
Characterizing and Predicting Scientific
Workloads for Heterogeneous Computing

Systems

Beau Johnston

February 2019

A thesis submitted for the degree of Doctor of Philosophy of The Australian National
University.

© Copyright by Beau Johnston 2019
All Rights Reserved

Declaration

The work in this thesis is my own except where otherwise stated.

Beau Johnston

Acknowledgements

Thank you to my supervisors Josh, Greg and Alistair. Josh, you’ve been an excellent friend and
mentor. I wouldn’t have a thesis if you weren’t so supportive or engaged in this work – it has
actually been a lot of fun working so closely and bouncing ideas off each other. Greg, you’ve
always supported me, technically and emotionally. I feel privileged that we’ve been able to
collaborate so closely despite being 750 kilometers apart. Alistair, thank you for bringing me
to the ANU and being so patient with this perpetual student, you have shaped me – for better
or worse – into thinking like a cynical scientist. You’ve taught me the basics and still somehow
found the time – and funding – for me.

You have all had to repeat yourselves far too frequently and still somehow maintained the
vigour to keep me on track – tempering my wild ideas and pushing me through the writing
up process. I wouldn’t have considered spending my life as a researcher or scientist if my
role-models had been any less kind or brilliant. Thank you so much!

Thank you to my loving family – Sue, Paul, Eddie, Betty and Ron – I’ve been incredibly lucky
to come from such a supportive environment, there is no way I would have had the confidence
to even enrol in university much less stick through a PhD program.

My long-time suffering partner Flo. . . sorry! You have been on the front-lines of work
complaints, frustrations and my sheer single mindedness to get this bloody thing finished
for far too long. I can’t imagine how you still have the determination to start your own PhD
shortly – I’m very proud of you. Also, sorry about coming home at 5am with no teeth – and
the PhD-esq Stockholm syndrome that caused it.

I would also like to thank all my office buddies over the years – Brian, Edwin, Jess, Shayanti,
Gaurav, Anish, Luke, Kunshan and Guyver – without the support and communal suffering
you all provided I would have abandoned my PhD a long time ago. At various stages, you
have all fed me, helped me de-stress by running me round a badminton court, listened to my
ample complaints and discuss my – from your perspectives what must be especially boring
– ideas. You have all been amazingly supportive friends and family and I love you all very
much.

Thank you to my colleagues at The University of Bristol’s High Performance Computing
Research group for the use of The Zoo Research cluster which was used for the experimental
evaluation, it was critical to generating the runtime results.

Finally, I would also like to thank Oracle and the ANU VC Travel Grants Office for providing
additional funding, this was invaluable for conference attendance.

Abstract

The next-generation of supercomputers will feature a diverse mix of accelerator devices.
The increase in heterogeneity is explained by the nature of supercomputing workloads –
certain devices offer acceleration, or a shorter time to completion, for particular application
programs. Certain characteristics of these programs are fixed and impose fundamental
limitations on the workloads regardless of which accelerator is used for the computation;
for instance, a graph traversal program always exhibits the same high-branch and low-
computation properties regardless of what device is used to execute it. To support efficient
scheduling on High Performance Computing (HPC) systems it is necessary to make accurate
performance predictions for workloads on varied compute devices, which is challenging due
to diverse computation, communication and memory access characteristics which result in
varying performance between devices. On HPC systems a single node may feature a Graphics
Processing Unit (GPU), a Central Processing Unit (CPU), and a Field-Programmable Gate
Array (FPGA) or Many Integrated Core (MIC) device. This work presents a device independent
predictor – a methodology to use device-independent characteristics of scientific codes to
select the optimal accelerator device with regard to execution time or energy expenditure.

Open Compute Language (OpenCL) is a programming model designed to facilitate the
development of application codes capable of running on multiple different devices. First
released in late 2008, it defines a C-like language used to write kernels that can be compiled
to run on the different devices. Implementations of the current release (2.2) exist for CPUs,
GPUs, FPGAs and the Intel MIC systems, and as such, there is increasing interest in the
use of OpenCL for developing scientific applications designed to run on next-generation
supercomputer systems.

This thesis seeks to use the device-independent characteristics of an OpenCL code to select
the optimal accelerator device on which to execute each OpenCL kernel. Consideration is
given both to execution time and energy usage.

The first focus of this work is to present a comprehensive benchmark suite for OpenCL
in the heterogeneous HPC setting: an extended and enhanced version of the OpenDwarfs
OpenCL benchmark suite. Our extensions improve the portability and robustness of the
applications, the correctness of results and the choice of problem size, and diversity of
coverage through the inclusion of additional application patterns. This work manifests in
performance measurements on a set 15 devices and over 12 applications.

We next present our Architecture Independent Workload Characterization (AIWC) tool which
characterizes OpenCL kernels according to a set of architecture-independent features. Features

i

are measured by counting target characteristics which are collected during program execution
in a simulator. They are presented as 28 metrics in four categories: parallelism – how
well an algorithm scales in response to core count; compute – the diversity of instructions;
memory – working memory footprint and entropy measurements which correspond to caching
characteristics; and control – branching and program flow. The metrics collected are primarily
used in the prediction of execution times, but since they are representative of structural
characteristics of the underlying program and are free from architectural traits, they can be
used in diversity analysis in benchmark suites, identifying program requirements which allows
the automatic calculation of theoretical peak performance for a given device and examining
the differences in kernels to show the phase-transitional properties of the application codes.
We also discuss the design decisions made to collect AIWC features.

Finally, this work culminates in a methodology which uses AIWC features to train a random
forest model capable of predicting accelerator execution times. We use this model to predict
execution times for a set of 37 computational kernels running on 15 different devices represent-
ing a broad range of CPU, GPU and MIC architectures. The predictions are highly accurate,
differing from the measured experimental run-times by an average of only 1.2%. A previously
unencountered code can be instrumented using AIWC to allow performance prediction across
the full range of modelled devices. The results suggest that this methodology supports the
correct selection of the most appropriate device for a previously unencountered code, and
is highly relevant to efficiently schedule codes to emerging heterogeneous supercomputing
systems.

Contents

Declaration

Acknowledgements

Abstract

1 Introduction 1
1.1 Context . 2
1.2 Thesis Contributions . 3
1.3 Thesis Structure . 4
1.4 Publications . 4

2 Background Information and Related Work 5
2.1 The Dwarf Taxonomy . 5
2.2 Accelerator Architectures in HPC . 6
2.3 The Open Compute Language (OpenCL) . 13
2.4 Benchmark Suites . 15

2.4.1 Rodinia . 16
2.4.2 OpenDwarfs . 17
2.4.3 SHOC . 17

2.5 Hardware Performance and Scaling . 18
2.6 OpenCL Performance . 20

2.6.1 Autotuning . 20
2.6.2 Phase-Shifting . 21
2.6.3 Measurements . 22

2.7 Offline Ahead-of-Time Analysis . 22
2.8 Program Diversity Analysis and Characterization 23

2.8.1 Microarchitecture-Independent Workload Characterization 23
2.8.2 Architecture Independent Workload Characterization 24
2.8.3 Workload Characterization for Benchmark Diversity Analysis 25

2.9 Performance Prediction for Heterogeneous Architectures 26
2.10 Scheduling for Heterogeneous HPC Systems . 28

3 Extending the OpenDwarfs Benchmark Suite 30
3.1 Extending the OpenDwarfs Benchmark Suite . 31
3.2 Experimental Setup . 33

Contents

3.2.1 Hardware . 33
3.2.2 Software . 34
3.2.3 Measurements . 34
3.2.4 Problem Size . 35
3.2.5 kmeans . 35
3.2.6 lud, fft, srad, crc, nw . 36
3.2.7 csr . 36
3.2.8 dwt . 37
3.2.9 gem, nqueens, hmm, swat . 37
3.2.10 bfs, cfd, tdm . 38
3.2.11 Summary of Benchmark Settings . 38

3.3 Results . 39
3.3.1 Time . 40
3.3.2 Energy . 43

3.4 Discussion . 44

4 AIWC: OpenCL based Architecture Independent Workload Characterization 51
4.1 Metrics . 53
4.2 Implementation . 55
4.3 Demonstration . 58
4.4 Detailed Analysis of LU Decomposition Benchmark 59
4.5 Use Case: AIWC analysis of OpenDwarf bioinformatics related benchmarks . . 64
4.6 Usage and Limitations . 66
4.7 Summary . 70

5 Making Performance Predictions for Scheduling 71
5.1 Model Development . 72

5.1.1 Experimental Setup . 72
5.1.2 Constructing the Random Forest Performance Model 73
5.1.3 Parameters for the Random Forest Performance Model 76
5.1.4 Tuning the Random Forest Model . 76

5.2 Evaluation . 78
5.2.1 Predicting Kernel Execution Time . 78
5.2.2 Choosing The Optimal Accelerator for a Kernel 80

5.3 Discussion . 82

6 Conclusions and Future Directions 84
6.1 Extended OpenDwarfs – EOD . 85
6.2 AIWC . 86
6.3 Performance Prediction . 87
6.4 Future Directions . 88

