally of the restored mangrove area had been returned. Aquatic 

invertebrates are arguably a crucial component of biological monitoring in many aquatic 

systems, where biological integrity is assessed using well developed procedures (Resh, 

Norris, & Barbour, 1995; Fore, Karr, & Wisseman, 1996).  Terrestrial invertebrates have 

also been shown to be a valuable assessment tool for assessing restoration success in the 

resource mining sector (e.g. Dunger’s (1989) work on German coal mine dumps; Stannard’s 

(1967) work on strip-mined land in Northern America; Hutson’s (1980) work on reclaimed 

coal pits in England; and Majer’s (1983) work on open cut bauxite mines in Australia. Ant 

monitoring was developed to assess restoration success following mining (Majer, 1983)).  

 

Craig et al. (2015) investigated the relationship between Grant’s (2006) five desirable and 

five deviated habitat states and the avian community. The study identified no discernible 

relationship between avian successional patterns and the states described by Grant. This 

was attributed to the model’s design not being based on suitable ecological processes and 

thresholds, and the desirable and deviated states not being defined by factors that are 

important to the avian community (Craig et al., 2015). It was concluded that altering the 

STM to better incorporate faunal successional patterns would improve land managers’ 

ability to identify and address problems affecting faunal recolonisation of restored mine 

pits. 

 

Howes et al. (2010) used a bayesian network (BN) modelling approach to assess the 

influence of fire (both wild and prescribed) and feral animal grazing on habitat structure, and 

avian assemblage. The model proved to be useful in identifying causal links between various 

ecological processes related to both flora and fauna, and offered guidance on how best to 

plan future ecosystem intervention. This study demonstrated how fauna and flora could be 

assessed in an integrated manner to produce meaningful data for land managers. 

 

Fraser et al. (2017) developed an integrative STM that combined vegetation conditional data 

with avian species distribution modelling (SDM) to identify the effective restoration options 

for vegetation and bird species within a constrained budget. By assigning different values to 

each objective, based on their relative importance to either the birds or the vegetation 

profile, the model was able to provide land managers with recommendations for how best 
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to invest time and effort. The model was able to identify key variables that management 

should focus on, and helped manage ‘trade-off’ decisions between conflicting objectives, as 

the floral and faunal needs at times contradicted one another (Fraser et al., 2017). 

 

There are numerous ways to measure restoration development to construct a STM or other 

successional model. Measures like diversity, community composition, habitat structure, and 

various ecological processes all have their merits and drawbacks (Ruiz‐Jaen & Mitchell Aide, 

2005). Diversity measures can be useful but also misleading, as the pre-disturbance state is 

often ambiguous in degraded areas, disturbance specialists are likely to be overrepresented, 

and variation in detectability of different species can influence the results (Ruiz‐Jaen & 

Mitchell Aide, 2005; Lindell, 2008). Species composition in restored areas can change 

dramatically as the area matures. Plant and animal vagility influences the capacity of species 

to locate and recolonise restored areas. Unfortunately, highly mobile species can often 

move through areas that provide little to no useful habitat resources, diminishing the value 

of presence-absence data (Lindell, 2008; Craig et al., 2012). Measures of habitat structure 

can be useful for classifying habitat types, especially in relation to successional 

development. Some features change rapidly over the first few decades of development, 

especially in areas that have frequent fires, while other structures, such as ground logs and 

tree hollows can take decades to centuries to develop (Fischer & Lindenmayer, 2007; Craig 

et al., 2012). However, habitat structure assessments can also be problematic as different 

animals are likely to perceive habitat barriers and features differently to us (Van Dyck, 

2012). 

 
Ecological processes provide excellent insight into how multiple ecological features have 

developed and interact with one another, but require an in-depth understanding of the 

system, and can therefore be complicated to assess (Reay & Norton, 1999). The merit of 

integrated approaches that use a range of different assessment measures is that by covering 

a wide spectrum of characteristics, we are able to gain a more comprehensive and 

integrated understanding of the system’s development, its similarity to the reference state, 

and its resilience (SER, 2004). Ruiz-Jaen and Mitchell Aide (2005) argued that; while 

designing restoration that considers the needs of both fauna and flora is likely to be more 

costly and require a better understanding of ecological processes, it is more likely to result in 

restoration efforts meeting their biodiversity objectives. 
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Ecological processes are intrinsically integrative, and can provide information on resilience 

of restored ecosystems (Ruiz-Jaen & Mitchell Aide, 2005). Animals are crucial components of 

many ecological processes, yet are often overlooked in assessments of restoration success 

(Lindell, 2008). Examples of ecological processes facilitated by animals include: hebivory, 

seed dispersal, pollination, predation and parasitism (Holl, 1998; Donath, Holzel, & Otte, 

2003; White et al., 2004). A number of authors have argued that we need to adopt more 

integrative approaches to restoration assessments, and consider the ecological processes 

that need to be established if future projects are to succeed where projects in the past have 

failed (Hobbs & Norton, 1996; Neckles et al., 2002; SER, 2004; Lindell, 2008). 

 

Theories such as ‘Carbon Copy’ (Clements, 1936) and ‘Field of Dreams’ (Palmer et al., 1997) 

suggest that a disturbance or degrading activity that removes the vegetation structure 

previously present in the area will simply interrupt a system’s ecological processes 

temporarily (Hilderbrand et al., 2005). These theories assume that the ecological processes 

of an area will return along a systematic successional trajectory, back to its original state, 

through rebuilding the system’s vegetation structure (Clements, 1936). There is little 

evidence to support the premise that restoration efforts achieve desired structure and 

functions within a shortened time span, especially without continued management as the 

restored area matures (Simenstad & Thom, 1996; Zedler & Callaway, 1999; Campbell, 2002; 

Wilkins, Keith, & Adam, 2003). Faunal species that are slow to recolonise often require 

further assistance through modifying restoration practices to better provide key resources 

and restart ecological processes (Cristescu, 2011; Craig et al., 2012; Triska et al., 2016). The 

installation of artificial nest boxes, the addition of ground logs, and the translocation of 

animals into a restored area, are all examples of active management that can be used to aid 

faunal recolonisation of restored habitats. 

 
Habitat filters and ecological traps are clear examples of where improper restoration efforts 

can create new problems for species. While assessment of presence alone may indicate that 

the area provides viable habitat, further inquiry may demonstrate that the species found 

within the area are unlikely to survive or reproduce (Lindell, 2008). An ecological trap occurs 

when animals occupy sub-optimal areas but at low fitness, and are therefore unable to 

maintain a stable population without a nearby source population to subsidise following 

generations (Robertson & Hutto, 2006). Although they can be difficult to identify, ecological 

traps are thought to be common in human-modified landscapes, including restored habitats 

(Battin, 2004). Identifying an ecological trap can be done through measures of population 
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replacement, such as monitoring nest success, predation rates, and behavioural assessments 

(Winter et al., 2006; Pidgeon, Radeloff, & Mathews, 2006). By studying parental behaviour, 

nestling success rate, and the reasons for nestling failure, it is possible to gain insight into 

the reasons why some areas have higher success rates than others. In a study on blue tits 

(Cyanistes caeruleus), the distance parents travelled to find food was found to influence 

fledgling success rates, which explained the variation in reproductive success between high 

quality deciduous woodland, and low quality coniferous woodland (Stauss, Burkhardt, & 

Tomiuk, 2005). The study used behavioural analysis to identify variation in habitat quality, 

and explain the mechanisms behind that variation. 

 

Habitat filters are a conceptual model used to describe the presence or absence of 

functional habitat traits that make an area unsuitable for certain species (Cornwell & 

Ackerly, 2009; Craig et al., 2012). Examples of potential filters include the absence of coarse 

woody debris (CWD) and tree hollows that are slow-developing habitat resources, whose 

absence from an area may exclude species that are dependent on those resources (Vesk et 

al., 2008). While filters are generally seen as a negative or unwanted habitat characteristic, 

some filters can increase an ecosystem’s resilience; by making it difficult for invasive species 

to become established (Funk et al., 2008). When developing a STM that uses animal-based 

metrics in its assessment of desired and deviated states, unwanted filters could be used to 

classify areas as deviated, and through the removal of those filters, the area may transition 

back to the desired state. 

 

In a study on the factors determining how successful river restoration efforts were at 

returning benthic invertebrate assemblages, it was determined that the presence of a 

potential source population of the desired species in the surrounding area was necessary 

(Sundermann, Stoll & Hasse, 2011). The study found that the source populations needed to 

exist within a 0-5 km ring around the restored area, and that source populations beyond 

5km from the restored area had a relatively limited role in the recolonisation of restored 

areas. This study highlights the importance of understanding the vagility of faunal groups 

the restoration effort is intended to help, as overly large distances between source 

populations and restored areas can act as a filter for recolonisation. 

 

 

1.5 Use of animal behaviour as an assessment tool 

Ecological processes can be assessed by observing how specific species use the habitat they 
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occupy (Lindell, 2008). Various behavioural patterns have been shown to be indicative of 

habitat quality (e.g. Vaughan, Jones, & Harris, 1996; Johnson et al., 2006; Stenberg & 

Persson, 2006), and the rate and/or outcome of certain behaviours has been linked with 

individual fitness, via measures based on their contribution to the next generation (Alcock, 

2009). Restoration assessments that use animal behaviour to assess the availability of 

important habitat features, as well as evidence of ecological processes having been 

restored, would therefore capture considerably more information, than presence/absence 

data alone (Lindell, 2008). 

 

A number of ethological papers have compared animal behaviour in restored areas to 

comparable reference habitats, demonstrating the potential of animal behaviour based 

metrics to identify important resources and processes affecting the species studied. 

Commonly assessed behaviours include: microhabitat selection (Gabbe, Robinson, & Brawn, 

2002; Moore, 2013); Vagility (Maina & Howe, 2000); foraging strategies (Adamik & Kornan, 

2004; Whelan & Jedlicka, 2007); and breeding behaviour (Berg, 2002; Berg, Lindberg, & 

Källebrink, 2002; Bellingham et al., 2010). An example of a study technique using foraging 

strategy is ‘giving up density’ (GUD). GUD measures the level of risk animals perceive when 

foraging in specific patches, based on their willingness to exploit a food resource that yields 

depleting returns for search effort. GUD can be used to assess habitat quality through 

assessment of predation pressure and food availability (Brown, 1988; Jacob & Brown, 2000; 

Persson & Stenberg, 2006; Doherty, Davis, & van Etten, 2015). Studies like this are valuable 

sources of information for restoration practitioners wanting to develop STMs or other 

comparable models that incorporate measures of ecological processes relevant to animals 

and to create more integrative management plans. 

 

For a STM to effectively represent vegetation and faunal succession, the desired and 

deviated states need to reflect ecological processes and thresholds relevant to both 

taxonomic groups (Craig et al., 2015). A hypothetical schematic STM that includes abiotic, 

floral and faunal habitat requirements has been developed for this study, and can be seen in 

Figure 1.1. Stages S1-S4 represent measurable states within the desirable ecosystem 

parameters (this is a simplified model; actual models are likely to have far more stages). 

Conceptually, a restored area should move from S1 through to S4 through a combination of 

passively occurring successional processes, and active restoration interventions. Deviated 

states occur when ecosystem parameters go beyond the desired range denoted by the 

deviated boundaries. A well-designed STM should clearly define each developmental stage 
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(S1:S4), each deviated state (D1:D6), and the pathways between each stage, including 

management solutions for transitioning deviated states back into the desirable range (Yates 

& Hobbs, 1997).  

 

The thresholds (T1:T3) are an adaptation of Grant’s (2006) model for post bauxite mining 

mine pits, which was originally derived from Whisenant’s (1999) model. To pass through the 

abiotic threshold, a number of management manipulations were required as the pit 

topography had to be manipulated. This involved return of the overburden and topsoil. 

Contour ripping was then used to reduce the risk of erosion, encourage water infiltration, 

relieve soil compaction, and encourage vegetation growth. Once these manipulations had 

been completed, the area passed through the abiotic threshold into the T2 stage of 

development. This stage involved manipulation of vegetation such that the flora threshold 

requirements could be met. Once the vegetation characteristics had been adequately 

restored, the model depicted in Figure 1.1 goes beyond Grant’s (2006) model to include a 

threshold dedicated to fauna requirements.  

 

This third tier (T3) involves the removal of habitat filters or factors that cause the area to act 

like an ecological trap. It is in this stage that animal behavioural metrics may be of greatest 

use in determining whether ecological processes have been restored, and quantifying the 

relative quality of the restored habitat for certain species. It should be noted that while this 

is the stage that appears to be the most logical place to assess animal behaviour, 

consideration of the needs of animals should be in place from the outset of the STM, as 

factors established during T1 may influence an area’s capacity to pass through the T3 

threshold. Additionally, faunal recolonisation, especially by disturbance specialists, is likely 

to occur early on in the restoration development, meaning faunal assessments may be of 

value at all stages of development.
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Figure 1.1: State-and-transition model depicting the progression from pre - 
intervention conditions through to acceptable completion state. Deviated boundaries 
demonstrate the limits of the desired range of ecosystem parameters for each 
developmental stage (defined through deviated states D1:D6). Red arrows 
between stages are transitional forces that can deviate area from the desired 
trajectory. Blue arrows signify management actions or passive developments 
that move area towards the desired end stage. The thresholds T1:T3 signify 
habitat requirements that must be met before the area can move into the next 
developmental phase. This model was derived from Yates and Hobbs’ (1997) and 
Grant’s (2006) STMs. 

 
Our need to improve the science of restoration is more relevant now than ever before. 

Restoration ecology appears to be moving towards more integrative designs, where spatial 

modelling, bayesian networks and STMs are seeing increased use. It has been argued that 

there needs to be greater consideration of animals with regards to restoration planning and 

management, but there are a number of logistical challenges surrounding how best to 

incorporate animals. Management decisions can either facilitate or impede the recovery of 

important processes, which relate directly to how animals behave in an area (Lindell, 2008). 

While animal behaviour is currently underutilised, numerous case studies have 

demonstrated its value in filling in the gaps left by more traditional restoration monitoring 

techniques (e.g., Holl 1998; Brusati, DuBowy, & Lacher, 2001; Baguette & Van Dyck, 2007; 

Bennett & Hale, 2014). The inclusion of animal behaviour based metrics into restoration 

assessment procedures would allow us to better understand the ecological processes at 

work. 
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The challenge will be to find robust ways to quantify animal behaviours in ways that can be 

incorporated into state-in-transition models that can exist alongside existing restoration 

assessment and management targets. To do this, there needs to be: 1) better collaboration 

between botanical and zoological advocates: 2) more integrative approaches that consider 

ecological processes and functional traits of both animals and plants: 3) an awareness of the 

limitations of presence/absence type data, and: 4) consideration of how behavioural data 

can fill knowledge gaps allowing us to better repair ecosystem functionality. The following 

chapters will explore ways in which animal behaviour can be used to quantify habitat quality 

of restored, degraded and remnant areas. The merits of these survey techniques are then 

compared within the context of designing a STM to improve restoration outcomes.
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Chapter 2: Limitations of surrogate species 
models: A case study using the red-capped robin 
to predict woodland bird community 
composition on Rottnest Island. 
2.1 Introduction 

In Chapter one, I discussed how animals are an important component of the world’s 

ecosystems, and argued that restoration outcomes could be improved by better 

incorporating the needs of animals into restoration management plans. How best to do this 

is still somewhat unclear. Lindell (2008) raised concerns that animals have been largely 

overlooked during the planning and monitoring of restoration projects, and highlighted 

some of the benefits of animal behaviour studies in improving restoration outcomes. While 

the arguments put forward by Lindell are well made, it is important to consider the 

limitations of animal behaviour metrics, as there are a number of challenges associated with 

using species-level research in restoration ecology. 

 
Due to the difficulty in planning management around the needs of every species within a 

system, a number of conceptual models relating to simplifying species management have 

been proposed over the years that offer shortcuts for biodiversity monitoring and 

maintenance. Various surrogate species models such as the umbrella species (Carroll, 

Noss & Paquet, 2001), indicator species (Rose, 1999), keystone species (Bruinderink, 

2003), and focal species (Lambeck, 1997) have been put forward. Each of these models 

have substantial differences, and criteria for selecting appropriate species.  Population 

indicator species tend to be most effective when they have a rapid rate of reproduction, 

are resident and often restricted to the area in question, and the factors influencing their 

population size are well understood (Caro & O’Doherty, 1999). Focal species on the other 

hand are generally linked with a single threatening process like habitat fragmentation, 

and their response to the threatening process must be understood, and it must also 

mirror the response of other taxonomic groups the focal species is to act as a surrogate 

for (Lambeck, 1997).  

 

Confusion surrounding the validity and interchangeability of these models has called into 

question the validity of surrogate species models, leading to substantial criticism, and the 

mis-management of numerous conservation efforts worldwide (Caro & O’Doherty, 1999; 
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Lindenmayer et al., 2002; Wiens et al., 2008; Caro, 2010; Watts et al., 2010). 

Lindenmayer et al. (2002) urges caution with regard to the implementation of the focal 

species surrogate model, as the assumptions regarding faunal response to threatening 

processes need to be carefully considered, as there is considerable evidence that similar 

species and groups of species will respond to threatening processes in vastly different 

ways (e.g. Robinson et al., 1992; Gascon et al., 1999). In addition, it can be very difficult 

to identify which species is likely to be the most affected by a threatening process, which 

further complicates the task of identifying a suitable indicator species. 

 

While the selection criteria and implications of each surrogate species model are subtly 

different, the key premise behind each of these models is the same. That premise is as 

follows: by managing or monitoring the needs of a chosen sub-set of species found in an 

area, the needs of a larger pool of other species inhabiting the area will also be met (Caro, 

2010). While it can be said that natural systems are fiendishly complicated, there is an acute 

need for action in the wake of the biodiversity crisis currently underway. Political pressures 

often require rapid decisions and there is often insufficient time and funding to complete a 

more comprehensive management plan (Singh, Raghubansh, & Singh, 2002; Caro, 2010). 

Hence, the various surrogate species models offer an attractive shortcut, simplifying the task 

and reducing the cost of management. Unfortunately, there is considerable evidence that 

rejects their premise. 

 
All animals have a number of resource requirements that are needed for that species to 

persist in an area (Forman, 1995). Within a single area, many species may share a subset of 

common resource requirements from the total resource pool available, but it is unlikely that 

any species will share all the resource requirements of every other species in the system 

(Eycott, 2007). Moreover, the specific requirements each species has in relation to each 

resource may be subtly different. Assessing each species’ specific needs in relation to one 

another would be extremely complex and labour intensive, making it likely to be unfeasible 

(Lindenmayer et al., 2002). This is the fundamental issue with models like the umbrella, 

indicator, keystone and focal species. Species used in these models are often large mammals 

and birds, but there is little evidence to support the claim that these groups will be 

representative of the needs of other taxonomic groups, or even other species within these 

groups (Roberge & Angelstam, 2004). Thus, caution needs to be taken when using any of 

these models, as they can only be extrapolated to a few other species within the system, if 

at all. 
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While the use of surrogate species management isn’t without its criticism (e.g. Caro & 

O’Doherty, 1999; Lindenmayer et al., 2002; Roberge & Angelstam, 2004), we have yet to 

develop a robust, and usable management tool that is infallible. Grouping species according 

to their susceptibility to particular causes of decline has logical value for land-managers 

aiming to prevent declines. Lambeck’s (1997) focal species approach (FSA) was an evolution 

of the single-species models like the umbrella species model that came before it, and 

addressed some of the issues of its predecessors. Generic focal species (GFS) is a recent 

adaptation of the FSA, that uses population data modeling from a suite of different species 

to create a single theoretical species that has the habitat requirements, dispersal 

capabilities, or susceptibility to habitat alteration as all species within the chosen suite 

(Eycott, 2007; Watts et al., 2010; Oliver et al., 2012). These revisions of surrogate species 

design demonstrate an awareness of the limitations of past models, which will hopefully 

continue to be refined and improved in the future. For now, in the absence of an infallible 

model, the precautionary principle advises that caution be used when applying simplified 

principles to processes that aren’t yet fully understood (Kriebel et al., 2001). Currently, it 

appears that surrogate species models are best used in combination with other 

management tools, such as community level studies, and the study of ecological interactions 

and processes (Lindenmayer et al., 2002; Eycott, 2007; Lindell, 2008; Caro, 2010; Watts et 

al., 2010). 

 

Within the field of restoration ecology, woodland birds have been a focal point for 

conservation efforts. This can be attributed to the evidence that woodland bird assemblages 

have severely declined across much of the tropics, sub tropics and temperate zones 

worldwide (Birdlife International, 2008; Mac Nally et al., 2009; Watson, 2011). Local 

extinctions and range contractions have been well documented in Australia, Europe and 

North America (Ford et al., 2001; Donald et al., 2006; Murphy, 2003; Fuller et al., 2007; 

Watson, 2011). The primary drivers behind these losses appear to be habitat loss and 

degradation (Mac Nally et al., 2009). The severity of these concerns has resulted in 

woodland birds being recognised as a global conservation priority (BirdLife International, 

2008). Restoration ecology offers an opportunity to repair lost and degraded habitats, 

which, if done correctly, may mitigate further declines in woodland bird communities. 

 

Animal behaviour studies are intrinsically species focussed, typically with either a single 

target species, or the interaction between a few different species that are related though 
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interactions like predator-prey relationships or competition. While there are numerous 

cases of animal behaviour studies providing valuable species-level information for 

restoration practitioners (e.g. Lindell, 2008; Fink et al., 2009; Bennett et al., 2012), the 

results of animal behaviour studies need to be considered within the context of the larger 

community. Single-species studies may generate results that conflict with community level 

studies, which will create difficult ethical decisions for land managers. 

 

Animal behaviour studies can provide insight into the relative habitat quality offered by 

different habitat patches in a number of ways. Animal behaviour studies can show the 

effects of patch size and shape on bird survival rates (e.g. Major, Christie & Gowing, 2001), 

they can identify reasons for high and low fledgling rates in different habitat types (e.g. 

Stauss et al., 2005), and they can identify key resources, such as food and shelter, different 

habitat patches provide for that animal (Benton, Vickery, & Wilson, 2003). 

 

Rottnest Island is home to a population of red-capped robins Petroica goodenovii, a small 

(7-9g), Australasian robin from the Petroicidae family, that is unrelated to the old world 

European or American Turdus robin (Boles, 1988). Red-capped robins are widely distributed 

across much of Australia. Their range extends from the southern most parts of the 

Kimberley, and Cape York (roughly 20o S) to the southern coasts of the continent, and a 

number of small offshore islands (Higgins et al., 2001). Despite their wide distribution, red-

capped robins have been identified as a declining woodland species in a number of studies 

(Reid, 1999; Razeng & Watson, 2012). Additionally, a number of studies have demonstrated 

that these robins are sensitive to habitat disturbances such as fragmentation (Radford et al., 

2004; Major et al., 1999), and are able to change their foraging behaviour under certain 

conditions (Antos, Bennett & White, 2008; Recher & Davis, 2002). 

 

The red-capped robins on Rottnest typically occupy woodland areas, which are made up of 

Rottnest Island teatree Melaleuca lanceolata and pine Callitris presissii (Saunders & de 

Rebeira, 2009). This woodland type is classified as a threatened ecological community in 

Western Australia, as it has suffered severe declines across the Swan Coastal Plain (Keighery 

et al., 2003; Winn, 2008). While the robin population on the Island currently appears to be 

increasing, they are uncommon on the adjacent mainland Swan Coastal Plain.  
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The recent growth in the robin population on the Island has been attributed to the 

restoration efforts conducted by the Rottnest Island Authority (RIA) since 1963 (Mather, 

2010). Rottnest Island has a long history of land clearing and frequent burning for agriculture 

and urban development (Winn, 2008). This has resulted in considerable changes to the 

biodiversity composition, with a number of local extinctions, numerous declines, and the 

invasion and colonisation of a number of species, as the availability of different habitat types 

shifted (Saunders & de Rebeira, 2009; Stevenson, 2011). In an effort to mediate these 

changes, the RIA has invested considerable resources into their woodland restoration 

program. 

 

Red-capped robins have been recognized as being a population of conservation importance 

on Rottnest Island due to call differences from mainland populations (Baker, Baker, & Baker, 

2003; Saunders & de Rebeira, 2009; Mather, 2010; Stevenson, 2011). Other bird species on 

the island that have been identified as significant based on their differences to mainland 

populations include: the western gerygone Gerygone fusca, the singing honeyeater 

Lichenostomus virescens, and the golden whistler Pachycephala occidentalis (Saunders & de 

Rebeira, 2009). All four of the listed species are woodland dependant, insectivorous birds. 

Post-European colonisation in the 1800s saw widespread clearing of woodland habitat on 

the island, which has since displayed very poor rates of natural regeneration (Winn, 2008). 

This highlights the importance of the woodland restoration program, which aims to increase 

the resilience of the island’s biodiversity through increasing the availability of usable 

habitat. 

 

Given that a number of studies of red-capped robins on the mainland have found that robins 

are vulnerable to habitat fragmentation (e.g. Major et al., 1999) and can alter their foraging 

behaviour in response to habitat conditions (e.g. Antos, Bennett & White, 2008), it has been 

suggested that they may be a suitable indicator species (Mather, 2010), or at least act as a 

surrogate species for identifying ecological thresholds (Radford et al., 2004). Data from 

Birdlife Australia’s Bush Bird monitoring program (Mather, 2010) and Polson-Brown's (2012) 

honours thesis both revealed that robin density was highest in woodland remnants and 

some restored sites, but that robins were completely absent from other woodland 

restoration sites. This suggests that robins may be experiencing some form of habitat filter. 

