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SKYRMION STATES IN CHIRAL LIQUID CRYSTALS

G. De Matteis,∗ L. Martina,†‡ and V. Turco†‡

We analyze static configurations for chiral liquid crystals in the framework of the Oseen–Frank theory. In

particular, we find numerical solutions for localized axisymmetric states in confined chiral liquid crystals

with weak homeotropic anchoring at the boundaries. These solutions describe the distortions of two-

dimensional skyrmions, known as either spherulites or cholesteric bubbles, which have been observed

experimentally in these systems. We outline relations to nonlinear integrable equations and use the

relations to study the asymptotic behavior of the solutions. Using analytic methods, we build approximate

solutions of the equilibrium equations and analyze the generation and stabilization of these states in

relation to the material parameters, external fields, and anchoring boundary conditions.
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1. Introduction

Various two-dimensional structures, cholesteric fingers, and three-dimensional structures, cholesteric

bubbles or spherulites [1], have recently been observed in thin layers of chiral liquid crystals (CLCs) with
homeotropic anchoring on the confining surfaces. In particular, a phase transition between the two textures,
strongly depending on the thickness of the confining cell, was detected in [2]. It was shown that the texture
changes are driven by temperature through a parameter ζ proportional to the thickness and to a proper
chirality parameter. Samples of different thickness displayed the textural changes at different temperatures
but the same value of ζ. Pictures of the two phases obtained by polarized optical microscopy are shown in
Fig. 1.

In chiral systems of this kind, these isolated axisymmetric states are stabilized by specific interactions
imposed by the underlying molecular handedness [3]. In the framework of the Oseen–Frank theory, we
derive the equilibrium equations for these states and study them with numerical and analytic methods.

Free states of cholesteric liquid crystals can be driven from equilibrium by applying external fields
and by imposing anchoring boundary conditions [4], [5]. Experiencing both effects simultaneously, they
form new structures, such as cholesteric fingers [6], [7] or helicoids with defects of the disclination type
and skyrmions [8], [9], which are stabilized by topological and nontopological conservation laws and can be
described in terms of integrable nonlinear equations, at least in some approximate setting [10], [11].
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Fig. 1. Pictures of the two textures observed in chiral nematics obtained by polarized light mi-

croscopy [2].

This paper is organized as follows. In Sec. 2, after recalling the foundations of the static continuum
theory for CLCs, we find and describe the skyrmion equilibrium configurations called cholesteric bubbles,
mentioned above. In detail, we describe the mechanisms of their generation and stabilization, for which the
anchoring boundary conditions play a crucial role. Finally, in Sec. 3, we summarize the obtained results
and suggest a possible way to tackle the problem of finding analytic expressions for helicoidal equilibrium
configurations in the presence of an external electric field and possible further developments of the presented
analysis.

2. Skyrmions in chiral liquid crystals

We consider a static cholesteric liquid crystal confined in the region

B =
{

(x, y, z) ∈ R
3 : |z| ≤ L

2

}
.

The system is described by a unimodular director field n(r) belonging to RP
2 (i.e., the sign of n is imma-

terial) [12], [13], which has the expression in polar representation

n(r) = (sin θ(r) cos ψ(r), sin θ(r) sin ψ(r), cos θ(r)). (2.1)

In the bulk, the liquid crystal director field n(r) is governed by the Oseen–Frank free energy EFO

EFO =
∫
B

d3xωFO[n(x)], (2.2)

where

ωFO =
K1

2
(∇ · n)2 +

K2

2
(n · ∇ × n− q0)2 +

K3

2
(n ×∇× n)2 +

+
K2 + K4

2
∇ · [(n · ∇)n − (∇ · n)n] − ε

2
(n ·E)2. (2.3)

Here, q0 is the chirality parameter of the cholesteric phase, and the positive real numbers K1, K2, K3, and
K4 are the Frank elastic constants. The last term in right-hand side of (2.3) represents the interaction
energy density associated with an external spatially uniform static electric field E along the k direction. Of
course, in the presence of the external electric field, the general rotational symmetry is broken and reduced
to rotations around the direction of E. In the absence of anchoring conditions, the field n(r) would form
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a cholesteric helix with its axis orthogonal to E, but because of the bounding surfaces in the k direction,
the translational symmetry in the direction of B is broken, and helices are hence deformed and confined
within B. Extended structures called helicoids, helicons (sometimes also called fingers), and spherulites
(skyrmions) can also possibly form, depending on the existence of a preferred direction of perturbations of
n in the directions orthogonal to k.