6.4.1 EOD . 88
6.4.2 AIWC . 89

Contents

6.4.3 Performance Predictions . 89
6.4.4 Finding holes in benchmarks: Evaluating the coverage and correspond-

ing performance predictions for conventional vs synthetic benchmarking 90
6.4.5 AIWC for the Masses: Towards language-agnostic architecture-

independent workload characterization . 90
6.4.6 Examining the Characteristics of Scientific Codes in Supercomputing

with AIWC . 91
6.4.7 Guiding Device Specific Optimization using Architecture-Independent

Metrics . 91
6.4.8 Faster FPGA development with AIWC and the Predictive Model 91

6.5 Closing Remarks . 92

Appendices 92

A Time Results 95

B Linear Model Fitting 103

C Diversity Analysis 107

D Abbreviations 111

References 113

List of Figures

2.1 The percentage of accelerators in use and the contributions of cores found on
systems with accelerators in the Top500 supercomputers over time. 11

2.2 Power efficiency (GFlops/Watt) of using accelerators in the Top500 supercom-
puters over time. 12

3.1 Kernel execution times for the medium problem size benchmarks on different
accelerator devices. 46

3.2 Kernel execution times for the single sized benchmarks on various accelerator
devices. 47

3.3 Kernel execution times for the crc benchmark on different hardware platforms. 48
3.4 Kernel execution times for the kmeans benchmark on different hardware plat-

forms. 49
3.5 Execution energy required to perform EOD benchmarks, presented on a linear

(a) and logarithmic scale (b) from left to right respectively, on the (large problem
size) on the Intel i7-6700K and Nvidia GTX1080. 50

4.1 Selected AIWC metrics from each category over all kernels and 4 problem sizes. 60
4.2 A) and B) show the AIWC features of the diagonal and internal kernels of

the LUD application over all problem sizes. 61
4.3 A) shows the AIWC features of the perimeter kernel of the LUD application

over all problem sizes. B) shows the corresponding Local Memory Address
Entropy for the perimeter kernel over the tiny problem size. 62

4.4 Architecture-Independent Workload Characterization features for selected bioin-
formatics benchmarks. 65

4.5 Architecture-Independent Workload Characterization features for the hmm bioin-
formatics benchmark. 66

4.6 EOD runtimes for small problem sized bioinformatics benchmarks. 67

5.1 Full coverage of min.node.size with fixed tuning parameters: num.trees = 300
and mtry = 30. 74

5.2 Full coverage of num.trees and mtry tuning parameters with min.node.size
fixed at 9. 75

5.3 Prediction error across all benchmarks for models trained with varying numbers
of kernels. 79

5.4 Predicted vs. measured execution time (in log(µs)) for all kernels. 79

LIST OF FIGURES

5.5 Error in predicted execution time for each kernel invocation over four problem
sizes. 81

5.6 Mean measured kernel execution times compared against mean predicted
kernel execution times to perform a selection of kernels on large problem sizes
across 15 accelerator devices. The square indicates the mean measured time,
and the diamond indicates the mean predicted time. 82

A.1 Kernel execution times for the tiny and small problem sizes of the kmeans, lud,
csr and dwt benchmarks on different hardware platforms. 98

A.2 Kernel execution times for the medium and large problem sizes of the kmeans,
lud, csr and dwt benchmarks on different hardware platforms. 99

A.3 Kernel execution times for the tiny and small problem sizes of the fft, srad
and nw benchmarks on different hardware platforms. 100

A.4 Kernel execution times for the medium and large problem sizes of the fft,
srad and nw benchmarks on different hardware platforms. 101

A.5 Single problem sized benchmarks of kernel execution times on different hard-
ware platforms. 102

B.1 Predicted vs. measured execution time (in log(µs)) for all kernels and devices
with the GLM model. 104

B.2 Distribution of prediction errors with the GLM model, presented in a log scale. 104
B.3 Prediction intervals for the kmeansPoint kernel on the GTX1080Ti GPU over

four problem sizes. 105
B.4 Error in predicted execution time with a GLM model for each kernel invocation

over four problem sizes. 106

C.1 Biplot Principal Components of AIWC metrics over all application kernels and
all problem sizes. 108

C.2 The proportion of explained variance of each Principal Component. 109
C.3 The t-SNE with k-means cluster results to show Principal Components. 110

List of Tables

2.1 The Berkeley Dwarfs and their limiting factors. 6

3.1 List of Extended OpenDwarfs Applications and their respective dwarfs. 32
3.2 Hardware utilized during the Extended OpenDwarfs Benchmark Suite evaluation. 33
3.3 The different problem sizes in the Extended OpenDwarfs adjusted by selecting

the workload scale parameter (Φ). 38
3.4 Program Arguments for benchmarks in the Extended OpenDwarf Suite. 39

4.1 ISA-Independent Workload Characterization metrics. 53
4.2 Metrics collected by the AIWC tool ordered by type. 54
4.3 Overhead of the AIWC tool on the fft benchmark and the Intel i7-6700K CPU. 68

5.1 Optimal tuning parameters from the same starting location for all models
omitting each individual kernel. 77

Chapter 1

Introduction

Supercomputers are used in computationally intensive tasks and are a critical tool in current
scientific research. They are essential in simulations for quantum mechanics, weather forecast-
ing, climate research, oil and gas exploration and molecular modelling. However the largest
supercomputers are requiring huge amounts of electricity to operate, for example, the current
world’s fastest supercomputer, Summit [1], requires 8.8 MW to power, which in terms of the
average Australian home (13.7 kWh per day) could power 15500 homes. To reduce this large
energy footprint supercomputers are becoming increasingly heterogeneous. At an individual
node, there is a trend towards specialised hardware – known as accelerators – which can
expedite the computation of codes from particular classes of scientific workloads. The use of ac-
celerators for certain programs offers a shorter time to completion, and less energy expenditure
when compared to a conventional CPU architecture. The next generation of supercomputers
has been designed to incorporate a greater number of accelerators, and varying types within
a node. For instance, the CAPI [2] and NVLINK [3] technologies included in the latest IBM
POWER9 [4] processor offers a high-speed interconnect which allows the rapid movement of
data between processor and accelerator – where Nvidia Graphical Processing Unit (GPU) use
NVLINK, whereas other accelerator devices such as Altera Field-Programmable Gate Array
(FPGA), Digital Signal Processors (DSPs), Intel Many-Integrated-Core (MIC) devices, and
both Intel and AMD Central Processing Unit (CPU) and AMD GPU devices can utilise the
CAPI interconnect. The support from hardware vendors for a greater mix of heterogeneous
devices indicates this is the future direction of supercomputing. However, this development is
recent, and as such the scheduling of workloads to the most suitable accelerator becomes an
issue. Without addressing this the cost of exascale computing and the corresponding energy
efficiency will be prohibitive.

This thesis will argue that certain characteristics of a scientific code, specifically around
computation, memory, branching and parallelism, are independent of any particular device
on which they may be finally executed and that the metrics used to quantify each of these
characteristics can be collected during program execution on a simulator. In other words,
provided they are collected over a representative workload, a graph traversal program main-
tains the characteristics of a graph traversal program regardless of problem size or on what
platform it is run. Moreover, these metrics can be used to accurately predict the execution

1

2 Introduction

time on each accelerator in a heterogeneous system.

This thesis also presents a methodology to perform runtime predictions for a given code –
provided the feature metrics are pre-generated – on any accelerator device. A benchmark
suite is extended, a characterisation tool developed, and a model is generated to achieve the
task. We believe this research will enable scheduling of codes to the most appropriate device
to achieve better performance and utilization on the next-generation of supercomputers.

1.1 Context

Accelerators can be programmed in a variety of different languages – CUDA [5] for Nvidia
GPUs, ROCm [6] for AMD devices, OpenMP [7] on Intel CPUs and the MIC. The Open
Compute Language (OpenCL) [8] allows programs to be written once and run anywhere on
a range of accelerators. A majority of accelerator vendors ship products with an OpenCL
supported runtime, many of which will be components on the next-generation of super-
computing nodes. Programs in the OpenCL setting are structured into two parts, the host
and the accelerator/device side. The developer is responsible for allocating and transferring
memory between the host and the device. This requires programs to be structured with
computationally intensive regions of code – known as kernels – to be identified and written in
the OpenCL C kernel language. Kernels are viewed as indivisible functions, and as such, the
nature of these kernels is fixed for all executions. Specifically, a kernel does not suffer from the
phase-transitions that are common when looking at larger scientific codes. The composition
of all kernels forms an accelerator agnostic implementation for full scientific applications.

A benefit of the fixed/static nature of OpenCL kernels is that the collection of the charac-
teristics is also constant – the patterns of computation and communication do not change.
Instrumentation of the execution of a kernel measures computation, memory, branching and
parallelism metrics – these form the characteristics of a program and are largely unchanged
between run and are independent of data set. To this end, we developed the Architecture
Independent Workload Characterisation (AIWC) tool. This tool collects 28 metrics that indicate
computation, memory, branching and parallelism characteristics on a per kernel basis. It
simulates an OpenCL device using the Oclgrind [9] tool. The AIWC plugin analyses a kernel’s
execution trace, including the memory locations accessed and thread-states, to generates
simple metrics that are representative of the kernel’s behaviour. Metrics can be collected
quickly since it is a multi-threaded simulator. AIWC features, are generated for each kernel
invocation and can be embedded as a comment into the header of OpenCL kernel codes –
either in plain-text source or in the Standard Portable Intermediate Representation (SPIR) [10]
format.