This evidence that robins are sensitive to variation in woodland restoration design suggests 

that they may be a useful indicator species for the Island. This chapter will explore the 

relationship between the robin community on the island, and the rest of the woodland bird 
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community. Habitat assessments relating to structural, temporal and spatial variables are 

also compared with robin density estimates to identify variables that best explain variation 

in estimated robin density. These variables are then compared with density estimates of 

other species of conservation significance, to determine whether high quality robin habitat, 

is also likely to be high quality habitat for other priority species. 

 

2.2 Key Questions: 

1. Are robins a good indicator of avian assemblage on Rottnest Island? 

2. What limitations exist when comparing single species data with community data? 

3. Which habitat structure variables best predict variation in estimated robin density? 

4. Is high quality robin habitat also high quality habitat for the Island’s other priority 

woodland bird species? 

 
2.3 Methods 

2.3.1 Study site 

Rottnest Island (32°1 0 S, 115°500 E) is situated approximately 20 km west of Fremantle in 

the south-west of Western Australia (Figure 2.1). Rottnest is classified as an ‘A-Class 

Reserve’, declared under the Land Act 1993 and gazetted for public recreation since 1917 

(RIA, 2014). Rottnest covers an area of around 1900 ha, with 200 ha of classified ‘settlement’ 

area. The island receives between 350 and 700 mm of rainfall annually, with 80% falling 

between May and October (Australian Bureau of Meteorology, 2017). The data for this 

chapter was collected from restored and remnant woodland habitat exclusively, as defined 

by Winn (2008). 
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Figure 2.1: Image of Rottnest Island, showing restored and remnant study 
sites. Original photo courtesy of Landgate. 

 
There are six major terrestrial habitats on the island (Winn, 2008): 

1) Coastal habitat (sandy limestone beaches and rocky cliffs); 

2) Salt lakes (a sequence of vegetation zones formed through progressive 

decline in inundation periods); 

3) Brackish swamps and freshwater pools (swamp deposits in inter-dune 

depressions); 

4) Woodland areas that contain a combination of Callitris preissii, Melaleuca 

lanceolata and Acacia rostellifera in a low (<10m tall) forest to open 

woodland formation with little to no understory (this habitat type was 

once the most common habitat type on the island, but overly frequent 

fires and human induced disturbances have left just a few remnants 

covering roughly 3% of the island). Restoration efforts by the RIA have 

resulted in the creation of a number of restored woodland patches, the 

largest being almost 20 ha (based on GIS data maintained by the RIA); 

5) Areas that were once woodlands, but have been inadvertently converted 

into low grassy heath with few shrubs, that currently covers 60% of the 

island; and 

6) Human-developed areas on the Island, which contain a high proportion of 

introduced flora species (Buchanan, 1994; Playford, Leech, & Kendrick, 

1977; Rippey & Rowland, 1995). 
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Post-European settlement saw large areas of woodland cleared and harvested for roads, 

railways, buildings, and agriculture (Somerville, 1949/1976). The frequency of fires increased 

considerably, as fire was used as a tool to clear land and hunt quokkas Setonix brachyurus, a 

small (2.5 - 5kg) marsupial native to the Island (Pen & Green, 1983; Dodd, 1994a; Dodd, 

1994b). The shooting of quokkas was outlawed in 1917, however shooting allegedly 

continued until 1933 when firearms were prohibited on the island (Storr, 1963). From this 

point the quokka population increased dramatically, and by 1941 there were reports of 

overgrazing of crops and Acacia rostellifera scrub was becoming increasingly scarce (Pen & 

Green, 1983). Between 1919 and 1941 quokka herbivory converted a total of 800 ha of 

Acacia rostellifera scrub into grassy heath made up of Acanthocarpus preissii and 

Austrostipa flavescens (Storr et al., 1959). Then in 1955, a massive fire burnt two thirds of 

the island during the height of summer (Rippey & Hobbs, 2003). In the years following the 

fire, Storr (1963) recorded abnormally high numbers of quokkas in burnt areas that had 

previously contained acacia scrubs. It is thought that increased herbivory by quokkas, 

coupled with the intensity of the fire, as well as two subsequent fires in 1974 and 1997 

facilitated in the conversion of woodland and scrub areas to the Acanthocarpus preissii – 

Austrostipa flavescens heath, which now covers the vast majority of the island (Rippey & 

Hobbs, 2003). 

 

The remaining woodland habitat is now scattered across the Island in small patches of relic 

remnants and restored areas (Winn, 2008). The loss of woodland habitat and creation of 

large heathland areas have been attributed as direct causes of the local extinction on the 

Island of two woodland bird species (rufous whistler Pachycephala rufiventris and the brush 

bronzewing Phaps elegans (Storr, 1963; Saunders & de Rebeira, 1985). Additionally, it has 

facilitated the colonization of a number of other bird species, such as the banded lapwing 

Vanellus tricolor (Storr, 1963; Serventy & Whittell, 1976), laughing dove Streptopelia 

senegalensis, spotted dove Streptopelia chinensis (Storr, 1963), rainbow bee-eater Merops 

ornatus (Saunders & de Rebeira, 1985), Australian magpie (Serventy & Whittell, 1976), and 

Australian raven Corvus coronoides (Stevenson, 2011). These shifts in the avian assemblage 

may have reduced the capacity to which robins could serve as an indicator on the island. The 

species that were most sensitive to woodland habitat loss appear to have already been lost, 

and many of the species that are now common on the island can be characterised as 

disturbance specialists. 
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2.3.2 Habitat sampling technique 

A total of 24 survey sites in Rottnest’s woodland areas were selected for this study. The sites 

were previously used as part of a woodland bird community survey by Birdlife Australia 

(Mather, 2010). Many of the sites contain a mixture of both remnant and restored patches, 

and there has been considerable variation in the restoration techniques used in the past, 

meaning that a space-for-time substitution (Pickett, 1989) was not suitable. However most 

sites could be differentiated as either remnant (woodland containing native remnants of 

Melaleuca and/or Callitris but some with some infill restoration), or restoration (areas that 

were completely cleared or converted to heathland type habitat at one stage, but have been 

revegetated with Melaleuca and/or Callitris stands). A number of vegetation and habitat 

variables were measured at each site. The variables selected were all considered to be 

potentially relevant to woodland birds, and generally relate to the birds feeding ecology. 

Moderate-resolution imaging spectroradiometer (MODIS) data were used for measures 

involving vegetation height and density. The data were collected by Landgate SRSS, as part 

of its Urban Monitoring Program (2009). Other data obtained from the GIS database 

maintained by the RIA included restoration age, fire history, and size, shape and isolation of 

study sites. For data that were not available using MODIS and the GIS database, four 

randomly located quadrats (5 m x 5 m) were surveyed in each of the 24 sites. Data collected 

within quadrats included: ground substrate (measured based on percentage cover of leaf 

litter, bare ground and vegetation); presence of CWD (number of pieces with diameter >2 

cm, length >30 cm); visibility (average distance measured using a rangefinder with four 

readings taken towards the 4 corners of the quadrat) and presence of horizontal branching 

(number of trees with horizontal branches within the quadrat). 

 
2.3.3 Bird Surveys 

In February (summer) 2015, one observer (F. Holmes) surveyed each site using the Birdlife 

Australia standard national bird monitoring 2 ha (100 × 200 m plot) area search method 

(Barrett et al., 2003). During surveys, each plot was surveyed for 20 minutes and all birds 

heard or seen in the plot were counted. This survey method was selected, as this was the 

procedure used by Birdlife Australia in their Rottnest Island bush bird counts (Mather, 

2010), which began in 2000, and as of 2018, is still ongoing, By selecting the same survey 

technique, the data collected for this study could be used by Birdlife in the future. Each site 

was surveyed three times, with replicate surveys occurring on non-consecutive days. All 

surveys were conducted within five hours of sunrise and the order in which sites were 

surveyed was rotated where possible to reduce any bias caused by sampling at different 
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times of day. As the area search involved traversing the entire plot on foot, and most birds 

were detected on call, differences in vegetation density was not a major factor in 

detectability, and distance sampling was not required since the encounter rate, including 

flushing of birds, is presumed to be equal in all plots. For bird taxonomy, Christidis and Boles 

(2008) identification guide was used.  

 

During the robin breeding season (September - December) of 2016, a second series of 

surveys was completed using the same 2 ha plots at each of the 24 sites. In this second 

series of surveys, only red-capped robins were counted, but extra attention was given to the 

age and gender of all individuals encountered, as juveniles could be more reliably 

differentiated from adult females during this season than in summer when they have 

completed their post juvenile moult. This was done to determine which areas contributed 

most to recruitment, as well as provide insight into seasonal variation in estimated robin 

density and distribution on the island between breeding and non-breeding seasons. In an 

effort to make as many of the birds individually identifiable as possible, bird bands were 

fitted to as many of the robins as possible prior to the commencement of these surveys. 

Birds were fitted with a split-colour metal band on one leg, and a non-coloured, metal, 

Australian Bird and Bat Banding Scheme (ABBBS) band (n = 50). Additionally, as the site 

already had an active banding project, many of the birds were already fitted with ABBBS 

bands. For details on the bird banding procedures see Appendix A.  

 

While no formal assessments of home range size or site vigilance was conducted for this 

study, anecdotal evidence suggests that the birds tend to remain loyal to a single small area. 

Over the three years of banding and observation of robins on the island, only two individual 

birds were observed at more than one of the study sites. One was an adult male robin, 

originally banded in a woodland remnant in July of 2015 that was observed three months 

later at a nearby restored woodland site approximately 400 m from the site where the bird 

was originally banded. That same bird was later observed at the site where it was originally 

banded a month later.  The other record of movement between sites was between two 

sites, which at their closest point are approximately 20 m apart and separated by a road. 

Both sites are restored woodland, and are approximately the same age (50 years old).  The 

bird was regularly seen in both sites, but this is unsurprising as the distance travelled by the 

bird is relatively small, and the conditions within both sites were highly similar. 

 

 



 
23 

2.4 Statistical Analysis 

As bird surveys were conducted over two separate years during different seasons, I first 

assessed whether overall robin density estimates varied between the two survey periods, 

and assessed the correlation between robin densities across the 24 survey sites. The summer 

data set contained only robin density estimates, without any demographic data, but the 

spring dataset included demographic data relating to age and gender of birds detected. The 

two datasets were compared using both a Pearson correlation coefficient, and a paired 

samples t-test (with same sites being paired) to determine whether a significant difference 

between the two survey periods could be detected, and to assess the correlation between 

the two datasets. For the spring data, total robin density estimates, as well as adult-only and 

juvenile-only were included as three separate analyses. These comparisons provided 

information that was used for generating hypotheses for later chapters, based on variation 

in robin assembly between breeding and non-breeding periods. 

 

To address the first research question, determining whether robins are a good predictor of 

avian assemblage on Rottnest Island, I assessed whether estimated robin density was 

correlated with overall avian assemblage. To do this, I assessed the Pearson correlation 

coefficient between total estimated robin density during the breeding season, as well as 

sub-categories of adult-only and juvenile-only robins, and number of robins detected 

during the summer survey period, against various measures of avian assemblage. Avian 

assemblage was measured using abundance, species richness, and species evenness 

(Shannon-Weiner Index). This was done using all birds detected during the community 

assemblage assessments (n = 22), which included migrants like the rainbow bee-eater 

Merops ornatus and non-woodland-dependant species like the silver gull Chroicocephalus 

novaehollandiae, as well as with a subset of birds that excluded those vagrants and non-

woodland dependant species (n = 15). After this analysis, all avian community measures 

used only the woodland dependant resident birds (excluding red-capped robins). 

 

The estimated robin density measures described above were also compared with the avian 

assemblage based on dietary guilds using the Pearson correlation. Each bird species was 

grouped into one of the following categories based on their preferred diet: carnivores, 

granivores, insectivores, nectarivores, frugivores, and omnivores. Preferred diet was 

determined based on dietary records from the Handbook of Australian, New Zealand and 

Antarctic Birds (HANZAB) (HANZAB; Marchant & Higgins, 1993; Higgins, 1999; Higgins, Peter, 

& Steele, 2001; Higgins and Peter 2002; Higgins, Peter, & Cowling, 2006). 
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A multidimensional scaling (MDS) plot was then constructed to visually represent the 

variation in woodland bird composition detected in restored and remnant areas, to which 

vectors (Pearson correlation >0.4) were applied to demonstrate the influence different bird 

species have on overall composition. I then performed a second independent sample t-test 

using the univariate community measures of avian assemblage previously used (abundance, 

richness, and evenness) for both the entire bird community, and the woodland dependant 

sub-set to see if restored and remnant sites were significantly different with respect to any 

of the listed measures of avian assemblage. I also compared the woodland community 

assemblage between restored and remnant sites with an analysis of similarity ANOSIM in 

PRIMER v6 (Clarke & Gorley, 2006). 

 

To further examine whether the estimated robin density was indicative of bird community 

composition, I then conducted a similarity percentage (SIMPER) assessment and ANOSIM in 

PRIMER v6 (Clarke & Gorley, 2006). Total robin density estimate during the breeding season 

was used in the analysis, and sites were separated into four groups based on the density of 

robins detected within the 2 ha search areas (none [n = 0], low [n = 1-5], medium [n = 6-10] 

and high [n>10]). The maximum number of individual robins at any one site was 20, and the 

next highest was 13. Both the within-group similarity and between-group similarity values 

were calculated. I then constructed a principal component analysis (PCA), in PRIMER v6 

(Clarke & Gorley, 2006), to visually represent the variation in woodland bird assembly based 

on the four robin density estimate categories. 

 

Next, I performed an independent samples t-test to determine whether restored and 

remnant sites had significantly different numbers of robins. This was done using total 

estimated robin density recorded during the summer of 2015, and the total estimated 

robin density for spring of 2016, as well as juvenile-only and adult-only measures for the 

spring of 2016. Levene’s test for equality of variances was used to determine whether 

variances could be assumed to be equal (Levene, 1960). 

 
Multiple linear regressions with all subsets of variables were then used to test a range of 

habitat variables against total estimated robin density during the spring of 2016. This 

was done using an SPSS-specific procedure called Automatic Linear Modeling (ALM), in 

which a group of predictor factors (scales, ordinal variables, and dichotomous variables) 
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are inputted, and the combination of factors which best explain variation in response 

variable is found (Yang, 2013). The model was built using the Akaike Information 

Criterion (AICc) values to identify which subset of variables should be included to 

generate the best (most parsimonious) model available. The best model is identified 

based on lowest AICc values, with models within 2 AICc values being considered equally 

reliable. The estimated robin density was measured using total robin abundance 

detected during the spring sampling period. A total of eight predictor variables were first 

tested for collinearity, and some of the highly correlated variables were excluded based 

on logical deduction regarding redundant variables. Perimeter and area were found to 

be highly correlated (R 24 = 0.501, p = 0.013), as both measures are likely to provide the 

same information in the model, perimeter was excluded from the model. Likewise, leaf 

litter and CWD were highly correlated (R 24 = 0.525, p = 0.008), as was leaf litter and fire 

age (R 24 = 0.408, p = 0.048), which is unsurprising given that fire typically removes leaf 

litter and CWD, both of which gradually accumulate in the absence of fire. As such, fire 

age was selected for the model as a proxy measure of leaf litter and CWD. Variables that 

were included in the model, despite being found to be correlated, included woodland 

area which was correlated with both distance to nearest neighbouring woodland area (R 

24 = 0.405, p = 0.050) and restoration age (R 24 = 0.479, p = 0.018), but as these factors 

are correlated due to landscape management decisions by the RIA, it is was deemed 

unlikely that they would introduce redundancies into the model.  The variables were 

then inputted into the model (Figure 2.2). These variables included a structural habitat 

variable (vegetation cover), spatial variables (woodland patch area, and distance to 

nearest neighbouring woodland patch), and a temporal variable (time since last fire). 

 

Structural variables 

 Vegetation cover 

  

Spatial variables 

 Woodland Patch size   Estimated Robin Density 

 Distance to nearest neighbour 

Temporal variables 

 Time since last fire 

 

Figure 2.2: The nine variables inputted into an ALM model to test for predictors 
of estimated robin density. 

 
 

To visually show the relationships between estimated robin density and the habitat variables 
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used in the ALM, a series of scatter plots were then created. The plots compare key habitat 

variables with the following measures of estimated robin density; adult-only robin density 

measured in spring (2016), juvenile-only robin density measured in spring (2016), and total 

robin density measured in summer (2015). Plots were also developed to show the 

relationship between the significant habitat variables and the density of three other 

woodland species (golden whistler, singing honeyeater, and western gerygone) that have 

been identified as priority species. These plots were generated in Microsoft Office Excel 

2007 (Heldman, 2007). 

 

2.5 Results 

The estimated total robin density between the two survey periods (spring and summer) 

was statistically different (t 1, 23 = 3.729, p = 0.001). Robin density estimates during the two 

survey periods was not found to be significantly correlated (R 24 = 0.400, p = 0.053). Adult 

robin density estimates in spring was statistically different from total robin density 

estimates in summer (t 1, 23= 2.924, p = 0.008), and were also significant correlation (R 24 = 

0.405, p = 0.050). Juvenile robin density estimates in spring were not statistically different 

to total robin density in summer (t 1, 23= 0.001, p = 1.000), and the two were less correlated 

than the measures that included adult birds in spring (R 24 = 0.331, p = 0.114). 

 

Robin density was not significantly correlated with any of the univariate measures of avian 

assemblage for the overall community, the woodland dependant subset, or abundance 

measures based on feeding guild (Table 2.1). Furthermore, robins were not one of the 10 

most influential woodland bird species in explaining variation in assemblage using a PCA 

(Figure 2). Robins made up just 8.9% of the birds observed during the community counts. 

The three most commonly observed species were the silvereye (20%), the western 

gerygone (17%), and the white-browed scrubwren (14%). 
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Table 2.1: Pearson correlations between robin density estimates during both survey 
periods and various measures of avian assemblage (based on  community data 
collected in summer). 

 
 Summer Spring Spring Spring 
 

Avian assemblage Total Robin 
Density 

Total Robin 
Density 

Adult Robin 
Density 

Juvenile Robin 
Density 

Total community R24 P R24 P R24 P R24 P 

Total Abundance 0.195 0.362 0.031 0.885 0.104 0.63 -0.052 0.81 

Total Richness 0.046 0.832 0.222 0.297 0.191 0.37 0.22 0.302 

Total Evenness 0.062 0.775 0.297 0.159 0.2783 0.197 0.276 0.192 

Woodland community         

Woodland Abundance 0.117 0.585 0.055 0.797 0.14 0.513 -0.045 0.833 

Woodland Richness -0.055 0.8 0.327 0.119 0.299 0.155 0.305 0.147 

Woodland Evenness -0.062 0.774 0.389 0.06 0.381 0.066 0.335 0.109 

Dietary guilds         

Carnivores 0.097 0.651 -0.168 0.433 -0.16 0.455 -0.15 0.485 

Granivores -0.168 0.433 0.057 0.792 0.146 0.497 -0.048 0.822 

Insectivores 0.385 0.063 0.274 0.195 0.332 0.113 0.168 0.432 

Nectarivores 0.101 0.64 -0.156 0.467 -0.17 0.428 -0.116 0.589 

Frugivores -0.168 0.433 -0.082 0.704 -0.146 0.497 0.079 0.714 

Omnivores 0.297 0.159 0.156 0.467 0.214 0.316 0.069 0.75 

 
The overall abundance of birds found in the restored areas was higher than the abundance 

of birds found in remnants (t1, 23= 1.772, p = 0.090). This is a well-documented phenomenon 

that occurs when disturbance specialist species respond to restoration efforts. This can be 

seen in figure 2.3, where species such as the Australian raven and silvereye are responsible 

for most of the differences in assemblage assembly. This is unsurprising, as restored areas 

often have higher abundances of disturbance specialists than remnants. While the ANOSIM 

revealed a significant difference in community composition between restored and remnant 

areas (R = 0.202, P= 0.015), no significant difference in the univariate measures of avian 

assemblage were detected (Table 2.2).  
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Figure 2.3: PCA displaying variation in avian assemblage between sites, with 
vectors displaying the 10 most influential bird species. No vector is displayed 
for robins, as their correlation with overall assembly was too weak. 

 
 

Table 2.2: Assessment of similarity between various univariate measures of avian 
assemblage found in restored and remnant woodland areas on Rottnest Island. Samples that 
reject Levene’s test for equality of variance (P<0.05) used a corrected t -test value for 
unequal variances. 

 

Levene's test t-test  

Community measure F(22) P t(22) P 

Total Abundance 0.154 0.698 1.611 0.121 

Total Richness 0.049 0.826 1.168 0.255 

Total Evenness 0.364 0.552 -1.432 0.166 

Woodland community     

Woodland Abundance 0.218 0.645 1.633 0.117 

Woodland Richness 0.262 0.614 1.455 0.160 

Woodland Evenness 0.104 0.750 -1.436 0.165 

Dietary guilds     

Carnivores (df =9) 5.166 0.033 -1.029 0.331 

Granivores 0.095 0.761 0.153 0.880 

Insectivores 0.145 0.707 -.325 0.748 

Nectarivores (df=14) 7.091 0.014 1.468 0.168 

Frugivores 0.095 0.761 -0.153 0.880 

Omnivores 3.088 0.093 1.347 0.192 

 

Between-group-similarity (based on density of robins, similarity based on avian community 
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assembly) was lowest between areas with high robin density and areas with no robins, and 

the highest similarity was found between areas with high and low numbers of robins. Overall, 

the between-group-similarity varied by less than 10% between the various combinations of 

robin density categories. This can be seen in PCA ordination (Figure 2.4), which demonstrates 

the overall similarity between the four categories. The ANOSIM found a significant, difference 

in bird assemblage between the robin density classes (R= 0.109, N = 11, P= 0.049), with 

significant differences detected between sites with no robins and sites with high density 

estimates of robins, and between low and medium density of robins (Table 2.4). 

 
Table 2.3: Results of SIMPER analysis of woodland bird community relative to 
robin density categories (high [> 5 robins per ha], medium [3 -5 robins per ha], low 
[1-2 robins per ha], and none [0 robins per ha]). 

 
Within Group Similarity 

Robin presence Similarity (%) 

None 57.97 
Low 69.71 
Medium 71.08 
High 73.85 

  Between Group Similarity (%)  
None & High 62.35 

None & Low 63.98 

None & Medium 65.3 

Low & Medium 68.08 

Medium and High 68.39 

Low & High 72.26 

 
Table 2.4: Results of ANOSIM for woodland bird community assemblage 
relative to robin density categories (high [> 5 robins per ha], medium [3 -5 robins per 
ha], low [1 -2 robins per ha], and none [0 robins per ha]). 

 
 

Groups being 
compared R P N (Possible) N (Actual) N (Observed) 

 

High & None 
 

0.256 
 

0.024 
 

462 
 

462 
 

11 

High & Low -0.065 0.808 1716 999 807 

High & Medium 0.217 0.058 462 462 27 

None & Low 0.084 0.188 792 792 149 

None & Medium 0.045 0.325 462 462 150 

Low and Medium 0.163 0.045 1716 999 44 
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Figure 2.4: PCA based on avian community composition displaying relative size and 
overlap of four habitat categories defined by robin density estimates (high [> 5 
robins per ha], medium [3 -5 robins per ha], low [1 -2 robins per ha], and none [0 
robins per ha]). 

 
 

Robin density was not found to vary between restored and remnant areas. Levene’s test for 

equality of variances was not violated for the 2015 summer survey data (F 1, 22 = 0.140, p = 

0.712), and the independent samples t-test found no significant difference in robin density 

between restored and remnant sites (t 22 = 0.662, p = 0.515). The spring 2016 data also did 

not violate Levene’s test for equality of variances for total robins (F 1, 22 = 0.151, p = 0.702), 

adult-only (F 1, 22 = 1.497, p = 0.235), or juvenile-only (F 1, 22 = 0.495, p = 0.489). Interestingly, 

for this survey, juvenile robin density was found to be significantly higher in remnant areas 

than restored areas (t 22 = 2.402, p = 0.026). Total robin, and adults-only were not found to 

significantly differ between the two site types (total-robins [t 22 = 2.069, p = 0.051], adult 

robins [t 22 = 1.385, p = 0.180]), however total robin density was very close to being 

significant. The differences between robin density in restored and remnant areas can be 

seen in Figure 2.5. 
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Figure 2.5: Comparison of robin density in restored and remnant areas. 

 
 
 

Table 2.5: List of factors included in the best model (lowest AICc) that had a significant   
(p < 0 05) effect on robin density.  

 
Factors Coefficient P-value Importance 

Woodland patch size 0.001 0.001 0.459 

Time since fire 0.179 0.001 0.541 

 

The results of the ALM showed that of the nine inputted variables, a group of three were 

significantly related to robin density. These were; woodland patch size, time since last fire, 

and site type (restored/remnant). In other words, the combination of woodland area 

(spatial), time since fire (temporal), and restored/remnant (site type) best explained 

variation in robin density (see Table 2.5).  

 

The best model (lowest AICc value with no other similar models within 2 AICc values of this 

model) was found when  just woodland area and time since last fire were included. The 

accuracy of the final model was high (R2 = 48.2%) with an AICc value of 66.499. Time since 

last fire was of greater importance in the model.. Scatter plots (Figure 2.6) revealed the 

relative contribution of adults and juveniles to this result, as well as suggest that these 

habitat factors may have varying levels of influence outside of the breeding season. 

 

The general trends of woodland area, perimeter and fire age in relation to robin density 

(summer) can be seen in Figure 2.6. All three relationships were found to be positively 

correlated for adults and juveniles in spring, and all robins in summer. Juveniles appear to be 

the most strongly correlated group with woodland area, which may be an indication that 

juvenile survival is linked with patch size. Long unburnt areas also don’t necessarily appear 

to have high numbers of robins, but recently burnt areas rarely contained high numbers of 

robins. 
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Figure 2.6: Scatter plots that visually display relationships between the habitat 
variables used in the ALM model and measures of robin density in breeding 
and non-breeding seasons. 