To calculate the structure and energy of such perturbations, we must minimize the Frank free energy
under the appropriate boundary conditions. We also consider the simplifying one-constant approximation,
i.e., we set

K = K1 = K2 = K3, K4 = 0. (2.4)

Expression (2.2) can then be written as

EFO =
∫

d3x
K

2

(
|∇n|2 − 2q0n · ∇ × n− ε

K
(n ·E)2

)
, (2.5)

where we use the well-known identity

(∇ · n)2 + (n · ∇ × n)2 + (n ×∇× n)2 + ∇ · [(n · ∇)n − (∇ · n)n] = |∇n|2.

Regarding the boundary conditions, we assume that there is a homeotropic anchoring. Such conditions can
be encoded in a variational formulation if we consider the additional surface energy contribution

ωs =
1
2
Ks(1 + α(n · ν)2), (2.6)

where Ks > 0, α > 0, and ν is the unit outward normal to the boundary surface. Hence, the energy becomes
EFO =

∫
d3x (ωFO + ωs). Such an additional term was first proposed by Rapini and Papoular in [14]. If

Ks → ∞, then we can speak of strong homeotropic anchoring, which means that the surface effects are
taken into account in the form of Dirichlet boundary conditions

n(x, y, z)|z=±L/2 = k (2.7)

without any surface-related contribution in expression (2.5) for the energy.
In what follows, we describe the mechanisms that yield skyrmionic and helicoidal perturbations when

the liquid crystals are frustrated by the above geometric conditions of confinement.
We consider the director n in the form of Eq. (2.1). With this expression substituted in (2.5), the Oseen–

Frank free-energy density functional depends on the two scalar fields θ(x) and ψ(x) and their derivatives.
We limit ourself to axisymmetric isolated solutions and hence assume that θ = θ(ρ, z) and ψ = ψ(φ),

where ρ, z, and φ are the usual cylindrical coordinates around the axis k. Expression (2.5) hence becomes

EFO =
K

2

∫ 2π

0

dφ

∫ L/2

−L/2

dz

∫ ∞

0

ρ dρ

[(
∂θ

∂z

)2

+
(

∂θ

∂ρ

)2

+
sin2 θ

ρ2

(
∂ψ

∂φ

)2

+

+
εE2

K
sin2 θ + 2q0

[(
∂θ

∂ρ

)
+

sin θ cos θ

ρ

(
∂ψ

∂φ

)]
sin(ψ − φ) + ωs(θ)

]
, (2.8)

where

ωs(θ) =
Ks

K
sin2 θδ

(
z ± L

2

)
(2.9)

is the Rapini–Papoular energy contribution in the new coordinate system.
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The Euler–Lagrange equation associated with (2.8) for ψ is

2
sin2 θ

ρ2
ψφφ − 2q0

[
θρ +

1
2

sin 2θ

ρ

]
cos(ψ − φ) = 0. (2.10)

The solution of this equation minimizing energy (2.8) is ψ(φ) = φ + π/2, φ ∈ [0, 2π]. Substituting this
equation in (2.8) yields the Euler–Lagrange equation for the field θ(ρ, z) [1]:

∂2θ

∂z2
+

∂2θ

∂ρ2
+

1
ρ

∂θ

∂ρ
− 1

ρ2
sin θ cos θ − 2q0

ρ
sin2 θ − εE2

K
sin θ cos θ = 0. (2.11)

Because we seek finite energy solutions for θ ∈ [0, π], we impose the radial boundary conditions θ(∞, z) = 0
and θ(0, z) = π. The alternative boundary conditions θ(∞, z) = π and θ(0, z) = 0 can be chosen in
correspondence with the transformation q0 → −q0 in (2.8). Indeed, the sign of q0 determines the handedness
of the configuration θ minimizing energy (2.8). We directly obtain the boundary conditions at the planar
confining surfaces from ωs as