There are few high-performance scientific computing benchmark suites which are capable
of execution over a wide range of accelerators with portable performance and reproducible
results. Additionally, until this work was undertaken, the available OpenCL benchmark suites

§1.2 Thesis Contributions 3

were not rich enough to adequately characterise performance across the diverse range of
applications or accelerator devices of interest. Thus this thesis presents an enhanced version
of the OpenDwarfs OpenCL benchmark suite [11] – Extended OpenDwarfs (EOD) – which
was developed with a strong focus on robustness, benchmark diversity, choice of problem
size, and correctness of results.

LibSciBench [12] was added to EOD to provide high precision timers along with support for
the collection of hardware events and energy usage information. Kernel execution times of all
EOD benchmarks were collected on 15 different accelerator devices typical of HPC systems.
Collection of these times occurs at a per kernel level along with instrumentation of other
events common to the OpenCL setting, such as memory setup and timing data movement to
accelerator devices. Total elapsed application execution time was also collected.

This thesis develops a predictive model, capable of accurately estimating the execution times
of a kernel on any accelerator based solely on its AIWC metrics.

The AIWC tool was run and the features collected from all the kernels of EOD. These AIWC
metrics were used as predictor variables into a random forest model, with the executions
times of kernels used as the response variables for prediction. The accelerators examined in
these predictions range from CPU, GPU and MIC, although, the methodology presented is
expected to perform with other accelerators such as DSPs and FPGAs.

The final random forest model performs well and is capable of accurate predictions which
on average differ from the measured experimental run-times by 1.2%, which correspond to
absolute execution time mispredictions between 8µs and 1s depending on problem size. The
model is capable of predicting execution times for specific devices based on the computational
characteristics captured by the AIWC tool, which in turn, enables selection of the optimal
accelerator device for a particular kernel.

1.2 Thesis Contributions

The OpenDwarfs [11] benchmark suite is extended to include a greater range of scientific
applications and over multiple problem sizes. Additionally, the extended suite incorporates
a high precision timing library which is capable of measuring energy usage and execution
times on any OpenCL device. The benchmark suite is run on a range of devices allowing a
direct comparison to be made between these devices on a per-application basis.

Separately, an Architecture Independent Workload Characterisation (AIWC) tool is presented
and shown to be capable of analysing kernels and extract a set of predefined features or
characteristics. The benefits of AIWC include that it:

1) provides insights around the inclusion of an application into a benchmark suite via
diversity analysis of the feature-space.

4 Introduction

2) measures requirements in terms of FLOPs, memory movement and integer ops of any
application kernel – which may indicate the theoretical peak performance for a given
device.

3) can be used to examine the phase-transitional properties of application codes – for
instance if the instruction mix changes over time in terms of the balance between
floating-point and memory operations.

These metrics are used for creating a predictive model of the performance of OpenCL
kernels on different hardware devices and settings. This model is then applied to predict the
performance of an application for any given platform without additional instrumentation.
This prediction adds information that can be incorporated into existing HPC schedulers and
provides a negligible run-time overhead – codes are examined one time by the developer
when instrumenting with AIWC and the AIWC features are embedded into the header of
each kernel code to be evaluated by the predictive model at the time of scheduling.

1.3 Thesis Structure

Chapter 2 reviews the existing literature and current techniques used to schedule heteroge-
neous resources. Chapter 3 discusses the extensions added to the OpenDwarfs Benchmarking
Suite in EOD. Chapter 4 highlights the construction, design decisions made and usage of the
AIWC tool. Chapter 5 develops the predictive model and examines the accuracy of the final
predictions. Chapter 6 discusses the conclusions of this thesis and the future work required for
the predictive model to be incorporated into scheduling on future supercomputing systems.

1.4 Publications

• Johnston B and Milthorpe J “AIWC: OpenCL-based Architecture-Independent Workload Charac-
terisation”, LLVM-HPC workshop, SC18, Dallas, Texas, USA, 2018.

• Johnston B and Milthorpe J “Dwarfs on Accelerators: Enhancing OpenCL Benchmarking for
Heterogeneous Computing Architectures”, ICPP, Eugene, Oregon, USA, 2018.

• Johnston B, Falzon G and Milthorpe J “OpenCL Performance Prediction using Architecture-
Independent Features”, HPCS, Orleans, France, 2018.

Chapter 2

Background Information and
Related Work

The chapter presents background information, terminology and the related work drawn upon
in the rest of this thesis. It provides a background for readers who might not be familiar with
workload characterisation of programs, the associated performance metrics or composition of
current HPC systems and how their performance is evaluated. The types of devices considered
in this thesis and the benchmark suites examined can be broadly classified according to the
Dwarf Taxonomy, as such, this Chapter begins with an introduction to the Dwarf Taxonomy.
Next, we define accelerators and provide a brief survey regarding their use in supercomputing.
The hardware-agnostic programming framework OpenCL is then presented. Finally, this
section culminates in a discussion of benchmark suites, applications and where they are
incorporated into the dwarf taxonomy.

2.1 The Dwarf Taxonomy

In 2004, Phil Colella [13] identified seven motifs of numerical methods which he thought
would be important for the next decade. Based on this style of analysis, The Berkeley Dwarf
Taxonomy [14] was conceived to present the motifs commonplace in HPC. Initially performed
by Asanovic et al. [15], the Dwarf Taxonomy claims that many applications in parallel
computing share patterns of communication and computation. Applications with similar
patterns are defined as being represented by a single dwarf. Asanovic et al. [15] present a
total of 13 dwarfs, stating that whilst it was believed that more dwarfs could be added to this
list in the future, all currently encountered scientific codes are classified as belonging to one
or more of these dwarfs. For each of the 13 dwarfs the authors indicate the performance limit
– in other words, whether the dwarf is compute bound, memory latency limited or memory
bandwidth limited. The dwarfs and their limiting factors are presented in Table 2.1. Note, the
? symbol indicates the performance limit was unknown at the time of publication – and to the
best of our knowledge, none of these has been resolved since.

5

6 Background Information and Related Work

Dwarf Performance Limit
Dense Linear Algebra Compute
Sparse Linear Algebra Memory Bandwidth and Compute
Spectral Methods Memory Latency
N-Body Methods Compute
Structured Grid Memory Bandwidth
Unstructured Grid Memory Latency
Map Reduce ?
Combinational Logic Memory Bandwidth and Compute
Graph Traversal Memory Latency
Dynamic Programming Memory Latency
Backtrack and Branch and Bound ?
Graphical Methods ?
Finite State Machines ?

Table 2.1: The Berkeley Dwarfs and their limiting factors.

Implementations of the Dwarfs are discussed in the Benchmark Suites Section 2.4. The division
of applications into dwarfs helps ensure diversity in the benchmarks which, in turn, provides
a fair evaluation of scientific codes on HPC nodes.

2.2 Accelerator Architectures in HPC

We will use the term “accelerators” to refer to any form of hardware specialized to a particular
pattern of computation; Thus, specialized hardware may accelerate a given application code
according to that codes characteristics. Accelerators commonly include GPU, FPGA, DSP and
MIC devices. We define accelerators to include all compute devices, including CPUs since
their architecture is well suited to accelerate the computation of specific dwarfs. Applications
depicted by dwarfs in The Dwarf Taxonomy, Section 2.1, offer a wide range of characteristics
realistic to scientific computing applications.

Lee et al. [16] evaluate the validity of reported speedup results between CPU and GPU devices
over five benchmarks while considering optimizations which impact the characteristics of the
codes. They find optimizations such as multithreading, cache blocking, and reorganization of
memory accesses strongly affect CPU devices whilst minimizing global synchronization and
using locally shared buffers benefit GPU devices. Two of their benchmarks are better suited
for CPUs and suggest structural characteristics of applications impact on device performance.
By extension, we expect that the performance of an application which is representative of
a given dwarf will depend on the execution device and the structural characteristics which
define that dwarf, in other words, certain applications are better suited to specific types of
accelerator. The remainder of this section will present and describe each type of accelerator,
its history and its uses.

Central Processing Units (CPU) have additional circuitry for branch control logic, and gener-

§2.2 Accelerator Architectures in HPC 7

ally operate at a high frequency, ensuring this architecture is highly suited to sequential tasks
or workloads with many divergent logical comparisons – corresponding to the finite-state
machine, combinational logic, dynamic programming and backtrack branch and bound dwarfs
of the Berkeley Dwarf Taxonomy. Additionally, it is increasingly common to combine hetero-
geneous CPUs in a System-on-a-Chip (SoC). Comprised of two separate micro-architectures,
SoCs have a high-performance CPU – faster base clock speed with additional hardware for
branching – to support the irregular control and access behaviour of typical workloads; and a
smaller CPU – commonly with a lower base-clock frequency but with many more cores and
support for longer vector instructions – for the highly parallel workloads/tasks common in
scientific computing.