 

Unlike the general trends between the different measures of robin density, some of the 

other woodland bird species of conservation significance were found to display negative 

relationships (Figure 2.7). Red-capped robins, golden whistlers and western gerygones all 

respond similarly to variation in woodland area and perimeter, but singing honeyeaters had 

a negative relationship with both. Singing honeyeaters appeared to have no correlation with 

time since last fire, unlike the robins and whistlers who both had a positive relationship. 

Gerygones on the other hand had a negative relationship, indicating that they appear to 

occur at higher densities in areas that had been more recently burnt than those that had 

not been recently burnt. 
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Figure 2.7: Scatter plots that visually display relationships between the habitat 
variables used in the ALM model and measures of the robin, whistler, 
gerygone, and honeyeater species found on the island. Each of which has been identified as 
being of conservation significance (Saunders & de Rebeira 2009).  

 

2.6 Discussion 

An expectation of a good indicator species is that through observation and analysis of 

abundance of the species, an understanding of the broader differences in community types, 

habitat conditions, or environmental changes can be gained (McGeoch, 1998; Niemi & 

McDonald, 2004; De Cáceres, Legendre, & Moretti, 2010). The distribution of robins on the 

island was not found to be indicative of the overall avian assemblage, even when the focus 

was narrowed to only species typically associated with woodland habitat. Tested bird 

community measures included diversity, abundance, and composition, and the absence of 

correlation was irrespective of feeding guild. As the distribution of robins across the island 

wasn’t found to significantly relate to any of the listed measures of avian community types, 

it would appear that robins are an unsuitable indicator of avian community types in this 

system. 
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These results indicate that robins do not meet the assumption of the focal species 

surrogate model. As explained by Lindenmayer et al. (2002), there is considerable evidence 

that similar species and groups of species often respond to threatening processes in vastly 

different ways (e.g. Robinson et al., 1992; Gascon et al., 1999). Hence caution should be 

taken with regard to the implementation of the focal species models. This does not 

necessarily de-value enquiry into the mechanisms behind the distribution of species like the 

robins from areas such as Rottnest, but highlights the reality that taking shortcuts that 

exclude species through the use of surrogate species models may lead to ecologically 

damaging errors in management. 

 
Robins appear to occur in greater densities in large patches of woodland areas, in areas that 

are long un-burnt, and in remnant woodland rather than restored woodland. CWD density, 

leaf litter cover, and vegetation density are all structural habitat variables that are likely to 

increase in the absence of fire (Maron & Kennedy, 2007) and be higher in remnants than 

restored areas. Yet these variables were not found to have a significant effect on robin 

density. Further inquiry into microhabitat selection may be required, if we are to gain insight 

into the mechanisms behind variation in robin density on the island. This topic is explored 

further in Chapter four. 

 
A study into the influence of habitat size and shape on the age-structure and density of a 

red-capped robin community revealed similar findings (see Major et al., 1999). Major et al. 

(1999) found that robin density was significantly higher in large, non-linear remnants than in 

small, linear remnants. They also found that age structure and delayed plumage maturation 

was also linked with patch size, highlighting the complexity of metapopulation interactions 

between patches of varying sizes. The Major et al. (1999) study concluded with a warning to 

land managers to avoid over-reliance on narrow, linear wildlife corridors, and emphasised 

the importance of large areas of native vegetation. Cunningham et al. (2008) also found that 

red-capped robins responded positively to large elliptical or block shaped plantings in 

farmland areas. The concern with overly narrow habitat patches is the risk of adverse edge 

effects, such as predation. This study found that perimeter was positively correlated with 

robin density, however it should be noted that perimeter and patch size were also 

correlated. 

 

The Australian raven Corvus coronoides, an opportunistic, disturbance specialist species that 

has successfully colonised and become common on Rottnest Island, is a predator of eggs 
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and nestling bush birds (Stevenson, 2011). In a study conducted on Rottnest Island, artificial 

nests received a 20% predation rate, indicating a high capacity for potential impact on bush 

birds. Camera traps at genuine robin nests, as well as raven stomach contents analysis, 

which found feathers and bird bones, have been used to verify the assertion that ravens 

predate bird nests on Rottnest (Appendix B; Stevenson, 2011). The majority of the raven 

population tends to be centralised around the urban areas of the island, away from the 

restored and remnant woodland habitats where robins and other bush birds are commonly 

found. In addition, stomach contents analysis revealed that the plant material and 

invertebrates made up the majority of the ravens’ diets (Stevenson, 2011). As such, 

Stevenson (2011) concluded that management of the raven population was recommended 

as a precautionary approach, but that the positive effects that woodland restoration efforts 

were having on bush bird recruitment appeared to outweigh the loss of eggs and nestlings 

to ravens. This offers an explanation for higher densities of robins occurring in larger 

woodland patches. Larger patches are less exposed to edge effects; meaning robins may 

suffer less from raven predation. Given that this study found that area had a much stronger 

correlation with robin density, especially with juvenile birds, and other studies have found 

robins occur at higher densities in areas with high area to perimeter ratios, it is likely that 

patch size is of greater importance than edge length. 

 
Red-capped robins are not generally thought to be particularly fire susceptible, and have 

been described as ‘favoured’ in early seral stages when habitat understories are open 

(Woinarski & Recher, 1997). This is likely due to the transformative process fire has on 

woodland habitats. Fire can open up the canopy and thin the understory vegetation, 

creating desirable foraging habitat for ground pouncing insectivorous birds (Recher, Davis, & 

Calver, 2002). This study found that robin density was typically higher in long un-burnt areas, 

which is interesting given the history of fire and fragmentation on the island. On Rottnest, 

fire has been shown to convert woodland habitats into scrub or heathland habitats with no 

canopy and a dense understory (Rippey & Hobbs, 2003). For more information on how fire 

transforms woodland habitats on Rottnest, see Chapter five. Fire and fragmentation have 

both had considerable influence on the avian assemblage on the Island since European 

settlement (Winn, 2008). Prior to European settlement in 1831, the majority of Rottnest 

Island was covered in large areas of Callitris preissii - Melaluca lanceolata woodland, a now 

threatened ecological community in Western Australia (Keighey et al., 2003; Winn, 2008). At 

this time, fires are thought to have been extremely infrequent, as the Island’s separation 

from the mainland protected it from bushfires and Aboriginal burning regimes (Marchant & 
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Abbott, 1981). There is evidence of occasional fires caused by lightning strikes, which would 

have been fierce and widespread due to the accumulation of dead wood over long periods 

between fires (McArthur, 1996). It is presumed that these fires would have destroyed a 

considerable portion of the Island’s fire-sensitive plants, including Callitris and Melaleuca, 

neither of which is well adapted to survive fire (Boland et al., 1984). Both species are easily 

killed when exposed to fire, and rely on regeneration from seed, which necessitates long 

intervals between fires, to give the seedlings time to mature and set seed (Storr, 1963; 

Wykes & McArthur, 1995; Marchant, 1997). 

 
  

Efforts to mitigate the negative effects of fire, woodland habitat loss and fragmentation, 

have been in operation on the Island for over 50 years, with the first woodland restoration 

beginning in 1963 (Winn, 2008). The goals of the woodland restoration program on Rottnest 

are to: prevent local extinction; extend woodland habitat to protect Island wildlife; and to 

enhance the natural recreation amenity of the island (RIA, 2014). The RIA recognises robins 

as a priority species on the island, and as such, have expressed intent to ensure that 

restored woodland patches provide valuable habitat for the species (RIA, 2014). This study 

found that during summer there was no significant difference in robin density between 

restored and remnant areas. The spring sampling period, on the other hand, which included 

demographic data collection with respect to age and gender where possible, found a 

significant difference in juvenile robin density between restored and remnant areas. While 

the reasons for this difference remain unclear, I hypothesise that restored areas may offer 

lower quality breeding habitat than remnant areas, and restored areas may provide less 

protection from predators than remnants. These hypotheses are explored at length in 

Chapter four. 

 

Given that the distance between restored and remnant patches varies, and is at some sites 

very small (<30 m), and robins are easily able to traverse such distances, it could be 

reasoned that many of the robins on the Island can feasibly move between restored and 

remnant patches. This means juvenile robin occurrence isn’t definitive evidence of robins 

breeding in an area. Further research into animal behaviour would be required to 

determine whether robins are breeding in both restored and remnant areas, and whether 

the two habitat types offer different resources for the birds. This is explored further in 

Chapters three and four, in which food resources and bird behaviour are studied. 
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As stated previously, the goal of the RIA restoration program is to extend woodland habitat 

such that it protects island wildlife. Both fire and fragmentation have created conditions that 

can be favorable for invasive predators or competitors (Maron & Kennedy, 2007). Prescribed 

burns used in the past to reduce fuel loads have had considerable impact on biodiversity, in 

ways that are currently poorly understood. This is also true of much of the forestry industry, 

where prescribed burns are seen as necessary (Granström, 2001). Edge effects, a result of 

habitat fragmentation, are also well known to influence fauna in a number of ways (Watson, 

Whittaker & Freudenberger, 2005). Alteration of habitat characteristics, creation of habitat 

suitable for disturbance specialists, increased predation, competition, and parasitism are all 

well documented impacts of edge effects (Forman, 1995; Chace et al., 2003; Batary & Baldi, 

2004; Maron & Kennedy, 2007). 

 

Management decisions aimed at improving habitat for robins should ideally coincide with 

improvements to the larger community. The avian assemblage overall doesn’t appear to be 

more abundant, diverse or rich in larger patches of woodland habitat. Fire age doesn’t 

appear to share the positive relationship with the overall community composition, and 

some species appear to prefer more recently burnt areas (e.g. the western gerygone). 

Restored and remnant areas had no significant differences between any of the univariate 

measures of avian assemblage, but were found to differ when composition was assessed. 

Given the severity of the changes Rottnest Island’s woodland habitats have experienced, 

the communities now found in those remnant patches are likely to be fairly resilient to 

fragmentation and isolation. The system is now in a novel state, meaning pre-conceived 

interactions and behaviours may not apply. Further inquiry into direct interactions may 

provide insight into how the system is operating, and what could be done to improve those 

interactions for species found on the island. In Chapter three I explore how the invertebrate 

community, specifically as it relates to food availability may provide useful insight into the 

distribution of robins on the Island. There has been a considerable number of cases where 

invertebrates have proven to be a suitable taxonomic group to act as surrogate measures of 

ecosystem functionality (e.g. Stannard, 1967; Majer, 1983; Dunger, 1989; Resh, Norris, & 

Barbour, 1995; Fore, Karr, & Wisseman, 1996). Given that every species of woodland bird 

on the Island is at least partially insectivorous, it can be argued that the invertebrate 

population on the Island plays a vital role in sustaining the avian community.  

 

When robin density was compared with that of the other three avian species identified by 

Saunders and de Rebeira (2009) as being of conservation significance, patch size and 
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perimeter influenced all but the honeyeater in a similar manner. Time since fire was only 

positively correlated with the robins and whistlers, who are unlikely to use the scrub or 

heathland habitat that is likely to replace woodland habitat after a fire. The honeyeaters 

don’t appear to be influenced by fire, and gerygones appear to favour recently burnt areas, 

highlighting the differences in management requirements between similar species. 

 

Compared with vertebrates as biodiversity indicators, it has been argued that invertebrates 

may better reflect trends in species richness and community composition (Gerlach, Samways 

& Pryke, 2013). This is largely due to their greater diversity and abundance (Kremen, 

WIlliams, & Thorp, 1993; Bisvac & Majer, 1999). Invertebrates are sensitive to local 

conditions, their mobility enables them to move in response to changes, a short gestation 

time means their population size can fluctuate quickly, and it is relatively simple and cheap 

to collect large samples of them (Samways & Sharratt, 2010; Gerlach, Samways & Pryke, 

2013).  In a study of North American butterfly distributions using presence-absence data for 

select species, 82% of the combined distributions of birds and butterflies could be described 

using a general linear model (Fleishman et al., 2005). The study demonstrated the value 

invertebrate species can have in predicting the distribution and diversity of other species 

that have similar dispersal mechanisms, even those at higher taxonomic levels. The 

invertebrate community of Rottnest is explored in detail in Chapter three. 

 

The results of this chapter demonstrate that in this case, management based on one species 

will not serve the needs of the whole community. The particular sensitivities of robins to fire 

and habitat patch size are important considerations for land managers, but their needs may 

need to be weighed up against the needs of other species whose needs conflict with those 

of the robins; such as the honeyeater that appears to prefer smaller patches to large ones, 

and the gerygone that prefers recently burnt sites to long un-burnt sites. The differences in 

density estimates between summer and autumn, and lack of clear patterns with regards to 

avian assemblage should serve as warnings for land managers and ecologists with regards to 

data gathering and analysis. Time of year, and methods of data collection will influence the 

results, and presence/absence data alone may be insufficient to determine whether two 

habitat types are of equal quality, especially between different seasons. These ideas will be 

explored at greater length in the following chapters.



 
39 

Chapter 3: Using food resource 
availability as a measure of habitat 
quality: Case study of the invertebrate 
assemblage on Rottnest Island. 
3.1 Introduction 

There are concerns about declines in woodland bird assemblages across many regions 

worldwide. There are numerous cases of once widespread species of woodland birds 

becoming restricted and scarce, and local extinctions have become increasingly common 

(Ford et al., 2001; Murphy, 2003; Donald et al., 2006; Fuller et al., 2007; Watson, 2011). 

Habitat loss and degradation, often through fragmentation, are generally attributed as the 

main driving forces behind these declines (Mac Nally et al., 2009). The severity of these 

concerns has resulted in woodland birds being recognised as a global conservation priority 

(BirdLife, 2008). 

 

Ecological restoration efforts typically aim to mitigate or reverse habitat degradation, and 

thus, increase the resilience of biodiversity (Wortley et al., 2013). Unfortunately, many 

restoration efforts have failed to achieve that aim (Choi, 2007). This can be attributed to a 

number of causes, such as: 1) the level of disturbance being beyond an ecological threshold, 

meaning complete reversal is impossible; 2) the long timescale required for ecological 

processes to develop; 3) the relative infancy of the discipline of study, 4) poorly defined 

targets set out at the beginning of the restoration effort, 5) a lack of adequate monitoring 

the restoration developed, and 6) the failure to apply scientifically backed research to 

restoration planning, in favour of ad-hoc management planning (Bash & Ryan, 2002; Miller 

& Hobbs, 2007; McDonald & Williams, 2009; Parkes et al., 2012). All of these factors have 

contributed to the creation of numerous hybrid and novel ecosystems containing unusual 

species assemblages with non-traditional interactions and behaviours (Hobbs et al., 2009; 

Williams & Jackson, 2007). Often these changes are irreversible, meaning land-managers are 

then restricted to finding novel ways of mitigating the effects of habitat degradation. 

 

Given the rate and extent of vegetation clearing and other ecologically damaging processes 

affecting woodland habitats in recent years, it is not surprising that numerous woodland- 

dependant biotas have declined (Recher, 1999). Interestingly, it has been noted that some 
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woodland species are more likely to be in decline than others (Antos & Bennett, 2006). 

Traits common among declining bird species include: small size; sedentary nature; ground- 

foraging; and insectivory (Reid, 1999; Ford et al., 2001; Ford, 2011). If we are to mitigate or 

remove the cause of these declines, we need to understand why these groups of birds are 

declining. 

 
Habitat fragmentation is one of the most prolific areas of research within the field of 

conservation biology, and has been since the field began (Harrison & Bruna, 1999). This is 

likely due, in part, to the extent to which fragmentation has occurred to natural habitats 

globally, and the impact that fragmentation has on biota. The widespread fragmentation of 

natural systems to accommodate our ever increasing need for agricultural land, natural 

resources, and residential areas has put tremendous pressure on the world’s ecosystems 

(Hobbs & Harris, 2001; Hilderbrand et al., 2005; Brudvig, 2011). Ecologists and land 

managers, who use conservation and restoration practices to mitigate the pressure being 

applied to affected areas, are therefore interested in the effects of fragmentation on 

ecological systems. 

 
Insectivores are among the worst affected woodland birds, which may indicate that declines 

are linked in some way to changes in invertebrate assembly (Mühlner et al., 2010; Watson, 

2011). In addition to being an important food resource within most ecosystems, 

invertebrates contribute overwhelmingly to the overall biodiversity of those systems 

(Anderson & Smith, 2004). Given this, it stands to reason that biodiversity monitoring 

programs aimed at studying the integrity of an ecosystem could not be considered adequate 

without assessment of invertebrates (Taylor & Doran, 2001). 

 
Changes in nutrient availability due to changes in land use practices, such as increased 

agricultural activity, can have profound effects on the invertebrate assemblage (Mac Nally el 

at., 2009). This can have flow-on effects that influence other taxa at different stages of the 

food web (Schaub et al., 2010; Watson, 2011). In this sense, monitoring of invertebrates 

provides insight into changes in underlying ecosystem productivity and functionality, 

allowing invertebrates to act as bioindicators for specific aspects of the system, such as; 

food resource availability, soil condition, and functionality of pollinator services (Paoletti, 

Thomson, & Hoffmann, 2007). 

 

The value of invertebrates as an assessment tool comes from their great abundance, 

diversity, functional importance, sensitivity to disturbances, and ease with which they can 
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be sampled (Recher, Majer, & Ganesh, 1996; Brown, 1997; McGeoch 1998). This makes 

invertebrates as a taxonomic or functional group, a potential indicator of ecosystem 

conditions and functionality (Gerlach et al., 2013). In the context of woodland insectivorous 

birds living in fragmented habitats, invertebrates can be seen as having functional 

importance as a food resource, and may be sensitive to habitat disturbances themselves. 

Gaining a better understanding of the ways in which terrestrial invertebrates respond to 

landscape disturbances and restoration, may improve our understanding of how changes in 

food resource availability may be contributing to insectivore declines. 

 
Aquatic invertebrates are a cornerstone of biological monitoring in aquatic systems, where 

biological integrity is assessed using well developed procedures (Resh, Norris, & Barbour, 

1995; Fore, Karr, & Wisseman, 1996). Terrestrial invertebrates, on the other hand, are 

commonly overlooked as an important topic of study in the research agenda of restoration 

practitioners. This is especially true of the mining sector (Majer, Brennan, & Moir, 2007). 

Notable exceptions include: Dunger’s (1989) work on German coal mine dumps; Stannard’s 

(1967) work on strip-mined land in Northern America; Hutson’s (1980) work on reclaimed 

coal pits in England; and Majer’s (1983) work on open cut bauxite mines in Australia. Ant 

monitoring was developed to assess restoration success following mining (Majer, 1983). 

Majer’s work on ants was one of the earliest uses of insects as a bioindicator in land 

management anywhere in the world (Anderson & Majer, 2004). Since then, ant monitoring 

has become more widely adopted in the mining sector, as part of best-practice 

environmental management (Andersen, 1997; Anderson & Smith, 2004). Ant monitoring is 

also a useful tool for conservation assessments (Underwood & Fisher, 2006), as well as 

assessing the impacts of grazing in rangelands (Landsberg, Morton, & James, 1999). Despite 

this, monitoring of other terrestrial invertebrates remains relatively rare, and appears to be 

a grossly underutilised resource for ecosystem quality and health assessments. 

 

Habitat complexity can be a key driver of invertebrate assembly, which can in turn influence 

insectivorous bird communities. Areas with diverse and complex habitats are likely to 

contain the microhabitat requirements of more taxonomic groups than habitats that are 

simple and uniform (Heck, 1977; Taniguchi, Nakano, & Tokeshi, 2003; Hendrickx et al., 

2007). This can be an issue in restored areas that are likely to be highly uniform, especially in 

the early years of development. Habitat diversity and heterogeneity tend to increase with 

stand age and time since last major disturbance (McClain & Barry, 2010). Habitat diversity 

and heterogeneity are therefore desirable traits that reward niche differentiation, which is 
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when different species with different resource requirements face less competitive pressure 

than species utilising the same resources (Peterson & Holt, 2003). 

 

When a habitat is altered, species with specialised microhabitat requirements may be 

maladapted to surviving in the newly altered habitat (Julliard et al., 2006). Important 

substrates such as fallen logs, leaf litter, and understory vegetation can all be altered 

through disturbances, such as timber harvesting, altered fire regimes, weed invasion, 

trampling and herbivorous grazing (Braunack & Walker, 1985; Cousin, 2004). This may alter 

the viability of the area for invertebrates that live in that substrate, and thus, alter the 

viability of species that rely upon those invertebrates. 

 

Aside from small-scale structural factors associated with what makes up viable habitat, 

which can be described as micro-habitat characteristics, there are also landscape level 

factors that influence community assembly, and can be described as macro-habitat 

characteristics. There is a considerable body of literature on the interactions between 

isolated patches of habitat and the landscape within which they are situated. MacArthur and 

Wilson’s Theory of Island Biogeography (1967), Clements’ theory of Successional Dynamics 

(1916; 1936), and the Metapopulation Concept, described by Levins (1969) are all well 

established theoretical models used to describe the ecological processes associated with 

community assembly across isolated patches of habitat. 

 
These models have been promoted as a theoretical basis for the design of nature reserves 

for decades (Terborgh, 1974; Diamond, 1975; Lovejoy & Oren, 1981). The models predict 

how species richness in fragments will change over time based on various species-area 

relationships in insular communities (Connor & McCoy, 1979; Ricklefs & Lovette, 1999; 

Laurance, 2008). These models can be useful tools for land managers wanting to predict 

how species will respond to restoration efforts in fragmented landscapes. They provide the 

basis for arguments in favour of increased connectivity, and larger patch size of isolated 

fragments (Donald & Evans, 2006; Morrison, Marcot, & Mannan, 2012). 

 

In the context of Rottnest Island, a heavily disturbed landscape, made up of a mosaic of 

remnant and altered habitats, it is likely that the Island’s recent disturbance history has 

resulted in changes to the terrestrial invertebrate assemblage. Isolated patches of remnant 

and restored woodland areas are scattered within a matrix of low scrub and heathland 

habitat. The fragmentation and creation of scrub and heathland habitats over the past few 
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hundred years are a result of historical agricultural practices, the construction of roads and a 

settlement on the eastern side of the island, an increase in fire frequency, and increased 

herbivorous grazing by the resident quokka Setonix brachyurus population. For a more 

detailed summary of the history of disturbances on Rottnest, see Chapter two. The history of 

the Rottnest Island woodland restoration program, as well as an explanation of the different 

habitat types/states and the processes, through which transitions between states occur, is 

discussed in greater length in Chapter five. In short, restoration efforts over the past 50 

years have aimed to reverse the conversion of the native Callitris preissii - Melaleuca 

lanceolata woodland to the closed scrub Acacia rostellifera and grassy heath Acanthocarpus 

preissii – Austrostipa flavescens. There a number of factors preventing natural regeneration 

of the woodland habitat, and without intervention, this threatened ecological system could 

be lost (Winn, 2008). Management protocols and procedures have changed considerably 

over the years, which have led to the creation of a number of woodland patches of varying 

sizes, ages, and levels of isolation. 

 
One of the goals of the Rottnest Island Authorities’ (RIA) woodland restoration program is 

provide wildlife habitat and increase native biodiversity richness (RIA, 2014). Yet very little is 

known about the terrestrial invertebrate community found on the island, and to date, there 

has been no formal assessment of the response of invertebrates to restoration efforts on 

the island. The invertebrate communities are an important component of biodiversity in 

their own right. But they also perform a number of ecosystem services such as pollination, 

seed dispersal and organic matter decomposition. They are also an obligate food resource 

for many species. On Rottnest the woodland avian community is made up of numerous 

insectivorous species. Hence, this study’s first aim was to gain a better understanding of 

how the invertebrate community in woodland areas compares with the invertebrate 

community found in heathland areas.  

 

Given that the original reason for this study’s focus on invertebrates was as a food resource 

for a specific insectivorous woodland bird, the red- capped robin Petroica goodenovii, who 

typically captures prey from either the ground or off foliage (Recher et al., 2002; Antos, 

Bennett, & White, 2008), the invertebrate community was assessed at strata levels that 

aligned with the birds’ feeding habits. The second aim of the study was to determine 

whether restoration efforts are successfully restoring the terrestrial invertebrate 

community found in remnant woodland areas, or whether they were creating a novel 

amalgam of the communities found in heathland and remnant woodland areas. The 
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recovery rate for the invertebrate assemblage will depend on a number of successional 

trajectories related to vegetation development, resource availability, dispersal capacity of 

species, and matrix permeability.  

 

An intention of restoration is to accelerate some of these processes. To gauge the rate of 

these successional trajectories, I also assessed how the invertebrate assemblage varied 

between two different age groups of restoration, and compared these to un-restored heath 

and the remnant woodland reference states. The developmental stages selected were 

young restoration that was 7-12 years old and old restoration that was 30-50 years old. By 

identifying the habitat variables that influence assembly, this study aimed to provide land 

managers with a list of habitat related factors that are most influential to ground dwelling 

and arboreal invertebrates found in woodland areas. Food is a key driver of animal 

behaviour, which in turn dictates population distribution. In Chapter two robins were found 

to be a poor indicator of avian assembly on Rottnest. Given that Rottnest Island’s bird 

community is largely made up of insectivorous species, the invertebrate community is of 

critical importance to many of the birds that occupy the Island.  

 

The extent to which food availability is affecting birds differently in restored and remnant 

areas, may be affecting the usefulness of birds as indicators of restoration quality. The 

relationship between food resource availability, habitat conditions, and robin distribution 

and behaviour is explored in greater depth in Chapter four. Future projects aimed at 

refining the restoration management program to improve invertebrate biodiversity and/or 

abundance, or exploring the use of invertebrates as an indicator species may find this 

information useful. Finally, as fragmentation and fire have both dramatically altered the 

landscape of Rottnest Island, this study aimed to identify the extent to which isolation, 

patch size, and time since last fire influenced woodland invertebrate assembly. 