θz

(
ρ,±L

2

)
= ∓ Ks

2K
sin 2θ

(
ρ,±L

2

)
. (2.12)

We note that these conditions involve both θ and its derivative with respect to z.
It is convenient to rescale the equation and the boundary conditions with respect to the quantity

p = 2π/|q0|, and we thus obtain the adimensional boundary value problem

∂2θ

∂z2
+

∂2θ

∂ρ2
+

1
ρ

∂θ

∂ρ
− 1

ρ2
sin θ cos θ ∓ 4π

ρ
sin2 θ − π4

(
E

E0

)2

sin θ cos θ = 0, (2.13)

θ(0, z) = π, θ(∞, z) = 0,

∂zθ

(
ρ,±ν

2

)
= ∓2πks sin θ

(
ρ,±ν

2

)
cos θ

(
ρ,±ν

2

)
,

(2.14)

where E0 = (π|q0|/2)
√

K/ε is the critical unwinding field for the cholesteric–nematic transition in noncon-
fined CLCs [15], ν = L/p, and ks = Ks/Kq0. The sign ± in Eq. (2.13) depends on the sign of q0. In what
follows, we assume that q0 < 0 with no loss of generality.

2.1. Analytic analysis of skyrmion solutions. First, we consider the radial reduction of (2.13),
i.e., θz = 0:

∂2θ

∂ρ2
+

1
ρ

∂θ

∂ρ
− 1

ρ2
sin θ cos θ ∓ 4π

ρ
sin2 θ − π4

(
E

E0

)
2

sin θ cos θ = 0 (2.15)

with the boundary conditions θ(0) = π, θ(∞) = 0. Equation (2.15) cannot be solved analytically, but
we can obtain approximate analytic solutions. We note that if both q0 → 0 and E → 0 in Eq. (2.15),
then it reduces to the Euler–Lagrange equation of the conformally invariant O(3)-sigma model in the polar
representation [16], i.e.,

∂2θ

∂ρ2
+

1
ρ

∂θ

∂ρ
− 1

ρ2
sin θ cos θ = 0. (2.16)

Solutions of this model are well known since the work of Belavin and Polyakov [17]. They are

θ = arccos
ρ̃2 − 4
ρ̃2 + 4

, ρ̃ =
ρ

ρ0
, (2.17)

where ρ0 is an arbitrary scale factor due to the conformal invariance.
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The fourth and the fifth term in (2.15) break the conformal symmetry and thus stabilize skyrmion
solutions by lowering their energy and setting the scale factor ρ0. The two symmetry-breaking terms in fact
respectively modify the Belavin–Polyakov vortex solution around ρ = 0 and the behavior around ρ → ∞.
More specifically, the external electric field affects the shape of skyrmion solutions as ρ → ∞ because
Eq. (2.15) in this limit reduces asymptotically to

θρρ − π4

(
E

E0

)2

sin θ cos θ = 0. (2.18)

The resulting asymptotic behavior is

θ(ρ) � e−ρ/ρ1 as ρ � ∞, where ρ1 =
1
π2

E0

E
, (2.19)

which shows that θ exponentially decays to zero in this limit.
To explore the behavior of the solution in a larger neighborhood of ρ → ∞ and also θ around zero, we

can turn to the linear approximation of Eq. (2.15), which at the first order in θ leads to the modified Bessel
equation [18]

ρ2 ∂2θ

∂ρ2
+ ρ

∂θ

∂ρ
−

(
1 + π4

(
E

E0

)2

ρ2

)
θ = 0. (2.20)

Its general solution is

θ(ρ) = c1I1

(
ρ

ρ1

)
+ c2K1

(
ρ

ρ1

)
, (2.21)

where I1 and K1 are known as the first-order modified Bessel functions of the respective first and second
kinds with arbitrary constants c1 and c2 depending on the boundary conditions.