The SW26010 and ARM big.LITTLE type processors are current examples of how CPUs are
treated as accelerators to achieve performance on modern supercomputers. The SW26010
CPU deployed in the Sunway TaihuLight supercomputer contains high-performance cores
known as Management Processing Elements (MPE), and low-powered Computer Processing
Elements (CPE). The CPE is arranged in an 8x8 mesh of cores, supports only user mode,
and each core sports a small 16 KB L1 instruction cache and 64 KB scratch memory. Both
MPE and CPE are of 64-bit Reduced Instruction-Set Computers (RISC) and support 256-bit
vector instructions. This configuration shows the intent of the architecture, that the smaller
CPEs need be used effectively to achieve good performance [17]. In other words, the host or
primary core contributes only a small part of the maximum theoretical FLOPs on modern
heterogeneous supercomputers.

ARM processors with big.LITTLE and dynamIQ configurations have been proposed to meet
the power needs of exascale supercomputers [18]–[21]. big.LITTLE is a heterogeneous con-
figuration of CPU cores on the same die and memory regions. The big cores have higher
clock frequencies and are generally more powerful than the LITTLE cores, which creates
a multi-core processor that suits a dynamic workload more than clock scaling. Tasks can
migrate to the most appropriate core, and unused cores can be powered down. CPUs can
be considered accelerators since many heterogeneous configurations including the SW26010
and big.LITTLE devices have side cores, which, with careful work scheduling, can accelerate
workloads and achieve high FLOPs. Additionally, the heterogeneous configuration of side
cores on modern CPUs presents a similar set of work-scheduling problems, that occur on
other accelerators, primarily, these cores need to be given the appropriate work to ensure
good system performance.

Graphics Processing Units (GPU) were originally designed to accelerate manipulating com-
puter graphics and image processing, which is achieved by having circuit designs to apply
the same operation to many values at once. This highly parallel structure makes them suit-
able for applications which involve processing large blocks of data. Many of the dwarfs of
scientific computation are directly suited to GPUs for acceleration, including dense [22][23]
and sparse linear algebra and N-Body methods. There has been an active effort to migrate
applications from less suited dwarfs, such as spectral methods [24], structured grids [25] and

8 Background Information and Related Work

graph traversal [26] for GPU acceleration. Efforts are primarily algorithmic, such as reordering
of operations and the padding of shared memory, and have been used with varying success
on GPU architectures [27]. Avoiding bank-conflicts and non-coalesced memory accesses thus
increasing the use of private and shared memory are critical to the performance of these
dwarfs on GPUs. They are the most common type of accelerator in supercomputer systems.
The recent adoption of the Nvidia Volta GV100 GPU as the primary accelerator into the
Summit and Sierra supercomputers [28] is attributed to its performance [29] and energy
efficiency [30] on workloads fundamental to scientific computing.

Many Integrated Core (MIC) architectures are an Intel Corporation specific accelerator. Xeon
Phi formerly known as Knights Landing (KNL) is the last series of the MIC accelerators
and was discontinued in July 2018. It is significantly different to a GPU, it relies heavily
on Single Instruction Multiple Data (SIMD) parallelism as opposed to the Single Instruction
Multiple Thread (SIMT) needed for GPUs. It has many low-frequency in-order cores sharing
the same bus and each core is based on conventional CPU x86 architectures. There are 72
cores with a layout based on a 2D mesh topology – comprised of 38 tiles, each tile features
two CPU cores, and each core contains two Vector Processing Units (VPU). [31]; four cores
are reserved for host-side system control and orchestration of work to the other cores. A 2D
cache-coherent interconnect between tiles is included provide high-bandwidth pathways to
match the memory access patterns on the core and mesh layout – cores on the same tile have a
shared 1 MB L2 cache. Each core supports 512-bit vector instruction to utilize a large amount
of SIMD parallelism. Dwarfs such as Dense and Sparse Linear Algebra are high-intensity and
throughput-oriented workloads suited to the Xeon Phi accelerator [32]. The Xeon Phi is the
primary accelerator in the Trinity [33] and Cori [34] supercomputer systems – currently in the
top 10 of the Top500.

Field-Programmable Gate Arrays (FPGA) are accelerators which allow the physical hardware
to be reconfigured for any specific task. They are composed of a high number of logic-gates
organised into logic-blocks with fast I/O rates and bi-directional communication between
them. FPGAs are suitable for workloads which require simple operations on very large
amounts of data with a fast I/O transfer. Specifically, they are well suited to accelerating
applications from spectral methods dwarf, specifically stream/filter processing on temporal
data, and the combinational logic dwarf, which exploits bit-level parallelism to achieve high
throughput. An example of the combinational logic dwarf is in the computing of checksums
which is commonly required for network processing and ensuring data archive integrity. The
configurablity of these devices may make them well suited to the characteristics of many
dwarfs, however, the compilation or configuring the hardware for an application takes many
orders of magnitude longer than any of the other examined accelerator architectures. Akram et
al.[35] present a prototype FPGA supercomputer comprised of 5 compute nodes, each with an
ARM CPU and Xilinx 7 FPGA. The benchmark application was of a Finite Impulse Response
Filter – an application typical of the Spectral Methods dwarf – and presents 8.5× performance
improvement over direct computation on the ARM CPU alone. Unfortunately, energy efficiency
or a comparison between GPU accelerators is not presented. Fujita et al. [36] present a

§2.2 Accelerator Architectures in HPC 9

comparison between a P100 GPU and BittWare A10PL4 FPGA over an Authentic Radiation
Transfer scientific application and show that the performance is comparable, however, an
energy efficiency comparison between these two accelerators is not presented. Given the
increasing need for high-throughput devices from applications in combinational logic and
other dwarfs, FPGA devices are likely to be included in future HPC systems.

An integrated circuit designed solely for a specific task is known as an Application-Specific
Integrated Circuit (ASIC). In this regard, they are akin to FPGAs without the ability to be
reconfigured. They have been used to accelerate the hashing workloads from the combinational
logic dwarf for bitcoin mining tasks. Google’s Tensor Processing Units (TPU) are another
example of ASICs, and support the TensorFlow [37] framework. TPUs perform convolutions
for Machine Learning applications, which require many large matrix operations and are
encapsulated by both the dense and sparse linear algebra dwarfs [38].

Digital Signal Processors (DSP) have their origins in audio processing – specifically in telephone
exchanges and more recently in mobile phones – where streams of data are constantly arriving
and an identical operation must be applied to each element. Audio compression and temporal
filtering are examples of the Spectral Methods dwarf and are best suited to the DSP architecture.
DSP cores operate on a separate clock to the host CPU and have circular memory buffers
which allow a host device – using shared memory – to provide and remove data for processing
without ever interrupting the DSP. Mitra et al. [39] evaluate a prototype nCore Brown-Dwarf
system where each node contains an ARM Cortex-A15 host CPU, a single Texas Instruments
Keystone II DSP and two Keystone I DSPs. They compare the performance and energy-
efficiency of dense matrix multiplication and a real-world scientific code for biostructure based
drug design against conventional x86 based HPC systems with attached accelerators. They
show a Brown-Dwarf node is competitive with contemporary systems for memory-bound
computations and show the C66x multi-core DSP is capable of running floating-point intensive
HPC application codes.

Reagen et al. [40] consider the energy efficiency of accelerators by exploring properties of
workloads and how these properties affect the shape of the large design space of hardware
accelerators. They examine implementations of five benchmarks in terms of energy and
explore the architectural parameters by sweeping through four configurable directives – loop
unrolling, array partitioning, pipelining and Multiplier Stages. Their work provides insight
around which workloads benefit most from acceleration.

Research around the suitability of ARM CPUs for HPC systems is highly active, with compar-
isons against the conventional Intel and AMD CPUs being made and the potential strengths
of ARM systems when striving for energy efficiency [41][42][43]. Isambard [44] and Astra
[45] systems use the Cavium ThunderX2 CPU accelerator, where each ThunderX2 accelerator
consists of 32 high-end ARM cores operating at 2.1 GHz [46]. Separately, Fujitsu proposes
using ARMv8-A cores for the Post-K supercomputer [47]. In a similar layout to the ThunderX2
the FX100 is a Scalable Many Core (SMaC) with the memory model – Core Memory Group –
and core configuration – Compute Engine – also in a grid layout.

10 Background Information and Related Work

Currently, only 25 of the Top500 systems are based on ARM technologies, but these experimen-
tal systems may indicate the way forward for exascale supercomputing. The most compelling
reason for this transition to ARM is improved energy efficiency. ARM processors were orig-
inally targeted for embedded and mobile computing markets, where energy efficiency is a
major constraint and may explain that while time-to-completion of tasks is higher versus
conventional x86 architectures, the energy usage is much lower. Simula et al. [48] evaluate
ARM processors against conventional x86 processors on real-time cortical simulations and
consider the energy and interconnect scaling over distributed systems. They show joules per
synaptic event on a network of ARM-based Jetson systems use 3× less energy than the Intel
solution, whilst being 5× slower. The benchmark identifies an interesting bottleneck on current
HPC x86 based systems: as the problem sizes grow larger more nodes and a larger network is
required, thus, it is the lack of a low-latency, energy-efficient interconnect that is the primary
concern. However, since ARM-based HPC systems can be populated more densely and offer
a lower baseline energy profile, it is an architecture better suited to bio-inspired artificial
intelligence applications and scientific investigations of the cognitive functions of the brain.