 

3.2 Hypotheses 

1 Assemblages of invertebrates will differ between macrohabitats (heathland, 
young restoration, old restoration and remnants). 

 
1a Heathland sites will be more different to the three woodland site 

types (young restoration, old restoration and remnants) than the 
woodland sites will be to each other. 

 
1b. Restored sites of a similar age will be more similar to one another 

than they are to heathland or remnant sites. 
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1c Old restored sites will be more similar to remnants than young 

restoration. 

 
2. Invertebrate  assembly at the two assessed strata levels (ground and 

arboreal) will be strongly influenced my small scale vegetation and habitat 

variables. . 

 

3. Invertebrate assemblage will be positively correlated with patch size and 

proximity to other woodland patches. . Ground dwelling invertebrates will 

be affected more than arboreal ones, as they are generally less mobile.  

 
4. Time since last fire will influence invertebrate assemblage, as many 

invertebrate orders require a build up of leaf litter and dead wood which 
are both removed by fire, and slow to regenerate. 

 
 

3.3 Field methods and design 

 
3.3.1 Experimental design 

 
Where possible, prey availability data were collected concurrently with bird foraging 

observational data (discussed in Chapter four). Unfortunately, as both data collection 

activities were very time consuming, invertebrate data collection was separated into two 

discrete surveys, with each survey designed to answer specific research hypotheses. The first 

survey was conducted in the spring of 2015, concurrently with the bird foraging data, and 

involved all 24 mature woodland sites discussed in Chapters two and four, the results of 

which were used to address hypotheses 2, 3 and 4. 

 
The second survey was conducted 12 months later (to minimise seasonal variation), and 

involved 12 sites, three from each of the following four categories: heathland, young 

restoration (7-12 years old), old restoration (30-50 years old), and remnant. As discussed in 

the previous chapter, prior to European settlement, the majority of the island was made 

up of woodland-type habitat (Winn, 2008). Currently, approximately a third of the island is 

made up of the heathland type habitat. All restored and remnant woodland sites used 

were dominated by the overstorey species Melaleuca lanceolata. Restored areas have 

been planted at different densities, and different times of year, however records of the 

procedures used are limited. Further information on the history of restoration on the 
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island can be seen in Chapter five. All restored sites used in this study were heathland 

habitats prior to restoration. This data were used to address hypotheses 1a, 1b and 1c. 

 

While the data collected during the two trapping periods was kept separate for analysis, six 

sites were surveyed during both trapping periods. These six were all developed woodland 

areas, and made up the remnants and old restoration sites from the 2016 survey. The 

distribution of sites used in the 2015 and 2016 surveys can be seen in Figure 3.1. Sites with 

overlapping symbols were surveyed in both 2015 and 2016. 

 

Figure 3.1: Image of Rottnest Island, with points mapping study sites used in 
the 2015 and 2016 surveys. Original photo courtesy of Google Earth. 

 
 

As insectivores often display high specificity for preferred foraging substrates, with varying 

capacities for foraging plasticity, accurately assessing food resource availability can be 

challenging (Parrish, 2000; Watson, 2011). Red-capped robins typically forage on the ground, 

while species like the golden whistlers Pachycephala pectoralis typically forage on leaves and 

branches (Ford, Noske, & Bridges, 1986; Major et al., 1999; Higgins et al., 2001; Higgins & 

Peter, 2002; Higgins et al., 2006). This demonstrates how insectivores are likely to respond 

to different invertebrate assemblages at different strata levels. To address this variability, 

two trapping techniques were used to survey invertebrates at two separate strata levels 

(arboreal and ground dwelling). Samples were collected using both pitfall trapping and beat 

sampling (described below). At each site, a total of 10 pitfall samples and 10 beat samples 

were collected. 

 
 
 

2015 Woodland 
2016 Remnant 
2016 Heathland 
2016 Old Restoration 
2016 Young Restoration 
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3.3.2 Pitfall trapping 
 

Pitfall trapping is one of the most commonly used sampling techniques in biodiversity 

inventories, and is suitable for collecting invertebrates that move along the ground, but may 

also capture flying insects (Woodcock, 2005; Bulbert & Ginn, 2007; Richter & Groom, 2013). 

Pitfall cups (5 cm diameter, 5 cm depth) were sunk into the ground so that the rim was flush 

with the surface of the ground. Inside each cup, we added a pebble, a small amount of water 

(approximately 2 cm depth) and a drop of liquid detergent to reduce the surface tension 

(Majer et al., 2007). A plastic plate was suspended, using skewers, above each trap 

approximately 10 cm above the ground to form a roof to reduce debris falling into the trap, 

reduce evaporation during the middle of the day, and also to prevent predation of collected 

samples (Woodcock, 2005).  The premise behind this trapping technique is that 

invertebrates that are active on the ground may fall into the trap and will then be unable to 

escape. 

 

The location of the traps was recorded using a GPS, and marked with flagging tape. Two 

trapping grids, with five traps per grid were set up at each site. The trapping grid was 

designed in a quincunx pattern, as used by the Australian Museum (Bulbert et al., 2007), 

with four traps making up the corners of a square, with sides 20 m in length, and a fifth trap 

placed in the centre of the square. The centres of the two trapping grids were random 

points within the two hectares that encompass the study sites, and were at least 50m apart. 

All traps were open for a total of four consecutive nights. Each time the traps were checked, 

the cups were emptied and all specimens were stored in 80% ethanol before they were 

sorted. 

 
3.3.3 Beat Sampling 

 
This is a widely used technique for collecting flying invertebrates, and invertebrates that live 

on plants. It can be used to sample any part of the plant including branches, leaves, flower 

heads and dead wood. It is used to catch insects "on the wing", but it is often more effective 

when used to catch them at rest as described by Bulbert et al. (2007). At each of the 10 

sampling points (closest tree or shrub to paired pit fall trap), invertebrates were collected by 

beating the tree with a broom handle to dislodge invertebrates, which then fall into a 

collection tray. The vegetation was hit exactly 20 times, while holding the collection tray (W 

50 cm x L 65 cm x H 140 cm) underneath the part being hit. Invertebrates were then 

transferred from the tray to a labelled vial containing 80% ethanol using a pooter, as 

recommended by Bulbert et al. (2007). A single researcher (F. Holmes) collected all samples 
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in order to standardise sampling effort, and samples were not collected on days of 

inclement weather, or in windy conditions. 

 
3.3.3 Storage and Sorting 

 
Invertebrates were sorted and identified to order using an identification key supplied by the 

Australian Museum (Bulbert & Ginn, 2007). This was done so that diversity and abundance 

measures could be recorded for each sample and major taxonomic group. For invertebrate 

orders that had a large variation in size between specimens captured, sub-groups large (>1 

cm) and small (<1 cm) specimens were used to separate those orders. All samples were 

stored in vials containing 80% ethanol. 

 

As the focus of this study was to assess the variation in food availability for insectivorous 

birds, it was necessary to reduce the overall sample size to only invertebrates likely to 

feature in the birds’ diets. This was informed by research into insectivorous birds’ diets, 

conducted by Razeng and Watson (2012). The study involved a comprehensive literature 

search of insectivore feeding records and stomach contents analyses. They listed the 

taxonomic groups of insects found in the diets of a number of insectivorous woodland bird 

species, including the red-capped robin. Based on the data presented by Razeng and Watson 

(2012), nine of the 24 orders of invertebrates captured in this study were included in the 

analysis.. The orders included in the study made up 53% of the total invertebrates caught in 

pitfall traps, and 56% of beat samples. 

 
3.3.4 Habitat sampling technique 

 
Vegetation surveys were conducted in November 2015 at each of the 24 sites. At each site, 

four 10 m x 10 m quadrats, with centre points aligned with the centre points of the quincunx 

pitfall arrays. Data collected from within each quadrat included: leaf litter cover; number of 

pieces of CWD (Length > 30 cm, Width > 10 cm); and vegetation cover (0-1 m strata only). 

Additional data were also extracted from GIS data maintained by the Rottnest Island 

Authority (RIA). Data collected in this way included: boundaries of each habitat type, 

vegetation height and percentage vegetation cover. 

 

3.4 Data analysis 

Annual variation in capture rates of invertebrates was assessed using a paired sample t-test 

using the data collected in 2015 and 2016 for the remnant and old restored sites. This was 

done using the average abundance (total number of specimens), richness (number of 
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invertebrate orders), and diversity (Shannon-Weiner Index) for each site, with sites being 

paired between years. This was done for ground dwelling (pit fall) and arboreal (beat) 

samples separately, as were all other analyses. 

 

Analysis of variance (ANOVA) was used to test for differences in abundance, richness and 

diversity between each of the four habitat types (heath, young restoration, old restoration, 

and remnant). Where significant differences (P ≤ 0.05) occurred, a Tukey honest significant 

difference (HSD) post-hoc analysis was used to reveal the nature of the difference. This 

allowed me to test whether heathland sites contained distinctly different invertebrate 

assemblages to the three kinds of woodland sites (young restored, old restored, and 

remnant) sites. I was also able to test whether restoration efforts appear to be successfully 

transitioning areas from the heathland site state to a state similar to the remnant woodland 

state. Finally, I was able to assess the timescale required for the invertebrate community to 

transition from the heathland state to one that better resembles the one found in remnant 

woodland areas. 

 

To assess differences in invertebrate taxonomic composition between the four habitat 

types, a Bray-Curtis resemblance matrix of sites was generated using number of individuals 

captured, standardised using a square-root transformation. Gross differences between sites 

within each habitat type were then compared using analysis of dissimilarity (ANOSIM). The 

similarity percentage analysis (SIMPER) procedure was then used to identify orders that 

contributed most to the similarity between sites within habitat types, as well as the 

similarity between the four habitat types (a 70% cut-off value was used). The ANOSIM and 

SIMPER procedures were conducted in the software package PRIMER v6 (Zhou & Zhang, 

2003). The compositional similarity of the 12 sites was also visually displayed using principle 

coordinate analysis (PCO). This was also done in PRIMER v6. 
 

To assess the influence of habitat complexity, patch size, isolation and fire history on 

invertebrate assembly, habitat data were compared with invertebrate assembly data using 

distance-based linear modelling (DistLM). This was done using a number of structural habitat 

measures, as well as digitized geographical data collected and maintained by the RIA on 

their geographical information system (GIS). The habitat complexity measures were derived 

from field measurements at each of the 24 sites surveyed in 2015, and included leaf litter 

cover, vegetation ground cover, CWD density, visibility, and vegetation height. The data 

extracted from the GIS for analysis included isolation, patch size, and time since last fire. The 

variation in the invertebrate assemblage at each of the 24 sites surveyed in 2015 was 
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measured using abundance, richness, and diversity. The DistLM used all subsets of variables, 

with best models chosen from these subsets as the ones with the lowest AICc value, and 

those within two AICc value(s) of this best model. Once again, the arboreal and ground 

samples were analysed separately. A MDS was then generated to visually show the variation 

between sites in terms of composition, with vectors to show the habitat factors most 

influential in explaining the variation. 

 

3.5 Results 

No significant difference was detected between the 2015 and 2016 samples, demonstrating 

that annual variation between the two years wasn’t large, and that sampling effort was 

sufficient to generate repeatable results (Table 3.1). 

 

Table 3.1: Paired t -test for six woodland sites that were surveyed in both the spring of 
2015 and 2016. 

 
 t df Sig. (2-tailed) 

Arboreal Abundance 0.974 5 0.375 

Arboreal Richness 0.808 5 0.456 

Arboreal Diversity 0.809 5 0.455 

Ground Abundance 1.480 5 0.199 

Ground Richness 1.387 5 0.224 

Ground Diversity 1.978 5 0.105 
 

 
Assessment of the differences in abundance, richness and diversity across the four habitat 

types, revealed two significant results. These significant differences were between ground 

diversity and arboreal abundance (Table 3.2). Post-hoc analyses revealed that only old 

restoration and heathland were significantly different for arboreal abundance (F 1,3 = 

68.33, p = 0.016). This indicates that the abundance, richness and diversity across the four 

habitat types were overall highly similar. 
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Table 3.2: ANOVA results displaying variation in univariate measures of invertebrate 
assemblage (abundance, richness, and diversity) between the four habitat types (heathland, 
young restoration, old restoration, and remnant woodland). 

 
Measure of assemblage F Sig. 

Ground Abundance 1.057 0.419 

Ground Richness 1.565 0.272 

Ground Diversity* 4.682 0.036 

Arboreal Abundance* 5.99 0.019 

Arboreal Richness 2.9 0.102 

Arboreal Diversity 0.444 0.728 
* denotes significant result 

 
Based on Bray-Curtis similarity indices, there was a significant difference in invertebrate 

community composition between the different habitat types (using ANOSIM), with none of 

the 5000 random permutations exceeding the global R statistic for arboreal samples (R = 

0.157, p < 0.001), and only 18 of the 5000 permutations exceeding the R statistic for ground 

samples (R = 0.07, p = 0.004). Pairwise comparisons between site types revealed that the 

only non-significant differences (p > 0.05) in arboreal samples were between remnants and 

old restoration, and between young and old restoration. Ground samples found no 

significant differences between young restoration and remnants, young restoration and 

heath, or heath and old restoration (Table 3.3). All other combinations for both arboreal and 

ground samples were significant. 

 
Table 3.3: Pairwise comparisons between habitat types (ANOSIM) displaying significance 
of differences in composition. 

   
Remnant Young 

Restoration Old Restoration 

 R P R P R P 

Arboreal Young 
Restoration 0.131 0.006     

 
Old 
Restoration 0.012 0.311 0.022 0.218   

 Heath 0.133 0.007 0.302 0.001 0.271 0.001 

Ground Young 
Restoration 0.009 0.318     

 
Old 
Restoration 0.166 0.001 0.022 0.23   

 Heath 0.176 0.001 0.031 0.169 0.029 0.182 
 

 
Large (>1 cm) spiders (Areneae) accounted for the majority of the similarity between 

heathland sites for both the arboreal (66%) and ground (53%) samples. Small (<1 cm) spiders 

also made up the remaining (47%) in ground samples for heathland sites. Restored site 

similarity was mostly explained by beetles (Coleoptera), true bugs (Hemiptera) and spiders. 



 
52 

Remnant similarity was mostly due to consistencies in small spiders, beetles, and flies 

(Diptera) (Table 3.4. Dissimilarity between habitat types was primarily a function of 

differences in abundance between orders, such as beetles and spiders, which occurred in all 

habitat types (Table 3.4). 

 
Table 3.4: Percentage contributions of orders to similarities within hab itat types and 
pairwise similarities between habitat types based on Bray –Curtis similarity indices 
(derived from SIMPER analysis in PRIMER v6). 

Arboreal Invertebrates 

Order Heath Young 
Rest 

Old 
Rest Rem 

Heath 
& 

Yrest 

Heath 
& 

ORest 

Heath 
& Rem 

Yrest 
& 

Orest 

Yrest 
& 

Rem 

Orest 
& 

Rem 

Lg.Araneae 66.01      9.66    
Orthoptera 18.35          
Hemiptera  37.33   28.74 19.58 14.64 23.85 26.28 20.96 

Sm.Araneae  30.18 31.46 23.34 19.81 19.09 16.93 17.54 17.52 17.91 

Sm.Coleoptera  22.25 43.44 41.72 20.24 34.94 26.96 28.78 22.5 29.81 

Diptera       12.96 13.49   10.38   12.06 9.92 

Total 84.36 89.76 74.9 78.02 82.28 73.61 78.57 70.17 78.36 78.6 

Ground Invertebrates 
Lg.Araneae 52.64  36.16  22.34 26.02  18.01  13.64 

Sm.Araneae 47.36 56.08 42.4 31.03 29.99 28.02 21.27 25.02 21.48 19.21 

Lg.Coleoptera  21.56  29.46 17.48  30.32 12.54 34.03 25.13 

Sm.Coleoptera    38.87 10.64  24.08  23.15 17.25 

Orthoptera      9.65     
Diptera           12.38   14.47     

Total 100 77.64 78.56 99.36 80.45 76.07 75.67 70.04 78.66 75.23 

 

The arboreal community composition in young and old restored sites appears to be clumped 

closer together than the communities found in heathland or remnant sites. This pattern is 

less clear in ground samples; however, remnants appear to be the most clumped of the four 

habitat types (Figure 3.2). 
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Figure 3.2: Relative abundance across the four habitat types of six orders Razeng and 
Watson (2012) identified as commonly occurring in avian insectivore diets. 

The relative abundance of orders identified by Razeng and Watson (2012) as being most 

common in insectivore diets can be seen in Figure 3.2. The majority of ground samples were 

made up of beetles (Coleoptera) and spiders (Araneae). A total of 136 Coleoptera were 

captured from ground samples across the four habitat types, 119 (87%) of those captures 

were from remnant sites, 16 (12%) from the two restoration ages, and just 1 (1%) from 

heathland sites. Araneae were more evenly distributed, with the highest capture rate of 34 

(34%) from old restoration, and the lowest 17 (17%) from heath. Arboreal samples had more 

substantial contributions from a wider range of orders. A total of 231 Coleoptera across the 

four habitat types were captured. The majority 133 (58%) were collected from old 

restoration, 56 (24%) from remnants, 38 (16%) from young restoration, and just 4 (2%) from 

heathland sites. Araneae were tied for highest abundance between old and young 
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restoration with 52 (34%), and the lowest abundance was at heath sites with just 19 (13%) 

individuals caught. Additionally, 169 Hemiptera were captured in the arboreal samples, an 

order that was completely absent from ground samples. The highest abundance 79 (47%) of 

Hemiptera were collected from young restoration, while the lowest 10 (6%) were from 

heathland. The remaining four orders made up just 9% of the ground samples collected and 

6% of the arboreal samples. 

 

The composition of invertebrates collected in each habitat type at the two strata levels can 

be seen in Figure 3.3. Restored sites appear to be far more closely grouped than either the 

heath or remnant sites for arboreal samples, but remnants are far more closely grouped for 

ground samples than any other site type. Beetles (Coleoptera), true bugs (Hemiptera) and 

spiders (Araneae) are both shown in vectors as being influential in explaining variation 

between the different site types. 

 

 

Figure 3.3: PCO displaying effect of site type on arboreal (top) and ground 
(bottom) invertebrate assemblage, with vectors displaying the most influential 
invertebrate. 
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Isolation was found to be the most influential factor in the DistLM for ground invertebrate 

assemblage. Fire age, leaf litter, and understory cover appear to be proximal factors that 

strengthen the model. Variation in the arboreal assemblage was best described by fire age, 

with patch size as the next most commonly occurring factor in each model. CWD and leaf 

litter were the next two most influential factors (Table 3.5). It should also be noted, that fire 

age was weakly correlated with leaf litter (F = 0.408, P = 0.048) and understory cover (F = 

0.541, P = 0.006), but not CWD (F = 0.474, P = 0.072), so caution needs to be taken when 

interpreting these results. Based on the AICc values, there is little difference between the 

listed models, suggesting that factors 2, 3 and 4 in the respective models are only proximal 

factors. 

 

Table 3.5: Results of distance -based linear modelling (DistLM) for invertebrate community 
composition based on structural, temporal, and spatial habitat variables. Only the best 
models (based on AICc values) are included. 

 
Substrate Model # Factor 1 Factor 2 Factor 3 Factor 4 AICc R2 

 
Ground 

 
1 

 
Isolation 

    
154.31 

 
0.150 

  
2 

 
Isolation 

 
Fire Age 

   
155.2 

 
0.210 

  
3 

 
Isolation 

 
Leaf Litter 

Understory 

Vegetation 

  
156.44 

 
0.260 

 
Arboreal 

 
1 

 
Fire Age 

    
144.1 

 
0.145 

  
2 

 
Fire Age 

 
Size 

 
CWD 

  
144.86 

 
0.299 

  
3 

 
Fire Age 

 
Size 

 
CWD 

 
Leaf Litter 

 
145.87 

 
0.361 

 
 
 

3.6 Discussion 

The community assemblage did not differ significantly between the two successive years 

studied. While the comparison was only between two consecutive years, this result is 

encouraging as significant deviation from one year to the next may indicate that either the 

variability from one year to the next is large enough to make this study redundant for 

predicting future variability, or that insufficient sampling was done. Either way, significant 

differences would have diminished the value of these findings. 

 

Comparisons between the four habitat types at the two strata levels based on overall 

abundance, diversity and richness, revealed significant differences in ground diversity and 
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arboreal abundance. Ground abundance and richness, as well as arboreal richness and 

diversity weren’t found to significantly differ. Ground diversity was highest in remnant 

areas, while arboreal abundance was highest in old restoration. A well-documented 

limitation of univariate biodiversity indices in disturbed habitats is that disturbance 

specialists may have replaced more specialised species, resulting in similar overall 

biodiversity, but a change in composition (Devictor, Julliar & Jiguet, 2008). Thus, caution 

should be taken when comparing variation in biodiversity indices. A possible explanation 

for the differences in ground diversity is that relic ground dwelling species may still 

persist in remnant areas, but are yet to recolonise restored areas. The similarity between 

remnant ground samples was best explained by the presence of spiders Araneae and 

beetles Coleoptera of the two different size classes. Spiders contributed the most to 

within group similarity in all four site types at the ground level, while large beetles were 

only identified as important contributors to two habitat types (remnants and young 

restoration), and small beetles were only significant in remnants. This may be an 

indication that the beetle community is slow to recolonise restored areas, either due to 

dispersal barriers, or reduced suitability in restored habitats. 

 
Beetles can have a number of important trophic roles as herbivores, carnivores, omnivores, 

and scavengers (Davies & Margules, 1998; Lassau et al., 2005; Schaffers et al., 2008; 

Vandewalle et al., 2010), pollinators, seed dispersers and decomposers (Grimbacher et al., 

2007; Nichols et al., 2008; Gibb & Cunningham, 2010; Vandewalle et al., 2010). They are also 

the most important prey type for many insectivorous birds (Poulin, Lefebvre, & McNeil, 

1994; Wilson et al., 1999; Buchanan et al., 2006; Razeng & Watson, 2012). Razeng and 

Watson (2012) assessed the dietary records of 26 declining woodland birds in South 

Australia, 13 of which were ground-foraging insectivorous passerines including the red-

capped robin. 

 

Beetles were the dominant prey group in nine of the 13 ground-foraging insectivores. Poulin 

et al. (1994) also found beetles to be the most commonly consumed prey group for land 

birds in Venezuela. Buchanan et al. (2006) and Wilson et al. (1999) also found beetles to be 

of disproportionate importance to birds in both the United Kingdom and northern Europe. 

This demonstrates the global importance of beetles as a food source. Unfortunately, there is 

evidence that current habitat restoration practices may not be adequately providing 

important environmental variables, such as native vegetation structure and soil condition, 

which limits beetles’ capacity to recolonise restored habitats (Jellinek, Parris, & Driscoll, 

http://www.sciencedirect.com.ezproxy.ecu.edu.au/science/article/pii/S0006320713000748?_rdoc=1&amp;_fmt=high&amp;_origin=gateway&amp;_docanchor&amp;md5=b8429449ccfc9c30159a5f9aeaa92ffb&amp;ccp=y&amp;b0065
http://www.sciencedirect.com.ezproxy.ecu.edu.au/science/article/pii/S0006320713000748?_rdoc=1&amp;_fmt=high&amp;_origin=gateway&amp;_docanchor&amp;md5=b8429449ccfc9c30159a5f9aeaa92ffb&amp;ccp=y&amp;b0065
http://www.sciencedirect.com.ezproxy.ecu.edu.au/science/article/pii/S0006320713000748?_rdoc=1&amp;_fmt=high&amp;_origin=gateway&amp;_docanchor&amp;md5=b8429449ccfc9c30159a5f9aeaa92ffb&amp;ccp=y&amp;b0110
http://www.sciencedirect.com.ezproxy.ecu.edu.au/science/article/pii/S0006320713000748?_rdoc=1&amp;_fmt=high&amp;_origin=gateway&amp;_docanchor&amp;md5=b8429449ccfc9c30159a5f9aeaa92ffb&amp;ccp=y&amp;b0110
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2013). There is evidence that beetle communities can struggle to persist in heavily cleared 

landscapes (Hopp et al., 2010), and changes in habitat conditions and arrangements can 

influence richness, abundance and diversity. This study’s finding that remnants are most 

similar based on their beetle communities, while heath sites had less consistent beetle 

communities is likely a reflection of a reduction in habitat viability for beetles as areas have 

been converted from woodland to heathland habitats. 

 

The ground-dwelling invertebrate communities in restored areas also don’t appear to be 

moving towards a state that resembles the remnant state. Remnants and heathland sites 

were unsurprisingly found to be significantly different with regards to ground invertebrates, 

but unlike in the arboreal samples, old restored sites were also found to have significantly 

different ground invertebrate compositions to remnants. Given that the old restored areas 

were 30-50 years old, this demonstrates that either development is too slow to have been 

detected in this study, or the systems are developing along a divergent pathway from the 

remnant habitat state. In Chapter four a number of habitat characteristics, such as 

understory vegetation cover, vegetation height, leaf litter and presence of CWD are 

compared between restored and remnant areas. These variables were selected for their 

relationship to bird microhabitat selection, but studies have also found that factors like 

habitat complexity, CWD, and vegetation height can relate to invertebrate richness and 

diversity (e.g. Longcore, 2003; Higgins et al., 2014). Two habitat variables that were found to 

be significantly different between Rottnest’s remnant and restored areas are the presence 

of CWD, and vegetation height. CWD is an ecologically important resource for numerous 

ground dwelling invertebrates (Braccia & Batzer, 2001). Unfortunately, CWD is slow 

developing, meaning without active introduction, it may be absent from restored areas for a 

long time (Jonsson 2000; Craig et al., 2012). 

 

The results of the arboreal data are more in line with expectations than the ground data. 