The function K1 has the correct asymptotic behavior as ρ → ∞, but it diverges at the origin. On the
other hand, I1(ρ/ρ1) → 0 as ρ → 0, but I1(ρ/ρ1) → +∞ as ρ → +∞, and the function I1 therefore cannot
approximate the solution we seek.

It is now clear that (2.21) cannot be an approximate solution of (2.15) for all ρ except ρ → ∞ where [18]
(see Eq. 8.456)

θ � c2

√
ρ1

ρ
e−ρ/ρ1 . (2.22)

If we now regard the interaction with the external electric field with respect to the chiral term as dominant,
then we obtain a new nonlinear asymptotic approximation from Eq. (2.15),

∂2θ

∂ρ2
+

1
ρ

∂θ

∂ρ
− 1

2ρ2
1

sin 2θ = 0, (2.23)

which is known as the cylindrical sine-Gordon equation [19]. The most relevant fact about it is the connec-
tion with the celebrated Painlevé equations [20], [21]. In particular, the cylindrical sine-Gordon equation
was first related to the Painlevé III equation in [22] by applying the transformation

θ(ρ) = −i log
q(t)√

t
, t =

(
ρ

ρ1

)
2

. (2.24)

This resulted in the equation

q′′ =
q′2

q
− q′

t
+

q3

16t2
− 1

16q
, (2.25)
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which is a particular case of the general Painlevé III equation

q′′ =
q′2

q
− q′

t
+

q2(a + cq)
4t2

+
b

4t
+

d

4q
, (2.26)

where a, b, c, and d are arbitrary complex constants. Equation (2.26) was first integrated in [23], and the
asymptotic forms of the solutions of this equation were analyzed in [24]. Equation (2.26) has the general
solution parameterized by two complex Cauchy data, for example, α and β, such that θ(ρ|α, β) has the
asymptotic behavior

θ(ρ) � α log
ρ

ρ1
+ i

π

2
α + β + O

(
ρ

ρ1

)2−| Im α|
(| Im α| < 2) (2.27)

as ρ → 0 and

θ(ρ) �
[
b+eρ/ρ1

(
ρ

ρ1

)−1/2+iω

+ b−e−ρ/ρ1

(
ρ

ρ1

)−1/2−iω
]
×

×
(

O

(
ρ1

ρ

)
+ 1

)
+ O

((
ρ

ρ1

)3| Im ω|−3/2)
(2.28)

as ρ → ∞, where the constants b± and ω are related to the Cauchy data by the connection formulas

determined in [25] e−πω sin(2πσ) = sin(2πη) and

b+ =
−22iωe−πω

√
π

Γ(1 − iω)
sin(2π(η + σ))

sin(2πη)
, b− = i

2−2iω

√
π

Γ(1 + iω)
sin(2π(η − σ))

sin(2πη)
, (2.29)

where

σ =
1
4

+
i

8
α, η =

1
4

+
1
4π

(β + α log 8) +
i

2π
log

Γ(1/2 − iα/4)
Γ(1/2 + iα/4)

. (2.30)

These constants satisfy the relations

b−b+ = −4iω, | Imω| <
1
2
. (2.31)

Using the exponential decay of θ as ρ → ∞ obtained in the linear approximation, we find that we must
set b+ = 0. Then ω = 0 because of (2.31). Taking the other relations into account, we obtain the relation

η = −σ +
1
2

+ k, k ∈ Z. (2.32)

This leads to setting b− = −2i
√

1/π cos(2πσ) and thus establishes a relation between α and β,

β = −
(

iπ

2
+ log 8

)
α − 2i log

Γ(1/2 − iα/4)
Γ(1/2 + iα/4)

+ 4kπ. (2.33)

We should clarify that because of Eqs. (2.22), (2.29), (2.30), (2.32), and (2.33), we can obtain the value
of α,

α = − 4
π

arcsinh
(√

π

2
c2

)
∈ R

−, (2.34)

and the function θ as in (2.27) takes its value in R. The irregular behavior, i.e., the logarithmic divergence
as ρ → 0, is a consequence of the approximation that we use to obtain Eq. (2.23) neglecting the chiral term.
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Because we fail to find regular approximate solutions using standard methods, we focus on the scaling-
variational ansatz in [1], [26]. Using the results obtained above, we examine this ansatz and use it to build
an approximate solution of (2.13). We then study the competitive influence of the homeotropic anchoring
and the external electric field on the surface.