A major motivation for the increasing use of heterogeneous architectures is to reduce energy
use; indeed, without significant improvements in energy efficiency, the cost of exascale
computing will be prohibitive [49]. The diversity of accelerators in this space is best shown in
a survey of accelerator usage and energy consumption in the worlds leading supercomputers.
The complete results from the TOP500 and Green500 lists [50] were examined, over consecutive
years from 2012 to 2018. The starting year was selected as 2012 because it was the first
occurrence in the TOP500 spreadsheets to provide both accelerator name and accelerator core
count information. Each dataset was taken from the June editions of the yearly listings.

Figure 2.1 shows a steady increase in the use of accelerators in supercomputers depicted
as the solid purple line. This is presented as a percentage of the number of systems using
accelerators in the TOP500 divided by 500 – the total number of systems listed in the TOP500
every year. In 2012 and 2013 11% of systems in the TOP500 used accelerators, this increased
by roughly 2% per year. As of 2018, 22% of the TOP500 use accelerators. Note, from 2016 the
Sunway TaihuLight system was introduced and is in the top 10, however, due to the reliance
on the CPE side-core to achieve the FLOPs for its rank, the data was adjusted to be listed as
containing an accelerator [17]. Also shown in Figure 2.1 is the average percentage of cores
in the TOP500 every year dedicated to accelerators, presented as the dashed blue line. This
measure indicates how much of the TOP500 compute is dependent on the accelerator – for
systems that contain accelerators. The rationale for this metric is that systems in the TOP500
which use accelerators are not only accelerator-based systems – they contain conventional
x86 CPU architectures as a host-side device which mirror the non-accelerator HPC systems,
the teal line indicates what percentage of compute resources are attributed to the accelerator.
Unsurprisingly, every year from 2012 to 2018, we see that a greater contribution of system
resources – cores – are dedicated for accelerator devices and fewer resources for systems with
accelerators are provided for the host. In 2012, 63% of supercomputer cores were located on
the accelerator, by 2013 it jumped to 76%, this increased on average by 1.5% per year to 85%

§2.2 Accelerator Architectures in HPC 11

0

20

40

60

80

2012 2014 2016 2018

Publication Year (TOP500 June issue)

P
er

ce
nt

ag
e

of
 s

ys
te

m
 (

%
)

Metric

using accelerators in the TOP500

dedicated to accelerator

∑ Accelerator Cores

∑ Total Cores

using accelerators in the top 10 of the TOP500

Figure 2.1: The percentage of accelerators in use and the contributions of cores found on
systems with accelerators in the Top500 supercomputers over time.

of compute cores being accelerator based in 2018.

A closer inspection of the top 10 of the TOP500 systems over the same time period is presented
as the green long dashed line in Figure 2.1 and shows a greater dependence on accelerators
and a corresponding increase in heterogeneity. In 2012, three out of the top 10 supercomputers
used accelerators to secure a position. From 2013 to 2017, the use of accelerators in these
systems was consistently at 40% however in 2018 it jumped to 70%. Since the use of accelerators
in the top 10 is much higher than in the rest of the TOP500 (purple line), we can conclude that
the use of accelerators gives an edge to the ranking of these systems. The general trend of
increased use of accelerators throughout all of the TOP500 continues to increase and reinforces
the importance of accelerators in this space. Another benefit from the increasing dependence
on a heterogeneous mix of accelerator devices is improved energy efficiency on these systems.

Figure 2.2 presents a comparison of the energy efficiency – the rate of computation that can be
delivered by a computer for every watt of power consumed – in terms of billions of floating
point operations per second per watt, of supercomputers which use accelerators, presented
as the solid purple line, and systems which do not use accelerators – shown as the dashed
teal line. Generally, we see that the mean energy efficiency of all systems improves over
time. However, it is apparent that the use of accelerators in supercomputers has always
offered better energy efficiency than using conventional x86 architectures as the primary

12 Background Information and Related Work

0

2

4

6

2012 2014 2016 2018

Publication Year (TOP500 June issue)

P
ow

er
 E

ffi
ci

en
cy

 m
ea

n G
F

lo
ps

W
at

t

Supercomputers

with accelerators

without accelerators

Figure 2.2: Power efficiency (GFlops/Watt) of using accelerators in the Top500 supercomputers
over time.

means of computation. Systems without accelerators had a mean energy efficiency of 500
MFlops/Watt in 2012 and have increased on average by 200 MFlops/Watt every year, in 2018
these systems achieved 2 GFlops/Watt. These results are modest when compared to the
gains in efficiency when using accelerators in supercomputing systems. In contrast, in 2012
the mean energy efficiency of supercomputers with accelerators was 900 MFlops/Watt and
reached 5.9 GFlops/Watt in 2018, growing non-linearly by 750 MFlops/Watt per year. The
efficiency of systems using accelerators is improving faster than supercomputers which rely
on homogeneous CPU architectures.

Similar efficiencies have also been shown in the most energy efficient supercomputing list –
the Green500 – where from June 2016 to June 2017, the average energy efficiency of the top 10
of the Green500 supercomputers rose by 2.3x, from 4.8 to 11.1 gigaflops per watt [50]. For
many systems, this was made possible by highly energy-efficient Nvidia Tesla P100 GPUs.
In addition to GPUs, future HPC architectures are also likely to include nodes with FPGA,
DSP, ASIC and MIC components. A single node may be heterogeneous, containing multiple
different computing devices; moreover, an HPC system may offer nodes of different types.
For example, the Cori system at Lawrence Berkeley National Laboratory comprises 2,388
Cray XC40 nodes with Intel Haswell CPUs, and 9,688 Intel Xeon Phi nodes [51]. The Summit
supercomputer at Oak Ridge National Laboratory is based on the IBM Power9 CPU, which
includes both NVLINK [52], a high bandwidth interconnect between Nvidia GPUs; and CAPI,

§2.3 The Open Compute Language (OpenCL) 13

an interconnect to support FPGAs and other accelerators [53]. Promising next-generation
architectures include Fujitsu’s Post-K [47], and Cray’s CS-400, which forms the platform for the
Isambard supercomputer [44]. Both architectures use ARM cores alongside other conventional
accelerators, with several Intel Xeon Phi and Nvidia P100 GPUs per node. The Tianhe-2A uses
a Matrix2000 DSP accelerator [54]; so will the future system, the Tianhe-3, which is due to be
operational in 2020 and will use ARM CPU cores as the primary compute hardware [55].

2.3 The Open Compute Language (OpenCL)

OpenCL is a standard that allows computationally intensive codes to be written once and run
efficiently on any compliant accelerator device. It is supported on a wide range of systems
including CPU, GPU, FPGA, DSP and MIC devices. Unlike device-specific languages, such as
CUDA for Nvidia GPUs and Cilk for the Intel Xeon Phi, the OpenCL programming framework
is well-suited to heterogeneous computing environments, as one common OpenCL code may
be executed on multiple different devices. Additionally, OpenCL may also be used as a base
to implement higher-level programming models such as SYCL, OpenMP and OpenACC.
This technique was shown by Mitra et al., [56] where an OpenMP runtime was implemented
over an OpenCL framework for Texas Instruments Keystone II DSP architecture. Similarly,
Martineau et al. [57] collected a suite of benchmarks and three mini-apps to evaluate Clang
OpenMP 4.5 support for Nvidia GPUs. The focus of benchmarking was as a comparison with
CUDA; OpenCL was not considered. However, they provide an overview of the current clang
compiler support and the success of higher level languages – the directives based abstractions
of OpenMP – to be mapped to lower level frameworks; OpenCL could replace CUDA as the
backend framework in a similar study.

When combined with autotuning, an OpenCL code may exhibit good performance across
varied devices [58]. OpenCL has been used for DSP programming since 2012 [62]. Furthermore,
Mitra et al. [39] propose a hybrid programming environment that combines OpenMP, OpenCL
and MPI to utilize a nCore Brown-Dwarf system where each node contains an ARM Cortex-
A15 host CPU, a single Texas Instruments Keystone II DSP and two Keystone I DSPs. OpenCL
codes can be written to be easily linked with autotuners, by allowing the local work group
size to be set from the command line or as a macro in the pre-processor at execution and
during compilation respectively. Having a common back-end in the form of OpenCL allows a
direct comparison of identical code across this diverse range of architectures, making it the
desirable language implementation for our benchmark suite – presented in Chapter 3.

OpenCL programs consist of a host and a device side, which cooperate to perform a compu-
tation using a standard sequence of steps. The host is responsible for querying the suitable
platforms, vendor OpenCL runtime drivers, and establishing a context on the selected devices.
Next, the host sets up memory buffers, compiles a kernel program for each device – the final
compiled device binaries are generated for each specific device instruction set architecture
(ISA). On the device side, the developer code is enqueued for execution. Device side code is

14 Background Information and Related Work

typically small intensive sub-regions of programs and is known as the kernel. Kernel code
is written in a subset of the C programming language. Special functions exist to determine
a thread’s id, this can occur via getting a global index in a given dimension directly, with
get_group_id, or determined using get_group_id, get_local_size and get_local_id in
each dimension.