Remnants were found to be significantly different from heathland sites, but mature restored 

sites were found to resemble remnants. Young restoration was found to be significantly 

different to heathland, demonstrating that a change in the invertebrate community can be 

detected after 7-12 years of development, but it wasn’t until the restored woodland 

matured that it became statistically similar to the remnant state. As predicted, the restored 

habitats were also found to be similar to one another. The true bug (Hemiptera) contributed 

to within group similarity in young restoration only, which may suggest that they are a group 

best suited to young restored sites, which may help distinguish young restoration from 
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other habitat types. The short gestation period, high reproductive potential, high population 

size, and responsiveness to microhabitat changes of invertebrates make them an ideal taxon 

to track year-to-year changes in site conditions (Longcore, 2003; Higgins et al., 2014). Large 

spiders and grasshoppers were the two most significant groups of invertebrates for 

explaining between site similarities in heathland arboreal samples. Both were found in 

Razeng and Watson’s (2012) study to be consumed by as many as 11 of the 13 ground-

foraging insectivorous passerines. It should however be noted that these were less 

frequently consumed than the more important beetles, ants, butterflies and moths. 

Restored sites, on the other hand, were dominated by beetles (Coleoptera), true bugs 

(Hemiptera) and spiders. The invertebrate community was also found to be much more 

abundant in restored areas than any other assessed site type. This is a promising result for 

the success of restoration efforts, given the importance of invertebrates as a food source 

and performers of important tasks like pollination, which can be problematic in restored 

habitats (Liu et al., 2010; Cordingley, 2012; Jellinek, Parris, & Driscoll, 2013). 

 

Patch isolation and the permeability of the surrounding matrix have been shown to 

influence assembly in a number of ways. Much like vertebrates and plants, invertebrates 

have been shown to be more prone to extinction on smaller and more isolated fragments 

(Fishcher & Lindenmayer, 2007; Boscolo & Metzger, 2011). This can be attributed to 

variation in colonisation and extinction rates, as well as increased selection pressure in 

smaller patches (Hanski & Ovaskainen, 2000). Oliver et al. (2006) found that paddock trees 

in grazed native pastures contained distinctly different invertebrate communities to the 

surrounding agricultural landscape. They also found that those community level differences 

were reflected in differences in soil and leaf litter variables that followed gradients away 

from the paddock trees. The study demonstrated how the provision of the necessary 

resources can alter the invertebrate assembly, and may provide a “stepping stone” for 

animal movement across the landscape (Manning et al., 2009; Nadkarni & Haber, 2009). 

Restoration efforts on Rottnest have attempted to convert heathland areas back to 

woodland areas through the use of fire and mechanical slashing to reduce vegetation 

competition (see Chapter five for details), the introduction of fences to exclude quokkas that 

would otherwise graze on seedlings and the planting of woodland species seedlings. These 

steps are an effort to decrease the isolation of existing woodland patches, and extend the 

available woodland habitat on the Island. Given that patch size and isolation were identified 

in the linear model as important factors, it is clear that habitat fragmentation has influenced 

the invertebrate community at both measured strata levels. 
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As mentioned previously, wild fires and controlled burns have changed the vegetation 

profile of the Island in the past. Controlled burns were used to clear unwanted vegetation 

from restoration sites at an early stage of site preparation until 1986 (Winn, 2008). The 

impact fire has on invertebrate assembly is poorly understood, and no information is 

currently available on the impact fire has on the terrestrial invertebrate communities on 

Rottnest. York (1999) found that Australian dry eucalypt forests that had been subjected to 

frequent low-intensity fires, commonly had 41-82% lower abundances of spiders, ticks and 

mites, pseudoscorpions, woodlice, springtails, bugs, beetles, ants and insect larvae in leaf 

litter than adjacent, unburnt areas. This was attributed to reduced leaf litter, simplified 

habitat structures, and less available moisture. Anderson (1991) documented differences in 

the profiles of ant functional groups in mine site restoration that had been exposed to 

different fire regimes in Northern Australia. Higgins et al. (2014) found that stand-replacing 

wildfires in Colorado USA resulted in higher abundances of the major invertebrate 

taxonomic groups, with the exception of spiders, after five years than in comparable 

unburnt areas. This study found that fire age had a significant correlation with both ground 

and arboreal composition. The initial experimental design wasn’t set up to look at fire age, 

and so the effects of fire on the invertebrate community couldn’t be readily analysed 

without additional data gathering, which was beyond the scope of this study. Further 

research into how the invertebrate community responds to fire would be of considerable 

value, given that Rippey and Hobbs’ (2003) state and transition model describes the ways 

fire can transition areas from one stable habitat type to another. 

 
Overall, the species composition found in restored areas does appear to better resemble 

those found in remnants than in heathland sites for both ground and arboreal invertebrates. 

The biodiversity of ground-dwelling invertebrates was similar in all three woodland sites, but 

much lower in heathland sites. This demonstrates that ground biodiversity does increase in 

response to woodland restoration efforts, and much like in the Oliver et al. (2006) study, the 

provision of necessary resources appears to be facilitating recolonisation events. Remnants 

and old restored sites tended to contain a greater plant diversity and structural complexity 

(as discussed in Chapter four), which may explain the lower rates of internal similarity in 

their invertebrate community. The compositional differences that were detected in this 

study weren’t fully explored as it was beyond the scope of this study. Further study into the 

distribution of specialist and generalist invertebrate taxons would be valuable in the future. 
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The focus of this study was on invertebrates as a food source (explored in greater detail in 

Chapter four), and as such, the invertebrates were only coarsely sorted to order, and little 

attention was given to the invertebrates’ biology. 

 
It is clear that the invertebrate community has been influenced by the fragmentation and 

changes in fire regimes of the past. The woodland restoration program appears to have 

influenced the invertebrate assembly on the Island, as the communities found in restored 

areas no longer resemble those found in heathland areas. Arboreal invertebrates appear to 

be responding better to restoration efforts than ground dwelling invertebrates. Future work 

into the impact of fire on the woodland invertebrate community, and the distribution of 

beetles in restored and remnant areas are recommended, as both may have management 

implications in the future. Overall, there is no clear difference in the quality of food 

resources for birds between restored and remnant areas. Beetles appear to be more diverse 

and abundant in remnants, but overall invertebrate abundance on vegetation is higher in 

restored areas. Chapter four explores how robin behaviour varies between restored and 

remnant areas, and whether the variation in invertebrate assembly is reflected in the birds’ 

behaviour. 
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Chapter 4: Habitat quality measured 
using animal behaviour and 
microhabitat selection 
4.1 Introduction 
In chapter one, I outlined the progress of restoration ecology as a scientific discipline, and 

discussed the potential benefits of incorporating animal behaviour metrics into assessments 

of restoration development. Restoration practitioners often organise management goals 

using conceptual frameworks such as state-and-transition models (STM). A STM can be used 

to characterise the various stages of development from the pre-intervention state, to the 

desired end state where monitoring and management are no longer required. STMs are also 

useful for identifying possible deviated states that may arise during development, and offer 

management strategies to return the successional trajectory to the desired path (Stringham 

et al., 2003; Bestelmeyer et al., 2004; Rumpff et al., 2011). The model requires appropriate 

completion goals that will lead to the recovery of an area to a state that adequately 

resembles an appropriate local indigenous reference ecosystem (McDonald et al., 2016). 

The intensity of restoration effort required will depend on a number of factors, such as the 

severity of the degradation, the resilience and regenerative capacity of the area, and any 

socio-economic factors associated the restoration effort (McDonald et al., 2016). Currently, 

most STMs are centred around abiotic and flora based recovery, with little to no 

consideration of faunal recovery (Craig et al., 2015). 

 

Successful restoration efforts are dependent on correctly predicting the successional 

trajectories initiated by the restoration effort, and adequately considering the processes 

that need to be restored (Hilderbrand et al., 2005). Unfortunately, ad-hoc style adaptive 

management is still often necessary, as scientific knowledge about how best to restore 

ecosystem functions, and accelerate successional trajectories is often limited (McDonald et 

al., 2016). This can be problematic, as errors made at the outset of the restoration effort 

can be difficult, and expensive, to correct retrospectively (Perring et al., 2015). Improving 

our understanding of how best to implement and monitor restoration development, will 

reduce the need for ad-hoc management. This will result in better and more efficient 

restoration outcomes. 
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Many restoration assessments in the past have been criticised for oversimplifying and 

overlooking important components. It has been argued that an overemphasis has been 

placed on flora, while fauna has seen inadequate attention (Halle & Fattorini, 2004; Craig et 

al., 2015). Where fauna are considered, assessments often only involve indices of animal 

biodiversity, specifically species diversity and richness (Lindell, 2008). This kind of data can 

be problematic as it may be inadequate for answering important questions. If the goal of a 

restoration effort is to provide habitat capable of supporting a stable and self-sustaining 

population of a specific species, then there is an assumption that the species should be able 

to maintain a net reproductive rate equal to or greater than one. Unfortunately, 

presence/absence data alone is insufficient for determining whether an adequate 

reproductive success rate and population replacement rate has been achieved (Aldridge & 

Boyce, 2007; Lindell, 2008). 

 
Current trends in research into the management of restored ecosystems suggest that 

increased use of integrated approaches may be beneficial. Numerous studies have shown 

the benefits of focussing on the interactions between flora and fauna, when determining 

how best to monitor and manage ecosystem development (e.g. Kaiser- Bunbury, Traveset & 

Hansen, 2010; Daws & Koch, 2015; Schleuning, Fründ, & García, 2015). This literature 

supports the argument that biodiversity should be seen as secondary to the interactions 

between organisms when dealing with ecosystem management. Within an ecological 

system, numerous animals may depend on plants for food and shelter, while plants depend 

on animals to facilitate processes like pollination and seed dispersal (Lindell, 2008). A 

disruption in these processes could destabilise the equilibrium in the system. 

 

For restoration efforts aimed at restoring important biological interactions, there is a need 

to understand how species interact with their habitat. Habitat, which can be viewed from 

either a structural or functional perspective, can be difficult to measure as it is inherently 

subjective, and the degree of functionality can be difficult to assess. Structural habitat (e.g. 

vegetation or land cover types) is easier to measure, as it generally relates to how humans 

perceive habitat, and can be measured using variables like vegetation height and density 

(Van Dyck, 2012). Functional habitat measures are more complex, as they are an attempt to 

quantify resource-based habitat distribution relative to an animal’s movement (Breedlove 

et al., 2004). These resources may be either consumables or conditions, and their 

availability is dependent on the animal’s perception of the world around them (Van Dyck, 

2012). For fragmented landscapes and highly mobile species, an animal’s functional habitat 
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may be distributed across several structural habitat types. This can complicate researchers’ 

attempts to quantify the relative quality of patches of a specific structural habitat type. 

 
 

When selecting habitat to use, animals are likely to select areas that provide high intrinsic 

value, meaning high resource densities, protection from predators and parasites, and any 

other factors likely to enhance survivorship and offspring production (Muller et al., 1997). 

Given that animals may not see some habitat units in the same way as humans perceive 

them (e.g. disturbance history or land cover type), the Umwelt-concept from ethology may 

be a useful approach to understanding how animals perceive the habitat around them (Van 

Dyck, 2012). Animals are likely to view the range of available resources in a mosaic 

landscape made up of both restored and remnant areas in a different way to humans. By 

taking a resource-based approach to habitat assessments, that considers the distribution of 

resources (consumables and conditions), we may be able to gain greater insight into how 

animals perceive their own environment (Van Dyck, 2012). 

 

Understanding habitat quality is a complex, but important task for ecologists and restoration 

practitioners (Johnson, 2007). Functional habitat, by definition, can only really be considered 

at the species level. Thus, functional habitat quality is inevitably highly subjective (Van Dyck, 

2012). In addition, there are a number of complicating factors, such as reproduction, 

survival, and abundance not necessarily being positively correlated with one another (Van 

Horne, 1983). Intraspecific and interspecific interactions (e.g. competition, predator-prey 

relationships, conspecific attraction) can influence species occurrence across a landscape, 

and potentially push animals into sub-optimal habitat (Bock & Jones, 2004; Campomizzi et 

al., 2008). Finally, different species have varying capacities to alter their behaviour and 

habitat selection, which can further complicate researchers’ attempts to determine the 

relative quality of the animal’s habitat (e.g. Bock & Jones, 2004; Nielson, et al., 2013; 

Bennett, 2013). 

 

Despite all of these complicating factors, there have been numerous cases of behavioural 

patterns providing an effective indication of habitat quality (Lindell, 2008). Vaughan et al. 

(1996) used the feeding rates of bats upstream and downstream of 19 sewage outputs to 

determine whether an impact of poor water quality could be detected. The feeding rate of 

both species was found to be lower at downstream sites than upstream sites, demonstrating 

a conservation issue that is directly influencing the local wildlife. Johnson (2000) used 

observational foraging data from three species of warblers, alongside arthropod sampling 
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using a ‘branch clipping’ technique to verify that the sampling technique correctly recorded 

a representative estimate of prey availability. Without detailed foraging behaviour data and 

stomach contents data, it would be very difficult to correctly sample invertebrate prey 

availability. The study’s assessment of food availability closely matched the observed 

foraging rates on different plant species, demonstrating the accuracy with which the 

sampling technique could be used to sample prey availability for foliage-gleaning species. 

 
Resource selection functions (RSF) can be a useful way to identify how animals select 

habitat, and which habitat variables should be assessed to measure habitat quality (Johnson, 

2000; Chetkiewicz & Boyce, 2009; Fattebert et al., 2015). An animal’s behaviour in a 

heterogeneous environment is shaped by its experiences and expectations. By observing the 

microhabitats an animal chooses to occupy, the risks it is willing to take, or the point at 

which it will abandon a resource (e.g. giving up densities [GUD]) we can begin to understand 

the factors determining the quality of a specific habitat (Jacob & Brown, 2000; Persson & 

Stenberg, 2006).  

 

Foraging technique and prey attack rates have been shown to directly relate to food 

availability, which is a crucial habitat component (Carter & Dixon, 1982; Vaughan et al., 

1996; Morrison et al., 2010). In a study on the variation of breeding success of blue tits 

(Parus caeruleus) in high-quality deciduous woodland, compared with low-quality coniferous 

woodland, behavioural analysis was used to identify the mechanism behind the variation in 

habitat quality (Stauss et al., 2005). The researchers measured both the breeding success, 

and parental feeding behaviour. The birds in high quality habitat were found to travel 

smaller distances than those in low quality areas. The difference in distance travelled by the 

birds was reflected in a significant difference in the amount of food provided to nestling 

birds (Stauss et al., 2005). The study clearly demonstrates how supplementary behavioural 

animal data can provide a clear rational for differences in the quality of two different 

habitats (Lindell et al., 2008). 

 

Foraging rate has been shown to have a positive relationship with food availability in fish 

and birds (Repasky 1996; Delestrade 1999; Shepherd & Boates 1999; Marchand et al., 2002; 

Wellenreuther & Connell, 2002; Kilgo 2005). Foraging rate has also been shown to directly 

influence fledgling growth (Naef- Daenzer, Naef-Daenzer & Nager, 2000; Wilkin, King & 

Sheldon, 2009) and in some cases, breeding success (Stauss et al., 2005). It should be noted, 

however, that some studies have shown that adjustments in parental behaviour in areas 
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with poorer food resource availability can yield equal biomass per hour per chick, and no 

discernible differences in breeding success (Naef-Daenzer et al., 2000; Tremblay et al., 2005; 

Wilkin et al., 2009). Despite the somewhat conflicting evidence provided by these studies, it 

is clear that food resource quality and animal behaviour are interlinked, and it is unwise to 

make assumptions about the relationships between food resource availability, foraging 

behaviour, parental attentiveness and breeding success in one system, based on the results 

of studies in other systems with other species. 

 
This chapter involves a study of the microhabitat selection and behavioural patterns of an 

insectivorous woodland bird species in restored and remnant areas on Rottnest Island. The 

red-capped robin (Petroica goodenovii) is a species previously identified as being highly 

sensitive to woodland condition and recognised as a declining woodland bird (Razeng and 

Watson, 2012). While the population on Rottnest appears to be stable, they have been 

described as being of conservation significance based on their isolation from the mainland 

population (Baker et al., 2003; Saunders & de Rebeira, 2009; Mather, 2010; Stevenson, 

2011). Red-capped robins are one of the priority species identified by the Rottnest Island 

Authority (RIA), and a goal of its woodland restoration effort is to create viable habitat for 

this species (Baker et al., 2003; Mather, 2010; RIA, 2014).  

 

Red-capped robins are typically described as ground-foraging insectivorous birds (Razeng 

& Watson, 2012), that typically forage using the ‘pounce’ technique, as described by 

Holmes and Recher (1986). This method involves flying from an elevated perch down onto 

the ground to capture a prey item. As such, ground dwelling invertebrates are an 

important food resource for this species. The results of the invertebrate surveys described 

in Chapter three suggest that the diversity of ground dwelling invertebrates was higher in 

remnant areas than restored areas. Additionally the abundance of beetles (Coleoptera), an 

order of invertebrates that numerous studies have found to make up the majority of many 

insectivorous birds’ diets (Poulin et al., 1994; Wilson et al., 1999; Buchanan et al., 2006; 

Razeng & Watson, 2012) was found to be considerably higher in remnants than restored 

areas. Of the four habitat types (heathland, young restoration [7-12 years], old restoration 

[30-50 years], remnant), each of which had an equal trapping effort, 87% of the beetles 

captured on the ground were from remnant sites, while 58% of the beetles captured in 

arboreal samples were in old restoration, and a further 16% were from young restoration. 

 

Additionally, the overall abundance of invertebrates was found to be significantly higher in 
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restored areas than remnants or heathland sites. This may indicate that restored areas have 

superior arboreal foraging microhabitat conditions, but inferior ground foraging habitat 

compared to remnants. By assessing the foraging behaviour of the birds, specifically in 

relation to the substrate from which they capture prey, this chapter attempts to determine 

whether the results of Chapter three reflect differences in resource availability from the 

robins’ perspective and influence their foraging behaviour between restored and remnant 

areas. 

 

Aside from assessing the quality of restoration in terms of foraging habitat, the quality of 

breeding habitat is also of critical importance. The capacity of a restored area to positively 

contribute to annual recruitment is a necessary target for restoration aiming to extend the 

birds’ viable habitat. Stevenson’s (2011) study on the impact of ravens on Rottnest Island 

bush birds concluded that the restoration efforts are alleviating the pressure being applied 

to bush birds through nest predation. Habitat fragmentation has been shown to increase 

nest predation rates, while increasing habitat complexity, specifically relating to foliage 

height diversity has been shown to reduce nest predation rates (Marzluff & Ewing, 2001). 

Red-capped robins have been shown to be strongly affected at the population level by 

variation in habitat size and shape (see Major et al., 1999), and nest predation is the main 

cause of nest failures for red-capped robins (Dowling, Antos, & Sahlman 2003; Dowling, 

2003). In Chapter two, juvenile robin density was found to be significantly higher in 

remnants than restored sites. This suggests that recruitment rates may differ between the 

two site types, or that birds are actively moving from restored areas to remnants after the 

birds fledge.  

 

While ongoing monitoring of fauna in restored areas is not uncommon, the information 

gathered is generally restricted to presence absence and abundance type data. This 

chapter explores the possible benefits of going beyond those more basic forms of 

assessment, and assessing whether the birds behave differently between the different 

habitat types with respect to breeding-related behaviours, it may be possible to 

determine why there is a difference in juvenile recruitment rates between remnants and 

restored areas. This may have management implications if restoration practitioners want 

to improve restoration outcomes and remove any factors that are reducing the breeding 

habitat quality of restored sites. If the issue is simply related to edge effects and nest 

predation, then designing restoration sites so they act as buffer zones that increase the 
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area to perimeter ratio may improve the breeding habitat quality for the birds. A number 

of studies have shown that the creation of corridors can be detrimental to the birds, and 

have argued that infilling, or surrounding existing fragments is more beneficial to 

woodland birds (Major et al., 1999; Fischer & Lindenmayer, 2007). As such, this study 

looked at the breeding behaviour and recruitment rate of birds in restored and remnant 

areas as a way of assessing the quality of breeding habitat provided by the two site types. 

 
4.2 Hypotheses: 

1. Differences in robin feeding and breeding related behaviours will reflect differences 

in microhabitat characteristics related to those behaviours.  

 

2. Variation in foraging microhabitat selection will reflect variation in prey availability 

as defined by the results of Chapter three. Robins will collect prey from foliage more 

frequently in restored sites than remnants, and from the ground more frequently in 

remnants than restored sites. 

 
3. Differences in breeding behaviour will reflect the apparent difference in breeding 

habitat quality between restored and remnant areas (Chapter two). Remnants have 

higher population densities of juvenile robins, and so are likely to be superior 

breeding habitat 

 
4.3 Field methods 

4.3.1 Site selection 

A total of 11 sites were selected for this study based on the frequency with which robins had 

been sighted at each site during the Birdlife bush bird counts (Mather, 2010), and from 

personal observations (Figure 4.1). This was done as the logistics of moving between sites 

was a limiting constraint, and it was considered a priority to maximize the sample size as 

much as possible. Of the 11 sites selected for this study, four were remnants and seven were 

restored sites. The western most remnant site was excluded from this study as it is heavily 

degraded, and no robins have been recorded at that site in the past two decades of bird 

surveys. The northern most remnant site was also excluded as it is very small, located in the 

middle of a camping ground, and because it has been revegetated with non-native eucalypt 

trees. The eastern most site was excluded from this study as very few robins (2) had 

previously been seen in that area. The site is also part of the settlement area known as the 

Kingstown Barracks. The restored sites chosen for this study were all located on the eastern 
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half of the island, as these areas typically have higher densities of robins, and were made up 

of a range of different sizes. All restored sites were at least 20 years old. 

 

Figure 4.1: Map of Rottnest Island. The red spots indicate sites used in this component 
of the study. Original image courtesy of Landgate. 

 
4.3.2 Bird banding 

 
A total of 50 birds (23 adult male, 15 adult female, and 12 unsexed [juvenile]) were banded 

for this study. For details on banding techniques used, see Appendix A. Birds were fitted 

with split colour metal bands making them individually identifiable with binoculars, as well 

as a numbered Australian Bird and Bat Banding Scheme (ABBBS) metal band. As the site 

had a pre-existing banding project set up, some birds observed in this study had ABBBS 

bands already fitted, but didn’t have the split colour metal bands. 

 
4.3.3 Bird behavioural observations 

 
Each site was visited at least six times on non-consecutive days during October to December 

2015. There is evidence that variation in activity levels in the first 4-5 hours after sunrise is 

minor, but that activity levels drop during the middle of the day, before rising again to near 

the morning levels at dusk (Verner & Ritter, 1986; Bibby, 2000). To compensate for 

decreased activity levels, surveys were conducted across a broad part of the day. Surveys 

were conducted between approximately 6.00am to 11.00am, and then from 2.00pm until 

5.00pm. 

 
In addition to collecting up to five-minutes of observational data from as many banded birds 

as possible, I also collected five-minutes of data from any unbanded birds sighted, provided 

I was certain only five minutes had been collected on that bird. This meant that up to five 

minutes of data could be collected for unbanded adult males, unbanded females and 

N 
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unbanded juveniles. In one case, where a banded bird was seen with an unbanded mate 

(that also carried a leg abnormality), it was possible to individually identify the unbanded 

individual through its association with the banded bird, and its leg abnormality. 

 
The method used for collecting bird behaviour data was derived from a study that looked at 

differences in the feeding ecology of male and female Raso Larks Alauda razae in Cape 

Verde (Donald et al., 2007), which is very similar to the focal animal sampling methods 

described by Altmann (1974). In both studies, birds were located by walking random 

transects and looking and listening for the birds. Once a bird was located, its band ID, age 

and gender were noted, and a timer was started. Over the next five minutes, the frequency 

and time the bird spent performing a number of different activities, and using different 

microhabitats was recorded on a voice recording phone application, and later timed and 

tallied using a timer. 

 

Activities recorded in this way included: first forage technique used [as described by Holmes 

and Recher (1986)], any subsequent foraging attempts, substrate prey was taken from, 

description of the prey item taken, time spent calling, preening, nest building, territorial 

displays (aggression between two males), courting (male and female interactions often 

involving feeding and calling to one another), assisted feeding (adults feeding juveniles, and 

males feeding females), description of habitat being used (restoration or remnant), 

description of whether the bird was near the edge or middle of said habitat type and a 

description of the nearest adjacent habitat type, approximate perch height use (to the 

nearest metre), number of perch changes, number of long flights (>10 m). 

 
4.3.4 Vegetation surveys 

 
At each site, surveys were conducted at four 100 m2 (10 m x 10 m) quadrats in random 

locations at least 20 m from the edge of the woodland habitat, and 20 m away from each 

other. The variables measured relate to microhabitat characteristics the birds are likely to 

rely on while foraging, or macrohabitat characteristics associated with patch size, isolation 

and vegetation density, which can influence predation pressures related to breeding.  In 

each quadrat, the percentage of ground cover (leaf litter, bare ground, or vegetation) was 

estimated; the presence of horizontal branching at three separate strata levels was 

recorded (0-1 m, 1-2 m and >2 m); the number of pieces of coarse woody debris (CWD) 

(length > 30 cm, width > 5 cm) were counted; four visibility measures were taken using a 

rangefinder, with each measurement being aligned with a compass cardinal point. 
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Additional data were also extracted from GIS data maintained by the RIA. Data collected in 

this way included: woodland boundary length, woodland patch size, mean vegetation height 

and percentage tree canopy cover. 

 
4.3.5 Prey availability 

 
Invertebrate prey availability data used in Chapter three was collected concurrently with the 

behaviour data collected for this chapter. As such, the invertebrate community in restored 

and remnant sites could be compared. For details on how invertebrates were collected and 

sorted, see Chapter three. 