We consider Eq. (2.15), whose solution θ(ρ) decays exponentially at large distances and behaves ap-
proximately linearly at small distances. As previously noted, the behavior around ρ ≈ 0 is sufficiently well
described by the Belavin–Polyakov solution in the form of a unit vortex. Substituting solution (2.17) in
Eq. (2.15), we obtain the condition

− π3

(
E

E0

)
2

(ρ2 − 4ρ2
0) ∓ 16ρ0 = 0. (2.35)

Around ρ = 0, it leads to an estimate of ρ0,

ρ0 =
4
π3

(
E0

E

)2

= 4πρ2
1, (2.36)

which can be interpreted as the typical scale of a spherulite. In this case in the vicinity of ρ = 0, the
solution of (2.15) is approximated by the Belavin–Polyakov vortex solution with ρ0 fixed by (2.36), which
at the first order in ρ becomes

θ(ρ) = π − ρ

ρ0
+ O

(
ρ

ρ0

)3

. (2.37)

For sufficiently large electric fields, i.e., E/E0 > 1, around ρ = 0 and ρ → ∞, the linear approximations
match the numerical solution quite closely, as shown in Fig. 2. On the other hand, the approximations
become very rough for relatively weak fields, i.e., E/E0 ≈ 1, as shown in Fig. 3. For the numerical cases
considered here, this behavior indicates that the chiral term is underestimated in the linear approximation,
in particular in the intermediate scales ρ1 ≤ ρ ≤ ρ0. Moreover, using nonlinear approximation (2.23) does
not seem very helpful (at least for large electric fields). In fact, the logarithm in (2.27) pushes the region
in which θ takes values near π closer to zero than Bessel K1-type solution (2.21) does.

Seeking the z dependence of the spherulites, for our analysis, we adapt the method suggested in [1],
assuming that the more relevant contribution to the free energy in Eq. (2.13) comes from a neighborhood
of ρ = 0. In [26], it was supposed that a solution θ(ρ, z) of (2.13) is weakly modulated by a z-scaled
dependence on ρ of the form

θ(ρ, z) = π − θ̃

(
ρ

Z(z)

)
(2.38)

for a suitable θ̃. In accordance with (2.37), linear approximation (2.38) must be

θ(ρ, z) =

⎧⎪⎨
⎪⎩

π − ρ

ρ0Z(z)
, 0 <

ρ

Z(z)
< πρ0,

0,
ρ

Z(z)
> πρ0,

(2.39)

where ρ0 is given by (2.36).
Using Eq. (2.38), we can rewrite free energy (2.5) in units of K as

E = I0

∫ ν/2

−ν/2

dz

[(
dZ

dz

)
2

+ Aπ4

(
E

E0

)
2

Z2 − B · 4πZ + A · ksZ
2δ

(
z ± L

2
)
]
, (2.40)
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Numerical solution

Fig. 2. Comparison of the numerical solution of (2.15) and the analytic linear approximations for

E/E0 = 1.5.

Fig. 3. Comparison of the numerical solution of (2.15) and the analytic linear approximations for

E/E0 = 1.02.

where
A =

I1

I0
, B =

I2

I0
,

I0 =
∫ ∞

0

(
dθ

dρ

)
2

ρ3dρ, I1 =
∫ ∞

0

sin2 θρ dρ, I2 =
∫ ∞

0

(
dθ

dρ
+

sin θ cos θ

ρ

)
ρ dρ,

and we take the conformal invariance of (∇θ)2 into account.
If we take expression (2.39) into account, then we can compute the integrals I1, I2, and I3 explicitly
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Fig. 4. Contour plot of solution (2.39) with a constant external electric field and cell thickness: the

chosen parameters are E/E0 = 1.02, ν = 1.8, and (a) ks = 0, (b) ks = 1.5, (c) ks = 5.