The host side is then notified once the device has completed execution – this takes the form of
either the host waiting on the clFinish command or if the host does not the computed results
yet, say for an intermediate result on which a second kernel will operate on the same data, a
clFlush function call. Once all device execution has completed and the host has been notified
the results are transferred back to the host from the device. Finally, the context established on
the device is freed.

The selection of parameters surrounding how work should be partitioned – such as how
many threads to use and how many threads are in a workgroup – can have a large impact on
performance. One primary reason is that different accelerators benefit from different levels
of parallelism, for instance, GPU devices usually need a high degree of arithmetic intensive
parallelism to offset the (relatively) narrow I/O pipeline, while CPUs are general purpose
and the switching of threads has a greater penalty on performance. The tuning of such
parameters can positively impact performance, in the OpenCL setting by primarily influencing
the workgroup size. In essence, the global work items can be viewed from the data-parallelism
perspective. Global work indicates the number of threads or instances of a kernel to execute in
total. Additionally, these work items can be run in teams – denoted local work groups. Each
local work group has a given size, and as previously mentioned can be determined on the
device side, in the kernel code, with get_local_id. Incorrectly setting the number of local
work groups and therefore also the size of each work group can reduce performance, however,
recent work with autotuning shows these parameters can be automatically optimised for any
accelerator architecture as will be discussed in Section 2.6.1.

Kernel compilation flags are an additional parameter to be used by autotuners and affect
runtime performance of accelerator specific OpenCL kernel codes. These flags are set on the
host side during the clBuildProgram procedure. Pre-processor macros can also be defined on
the kernel side which allows various loop level parallelism constructs to be enabled or disabled.
Mathematical intrinsic options can also be set to disable double floating point precision and
change how denormalised numbers are handled. Other optimisations for less critical codes
can include using the strictest aliasing rules, use of the fast fused-multiply-and-add instruction
(with reduced precision), ignoring the signedness of floating point zeros and relaxed, finite or
unsafe math operations. These can also be corrected using autotuning for both kernel and
device specific optimisations.

§2.4 Benchmark Suites 15

2.4 Benchmark Suites

Benchmarking forms the basis on which comparisons between languages and environments
are made. Benchmark suites are large sets of benchmark codes used to reliably compare and
measure realistic problems under realistic settings. Our work focuses on benchmarking for
device specific performance limitations, for example, by examining the problem sizes where
these limitations occur – this is largely ignored by benchmarking suites with fixed problem
sizes. For these reasons, we introduce the Extended OpenDwarfs benchmark suite in Chapter
3 which covers a wider range of application patterns by focusing exclusively on OpenCL
using higher-level benchmarks. Before jumping into this work, existing benchmark suites are
considered in the remainder of this section.

The NAS parallel benchmarks [63] specify the computational problems to be included in the
benchmark suite but leave the implementation choices such as language, data structures and
algorithms to the user. The benchmarks include varied kernels and applications which allow
a nuanced evaluation of a complete HPC system, however, the unconstrained approach does
not readily support direct performance comparison between different hardware accelerators
using a single set of codes.

Barnes et al. [64] collected a representative set of applications from the current NERSC
workload to guide optimization for Knights Landing in the Cori supercomputer. As it is not
always feasible to perform such a detailed performance study of the capabilities of different
computational devices for particular applications, the benchmarks described in this paper
may give a rough understanding of device performance and limitations.

Sun et al. [65] propose Hetero-Mark, a Benchmark Suite for CPU-GPU Collaborative Comput-
ing, which has five benchmark applications each implemented in the Heterogeneous Compute
Compiler (HCC) – which compiles to OpenCL and HIP which converts CUDA codes to
the AMD Radeon Open Compute back-end. Meanwhile, Chai by Gómez-Luna et al. [66],
offers 15 applications in 7 different implementations with the focus on supporting integrated
architectures.

The Princeton Application Repository for Shared-Memory Computers (PARSEC) is a bench-
mark suite proposed by Bienia et al. [67]. It curates a set of real-world benchmarks from recog-
nition, mining, synthesis and systems applications which mimic large-scale multithreaded
commercial programs instead of the conventional types of HPC benchmark applications that
achieve a high-performance. Its primary focus is to have a general purpose suite that assesses
the performance of multiprocessor CPUs over realistic application domains. Additionally,
they identify CPU performance is tied to problem size, as such, one of the features of PAR-
SEC is that it includes multiple problem sizes for the benchmark simulations – simsmall,
simmedium and simlarge. Since accelerators are not considered in this work – and as such, all
applications are written in C – it is not included in our evaluation, however, the fundamental
principals of having a general purpose and portable set of applications that assess real-world
workloads over multiple problem sizes, forms the basis of our extensions and are presented in

16 Background Information and Related Work

Chapter 3.

Reagen et al. [68] present MachSuite, a collection of 19 benchmarks to evaluate accelerators
and the tools to convert C or C++ codes to FPGA devices. They aim to standardise the selection
of kernels used by the HPC community by offering standardised implementations of the most
commonly used algorithms in the literature to present FPGA results. 12 of the 13 dwarfs are
represented by the chosen benchmarks and are presented as a C / C++ implementation; due
to the wider FPGA vendor support for the high-level synthesis tools to convert these codes to
register-transfer level designs to run on FPGAs accelerators. It is unclear why OpenCL was
not considered.

Rodinia [69] and the original OpenDwarfs [70] benchmark suite focused on collecting a repre-
sentative set of benchmarks for scientific applications, classified according to dwarfs, with a
thorough diversity analysis to justify the addition of each benchmark to the corresponding
suite. The Scalable Heterogeneous Computing benchmark suite (SHOC) [71] also features an
OpenCL implementation of several scientific applications. We considered Rodinia, OpenD-
warfs and SHOC as the potential basis for our extended benchmark suite – the strengths and
weaknesses of three are presented independently in the following subsections.

2.4.1 Rodinia

Che et al. [69] proposed the Rodinia benchmark suite to cover a wide range of parallel
communication patterns to examine the performance of heterogeneous platforms free from
language and device specific optimizations. The benchmarks were selected following the
Berkeley Dwarf Taxonomy and are from real-world high-performance computing applica-
tions. The diversity between selected benchmarks was shown by measuring execution times,
communications overheads and energy usage of running each benchmark on an Nvidia GTX
280 GPU and an Intel Core 2 Extreme CPU. Across the suite: speedups in execution times
ranged from 5.5x to 80.8x, communication overheads varied from 2-76% and GPU power
consumption overheads ranged from 38-83 Watts, illustrating important architectural differ-
ences between the CPU and GPU. The Rodinia Benchmark suite originally consisted of nine
applications; namely, Leukocyte Tracking, Speckle Reducing Anisotropic Diffusion, HotSpot,
Back Propagation, Needleman-Wunsch, K-means, Stream Cluster, Breadth-First Search and
Similarity Score, but it has since been extended [72]. This extension features a subset of the
dwarfs, namely, Structured Grid, Unstructured Grid, Dynamic Programming, Dense Linear
Algebra, MapReduce, and Graph Traversal all of which may be expected to benefit from GPU
acceleration. Diversity analysis was also performed and took the form of a Micro-Architecture
independent analysis study. The MICA framework, discussed in Section 2.8.1, was used as
the basis of the evaluation and the motivation was to justify each application’s inclusion
in the benchmark suite by showing deviations between applications in the corresponding
kiviat diagrams. Three separate implementations were developed for each application using
CUDA for the GPU, OpenMP for the CPU and OpenCL for both architecture types. Several

§2.4 Benchmark Suites 17

implementations caused fragmentation in development, which often resulted in the OpenCL
version of each benchmark application being neglected; missing features offered in other
implementations and in some instances lacking an implementation of a given application
entirely. For this reason, Rodinia is not a suitable base for an OpenCL benchmark suite,
however, we were able to incorporate the dwt2d benchmark into our extended version of the
OpenDwarfs benchmark suite as will be discussed in Chapter 3. Many of the benchmarks
were added from Rodinia into the original OpenDwarfs suite, in our extended evaluation,
many of the datasets were generated by analysing the original Rodinia source.

2.4.2 OpenDwarfs

As with Rodinia, Feng et al. [70] introduce the OpenDwarfs (OpenCL and the 13 Dwarfs) as
an OpenCL implementation of Berkeley’s 13 computational dwarfs of scientific computing. In
this work, the absolute execution times were collected over 11 benchmarks. In this paper 11
applications were evaluated on a CPU, an Intel Xeon E5405, and three GPUs, a low power
AMD HD5450 with 25W TDP, and two high-power GPUs: AMD HD5870 and an Nvidia GT520
with energy footprints of 228 and 238W TDP respectively. A larger range of dwarfs are covered
by OpenDwarfs than Rodinia; however, one dwarf, MapReduce, is still not represented by any
application. Additionally, several dwarfs currently have only one representative application
which may not expose the entire set of characteristics of that dwarf.