 
4.3.6 Robin population density and recruitment 

 
Approximately 12 months after the behavioural surveys were completed, a second bird 

survey was conducted in which the population density of robins was estimated, and 

demographic data relating to the age structure of birds found at each site was counted. This 

survey is described in Chapter two. 

 

4.4 Data analysis 

The difference in availability of various microhabitat characteristics in restored and remnant 

areas was first compared using an analysis of similarity (ANOSIM) in which several 

microhabitat variables were compared together, and then those same variables were tested 

individually using analysis of variance (ANOVA) to determine whether any pair-wise 

differences were present. The microhabitat variables tested were availability of horizontal 

branches at height classes (0-1 m, 1-2 m, and >2 m), ground substrate (leaf litter, bare 

ground and vegetation), average vegetation height, and visibility. 

 

To determine whether robins behave differently in the two habitat types (restored and 

remnant woodland), robin behaviour was first compared using an ANOVA. This test 

compared the rate that all observed robins in each habitat type performed various 

behaviours. The behaviours assessed included: foraging, calling, courting, parental 

feeding, and preening/resting, as these were behaviours observed at least five times 

each. 

 

To further examine robin behaviour specifically related to foraging, the birds’ prey attack 

method was compared between restored and remnant areas using an ANOVA. The different 
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prey attack methods were grouped into four foraging behaviour categories based on the 

microhabitat characteristics involved in the manoeuvre. These categories were as follows: 1. 

Pounce (requires perches, open understory, visible prey on the ground); 2. Glean and probe 

(requires prey that can be captured over short distances, possibly by digging into bark or 

leaves); 3. Hawk, hover & snatch (requires open area that allows the bird to locate and 

capture prey while on the wing); 4. Fed by a parent (typically the prey item would have been 

captured via one of the other three categories). A bar chart with standard error bars was 

then used to visually display the relative frequency with which the behaviours were 

performed. 

 

The frequency with which the birds in used different substrates in restored and remnant 

areas to source prey items was then compared using an ANOVA. The substrates birds were 

recorded foraging from were grouped into the categories: leaf litter, bare ground, 

vegetation and air. The relative frequency with which each foraging substrate was used was 

then visually represented with a bar chart and standard error bars.  The relationship 

between foraging behaviour and prey availability was assessed using a Pearson correlation. 

The rate at which each foraging technique was used at each site was compared with the 

abundance (total number of invertebrates caught) and diversity (number of orders 

encountered) for both arboreal and ground dwelling invertebrates. 

 
Finally, the relationships between time spent performing behaviours related to territoriality 

and reproduction (calling, courting, territorial displays and nest building) were compared 

with the adult and juvenile robin density estimates using a Pearson correlation.  

 

4.5 Results 

Overall restored and remnant patches weren’t found to significantly differ when all 

microhabitat measures were analysed simultaneously (R = -0.061, P = 0.724). When each 

microhabitat was analysed individually, vegetation height and CWD were found to 

significantly differ between the two habitat types (Table 4.1). All other measures were not 

found to significantly differ between site types. Remnants had an average vegetation height 

of 4.89 m (sd = 2.74), while restored sites had an average height of 4.16 m (sd = 0.94 m). 

Remnants also had a CWD density of 6.05 pieces / 100 m2 (sd = 1.53 pieces / 100 m2), while 

restored sites had just 4.50 pieces / 100 m2 (sd = 2.30 pieces / 100 m2). 

 



 
72 

Table 4.1: Results of an ANOVA testing differences in microhabitat characteristics between 
restored and remnant sites. Significant differences are shown in bold with asterisks. 

 
Microhabitat characteristic df F Sig. 

Understory veg 10 .471 .500 

Visibility 10 1.003 .327 

Veg height* 10 5.381 .030 

Leaf litter cover 10 .010 .920 

Coarse woody debris* 10 9.402 .006 

Horizontal branching 0-1m 10 .458 .505 

Horizontal branching 1-2m 10 .920 .348 

Horizontal branching >2m 10 .505 .485 

 
There were no significant differences detected between restored and remnant sites for time 

spent foraging, calling, assisted feeding, or preening/resting (Table 4.2), however assisted 

feeding was very close to significant. There was a difference in time spent courting, and on 

territorial displays, and nest building, with the majority of all three occurring in remnant 

areas. This suggests that while the birds occupy and use both habitat types, differences in 

the ways they use the two habitat types may exist, and those differences may reflect 

differences in habitat quality, as they relate to reproductive activities 

Table 4.2: Results of an ANOVA testing differences in bird behaviour between restored 
and remnant sites. Significant differences are shown in bold and with an asterisk. 

   Behaviour  df  F  P  

Foraging 10 1.065 0.329 
Calling 10 3.733 0.085 

Courting* 10 8.851 0.016 
Territorial display* 10 7.04 0.026 

Nest building* 10 5.723 0.04 
Assisted feeding 10 4.795 0.056 
Preening/resting 10 0.013 0.913  

 
 

Further enquiry into foraging behaviour revealed that pounce foraging was the most 

commonly observed technique used (Figure 4.2), making up 68% of all observed foraging. 

Neither pounce foraging nor parental feeding were found to be significantly different 

between restored and remnant habitat (Table 4.3). Glean/probe and the hawk/hover/snatch 

categories were both found to be significantly different between restored and remnant 

sites, and both were found to be higher in restored than remnant habitats. 
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Figure 4.2: Relative frequency with which each foraging technique was performed 
in restored and remnant areas by red-capped robins. 

 
 

Leaf litter was the most commonly used ground substrate from which prey items were 

captured in both restored and remnant areas (Figure 4.3). Vegetation was more commonly 

used in restored areas than remnants. No significant difference was found between the 

frequency with which items were captured on the ground (including both leaf litter and bare 

ground), or the air (Table 4.4). Vegetation was the only substrate in which a significant 

difference was detected, with more frequent use occurring in restored areas (Table 4.4). 

This difference in substrate use is reflected in the difference in foraging technique used, as 

the majority of glean/probe and hawk/hover/snatch foraging occurred in restored areas, 

and these techniques are commonly used when feeding on vegetation. 

 
Table 4.3: Results of an ANOVA testing differences in foraging strategy use between 
restored and remnant sites. Significant differences are shown in bold and with an asterisk. 
 

Foraging Strategy df  F  Sig.  

Pounce 10 0.358 0.55 
Glean/Probe* 10 4.265 0.04 
Hawk/Hover/Snatch* 10 5.297 0.022 

Parent 10 0.142 0.707 
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Figure 4.3: Relative frequency with which each substrate was used to collect prey items 
in restored and remnant areas by red-capped robins. 

 
 

Table 4.4: Results of an ANOVA testing differences in frequency of foraging 
microhabitat substrate used by red-capped robins between restored and remnant 
areas. Significant differences are shown in bold and with an asterisk. 

Foraging Strategy  df  F  Sig.  

Leaf litter 10 0.138 0.711 
Vegetation* 10 9.332 0.002 
Bare ground 10 0.274 0.601 

Air 10 1.532 0.217 

 
 

No significant relationships were found between prey availability and foraging frequency or 

behaviour (Table 4.5). This suggests that prey availability isn’t driving robin habitat selection, 

and robin foraging behaviour is not indicative of prey availability. It should however be 

noted that while the p values were not found to be significant (P < 0.05), the R values were 

quite high (e.g. pounce foraging and ground abundance, and parental feeding and arboreal 

diversity), which may be a result of the relatively small sample size (n = 11). A larger sample 

size may have yielded a significant relationship between foraging behaviour and food 

availability. 
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Table 4.5: Pearson correlations between frequency of foraging technique used 
by robins and invertebrate abundance and diversity. 

 
Ground 

Foraging 
Technique 

 Abundance Diversity 

df R P R P 

Pounce 10 0.425 0.193 0.189 0.578 

Glean 10 0.203 0.550 0.239 0.480 

Hawk 10 0.053 0.877 0.046 0.892 

Parent fed 10 0.077 0.822 0.221 0.515 

Arboreal 

Foraging 
Technique 

 Abundance Diversity 

df R P R P 

Pounce 10 0.325 0.330 0.297 0.375 

Glean 10 0.083 0.807 0.397 0.227 

Hawk 10 0.213 0.529 0.159 0.641 

Parent fed 10 0.121 0.723 0.459 0.156 
 
 

The amount of time birds spent calling and courting were both found to be positively linked 

with higher population densities of juvenile robins (Table 4.6). Courting behaviour was also 

found to be linked with adult robin population density, but not juveniles. This can be seen in 

Figure 4.4. 

Table 4.6: Pearson correlations between frequency of territorial and breeding related 
behaviours and population density estimates for juvenile and adult 
robins. Significant differences are shown in bold and with an asterisk. 

 
  Adult  Juvenile 

Foraging Technique df R P R P 
Calling* 10 0.585 0.059 0.678 0.022 

Courting* 10 0.678 0.022 0.661 0.027 

Territorial displays 10 0.348 0.295 0.374 0.257 

Nest building 10 0.403 0.220 0.471 0.144 
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Figure 4.4: Adult and juvenile population density relative to observed courting and calling 
behaviour frequency. 

 
 

4.6 Discussion 

Vegetation height was found to be higher, and  CWD was found to be more abundant in 

remnants than restored areas.. Numerous studies have shown that the presence of CWD 

can influence invertebrate (Braccia & Batzer, 2001; Longcore, 2003; Higgins et al., 2014), 

bird (Greenberg & Lanham, 2001; Ford, 2011) and reptile (Mac Nally et al., 2001; Kanowski 

et al., 2006) assemblages. Given that CWD is slow to develop, and can easily be lost in fires, 

this can be somewhat problematic for restoration practitioners aiming to accelerate 

successional processes in an area. Empirical studies have also shown how bird species 

richness increases with vertical height of vegetation (e.g. MacArthur & MacArthur, 1961; 

Lindenmayer et al., 2008; Kutt & Martin, 2010). This is thought to be a result of increased 

niche availability, as taller vegetation offers additional strata for foraging, nesting, and 

shelter (Barton et al., 2014). Vegetation height was higher, and CWD density was greater in 

remnants compared with restored sites. This is unsurprising, as both are features that are 

likely to increase with age, but may be an indication that restored sites are less complex 

and offer lower quality habitat to wildlife. Chapter two found that overall robin density was 

no different between restored and remnant areas, but juvenile density was higher in 

remnants than restored areas. 

 
 

https://link-springer-com.ezproxy.ecu.edu.au/article/10.1007%2Fs10980-014-0017-z#CR46
https://link-springer-com.ezproxy.ecu.edu.au/article/10.1007%2Fs10980-014-0017-z#CR39
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No differences were detected between the overall feeding rates, or with calling, assisted 

feeding or preening/resting. Courting, territorial displays, and nest building activities were 

all found to be more frequent in remnants than restored areas, all three of which relate to 

reproduction. This suggests that while robins readily use both restored and remnant areas 

for some aspects of their functional habitat requirements, remnants appear to be 

preferred for reproductive activities. This difference in behaviour is consistent with the 

juvenile robin population density discussed in Chapter two. 

 

Closer examination of the birds’ foraging behaviour revealed that pounce foraging was the 

preferred foraging technique employed by robins in both habitats. This was an unsurprising 

result, as it is well documented that red-capped robins are a predominantly ground- 

pouncing insectivore (Recher, Davis, & Calver, 2002; Higgins & Peter, 2002; Razeng & 

Watson, 2015). In a study assessing the foraging behaviour of five species of ground- 

pouncing birds across a number of West Australian woodlands, red-capped robins were 

found to pounce forage more frequently than all other foraging maneuvers combined at all 

but one study location (Recher et al., 2002). Only at Yellowdine, a salmon gum, gimlet and 

morrel (Eucalyptus salmonophloia, E. salubris, E. longicornis) woodland 400 km east of 

Perth, were robins found to use the hawk foraging technique as frequently as the pounce 

technique (Recher et al., 2002). This demonstrates that while robins typically use the pounce 

forage technique, they are capable of changing their behaviour in certain habitats. Rottnest 

Island robins appear to conform to the more typical foraging technique seen across the 

majority of the mainland. 

 

Glean and probe foraging frequency, which typically involves capturing prey from either the 

ground or from bark was found to be significantly more commonly used in restored areas 

than remnants. Hawk, hover, and snatch foraging, which involve capturing prey while on the 

wing, from either the air or foliage were also found to occur more frequently in restored 

areas. In Chapter three, restored areas were found to have higher abundances of 

invertebrates likely to appear in robins’ diets on foliage and leaves than in remnants, which 

supports the arguement that arboreal prey availability is better in restored areas. It is well 

documented that feeding frequency is positively linked with prey availability and higher 

quality food resource areas (Repasky, 1996; Delestrade, 1999; Shepherd & Boates, 1999; 

Marchand et al., 2002; Wellenreuther & Connell, 2002; Kilgo, 2005). While leaf litter was the 

most commonly used substrate to collect prey items in both restored and remnant areas, 

robins use of vegetation in restored sites was a close second, and was considerably higher 
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than in remnants. It appears that robins are altering their foraging style in restored areas to 

capitalize on the improved prey availability on foliage. This adaptation to the altered habitat 

demonstrates the birds’ capacity to change their behaviour in response to altered 

conditions, reflecting the findings of Recher et al. (2002), who found that red-capped robins 

predominantly pounce foraged, but would change their behaviour under certain conditions. 

It appears that restored areas provide valuable foraging habitat for birds that are able to 

exploit prey found on foliage. 

 

Comparisons between prey attack method and invertebrate abundance or diversity 

measures revealed no significant differences. In an experimental study on the effects of food 

availability on flocking behaviour and foraging efficiency of the alpine chough (Pyrrhocorax 

graculus), reduction in food availability resulted in a reduction in mean flock size, a 

reduction in the proportion of birds that had access to food, and a reduction in mean 

pecking rate (Delestrade, 1999). This study found that foraging rate appears to be relatively 

equal between the two site types, which may be an indication that prey availability, is similar 

or adequate between the two site types. Differences in habitat structure have been shown 

to have a greater influence on foraging habitat quality than invertebrate abundance due to 

structure drastically influencing detectability (Holmes & Schultz, 1988; Butler & Gillings, 

2004). Given that the overall foraging rate appears to be similar between the two habitat 

types, there is little cause for concern regarding the quality of foraging habitat, despite the 

variation in foraging technique used. 

 

In a study on hooded warbler (Wilsonia citrine) attack rates in Bottomland Hardwood 

forests, foraging frequency was found to be positively associated with arthropod abundance 

(Kilgo, 2005). The study also found that attack rates among adult birds foraging for fledgling 

birds did not vary with invertebrate abundance (which was linked to distance from timber 

harvest gaps). Shepherd and Boates (1999) found that semipalmated sandpipers’ (Calidris 

pusilla) foraging efficiency dropped by 68.5% in areas that were disturbed by the 

introduction of baitworm (Glycera dibranchiate) harvesting. Core sampling for invertebrates 

in the sediment revealed that dug sediments contained reduced prey density; however, 

reduction in prey availability due to the obstruction of visual and tactile prey cues may also 

be a contributing factor (Shepherd & Boates, 1999). While it was not always possible to 

accurately record the success rate for robin attacks, because the birds would sometimes be 

too far away to clearly see the prey item, it was possible to compare the habitat variables 

the birds used. This study found no significant difference in availability of horizontal perches, 
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or overall visibility between remnants and restored woodland areas. This suggests that 

structurally, the restored areas appear to be relatively similar to the remnant areas, with the 

exceptions of vegetation height and the presence of CWD, which can have a positive 

influence on invertebrate abundance (Mac Nally et al., 2001). While overall abundance and 

diversity of invertebrates between restored and remnant sites weren’t significantly 

different, significant differences in the invertebrate assemblage were detected between 

restored and remnant areas for both ground dwelling and arboreal invertebrates in Chapter 

three. This demonstrates that some differences in invertebrate assembly do exist, and 

further enquiry into distribution taxons at a finer scale is recommended, especially in 

relation to the beetle order Coleoptera, which is an important taxon for insectivorous birds 

(Razeng & Watson, 2012), and was found to be much more common in leaf litter in remnant 

areas than leaf litter in restored areas (see Chapter three). 

 

Behaviours relating to reproduction were found to differ significantly between restored and 

remnant areas. Courting displays, territorial aggression and nest building activities were all 

more commonly observed in remnant areas, suggesting that these habitats are superior in 

some way for the birds. Additionally, areas with more courting and calling behaviours were 

found to yield higher densities of juvenile robins. This may be an indication that remnant 

areas offer superior/preferred-breeding habitat, and contribute more to annual recruitment. 

This is a somewhat concerning result, as it may be an indication of a source-sink dynamic 

between remnants and restored areas. A source-sink dynamic occurs when a mobile species 

routinely moves from areas where recruitment is good (source) into areas where 

recruitment is poor (sink) resulting in the species’ occupancy of the sink area being 

dependent on supplemented migration from the source area (Pulliam & Danielson, 1991). 

One of the worst forms of source-sink dynamics is the ‘ecological trap’, in which species 

prefer low quality habitat over higher quality habitat (Dwernychuck & Boag, 1972; Battin, 

2004). By definition, an ecological trap is a habitat that is low in quality for reproduction and 

survival, is not capable for sustaining a population, and is preferred over other available, 

high-quality habitat (Donovan & Thomson, 2001). Given that the apparent lower rate of 

recruitment of robins in restored areas was found to coincide with lower rates of breeding 

related behaviours, it would appear that the birds are less likely to select restored sites as 

breeding habitat. This suggests that an ecological trap is unlikely to be in effect, and birds 

are simply utilising the available woodland habitats for different resource requirements. 

Given the small separation distance of patches of remnants and restored areas compared 

with the movement capacity of the birds, it is unsurprising that they are able to move 
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between the different habitat types in accordance with optimal resource availability.  

 

A component of this study that was originally planned to be a major component, but was 

removed due to technical difficulties, was the observation of nest success rates and 

parental attentiveness. Camera traps were to be set up at nests to observe the 

incubation and parental care of birds until they fledged. For details on the rationale and 

associated procedures, see Appendix B. Unfortunately, fewer nests were located than 

originally anticipated, and of the nests located, only two were suitable for camera trap 

installation. As such, I was not confident that a representative sample of nests had been 

located, or that sufficient data had been gathered to draw meaningful results. Of the 

seven nests that were found over 16 days of active searching by one to four experienced 

bird watchers. Six of the seven nests were located within 10 m of roads. Five of the seven 

nests were located in restored areas. Six were in Melaleuca and one was in Callitris. Due 

to the placement of the nests, only two of the seven were suitable for camera 

installation. The other nests were checked every 3-5 days until the juvenile birds fledged 

or the nest failed. Four out of the five nests without cameras failed, presumably due to 

predation from ravens. The remaining two fledged two birds each. Of the nests with 

cameras, one was predated by a raven within 24 hours of the camera being deployed, 

and the other successfully fledged two birds. The nest with the camera that succeeded 

appeared to have been the second successful breeding attempt of the season, as the 

male was observed feeding juveniles while the female was sitting on the nest. The 

parents of the failed nest with the camera had a second breeding attempt, but the 

second nest was placed in a tree adjacent to a raven’s Corvus coronoides nest, and also 

failed. It is likely that the nests I was able to locate were less discretely placed than many 

of the nests in the areas searched, and based on the ratio of fledglings to adult birds 

observed towards the end of the breeding season, it is clear that there were many 

successful breeding attempts, especially in remnants where only one nest was found. 

 

Unfortunately, the habitat variables assessed in this study didn’t yield a clear indication for 

the mechanism behind the difference in breeding habitat quality. Vegetation height may be 

a determining factor in nest site selection, but further study is required to verify this. Further 

enquiry into how robins select breeding habitat is required if we are to gain an 

understanding of why remnants offer superior breeding habitat. Within woodland 

patchiness, branching density and tree species composition may be habitat factors worthy of 

further investigation in relation to breeding habitat quality. Food resources don’t appear to 
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be a driving factor as no difference in foraging behaviour of birds feeding fledgling birds was 

detected. Locating and monitoring nests proved to be more challenging than originally 

anticipated, and the large raven population on the island makes the use of camera traps 

inadvisable as it may increase the probability of predation of eggs or fledgling birds 

(Stevenson, 2011; personal obs). 

 

This study was able to detect differences in behaviours associated with feeding and breeding 

habitat selection. The mechanisms behind the differences in feeding behaviour can be linked 

to variation in invertebrate abundance on foliage in restored sites. Overall, it doesn’t appear 

that food resources are a limiting factor for robins on Rottnest; however the study did 

demonstrate the birds’ capacity to adapt to variation in prey availability, which may be 

relevant for breeding success as birds’ capacity to feed their young can relate to breeding 

success. Breeding-associated behaviours occurred more frequently in remnants than 

restored areas, which is supported by evidence that fledgling robin density towards the end 

of the breeding season is higher in remnant areas than restored areas. The mechanisms 

behind breeding habitat selection remain unclear, but may relate to vegetation height, 

within site patchiness or foliage density. The benefits and drawbacks of various animal 

behaviour study techniques used in this study will be addressed in the next chapter. 
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Chapter 5: Challenges and merits of 
including behavioural measures into 
restoration monitoring programs: A 
case study on Rottnest Island 
5.1 Introduction 
The previous chapters of this thesis explored several ways animal surveys can be used to 

assess habitat quality. Some of the assessment strategies involved measures of resource 

availability, structural habitat conditions and site history, while others looked at differences 

in animal community composition and differences in animal behaviour between sites. As 

discussed in Chapter one, animals are often an under-utilised and under-appreciated 

component of biodiversity in restoration efforts (Ruiz-Jaen & Mitchell Aide, 2005; Craig et 

al., 2015; McAlpine et al., 2016). If this weakness in restoration management is to be 

addressed, there needs to be consideration of how best to integrate fauna assessments into 

pre-existing management and monitoring protocols. Unfortunately, animal behaviour 

surveys can be highly labour intensive, and can yield ambiguous results. Furthermore, 

surrogate species models are still a somewhat contentious topic, meaning any inference 

drawn from the behaviour of one species may not have broad applications for the system as 

a whole, or even other species within that system. Ultimately, the assessments of 

restoration success need to be broadly applicable, reliable, and provide meaningful results.  

 
Attempts to over-simplify ecosystems, and the use of broad-brush approaches like the ‘field 

of dreams’ or ‘umbrella species’ concepts, have been widely criticised by the scientific 

community (Palmer et al., 1997; Caro & O’Doherty, 1999; Lindenmayer et al., 2002; 

Hilderbrand et al., 2005). As such, the way forward appears to be using integrated models 

that have multiple goals along separate trajectories, and an adaptive management 

framework (Choi, 2007; Lindell, 2008; Fraser et al., 2017). This may present a challenging 

task for restoration managers who are often required to operate within ecologically, 

economically and socially accepted frameworks (Choi, 2007). Restoration managers 

generally require, or prefer, a straight-forward administrative plan so that the logistics can 

be suitably managed. A useful tool that may provide a framework for this type of 

management is the state-and-transition model (STM) (Stringham et al., 2003). STMs are a 

management tool that can be used to synthesize and communicate information about 

alternative states and transitional processes inherent in specific systems, and have seen 
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widespread use in restoration management (Stringham et al., 2003; Bestelmeyer, Goolsby, 

& Archer, 2011). Hobbs et al. (2009) posited that restoration as a field of study is in its 

infancy and that it has yet to achieve internal consistency, generality, and proven 

applicability of concepts in the field. They highlighted the practical limitations in identifying 

alternative states, transitions, thresholds and filters, as well as inconsistencies in the 

terminology used to describe these, and associated processes, within the literature (Hobbs 

et al., 2009). Despite this, until a more unified conceptual base to ecosystem restoration has 

been developed and proven to be robust for applied ecological restoration, the STM 

approach appears to be a useful management strategy for restoring degraded areas, such as 

the woodland habitats of Rottnest Island. 

 

This chapter explores the benefits and limitations of gathering and using various kinds of 

fauna-centric data to evaluate habitat quality. While restoration ecology can be studied as 

both a theoretical and an applied science (Hobbs & Norton, 1996; Choi, 2007), for people 

working to improve habitats through ecosystem intervention management and monitoring, 

its value comes from the applied aspect of the field. Hence, the data that restoration 

managers collect needs to be useful for predicting or explaining ecological processes acting 

in the system, while also complying with socioeconomic responsibilities. The value of data 

gathered will therefore be evaluated based on the ease with which it can be collected, the 

insight it can provide, and its applicability within a STM or other comparable frameworks. 

While the data gathered throughout this thesis was collected from Rottnest Island, and used 

primarily to assess habitat quality on the island for a particular woodland bird species, the 

overarching methodology may provide restoration practitioners in other regions with useful 

information on the merits and drawbacks of using various fauna assessment tools to 

measure habitat quality. In addition, as the Island has an ongoing woodland restoration 

program, which will soon be re-evaluated by the RIA, this work will provide valuable insight 

into faunal distribution patterns, habitat assessment procedures and future priorities for 

restoration work on the Island. 

 

5.2 Case study - Rottnest Island woodland restoration program 

As described in Chapter two, Rottnest Island (32°1 0 S, 115°500 E) is situated approximately 

20 km west of Fremantle in the south-west of Western Australia. The island is classified as 

an ‘A-Class Reserve’, declared under the Land Act 1993 and gazetted for public recreation 

since 1917 (RIA, 2014). Rottnest covers an area of around 1900 ha, and has been separated 

from the mainland for approximately 6000 years (Playford, 1983). The Rottnest Island pine 
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(Callitris preissii) and Rottnest Island tea tree (Melaleuca lanceolata) woodland is listed as a 

‘vulnerable’ threatened ecological community under state legislation (RIA, 2014). The island 

is currently free from mammalian predators, unlike the mainland where feral cat Felis catus 

and fox Vulpes vulpes populations have considerable impacts on small vertebrate fauna 

(Risbey et al., 2000; Doherty et al., 2015). The only mammalian fauna currently found on 

the island are the quokka Setonix brachyurus, a herbivorous marsupial, the house mouse 

Mus musculus, an introduced species found in high numbers in the settlement area, and the 

white-striped mastiff bat Tadarida australis, a native species found across much of Australia 

(Stevenson, 2011). The bird community on the island is much smaller than that of the 

adjacent mainland, with just 60 species making up the island’s avifauna, seven of which are 

isolated on the island with no populations on the immediately adjacent mainland and three 

species that are sufficiently different to constitute conservation management units 

(Saunders & de Rebeira, 2009). 