in the interval [0, πρ0Z(z)], which yields the expression

E =
π4

4
ρ2
1(Z

′(z))2 +
π2

4
(Z(z))2 − π2

2
Z(z). (2.41)

From this expression, we can derive the Euler–Lagrange equation for the unknown Z,

Z ′′(z) − 1
π2ρ2

1

Z(z) +
1

π2ρ2
1

= 0. (2.42)

It has the general solution

Z(z) = q1e
−z/(πρ1) + q2e

z/(πρ1) + 1, qi ∈ R. (2.43)

Imposing boundary conditions (2.12), we obtain the approximate scaling factor

Z(z) = 1 −
2πks cosh z

πρ1

2πks cosh ν
2πρ1

+ 1
πρ1

sinh ν
2πρ1

. (2.44)

We note that the vortex size decreases as |z| and ks increase, as can be seen in Fig. 4.
The possibility to obtain an analytic solution, even approximate, allows studying the behavior of the

skyrmion state energy. In fact, considering total energy (2.5) and substituting expressions (2.39) and (2.44)
for θ(ρ, z), we obtain the estimate

Ec(E, ν, ks) = π

(
− Ci(2π)ν +

32π9ρ3
1k

2
s sinh ρ1ν

π(
2ks cosh ρ1ν

2π + 1
π2ρ1

sinh ρ1ν
2π

)2
−

− 128π9ρ3
1ks

2ks coth ρ1ν
2π + 1

π2ρ1

+ 24π6ρ2
1ν + π2ν + γν + ν log(2π)

)
, (2.45)

where Ci is the cosine integral function and γ is Euler’s constant.
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a b

Fig. 5. Profiles of θ(ρ) for E/E0 = 1.02: different curves correspond to different values of |z| from

|z| = 0 to |z| = ν/2 (from right to left).

a b

Fig. 6. The same as in Fig. 5 but for E/E0 = 1.5: we note that the effect of a stronger external

electric field is to reduce the vortex size for fixed values of ks.

With a similar procedure, for solution (2.37) in the bulk, we obtain the expression for the energy

Eb(E, ν) = πν
(
−Ci(2π) + 24π6ρ2

1 + π2 + γ + log(2π)
)
. (2.46)

Clearly, with a fixed E/E0 and ν, we have Ec < Eb. In particular, as ks increases, the gap between the
two energies increases, while it tends to decrease as E/E0 increases, which shows the tendency to establish
a uniform ordering in the liquid crystal for high values of the electric field in opposition to the chiral and
anchoring effects.

2.2. Numerical analysis of skyrmion solutions. Boundary value problem (2.13) can be solved
numerically by using the standard central finite-difference discretization and the Newton–Raphson method.
The problem can be coded in almost any programming language [27], [28], but we used MATLAB1 because it
easily operates with large and sparse matrices.

To find a suitable initial guess for the iterative method, we use a shooting method for the planar
reduction of Eq. (2.11) (i.e., θz = 0) and extend the resulting planar profile over the whole cell.

The numerical solutions of boundary value problem (2.13) for different values of the pair (E/E0, ks) are
shown in Figs. 5 and 6. In each figure, the profiles θ(ρ) and shown for different values of z ∈ [−ν/2, ν/2]. In
Fig. 5, we have E/E0 = 1.02 and the anchoring strength ks = 0.1, ks = 0.16. In Fig. 6, we have E/E0 = 1.5
with the same values for ks. We note that if the anchoring strength is weak, then the profiles are almost

1MATLAB is a registered trademark of MathWorks, Inc., http://www.mathworks.com.
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a

b

Fig. 7. Size of the planar vortices for different values of |z| with the parameter ks =

0.1, 0.5, 1, 1.5, 3, 6, 12 for (a) E/E0 = 1.02 and (b) E/E0 = 1.50: as noted above, a quasicylindri-

cal symmetry holds for solutions independently of the anchoring strength ks, but the structures tend

to the bubble form as ks increases.

equal for any value of the coordinate z. This means that if the interfaces at the cell boundaries have a very
small homeotropic effect on the director configuration, then a quasiperfect cylindrical symmetry holds for
axisymmetric solutions. In this case, the planar vortices described by θ(ρ)have the same (maximum) size
for every value of z. But if we impose a quite strong homeotropic effect at the boundaries, then the vortices
tend to have a reduced size, which becomes smaller as |z| reaches the value ν/2. In both Figs. 5 and 6, the
value of the dimensionless thickness of the cell is ν = 1.8.