No diversity analysis was performed to justify the inclusion of each application – however
since many applications were inherited from the Rodinia code-base these applications have a
proven MICA diversity. Recently, this work was updated and evaluated on FPGA devices by
Krommydas et al. [11]. We selected OpenDwarfs as the basis for our extensions, this was a
good place to start given it had the largest number of dwarfs already represented, the sole
implementation was OpenCL, and had already been tested on a wide range of accelerators.
These efforts are discussed in Chapter 3.

2.4.3 SHOC

The Scalable Heterogeneous Computing benchmark suite SHOC, presented by Danalis et al.
[73], is an alternative benchmark suite to test the performance and stability of these scalable
heterogeneous computing systems – primarily GPU and multi-core CPU accelerators. It also
has not been structured into the dwarf taxonomy but rather the benchmarks it encompasses
have been categorised according to two major sets: the micro-benchmarks perform a stress test
role to assess the device capabilities and assess the architectural features of each accelerator,
and application kernels which measure entire system performance on real-world applica-
tions. Some application kernels also support multiple nodes using MPI to assess distributed
parallelism of the system – intra-node and inter-node communication among devices.

SHOC supports multiple programming models including OpenCL, CUDA and OpenACC,

18 Background Information and Related Work

with benchmarks ranging from targeted tests of particular low-level hardware features to a
handful of application kernels. The variety of language implementations for each benchmark
application was one of the original motivators for its construction – aside from testing the
performance and stability of scalable heterogeneous computing systems it also seeks to
provide a comparison of programming models. The two real-world applications presented in
the level 2 applications offer 4 different problem sizes for each benchmark and represent an
attempt to fully stress the hardware, but also enable the suite to run in a reasonable amount
of time. These problem sizes include CPUs, Mobile/Integrated GPUs, Discrete GPUs and
HPC-Focused or Large Memory GPUs. In this benchmark suite, the OpenCL versions of each
application have been designed to strongly mirror the CUDA counterparts. However, both the
selection of problem sizes and the selection of tuning parameters, such as workgroup sizes, is
fixed according to the performance of the technology of the time – the suite was released in
2011.

There are two caveats of SHOC if it were used for our purposes. Firstly, there is a lack
of classification according to the dwarf taxonomy, much of the work towards using micro-
benchmarks to stress-test the system falls outside of the taxonomy and the higher level
application benchmarks are too few to adequately cover a wide range of dwarfs – indeed only
a few are represented. Secondly, the addition of applications is more expensive in SHOC,
since it would require implementations for the same application into at least three other
languages. There are additional difficulties to ensure each implementation is identical in order
to adequately compare the programming models.

By focusing on application kernels written exclusively in OpenCL, our enhanced OpenDwarfs
benchmark suite – presented in Chapter 3 – is able to represent a wider range of dwarfs while
minimising development effort required when duplicating the functionality of applications
between languages.

2.5 Hardware Performance and Scaling

The performance of heterogeneous devices is often evaluated against a theoretical upper-
bound. Computing this limit requires an understanding of a couple of important hardware
characteristics. This section discusses scaling with respect to clock frequency and core count.
Also included is a discussion on the impact frequency has on energy consumption.

Changing the clock frequency of a conventional CPU core ultimately changes performance
results, where execution times are impacted but the energy efficiency of the device is also
affected. Choi, Soma and Pedram [74] present an intra-process dynamic voltage and fre-
quency scaling approach with the goal of minimising energy consumption yet maximising
performance. This is achieved by modelling the on-chip / off-chip ratio using runtime event
monitoring. Hardware measurements showed that dynamically lowering the clock frequency
for memory bound problems up to 70% energy was saved with a 12% performance loss,

§2.5 Hardware Performance and Scaling 19

compute-bound workloads 15-60% energy savings were had at a cost of a performance drop
of 5-20%.

Recently, Brown [75] showed that increasing the clock frequency to generate a result faster
(known as race-to-idle or race-to-sleep) saves up to 95% of energy if the entire system can be
put in a suspended state – as in embedded and mobile systems. In 2014, this was validated by
Albers and Antoniadis [76] for hardware used in HPC provided it supports a sleep state. They
present a framework to approximate the energy cost of frequency scaling with a sleep state.
In this study, the authors show that the active state of a CPU is comparable to the dynamic
energy needed for processing.

Meanwhile, Agarwal et al. [77] show that wire latencies (which correspond to memory
movement and chip-to-chip communication) have not matched the increase in the range of
clock-frequency. The bottle-neck on many of these workloads is also moving from being
compute-bound to memory or communication bound since the imbalance of hardware im-
provements shift application requirements to wait on communication and memory transfers.
As such, the impact of increasing the clock frequency is having (and will continue to have)
less of an impact on computational efficiency. This trend has been reinforced in current work
by Sembrant [78] and Muller and Acar [79]; Modern processors increasingly rely on both
latency minimisation and latency hiding to conceal the widening gap between processor
and memory clock frequencies. To this end, both Sembrant [78] and Muller and Acar [79]
introduce techniques to model parallelism and opportunistically steal work during interrupt
events which result in hiding the latency in the processor pipeline and reducing the latency in
the memory hierarchy.

Since wire latencies have not matched the increase in the range of clock frequency, the coupling
between execution time and energy consumption is non-linear [80]. As such, the impact
of increasing the clock frequency on applications that are compute-bound will result in a
proportional reduction in execution time to having a higher clock-frequency, however, there
are applications that are memory or communication bound, where increasing the frequency
of a core does not also increase the speed of the memory bus and thus will experience little to
no benefit. Applications and dwarfs may benefit from an accelerator with a memory clock
which matches the core clock.

A good indication of a successful implementation of a parallel algorithm is performance
scalability in response to core availability [81][82][83][84]. However, the trend of achieving
good performance scaling by increasing the number of homogeneous cores on a system will
cease, primarily, due to the power limitations of having arrived at the utilisation wall – a
limitation of the fraction of a chip that can run at full speed at one time [85][86].

Taylor [87] surveys the transition of typical homogeneous cores to many accelerators on the
same chip – known as dark silicon. The main reason for this transition, is the percentage of a
silicon chip that can switch at full frequency is dropping with each generator of processor,
known as Dennard scaling – that as transistors get smaller, their power density stays constant,
so the power use stays in proportion with area – and ensures large fractions of chips are

20 Background Information and Related Work

either idle or operating at a lower clock frequency. Limitations from hitting this power-wall
have meant specialized architectures are increasingly employed to “buy” energy efficiency by
“spending” more on die area – thus increasing the heterogeneity of the entire system. Indeed,
the increasing utilization of accelerators as seen in today’s leading supercomputers indicates
an accurate prediction by Taylor – a bright future for heterogeneous systems. Taylor also notes
that a by-product of adding specialized architectures – or accelerators – are massive increases
in complexity. Introducing a methodology to direct codes to the most appropriate accelerator
is one of the goals of this thesis.

2.6 OpenCL Performance

The performance of OpenCL kernels is affected by runtime parameters, such as local work-
group, memory prefetching and blocking, and loop unrolling, which determine the allocation
and partitioning of work between devices. Much of the partitioning can occur automatically
using autotuning. Autotuning and tools and techniques used to measure device performance
are summarised in this subsection. Also discussed is the common issue of phase shifting and
how it relates to measuring OpenCL performance.

2.6.1 Autotuning

Whilst OpenCL is hardware-portable it is not inherently also performance-portable, autotuning
is important when evaluating the performance of OpenCL codes on systems. Du et al. [88]
migrated CUDA versions of level 3 BLAS routines to OpenCL and measured the direct
performance on GPU accelerator devices. They show low-level languages achieve 80% of
peak performance on multicores and accelerators whilst OpenCL only achieves 50% of peak
performance. They propose the use of autotuning to improve the performance of OpenCL
kernels. They conclude that OpenCL is fairly competitive with CUDA on Nvidia hardware in
terms of performance, and if architecture specifics are unknown, autotuning is an effective way
to generate tuned kernels that deliver acceptable levels of performance with little programmer
effort.

When combined with autotuning, an OpenCL code may exhibit good performance across
varied devices – yielding accelerator device specific optimizations with no user or developer
input. Tasks such as compiler optimisations and kernel runtime tuning parameters are well
suited to autotuners without requiring an exhaustive search in this search space. This has
been manifested in many autotuning libraries that use machine learning. Spafford et al.
[58], Chaimov et al. [59] and Nugteren and Codreanu [60] all propose open source libraries
capable of autotuning dynamic execution parameters in OpenCL kernels. Filipovic et al.
[89]also show OpenCL tuning strategies can take into account numerical accuracy to search for
kernel implementations within specific numerical error bounds whilst optimizing for shorter
execution time.

§2.6 OpenCL Performance 21

Additionally, Price and McIntosh-Smith [61] have demonstrated high performance using a
general purpose autotuning library [90], for three applications across twelve devices. The
OpenTuner library requires the search space to be defined as the form of command line or
compile-time arguments – which are used as configuration parameters when performing
application execution. Next, machine learning techniques are used employing a black box
mechanism to effectively search for the optimal configuration parameter arguments in the
search space. Measurements are collected per run effectively updating a cost function. Both
the objective of the search and the cost function are entirely flexible since this framework takes
the form of OpenTuner, a modular Python library.