 

The island is one of 545 islands that are larger than 20 ha off the coast of Western Australia, 

but has a number of environmental and social characteristics that make it unique (Saunders 

& de Rebeira, 2009). These include the deep, saline, inland waters that make up 

approximately 10% of the island’s area, and provide important habitat for a number of 

wading birds that migrate from the Northern Hemisphere to the island during the austral 

summer (Saunders & de Rebeira, 1985). The terrestrial vegetation has been severely altered 

over the past 150 years since European settlement (Pen & Green, 1983; Rippey et al., 2003). 

The once dominant Melaleuca lanceolata and Callitris preissii woodland have been severely 

damaged by fires and anthropogenic activities, which have transformed the majority of the 

Island’s terrestrial vegetation into sclerophyllous grassy heath, dominated by the prickly low 

shrub Acanthocarpus preissii and the grass Austrostipa flavescens (Rippey et al., 2003). 

Between the 1920s and the 1980s, the island’s woodland areas were reduced from around 

66% to 8%, and is now estimated to be around 4% (Pen & Green, 1983; RIA, 2014). Prolific 

quokka grazing and high tree density in mature woodland stands have restricted the 

capacity of the woodland tree species to naturally regenerate (Storr, 1963; Rippey & Hobbs, 

2003; Winn, 2008). A state and transition model (STM) for Rottnest Island, developed by 

Rippey and Hobbs (2003), can be seen in Figure 5.1. Rippey and Hobbs’ (2003) model 

describes the processes through which Melaleuca lanceolata and Callitris preissii woodland 

transitions into (and from) Acacia rostellifera woodland, or Acanthocarpus preissii – 

Austrostipa flavescens heath. Heavy grazing of seedlings by quokkas prevents regeneration, 

meaning grassy heath dominates. Vegetation is especially prone to this transition after a 
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fire, as regenerating seedlings can be heavily consumed when quokkas are abundant. 

Frequent fires can further accelerate this, as the seed bank may not have had time to 
replenish between fires, meaning no new seedlings are available. Reduction in frequency 
of fires and intensity of grazing are required for woodland regeneration. 
 

 
 

Figure 5.1: State and transition model of Rottnest Island vegetation responses 
to fire and grazing by quokkas. Model developed by Rippey and Hobbs (2003). 

 
 

In an effort to reverse the loss of woodland habitat on the Island, the RIA began a woodland 

restoration program in 1963, resulting in widespread woodland restoration patches across 

the Island (Winn, 2008). The goals and targets of the woodland restoration program have 

gone through several revisions over the years, and as such, a range of different restoration 

strategies have been employed over the past 54 years, with varying degrees of success 

(Winn, 2008). Since 1963 there have been several improvements made to the vegetation 

management plans relating to woodland restoration. The initial woodland restoration 

strategy had no stated target, and merely aimed to restore lost vegetation and ‘beautify’ the 

island, often with the use of non-native plantings. Since then, specific restoration targets 

have been introduced, the first being brought in after 11 years of woodland restoration, 

which was to restore 20% of the island with woodland habitat (Rottnest Island Management 

Planning Group, 1962). This target was later changed in 1998 to the new target of restoring 

all suitable areas of the eastern two-thirds of the island to a woodland state by 2018 

(Rottnest Island Management Planning Group, 2004). In addition to changing the target, the 

species composition being planted was changed in 1998, 35 years after the program began, 

from the mixture of endemic and non-endemic tree species to the current combination of 

the two endemic tree species, Melaleuca lanceolata and Callitris preissii. 
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There are a number of substantial differences in the practices used in the woodland 

restoration program over the years, partly due to changes in perspectives held by individuals 

driving the woodland restoration program, and partly due to re-evaluation of management 

techniques after reports of failed attempts to reach restoration targets (Winn, 2008). 

Species composition in some years included as many as seventeen species, fourteen of 

which were non-endemic (Rottnest Island Management Planning Group, 1962). This was 

during a time when restoration efforts were “to beautify the Island by planting trees” (Sten, 

1959). As such, many fast-growing non-endemic species were planted in straight lines, and 

no records exist of the propagation method used prior to 1982. In addition, selection 

criteria used to select new woodland restoration sites weren’t recorded until 1975, and it 

wasn’t until 1986 that site selection moved from being based on distance above sea level to 

selection being based on historical evidence, an aerial photograph from 1941, showing sites 

that were once woodland (Rottnest Island Management Planning Group, 1985). 

 

Site preparation involved controlled burning from 1963 until 1985, but was later replaced 

with a mechanical slasher that served the same purpose of reducing vegetation competition 

(Winn, 2008). Fences have been used since 1963 to exclude quokkas that would otherwise 

graze on seedlings, and in some sites tree guards have also been used. Finally, planting 

design has changed from the initial symmetrical lines spaced 5-6 m between seedlings to 

random clusters that were at first 3.5 m between seedlings, but that spacing has since been 

further reduced to 1-1.5 m between seedlings (Winn, 2008). 

 

The first 30 years of restoration management and practices have been described as 

unsuccessful in restoring Melaleuca lanceolata and Callitris preissii woodland with a similar 

composition and structure to that of naturally regenerated Melaleuca lanceolata and 

Callitris preissii woodland (White & Edmiston, 1974; Rottnest Island Management Planning 

Group 1985; Winn, 2008). The most recent two decades have seen considerable 

improvement in restoration outcomes, which can largely be attributed to improved 

documentation of woodland restoration activities, better evaluations of success of 

woodland restoration management and practice allowing for adaptive management to 

occur, and better integration between science, management and practice in developing 

sensible ecological and economic targets and goals for management (Winn, 2008). The 

progression of Rottnest’s woodland restoration programs over the years can be seen in 

Table 5.1.  From 1963 to 2017 when this thesis was written, several changes have been 

made as a result of adaptive management, and in accordance with changes in perspectives 
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in relation to responsible restoration practices. 

 

Table 5.1: Summary of woodland restoration management and practices since the program 
began in 1963.  

Woodland restoration program 1963-2017 
Time period 1963-1974 1975-1994 1995-2005 2005-2017 

Area planted 100 ha, 6.8% 
Island area. 

78 ha, 5.3% Island 
area. 

59.3 ha, 4.1% 
Island area. 

65.3 ha, 4.5% 
Island area. 

Stated Target None. Restore 291.8 ha, 
20% Island area. 
No time limit. 

Restore 291.8 ha, 
20% Island area. 
No time limit. 

Restore a relative 
abundance of 
woodland 
throughout 
eastern two-thirds 
of Island,  972.7 ha 
by 2018.  

Site selection 
criteria 

Not stated. Based on island 
topography until 
1985, then 
changed to 
historical records 
of areas previously 
containing 
woodland habitat. 

Based on historical 
records of areas 
previously 
containing 
woodland habitat 
(aerial photograph 
from 1941). 

Based on historical 
records of areas 
previously 
containing 
woodland habitat 
(aerial photograph 
from 1941). 

Site 
Preparation 
strategy 

Controlled burn. 
Fence erection. 

Controlled burn 
until 1986, then 
mechanical 
slashing. Fence 
erection.  

Mechanical 
slashing. Fence 
erection. 

Mechanical 
slashing. Fence 
erection and use 
of tree guards. 

Planting 
design  

Symmetrical rows. Random cluster. Random cluster. Random cluster. 

Plant spacing 5-6 m between 
seedlings. 

Initially 3.5 m, 
decreasing 
through the years 
to 1-1.5 m 
between 
seedlings.  

1-1.5 m between 
seedlings. 

1-1.5 m between 
seedlings. 

Direct 
assessments 
of the impact 
restoration 
has on 
terrestrial 
fauna 

None. None. Birdlife Australia 
began conducting 
bush bird surveys 
in 2000, but in the 
years before 2009 
there were issues 
with record 
keeping, site 
selection, and 
collection bias   
(Mather, 2010).  

Birdlife Australia 
bush bird counts. 
Polson-Brown's 
(2012) study on 
robins and 
whistlers. And this 
study on birds and 
invertebrates. 
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The changes in targets, monitoring programs and management procedures are unsurprising 

given the time scale of the program, and the infancy of restoration ecology as a scientific 

discipline. Restoration ecology as a scientific discipline has changed dramatically over the 

past half century (Jordan & Lubick, 2011). Initially, there was heavy reliance on the premise 

that the balance of nature would naturally return, and restoration efforts could accelerate 

that process (Palmer et al., 1997); a concept that has since been largely discredited 

(Simenstad & Thom, 1996; Zedler & Callaway, 1999; Campbell, 2002; Wilkins et al., 2003).  

By the beginning of the 21st century, there was a growing awareness that disturbed systems 

may never return to their pre-disturbance state, and that historical records may now be of 

only limited value for restoration practitioners (Higgs et al., 2014). Historical records could 

serve as a desirable reference habitat, and help explain how processes interact, but 

ecosystem novelty may persist indefinitely (Hobbs et al., 2006). In 2008, Winn developed a 

STM for woodland restoration on Rottnest Island, with a focus on supporting restoration of 

the threatened Melaleuca lanceolata and Callitris preissii woodland (Figure 5.2) (Winn, 

2008). The model was developed to improve restoration outcomes in a damaged system 

that is highly novel (as discussed previously). Winn’s model built on the work of Elizabeth 

Rippey and Richard Hobbs, who identified three stable vegetation states and the 

transitional forces that move areas between those three stable states (Rippey & Hobbs, 

2003). The model also used the restoration history of the Island (Figure 5.1) to identify and 

remove weakness in the restoration program. While Winn (2008) acknowledged that the 

woodland community should provide three specific woodland services (woodland 

conservation, wildlife protection, and recreation amenities), the wildlife perspective was 

overlooked in her model. This was due to limited availability of information at the time. As 

a result, some questionable assumptions were made in the model, specifically, the capacity 

of each vegetation state to provide wildlife protection services. 
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Figure 5.2 Winn’ s (2008) state and transition model for woodland restoration 
on Rottnest Island. For descriptions of states and transitions, see Table 5.2 and 5.3 
respectively. 

 
 

Table 5.2 Description of Winn’ s (2008) state and transitional stable woodland 
states. 

 
Vegetation states: 
S1 Un-degraded woodland 

 Contains only Melaleuca lanceolata and Callitris preissii species, forming a structure similar to that of the reference 
habitat (naturally regenerated woodland stands that remain on the Island). Little to no understory. The woodland is 
fully providing the intended service(s). 

S2 Semi-degraded woodland 
 Woodland with decreased abundance of Melaleuca lanceolata and Callitris preissii trees. Acacia rostellifera and/or 

Acanthocarpus preissii – Austrostipa flavescens heath communities occupy some of the gaps in the woodland 
canopy. Some evidence of Melaleuca lanceolata and Callitris preissii regeneration. Woodland stands are not fully 
providing the intended woodland service(s). 

S3 Degraded woodland 
 Senescent Melaleuca lanceolata and Callitris preissii woodland with no evidence of woodland regeneration. The 

area is largely occupied by Acacia rostellifera and/or Acanthocarpus preissii – Austrostipa flavescens heath 
communities. Other tree species may be present. Woodland does not provide any woodland services. 

S4 Scrub and heath 
 Mixture of Acacia rostellifera closed scrub and Acanthocarpus preissii – Austrostipa flavescens heath communities. 

S5 Heath 
 Acanthocarpus preissii – Austrostipa flavescens heath community. 
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Table 5.3 Description of the transitions between Winn’ s (2008) state and 
transitional stable woodland states. 

 
Transitions between states: 
T1 Decreased abundance of Melaleuca lanceolata and Callitris preissii associated with: (1) natural 

senescence and limited site maintenance e.g. supplemented plantings; and/or (2) historical restoration 
practices of planting introduced tree species. Light and short-term quokka grazing limiting the amount 
of woodland regeneration. 

T2 & T12 Removal of quokka grazing by erecting fences. Improving quantity and quality of Melaleuca lanceolata 
and Callitris preissii woodland by: (1) planting seedlings using the appropriate planting design required 
for the provision of the intended woodland service(s); or (2) promoting natural regeneration through 
the use of fire (low intensity burn) or selectively thinning the canopy. Mid-recovery intervention may 
be required to manipulate the woodland structure so it complies with that of the reference system for 
the intended woodland service(s). Ongoing site maintenance is essential. Introduced tree species 
should be removed if present. 

T3 & T11 Melaleuca lanceolata and Callitris preissii are reaching the end of their life span (~110 years). No site 
maintenance. Heavy and long-term quokka grazing preventing woodland regeneration. 

T4, T6 & T14 Removal of quokka grazing by erecting fences. Improving the quality and quantity of Melaleuca 
lanceolata and Callitris preissii woodland by: (1) planting seedlings using the appropriate planting 
design required for the provision of the intended woodland service(s); or (2) promoting natural 
regeneration through the use of fire (low intensity burn) or selectively thinning the canopy. Introduced 
species are not removed. No-mid-recovery intervention or site maintenance undertaken. 

T5 Melaleuca lanceolata and Callitris preissii have reached the end of their lifespan (~110 years). No site 
maintenance has been undertaken. Heavy and long-term quokka grazing preventing woodland 
regeneration. 

T7 Acacia rostellifera has reached the end of its life span and regeneration is prevented due to heavy and 
long-term quokka grazing. 

T8 Disturbance, such as fire, to stimulate germination of Acacia rostellifera seed stored in the soil. 
Disturbance must occur within 60 years since Acacia rostellifera occupied the site due to the seed 
survival rate of Acacia rostellifera in the soil. 

T9, T13 & 
T15 

The combination of wildfire, no fences erected immediately following the fire to prevent quokka 
grazing on woodland regeneration, and presence of heavy and long-term grazing. No woodland 
restoration practice implemented. 

T10 & T16 Removal of quokka grazing by erecting fences. Slashing existing vegetation and planting Melaleuca 
lanceolata and Callitris preissii seedlings using the appropriate planting design required for the 
provision of the intended woodland service(s). Alternatively direct seeding and brushing techniques 
regeneration methods can be trialled. Site maintenance and mid-recovery interventions is undertaken 
when required. 

 

 
There is a notable lack of direct assessments of the impact woodland restoration is having 

on the terrestrial fauna on Rottnest Island (Winn, 2008) outside of the Birdlife Australia bush 

bird surveys that have been running since 2000 (Mather, 2010), and an honours thesis on 

the value of restored and remnant habitat for robins and whistlers on the Island (Polson- 

Brown, 2012). This was a reason for the omission of wildlife considerations from Winn’s 

(2008) state and transition model. The RIA has stated that it intended to develop and launch 

a woodland management plan by 2017 to “enhance the long-term resilience of the 

woodland community, while continuing to provide important fauna habitat” (RIA, 2014). 

The plan is now likely to be completed in 2018 (pers. comms.). The implication being that 

restoration is, and will continue to provide, important habitat for woodland fauna. 
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While there have been limited fauna studies that directly assess the impact the restoration 

program is having on the island’s fauna, a number of fauna studies have been conducted on 

the island that relate to interactions between different faunal species (Stevenson, 2011), 

limiting habitat resources (Poole et al., 2015), and seasonal fluctuations in resource 

availability (Phillips, Chambers, & Bencini, 2017). These studies are useful in providing 

insight into how fauna on the island have adapted to their habitat(s), as well as identifying 

potential threats to the resilience of those species and their continued existence on the 

Island. But for the woodland restoration program to accurately gauge the impact restoration 

efforts are having on the Island’s fauna, formal assessments of faunal responses to 

restoration are required. How best to measure faunal responses to restoration is a topic that 

I will now discuss, with reference to my previous three chapters, each of which explored one 

or more fauna assessment strategies. 

 

5.3 Animal biodiversity measures 

Indices of animal biodiversity (richness, diversity and abundance) can provide valuable 

insight for restoration monitoring, as they can be used to track recolonisation, and help 

identify species affected by habitat filters (Craig et al., 2012). However, they can be 

somewhat misleading, as disturbed sites often have higher species richness measures due to 

increased numbers of disturbance specialists, while having lost specialist species that 

respond negatively to the disturbance (Devictor & Robert, 2009). Fortunately, there is 

evidence that this issue can be mitigated by using compositional assessments that separate 

species into specialist and generalist, or other functional groups (Devictor & Robert, 2009). 

Chapter two of this thesis, looked at the woodland bird community using both compositional 

and biodiversity measures. In Chapter three I studied the invertebrate communities found in 

heathland, remnant woodland, and old and young restored woodland areas using both 

compositional and biodiversity analyses. 

 

A major limitation of biodiversity estimates is that an animal’s presence in an area does not 

necessarily mean the site contributes positively to individual reproductive success and 

population replacement (Aldridge & Boyce, 2007; Lindell, 2008). This can be seen in 

ecological traps (Robertson & Hutto, 2006), which have been found to be common in 

human modified landscapes (Battin, 2004). An ecological trap occurs when animals select 

inferior habitat over superior habitat leading to a drop in fitness (Lindell, 2008). 
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Biodiversity measures alone also offer no explanation for why a species may be scarcer or 

absent in certain areas. The absence of a species from an area may be an indication of a 

habitat filter (Craig et al., 2012), but the mechanism behind the species’ absence would 

require a more targeted assessment. This makes biodiversity measures a useful tool for 

identifying when a problem exists, provided they are able to pick up variation in both 

generalist and specialist species, but ineffective for identifying negative habitat features 

such as filters. Conversely, behavioural studies can be used to compare habitat quality 

between sites, identify reasons for differences in habitat quality, identify critical resources 

that determine habitat quality, and explain the mechanisms through which species 

contribute to ecosystem functions (Lindell, 2008). Behavioural studies do however, 

require a more comprehensive understanding of the species being studied, as 

experimental design often must be tailored made for the species in question. These types 

of studies are also generally more labour intensive than a biodiversity assessment, and, as 

this study found, can often produce somewhat ambiguous results.  

 
Chapter two focussed on the biodiversity of woodland birds across a number of isolated 

fragments of woodland habitat that had a range of different disturbance histories. The data 

were compared with presence-absence data for a single Australasian robin species that is 

resident in some, but not all, of the study sites. No differences were detected between 

restored and remnant habitats with respect to bird diversity, richness or composition. This 

contradicts an element of Winn’s (2008) STM, which assumed that semi-degraded and 

degraded woodland sites would not provide the woodland service ‘wildlife protection’ as 

well as the un-degraded woodland areas. Heath and scrub habitats were not assessed in 

this study, but robins and a number of other woodland dependent species are known to be 

absent from those habitats (Saunders & de Rebeira, 2009). Further investigation, described 

below, was necessary to measure the relative quality of woodland areas across different 

stable states. 

 

Collecting data on the entire community was no more difficult and required no more 

equipment than surveying the robin population alone, and required minimal equipment and 

little specialised training. A pair of binoculars and a familiarity with the birds found on the 

island was all that was required. The biodiversity data were useful in identifying which sites 

had the highest and lowest diversity and abundance of different species. When comparing 

biodiversity measures with habitat variables using various multivariate analyses, links 

between variations in habitat conditions and avian assemblage were found. What couldn’t 
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be specifically demonstrated from this study alone, was how factors like patch size, time 

since last fire, habitat type (restored/remnant), and perimeter were linked with robin 

population density, or the assembly of the avian assemblage as a whole. Additionally, 

factors like perimeter and patch size were both correlated with bird abundance, but also 

strongly correlated with one another. It is unclear from this data alone whether these robins 

prefer larger areas because they offer more edges or because they have larger centres away 

from the edges, or a combination of both. Fortunately, numerous studies have been 

conducted on these topics, and so we have an understanding of how faunal assemblages 

are influenced by factors like patch size, and shape, time since last fire, and disturbance 

history (e.g. Bender, Contreras, & Fahrig, 1998; Davis, 2004; Anderson et al., 2005). This 

allows researchers to infer causal links between detected variation in biodiversity measures 

and habitat characteristics. This is an important integration be between life history type 

studies and faunal response to restoration efforts.  

 

Meta-analyses of factors that involve large-scale phenomena, like the effect of patch size or 

fire on avian assembly, provide valuable insight on general relationships (Gurevitch et al., 

1992; Bender, Contreras, & Fahrig, 1998). These types of studies are useful resources for 

predicting how species will respond to relevant habitat factors, as they are able to evaluate 

the results of multiple data sets that would be difficult to collect within a single study, due to 

time, money and effort constraints (Bender, Contreras, & Fahrig, 1998). A limitation of meta- 

analyses in areas like Rottnest Island, compared with more targeted single species studies, is 

that general processes may act differently in novel systems with unusual species 

compositions, interactions and functions (Hobbs et al., 2009). For an area like Rottnest 

Island, that has a number of historical and geological characteristics that differ from those 

found on the neighbouring mainland, it could be argued that the system is highly novel. The 

absence of mammalian predators since the last of the feral cat population was eradicated in 

2002, after 40 years of attempts to remove the species due to concerns regarding their 

impact on native fauna (Algar, Angus, & Onus, 2011), is one example of the Island’s novelty 

compared with mainland reference sites. The widespread conversion of the once dominant 

Melaleuca lanceolata and Callitris preissii woodland habitat type to the now dominant 

heathland habitat type with scattered patches of restored woodland containing numerous 

non-endemic plant species is an example of the Island’s novelty arising from its history 

(Winn, 2008). 

 

Saunders and de Rebeira (1985) reported three avian extinctions on Rottnest Island, and 
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seven migrations that were directly attributed to human influence, mostly in relation to 

woodland habitat loss. Storr (1985) and Brooker et al. (1995) reported the suspected 

extinction of two species of skink, and declines in several others, again due to human 

activities. By contrast, the quokka population appears to have surpassed the carrying 

capacity for the Island, as a result of supplemented food and water resources in the 

settlement, and protection from hunting for almost 100 years (RIA, 2004; Winn, 2008). 

 
Meta-analyses may be useful in explaining large-scale phenomena, especially those relating 

to biodiversity relationships in fragmented landscapes. However, it is important to 

remember that systems like this one are novel, and processes may operate in 

unconventional ways. As such, more detailed studies of specific interactions may yield 

meaningful results regarding how species are using the available habitat on Rottnest, and 

how species interact with one another. Overall, biodiversity measures are relatively simple 

to collect and can be used to sample a wide range of taxonomic groups. When used in 

conjunction with existing literature on large-scale phenomena, and detailed studies on 

interactions that are potentially novel, they can form a strong assessment tool for 

restoration practitioners. 

 

5.4 Surrogate species models 

Surrogate species models are generally based around the assumption that by managing or 

monitoring the needs of a chosen sub-set of species, the needs of a larger pool of other 

species will also be met (Caro, 2010). While there has been controversy in the past over the 

legitimacy of surrogate species models being able to account for the needs of the entire 

species pool, the general consensus appears to be that models that include numerous 

species (focal species approach [FSA] and generic focal species [GFS]) are preferable to 

single species models (umbrella & keystone) (Caro & O’Doherty, 1999; Lindenmayer et al., 

2002; Wiens et al., 2008; Caro, 2010; Watts et al., 2010). This is because it is unlikely that a 

single species’ habitat requirements will reflect the needs of all other species found in that 

area. For cases where suitable focal species can be identified, behavioural assessments may 

be relevant to help identify key resources and interactions affecting those species. 

 

This study assessed the suitability of red-capped robins to act as an indicator of avian 

assemblage in Chapter two. Total avian assemblage, as well as woodland dependant avian 

assemblage, and woodland assemblages split by dietary guilds were all assessed separately, 

and my findings were that robin population density was a poor indicator for all three 
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measures of avian assemblage (richness, diversity and composition), (see Chapter two). This 

may be due to a number of factors, such as the high abundance of generalist species, like 

the silvereye Zosterops lateralis and the white-browed scrubwren Sericornis frontalis, in the 

dataset who are unlikely to be dependent on any characteristic differences between 

restored and remnant patches. Alternatively, it may be due to the absence of other 

specialist woodland birds, that are either naturally absent from the Island, or have already 

become extinct, like the rufous whistler Pachycephala rufivenmtris and the brush 

bronzewing Phaps elegans, both extinctions having been directly attributed to the loss of 

woodland habitat (Saunders & de Rebeira, 2009). This result differs from a number of 

mainland comparable studies that found red-capped robins to be a suitable indicator of the 

degree and extent of pervasive mining disturbances (Read, Parkhurst, & Delean, 2015), and 

indicators of the impacts of logging activities on avian communities (Kavanag et al., 2004). 

While the red-capped robin on Rottnest is a species of conservation significance, due to 

differences with the mainland population (Baker et al., 2003; Saunders & de Rebeira, 2009; 

Mather, 2010), management focussed solely on creating ideal habitat for robins would be 

inappropriate given these findings. Assessments should instead consider the wider 

community of woodland birds, including the western gerygone Gerygone fusca, the singing 

honeyeater Lichenostomus virescens and the golden whistler Pachycephala occidentalis, all 

of which have also been listed as being of conservation significance due to their differences 

from mainland populations (Saunders & de Rebeira, 2009). 