Leonov et al. proposed a method for estimating the size of solutions of boundary value problem (2.13),
similarly to what had been done for the size of ferromagnetic domain walls [1], [29]. Such a procedure
consists in tracing the tangent at the inflection point ρI(z) of θ(ρ, z), i.e., where θρρ(ρI, z) = 0 (numerically
computed) for a fixed z. The point R(z) where that tangent intersects the ρ axis gives the estimate

R(z) = ρI(z) − θ(ρI, z) θρ(ρI, z)−1.

The results of this procedure are shown in Fig. 7 for two different values of E/E0 considered. We stress
that all vortices shrink for stronger external fields.

1160



3. Conclusions

We have described isolated axisymmetric skyrmion states arising in confined CLCs. We showed how
the interplay between chirality, external fields, and homeotropic anchoring is responsible of their generation
and stabilization. The equilibrium equations for these states depend on the three material parameters
E/E0, ks, and ν in the adimensional representation of the model introduced above.

We studied the linear approximation of Eq. (2.13) analytically. An interesting feature of such an
equation is the connection, even in an approximate setting for strong electric fields, with the Painlevé III
equation examined in Sec. 2. Moreover, we showed that both linear and nonlinear (in the previous sense)
approximations do not take the chiral effect into account, which dominates at intermediate distances for
any values of the electric field, at least below a critical value leading to the uniform distribution of the order
parameter. Therefore, how to treat such a nonlinear interaction using analytic tools seems an interesting
challenge for future studies.

On the other hand, using standard numerical methods, we found solutions of the model and adapted
techniques from the study of magnetic domains to estimate their size and shape as functions of the material
parameters mentioned above.

Finally, we compared studies of the spherulites with studies of the extended solitonic configurations
in chiral nematics. In particular, an analysis of the helicoidal configurations arising in confined CLCs,
cholesteric fingers, can be performed to obtain the elliptic sine-Gordon equation on the strip [1] as an equi-
librium equation. Very detailed studies of the solutions of this equation are known in the literature [30], [31],
generally on the whole plane or with boundary conditions significantly simpler than the homeotropic an-
choring conditions, i.e., Eq. (2.7). Nevertheless, we stress that all nice solutions of the sine-Gordon equation
come from its integrability properties, studied in [32], [33], where the boundary conditions enter to a large
extent in defining the inverse spectral transform.

A possible reduction compatible with the above requirements is to seek solutions depending on sep-
arated x and z variables. This idea was already used several times [34]–[37] and can be implemented by
the assumption θ = 4 arctan[X(x)Z(z)]. Boundary conditions (2.7) yield line disclinations on the confining
planes, as analyzed in [10] in the absence of external fields. Therefore, functions X(x) and Z(z) should be
sought such that the first is monotonic and unbounded (with possible singularities at finite points) and the
second takes the value Z(±L/2) = const on the boundaries. On the other hand, more general solutions
on the semistrip with suitable integrable boundary conditions were constructed [38], often quite implicitly.
Hence, some additional work is needed to extract detailed physical information from them. The aspects
just described regarding the cholesteric fingers will be presented and discussed in a future paper.
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1. A. O. Leonov, I. E. Dragunov, U. K. Rößler, and A. N. Bogdanov, “Theory of skyrmion states in liquid crystals,”

Phys. Rev. E, 90, 042502 (2014).

2. C. Carboni, A. K. George, and A. Al-Lawati, “Observation of bubble domains at the cholesteric to homeotropic–

nematic transition in a confined chiral nematic liquid crystal,” Liquid Crystals, 31, 1109–1113 (2004).
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