 

5.5 Microhabitat use and resources 

For animals that are easy to detect, like most birds, biodiversity measures can be collected 

quickly and cheaply with minimal equipment. Other taxonomic groups aren’t as simple, and 

may require targeted trapping efforts or the use of equipment such as motion sensitive 

cameras or other recording devices to detect their presence in an area. Unfortunately, these 

systems can be expensive and specialised, meaning the value of the data acquired may not 

always justify the investment cost of purchasing said equipment. In addition, an animal’s 

presence in an area isn’t necessarily evidence that the habitat is of sufficient quality for the 

species to sustain itself without supplemented migration from neighbouring areas (Battin, 

2004; Robertson & Hutto, 2006; Lindell, 2008). Resource availability assessments on the 

other hand, may provide a more meaningful way to measure habitat quality, especially for 

species that are otherwise difficult to observe. Food resources are obviously an important 

habitat component, and as the focus of this thesis was on an insectivorous bird, the 

invertebrate community was selected as a resource worthy of investigation. In chapter three 
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the invertebrate community was assessed in restored, remnant and heathland type sites at 

the two strata where the birds frequently forage. This study found that restored woodland 

areas contain invertebrate communities more similar to remnants than heathland sites, and 

that restored areas get progressively more similar to remnants as they age. The study 

assessed the rate with which the invertebrate community responds to restoration efforts, 

and demonstrated links between factors like patch size and time since last fire, and variation 

in the invertebrate community at the two measured strata levels. 

 

Through the identification of important habitat resources, and assessment of the availability 

of those resources, it is possible to systematically gauge the quality of a study site relative to 

a reference site. Identifying important habitat resources and microhabitat conditions can be 

difficult without an understanding of how fauna use the available habitat. Numerous studies 

have demonstrated the value of integrating fauna behaviour into restoration assessments as 

a way of identifying filters (e.g. Craig et al., 2015), and separating high and low-quality 

habitat (e.g. Lindell, 2008). This study focused on behaviours relevant to feeding and 

breeding, and identified a number of differences in the ways robins use restored and 

remnant areas. 

 
In Chapter four, through evaluation of how animals use available resources in the two 

habitat types (restored and remnant), I was able to identify differences in the way robins use 

those habitat types, and infer information about their relative quality in relation to feeding 

and breeding resource availability. Robins were found to forage equally frequently in both 

habitat types, but employed different foraging techniques. While pounce foraging onto the 

ground was the most commonly observed foraging behaviour in both habitat types, robins in 

restored areas were far more likely to glean or probe invertebrates off vegetation than in 

remnants. This difference in behaviour was reflected in the differences in the invertebrate 

assemblage measured in Chapter three, with birds changing from an almost exclusive 

ground foraging technique used in remnants, to a heavy reliance on arboreal invertebrates 

in restored areas. This demonstrates the capacity of the birds to adapt to superior/inferior 

habitat conditions. Differences in observed breeding related behaviours (courting, territorial 

displays, and nest building) were also observed between restored and remnant areas, 

however the resource requirements relevant to these behaviours are less clear. 

Further study would be required to identify why robins appear to prefer remnants over 

restored areas for breeding related activities. 
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Woodland birds as a group have been severely affected by habitat loss and degradation, 

often through fragmentation (Mac Nally et al., 2009). Insectivores as a sub-set of woodland 

birds, appear to be among the worst affected which may indicate that declines are linked 

in some way to changes in invertebrate assembly (Mühlner et al., 2010; Watson, 2011). 

Aside from being an important food resource within most ecosystems, invertebrates 

contribute overwhelmingly to the overall biodiversity (Anderson & Smith, 2004). Hence, it 

has been argued that biodiversity monitoring programs aimed at studying the integrity of 

an ecosystem should not be considered adequate without assessment of invertebrates 

(Taylor & Doran, 2001). 

 

In Chapter three of this study, a number of differences in invertebrate assemblages between 

heathland and woodland areas were identified. Differences were also found between the 

three different types of woodland assessed (young restoration, old restoration, and 

remnants). These differences were at both the ground and arboreal level, which are likely to 

influence insectivores differently, as ground foraging birds like the red-capped robins are 

likely to utilise different insects to the canopy gleaning golden whistlers Pachycephala 

occidentalis. The arboreal and ground communities were found to respond to different 

habitat variables that related to isolation, fire history, patch size and ground cover. This 

highlighted the inter-relatedness of microhabitat and resource availability, and 

demonstrated the value in assessing resources and habitat components like the invertebrate 

community at multiple strata levels. 

 

Heathland sites were found to be more different to any of the woodland sites, 

demonstrating that restoration efforts are successfully transitioning the invertebrate 

community to one that more closely resembles that of the remnant woodland habitat type. 

Restored sites of similar ages were more similar to each other than restored sites of 

different ages, which is either a result of common successional development or a result of 

the changes in restoration procedures over the past 50 years or a combination of the two. 

Time since last fire and patch size also influenced invertebrate assemblage, highlighting that 

those are two factors worthy of further study in the future. These results are meaningful in 

that they provide evidence that the differences in plant species and vegetation structure 

between the different habitat types are reflected in the invertebrate community. This is an 

indication of how restoration efforts have influenced the invertebrate community, which in 

turn, is likely to influence fauna species dependant on invertebrates. This is a positive result 

for restoration managers, and future woodland management plans should consider 
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continued monitoring of the terrestrial invertebrate community. The data gathering process 

was moderately labour intensive, as it required targeted trapping, collection, sorting and 

identification of all invertebrates, but most of the materials involved were cheaply sourced, 

and species identification down to order is relatively simple with field identification keys. 

 
Microhabitat use by birds was assessed in Chapter four using behavioural analysis. This was 

far less straight forward than the invertebrate surveys in Chapter three, but offered insight 

into how the birds use and perceive restored and remnant woodland areas. Data collection 

methods were derived from the Donald et al. (2007) study on raso larks Alauda razae in 

Cape Verde. I focussed predominantly on behaviours that related to feeding and 

reproduction, and the microhabitat characteristics and resources that related to those 

requirements. These features were identified as ‘ultimate’ factors determining the success 

of breeding and thus determining fitness. Foraging rates were found to be higher in restored 

areas than remnants, which is likely an indication that greater food abundance is available in 

restored areas (Shepherd & Boates, 1999; Kilgo, 2005). This mirrors the results of Chapter 

three, which found that arboreal invertebrate abundance was higher in restored areas. 

 

Breeding related behaviours on the other hand were rarely observed in restored areas, 

suggesting that the birds use the restored areas for feeding, but are still reliant on remnants 

for breeding related activities. Determining why the birds are predominantly breeding in 

remnants was beyond the scope of this study, but would be a valuable area to investigate in 

the future. These results may be indicative of a source-sink dynamic that may exist between 

remnants and restored areas, meaning that restored areas may not be supporting viable 

populations, and may be reliant on remnants to supplement annual recruitment. 

 
The behavioural component of this study was challenging, as data collection was highly time 

consuming, required a rigorous collection methodology, and is subject to observational bias, 

meaning that comparisons between studies may be difficult. For details on behavioural data 

collection procedures, see Appendix C. Bird banding was also required so that observations 

were not biased due to individual behavioural patterns of a select few birds. This was a time 

consuming, and labour-intensive component of the study that required specialty 

qualifications, equipment, and approvals. In this case there were additional complications 

due to a moratorium having been placed on colour banding this species, which was 

eventually lifted through negotiations with the ABBBS and the use of custom made bands. 
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For details on the bird banding process and acquisition of specialty bands for this project see 

Appendix A. 

 

When conducting behavioural assessment surveys, the selection criteria used to collect data 

have a fundamental effect on the detectability of patterns and overall outcomes. An 

example of this from this study can be seen in the overall foraging rate between restored 

and remnant areas not being found to significantly differ, while the frequency with which 

some foraging methods were used in the two habitat types was significantly different. These 

differences were found to relate to resource availability, but would not have been detected 

had prey attack method not been recorded. This demonstrates a challenge for researchers, 

as designing an experimental procedure to accurately capture significant behavioural 

differences requires a comprehensive a priori understanding of the animal’s behaviour, 

which may not always be available. Additionally, this study was conducted on a commonly 

found, easily observed species with a relatively restricted home range. Studies of this kind 

may be highly challenging on a species that is harder to locate and observe for extended 

periods of time and over large areas. 

 
A research component that was omitted from the study was the use of camera traps to 

monitor nest visitation and breeding success. The section was omitted due to low numbers 

of nests, a lack of confidence in how representative the located nests were for all nests used 

by the birds, and the placement of nests being ill-suited to camera placement requirements 

(for full details, see Appendix B). The financial cost of acquiring the cameras (which was over 

50% of the total equipment expenses for the project), the effort that went into searching for 

nests, as well as the challenge of transporting the cameras around the island on a bicycle did 

not justify the results that the cameras generated. As such, camera traps would not be 

advised for future work on species like robins, especially in areas like Rottnest where large 

populations of ravens exist, as there is a risk that cameras may increase the detectability of 

nests for predators. 

 

5.6 Proposed addition to pre-existing state and transition model 

Winn’s (2008) model describes a logical set of stable habitat states, with a set of transitional 

processes that can move an area from one state to another. The model does however omit 

the inclusion of faunal requirements, as Winn said it was beyond the scope of her study, and 

relatively little faunal information was available at the time that the model was developed. 
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Based on the findings of this study, I propose a four-tiered classification system be added to 

Winn’s model that relates to the stages of woodland degradation (Figure 5.3). For an area to 

transition from one tier to another, evidence of either a key process or an animals’ presence 

in the area is required. This will need further testing and refining, as the criterion listed here 

are largely retrospective. Additionally, the criteria discussed here will specifically relate to 

taxonomic groups assessed over the course of this study, and work on other woodland 

taxonomic groups may be incorporated into this model in the future. The feasibility and 

logistics of this type of assessment will need to be discussed with the RIA. Financial 

limitations in the past have resulted in many of the monitoring programs having been 

conducted by volunteer groups, which is likely to continue in the future. As such, it is likely 

that monitoring programs will need to be designed in such a way that data can be 

adequately gathered by semi-trained volunteers, and between-year surveys can be 

compared. 
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Tier Definition 
Tier 3 Woodland is classified as un-degraded. Avian community richness, diversity, 

abundance and composition are similar to that of the reference state. Invertebrate 
community richness, diversity, abundance and composition are similar to that of the 
reference state. Evidence of successful feeding and breeding (e.g. presence of 
juvenile birds in spring) of woodland dependant species of conservation significance. 

Tier 2 Woodland is classified as semi-degraded. Avian community richness, diversity, 
abundance and composition are approaching a similar state that resembles the 
reference state. Invertebrate community richness, diversity, abundance and 
composition are approaching a similar state that resembles the reference state. Area 
provides some resource requirements, but species still appear to be reliant on 
neighbouring habitats for key resource requirements (e.g. breeding). 

Tier 1 Woodland is classified as degraded. A number of woodland dependant avian species 
(e.g. robins, whistler and gerygone) are absent or rarely observed during surveys. 
Invertebrate community composition is significantly different to the reference state, 
may resemble the heathland state. 

Tier 0 Area is scrub or heathland. Most if not all woodland species are absent. 
 

Figure 5.3: Proposed addition of a four tier system to Winn’ s (2008) s tate and transition 
model to better account for faunal use of woodland areas at various stages of degradation. 



 
102 

5.7 Recommendations and future work 

While a robust STM that includes assessment of faunal responses to restoration activities 

would be desirable, logistically there are a lot of hurdles before that will be achieved. The 

parameters set up by Winn (2008), which list degraded and semi-degraded woodlands as not 

providing ‘wildlife protection’ woodland services was not found to be true for robins, as they 

readily use degraded areas for feeding resources. The proposed tier system outlined in this 

study will require further refining based on logistic constraints. 

 

The use of camera traps to monitor breeding success is not advised, based on logistical 

constraints associated with cost of the units, difficulty locating nests, inaccessibility of some 

nests to the placement of cameras and the potential increased nest predation rates due to 

camera placement. Observation of fledgling density towards the end of the breeding season 

is a far simpler way to measure breeding success. Foraging behaviour can be easily observed 

and can be done while performing bird surveys. 

 

Assessments of the invertebrate community for this study were focussed predominantly on 

invertebrates as a food resource; however, there is a notable gap in the literature 

surrounding the terrestrial invertebrate assembly on the island. This would be a valuable area 

for future work. The invertebrate community was found to differ significantly between 

heathland, and the various woodland states. Further enquiry into whether differences in the 

invertebrate community can be detected between more of the stable states outlined in 

Winn’s (2008) model was not assessed, but would be valuable information. 

 
 

Special focus should be given to the distribution of Coleoptera on the island, as they are an 

important component of the woodland ecosystem, and appear to be absent from heathland 

sites, and while arboreal Coleoptera appear to readily recolonise restored areas, ground 

dwelling Coleoptera appear to be slower to return. 

 

Given the apparent limitations of surrogate species models, a straight-forward STM that 

adequately incorporates all woodland dependant animal taxa through detailed study of a 

few key species appears to be unfeasible; especially given the limitations of 

presence/absence data being used to assess habitat quality, and the complexity of 

accounting for novelty within restored habitats. Behavioural studies on the other hand, 

have the capacity to provide valuable insight into the mechanisms behind specific 

interactions. Behavioural studies do however require a high level of understanding of the 
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animal’s Umwelt (Van Dyck, 2012), and potentially labour intensive investigation of how 

the animal interacts with its habitat. As such, detailed behavioural studies of species of 

interest, derived from life history data, observational data, and, if possible, experimental 

manipulative studies, coupled with abundance, presence/absence, and resource-focussed 

studies appear to be the most comprehensive way forward. For Rottnest Island, future 

work is recommended to identify how robins are selecting breeding habitat, as this study 

found that robins typically prefer remnant areas over restored areas for reproductive 

activities. 
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6. Appendix A: Bird Banding 
 

6.1 Introduction 

To ensure independence of observations, as well as track birds’ survival and success in 

reproducing, individuals were marked so they would be identifiable in-situ. This was done 

using coloured bands, which were attached to the legs of birds. As a bird banding project 

was already active on the Island prior to the commencement of this project, many of the 

birds on the Island were already fitted with Australian Bird and Bat Banding Scheme (ABBBS) 

bands. ABBBS bands make birds individually identifiable in the hand, as each ABBBS band is 

printed with a unique prefix/number, but are generally not suitable for identification in the 

field, as the numbers are too small to be reliably read through binoculars. As such, a colour 

marking permit was added to the banding project, which would permit the addition of a 

second band which contained a unique colour combination. 

 

Due to past issues with coloured plastic bands causing problems for very thin legged 

passerines, like the red-capped robin and the purple-crowned fairy wren, there was a 

moratorium on colour banding red-capped robins at the outset of this project. After 

discussion with the banding office and several different banding groups from around the 

world, the moratorium was lifted for this project, provided specific conditions were met. 

Those conditions were as follows; 1. Only one band per leg was to be fitted to the birds; 2. 

No plastic bands were to be used; and 3. The birds would be monitored for the next three 

years to assess whether the issues with plastic bands had been mitigated through the 

change in material. As such, I used split colour metal bands, each of which contained a 

unique combination of two out of nine available colours. One leg was fitted with an ABBBS 

band, while the other was fitted with the coloured band. No adverse effects of the bands 

were detected in any of the birds with the split coloured metal bands that have been 

regularly sited in the same areas consistently over the past three years. 

 

6.2 Trapping technique 

The trapping technique used in this study is derived from the trapping technique used by 

Major et al. (1999) in a study that looked at the differences in population density of red- 

capped robins in different shaped habitat remnants. The major change to the technique 

used is the reduction in spacing from 100 m intervals to 50 m, which is due to the reduced 
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total area that needed to be covered, and the observed high population density of robins on 

the Island. A grid, marked at 25 m intervals, was established in each of the woodland 

sites. Song play-back was conducted at alternate points on the grid such that a playback 

point was situated every 50 m. In narrow, linear sites, no grid was established: song playback 

was conducted from points at 50 m intervals along the mid-line of the strip (Major et al., 

1999). Up to four 15 second bursts of target species’ song, interrupted by 15 second 

listening periods, was played at each point from a hand-held MP3 player. The song played 

was a recording of the robin call from Rottnest Island recorded by F. Holmes. Playback was 

terminated at each point immediately upon detecting one of the target species in the area. 

If a bird responded to the playback, mist-nets were erected near the playback point. 

 

6.3 Data gathered while banding 

While banding the birds, a series of biometric information (Table 6.1) was collected from all 

birds caught. This data provided demographic and physiological information that was 

submitted to the ABBBS. 

 

Table 6.1. Biometric data collected from captured birds. All data collected using the 

techniques described in The Australian bird bander's manual (1989) 

Variable How measured 

General information  

species morphology 

age feather condition, plumage, soft parts 

gender plumage 

 
Morphological 

 

wing length wing ruler (1mm) 

Head-bill length callipers (0.01mm) 

fat score ordinal chart (1-8) based on (Kaiser, 1993) 

weight scales (0.1g) 

wing moult stage of moult in the primaries 
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7. Appendix B: Nest monitoring 
 

7.1 Introduction 

A component of this project that was cut from the final manuscript was a study on the 

breeding success of robins using motion sensitive cameras set-up at robin nests. The section 

was omitted from the study due to logistical issues associated with locating nests, the 

majority of located nests being situated in places where a camera couldn’t readily be fitted, 

and a lack of confidence in the data gathered from monitored nests. Below is a rationale for 

why nest monitoring was to be included, followed by an account of the issues encountered, 

and the results that were generated. 

 

7.2 Nest monitoring study 

Australian passerines are generally characterized as having smaller clutches, longer breeding 

seasons, more broods and extended parental care, when compared with Northern 

Hemisphere passerines (Woinarski & Bulman, 1985; Rowley & Russell, 1991). These 

adaptations have been attributed to seasonal climatic conditions, year-round food 

availability, higher rates of nest predation and reduced adult mortality (Robinson & 

Rotenberry, 1991; Martin et al., 2000). Studies on nestling survival rates demonstrate 

considerable variation, between very similar species (Dowling, 2003). An example of this is a 

study on scarlet robins Petroica boodang which found that only 8% of eggs laid produced 

fledglings (Robinson & Rotenberry, 1991), whereas another study on a similar species the 

grey-headed robin Heteromyias albispecutlaris reports 39% of eggs produced fledglings 

(Frith & Frith, 2000). Breeding success of a single species has also been shown to vary 

substantially both temporally and spatially (Powell & Frasch, 2000; Armstrong et al., 2000). 

Currently, there is very little information available relating to how behaviour changes 

temporally or spatially and how behaviour relates to breeding success. 

 
Having a good understanding of the breeding ecology and behaviour of a population is 

essential to evolutionary biologists and conservation managers (Dowling, 2003). Breeding 

ecology can provide insight into selection pressures and help in the development of realistic 

and effective modeling of risk assessments and population viability analyses. By studying 

how birds behave during the breeding period, and monitoring their success rate, I attempted 

to identify characteristic behaviours associated with breeding success. 
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Through assessment of the survivorship and number of successful broods produced by each 

mating pair of birds, I hoped to identify behaviours linked with successful reproduction. 

Additionally, as this project’s primary goal was to explore methods for assessing habitat 

quality for fauna, successful recruitment rates would have been used as the baseline 

measure of an areas’ value for conserving that species. 

 

7.3 Hypotheses: 

1. Parents in remnant patches will return to the nests more frequently than those in 

restored patches. 

2. Nest predation rate will be higher in restored areas than remnants 

3. Recruitment rates will consequently be higher in remnant sites than restored sites. 
 
 

7.4 Field methods and design 

Using the birds located for chapter 4, females were followed continuously for up to 20 

minute intervals, by between one and four experienced bird watchers, to determine 

whether they have begun nesting (Dowling, 2003). Once a nest was located, a camera was to 

be set up in such a way that each time a bird returned to the nest a photo would be taken. 

 
Unfortunately, locating nests proved to be more challenging than originally anticipated, and 

despite considerable efforts over a total of 16 full days of searching, only seven nests were 

located. Additionally, of the seven nests located, six were within 10 m of a road, and five of 

the seven were in restored areas. Given the small sample size, the skew towards areas 

where nests are likely to be more readily detectable, and the degree to which this conflicts 

with observed distributions of juvenile robins (majority having been detected in remnants), 

it was decided that this dataset was unlikely to be representative of nesting and breeding 

activities. 

 

An additional complication was the placement of cameras at nests. Many of the nests were 

in areas where no camera could be fitted, either due to the camera’s physical size being too 

large and heavy to be adequately supported by the surrounding vegetation, or because the 

nest was situated in such a place that the addition of a camera would likely draw the 

attention of nearby nesting ravens who are a known nest predator of the robins. As such 

only two cameras were fitted above nests, and the remaining five nests were monitored 

through routine checks every three to five days until the birds fledged or the nest failed. 
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7.5 Data analysis 

Nesting attempts were defined as any nest that was built, regardless of whether eggs were 

eventually laid (Dowling, 2003). Total nesting success was to be calculated using all nests 

that were found to be active, regardless of whether they were found during nest-building or 

incubation. Parametric tests were to be used to analyse the data after the dependant 

variables were tested for normality (Dowling, 2003). All tests were to be two-tailed, with a 

significance criterion of P < 0.05. I intended to test whether the frequency with which the 

parents returned to the nest was correlated with food availability, as well as with the 

nestling survival rate. Additionally, if nest helpers were present then I would have 

incorporated them into the analysis to see if they had any effect on survival rate. 

 
To test the effects male and female parents had on the survival of nestling birds, I intended 

to conduct a two-factor MANOVA with parent gender and frequency with which the birds 

returned to the nest as the factor independent variables, and successful fledging as the 

independent variable (Dowling, 2003). I also intended to compare the frequency with which 

birds returned to the nest in restored and remnant patches as the two factors in a t-test. 

 
As a suitable dataset could not be collected in the available time, none of these analyses 

were conducted as the results would likely be misleading if used to predict community 

level patterns. 

 
 

7.6 Qualitative results of monitored nests. 

While only two nests were fitted with cameras during this study, the resulting images were 

somewhat noteworthy. The other five nests resulted in just two successfully fledged birds 

from a single nest, all others were either abandoned or predated. 

 

The first nest that was monitored by a camera was attended to by two birds, both of which 

were colour banded. The female was observed sitting on eggs (two), and once the birds had 

hatched, she fed the birds until they fledged. The male was seen feeding the female while 

she was sitting on the eggs, and fed the chicks from the monitored nest. Interestingly, while 
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setting up the camera, the male was observed feeding recently fledged birds, possibly 

indicating that this was not their first brood of the season. 

 
The second nest was maintained by two birds, one of which was colour banded, and the 

other carried an abnormality on his foot making him individually identifiable. These birds 

have been residents in that location since 2014 and were last seen in late 2017 in the exact 

same tree. The camera was set at the nest during construction while there were no eggs. 

The nest was visited by a raven just two hours after the camera had been placed, but the 

nest wasn’t damaged. The following morning, however, a raven is observed taking eggs and 

destroying the nest. It is unclear whether it was the same raven. 

 

Both nests were within 10 m of the road in restored areas. The predated nest was located 

near a raven nest, and subsequent breeding attempts by that pair of robins were observed 

without the use of cameras, as it was considered likely to increase their risk of nest 

predation. 
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8. Appendix C – Behavioural 

assessments 

The following is a list of monitored behaviours and definitions used to classify observed 

actions. It should be noted that many of these behaviours are potentially subjective without 

adequate clarity on behavioural definitions and so caution should be taken when comparing 

this type of data with other studies. As such, I have defined the behaviours included in this 

study in the following table. Additionally, observer bias may influence the results, reducing 

the reliability of this type of data in meta-analyses. For this study, to minimise influence of 

observer bias, all behavioural data was collected by F. Holmes. 

 

1. Perching (the bird is sitting, possibly scanning the area but is relatively 

stationary) 

2. Flying (horizontal flight from one perch to another) 

3. Preening 

4. Calling 

a. No audible or visual response from other birds (announcing presence) 

b. Audible or visual response from another bird of the same gender 

(aggression) 

c. Audible or visual response from another bird of the opposite gender 

(courting) 

5. Other territorial/courting displays 

a. Fighting/chasing a member of the same species, same gender 

b. Courting a member of the same species, opposite gender 

c. Nest building 

d. Brooding 

e. Feeding mate/juvenile 

6. Foraging technique used, as described by Holmes and Recher (1986). 

a. Probe or prise: a bird inserts its beak part-way into a substrate to 

remove a food item. Prising involves lifting up or flaking off parts of a 

substrate. 

b. Pounce: a bird uses a deliberate jump (often to a surface above the bird 

or the ground) or short run to capture food. 
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c. Glean: a standing or hopping bird pecks at food on a nearby substrate. 

This includes reaching where a bird stretches up, down or away from its 

perch. 

d. Hang-glean: a bird hangs upside-down in a stationary posture while 

taking prey from a substrate. 

e. Hover: A flying bird hovers in the air for a brief period while picking a 

food item from a substrate. 

f. Snatch: a bird makes a short flight or jump to capture prey from a 

nearby substrate. It does not land and usually returns to a different 

perch. 

g. Hawk: a bird takes flight to capture a flying insect in mid-air. 

h. Nectar: a bird probes a blossom to take nectar. 

i. Seeds: birds take seeds from seed heads or capsules. 

 

The sampling procedures used for this study were derived from the Donald et al. (2007) study on 

differences in the feeding ecology of male and female Raso Larks Alauda razae in Cape Verde. The 

sampling procedure was originally trialled on red-capped robins and golden whistlers, but it was 

determined that the sampling procedure was too short a period to collect meaningful data on the 

whistlers. Many of these trial surveys captured 5 minutes of the whistler sitting and calling, with no 

other behaviours observed. It is likely that with a longer time interval, it would be possible to capture 

a wider range of behaviours. Given that the data collection procedures were already highly labour 

intensive, and other bird species that were thought to be potential candidates for this study (singing 

honeyeaters and western gerygones) were difficult to observe and follow for extended periods of 

time, it was decided that it would be better to narrow the focus to just the red-capped robins. 
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