In the Price and McIntosh-Smith [61] paper, OpenCL kernels are optimised across 9 current
GPUs, 5 Nvidia and 4 AMD devices, and 3 high-end Intel CPUs. The experiment was
performed over 3 benchmarks, the Jacobi Iterative Method, a Bilateral Filtering algorithm
and BUDE [91] – A general purpose molecular docking program. Presented results show
the inefficiencies when autotuning for one target device and then execute this optimised
program on the other systems. The usefulness of this multi-objective autotuning technique is
demonstrated and shows that it is a useful tool to generate performance portable OpenCL
kernels. Additionally, they show that over-optimisation hurts performance portability.

Of the benchmarks presented in Section 2.4, every application presented in the Rodinia Bench-
mark Suite requires a local workgroup to be passed. In the OpenDwarfs set of benchmarks, 9
out of 14 allow for local workgroup tuning. Autotuning frameworks could be readily used
with the Extended OpenDwarfs Benchmark Suite along with the other suites mentioned,
however, since performance portability has been shown by others it is not the goal of this
thesis.

2.6.2 Phase-Shifting

A program phase is defined as a set of intervals (or slices in time) during execution that has
similar behaviour [92]. Therefore, the term phase-shifting refers to the change of the execution
of a program with temporal adjacency such that the program experiences time-varying effects.
Sherwood et al. [93] observe that common system design and optimisation focus heavily on
the assume average system behaviour. They propose however instead programs should be
modelled and optimised for phase-based program behaviour. The approach outlined states
that phase-behaviour can be profiled quickly using block vector [94] profiles (a vector of
per-element counts, where each element is the number of times a code block has been entered
over a given interval) and off-line classification.

An assumption in the literature is that OpenCL kernels are largely unaffected by program
phase-shift. Rather, the program as a whole will doubtlessly experience phase-shifts, compiling
an OpenCL kernel code which is an active component of all OpenCL programs will heavily
utilise the host CPU device, and when a kernel is executed and the host waits for the device
to finish, CPU utilisation is low. The kernel in execution itself will experience very little

22 Background Information and Related Work

differences in phases since by their very nature OpenCL kernels are small compartmentalised
sections of computation. For example, if a kernel executed on a particular accelerator device
is memory bound, it will consistently be memory bound. If the accelerator experiences
consistent stalls on repeated branch mispredictions, this is consistent throughout the kernels
entire execution.

2.6.3 Measurements

The studies presented in this thesis require the use of tools to perform high-accuracy and
low-overhead measurements. We use LibSciBench [12] for performance measurements of
OpenCL kernels. It allows high precision timing events to be collected for statistical analysis.
Additionally, it offers a high-resolution timer in order to measure short running kernel codes,
reported with one cycle resolution and roughly 6 ns of overhead. Throughout Chapter 3
LibSciBench was intensively used to record timings, energy usage and hardware events, which
it collects via Performance Application Programming Interface (PAPI) [95] counters.

2.7 Offline Ahead-of-Time Analysis

Offline Analysis does not operate on running code, for our purposes, the analysis provides a
detailed examination of the structure of the code. Ahead-of-time indicates that this analysis is
done before the program is executed – in the real-world usage of the code. The combination
of these two terms is directly applicable to OpenCL SPIR code – which is based on LLVM
– since LLVM is well suited to performing ahead-of-time optimised native code generation
[96]. Additionally, SPIR is hardware agnostic and ISA-independent as these features can be
computed directly on the intermediate representation, that is, before a binary for a device is
generated. Our analysis, presented with AIWC in Chapter 4 outlines a methodology to collect
features of programs before they are deployed. These features are embedded into the header of
the SPIR code – as a comment – which can be evaluated at runtime on supercomputing systems
to be used by the scheduler to provide useful information around scheduling, specifically,
determining on which device the kernel should be executed.

Muralidharan et al. [97] use offline ahead-of-time analysis with Oclgrind to collect an
instruction histogram of each OpenCL kernel execution in order to generate an estimate of
the roofline model analysis for each given accelerator. The resultant tool-flow methodology is
used to analyse and track the performance over three distinct heterogeneous platforms and
results in a metric to characterise performance.

Oclgrind is an OpenCL device simulator developed by Price and McIntosh-Smith [9] capable
of performing simulated kernel execution. It operates on a restricted LLVM IR known as
Standard Portable Intermediate Representation (SPIR) [98], thereby simulating OpenCL kernel
code in a hardware agnostic manner. This architecture independence allows the tool to

§2.8 Program Diversity Analysis and Characterization 23

uncover many portability issues when migrating OpenCL code between devices. Additionally,
Oclgrind comes with a set of tools to detect runtime API errors, race conditions and invalid
memory accesses, and generate instruction histograms. AIWC is added as a tool to Oclgrind
and leverages its ability to simulate OpenCL device execution using LLVM IR codes; this
allows selected metrics to be collected by monitoring events during simulation, these metrics
then indicate Architecture-Independent Workload Characteristics. Our work on AIWC is built
on offline ahead-of-time analysis techniques and is presented in Chapter 4.

2.8 Program Diversity Analysis and Characterization

Program Diversity Analysis has been used to justify the inclusion of an application into a
benchmark suite. Principal Component Analysis (PCA) on virtual machine and hardware
(PAPI) events have been used to demonstrate program diversity [99][100]. Often this work is
manually performed by those assembling the benchmark suite, indeed, much of the motivation
for curating OpenCL applications in Rodinia [69], OpenDwarfs [70] and SHOC [73] was to have
real-world scientific problems that represented regular workloads of HPC and SC systems.

The use of a vector-space or feature-space in order to classify the characteristics of parallel
programs was performed by Meajil, El-Ghazawi and Sterling in 1997 [101]. The target of
this work was to determine the major factors in modelling performance between parallel
computer architectures in an architecture-independent manner. The focus of this section is
examining the existing literature around the characterisation of an application in terms of
dwarf and metrics and concludes with how these characterisation techniques have been used
when assembling benchmark suites.

2.8.1 Microarchitecture-Independent Workload Characterization

Hoste and Eeckout [102] show that although conventional microarchitecture-dependent
characteristics are useful in locating performance bottlenecks [103], they are misleading
when used as a basis on which to differentiate benchmark applications. Microarchitecture-
independent workload characterization and the associated analysis tool, known as MICA,
was proposed to collect metrics to characterize an application independent of particular
microarchitectural characteristics. Architecture-dependent characteristics typically include
instructions per cycle (IPC) and miss rates – cache, branch misprediction and translation look-
aside buffer (TLB) – and are collected from hardware performance counter results, typically
PAPI. These characteristics fail to distinguish between inherent program behaviour and its
mapping to specific hardware features, ignoring critical differences between architectures
such as pipeline depth and cache size. The MICA framework collects independent features
including instruction mix, instruction-level parallelism (ILP), register traffic, working-set size,
data stream strides and branch predictability. These feature results are collected using the Pin
[105] binary instrumentation tool. In total 47 microarchitecture-independent metrics are used

24 Background Information and Related Work

to characterize an application code. To simplify analysis and understanding of the data, the
authors combine principal component analysis with a genetic algorithm to select eight metrics
which account for approximately 80% of the variance in the data set.

A caveat in the MICA approach is that the results presented are not ISA-independent nor
independent from differences in compilers. Additionally, since the metrics collected rely
heavily on Pin instrumentation, characterization of multi-threaded workloads or accelerators
are not supported. As such, it is unsuited to conventional supercomputing workloads which
make heavy use of parallelism and accelerators.

Lee et al. [106] present an evaluation of the performance of OpenCL applications on modern
on out-of-order multicore CPUs. They collect CPU specific metrics around API and scheduling
overheads, instruction-level parallelism, address space, data location, data locality, and vector-
ization which may serve as an indication of performance optimization metrics. These metrics
could potentially be used by a developer to modify codes to achieve better performance on
CPUs.

2.8.2 Architecture Independent Workload Characterization

Recently, Shao and Brooks [107] have since extended the generality of the MICA to be ISA
independent. The primary motivation for this work was in evaluating the suitability of
benchmark suites when targeted on general purpose accelerator platforms. The proposed
framework briefly evaluates eleven SPEC benchmarks and examines five ISA-independent
features/metrics. Namely, number of opcodes (e.g., add, mul), the value of branch entropy –
a measure of the randomness of branch behaviour, the value of memory entropy – a metric
based on the lack of memory locality when examining accesses, the unique number of static
instructions, and the unique number of data addresses.

Shao and Brooks [107] also present a proof of concept implementation (WIICA) which uses an
LLVM IR Trace Profiler to generate an execution trace, from which a python script collects
the ISA independent metrics. Any results gleaned from WIICA are easily reproducible, the
execution trace is generated by manually selecting regions of code built from the LLVM IR
Trace Profiler. Unfortunately, use of the tool is non-trivial given the complexity of the toolchain
and the nature of dependencies (LLVM 3.4 and Clang 3.4). Additionally, WIICA operates
on C and C++ code, which cannot be executed directly on any accelerator device aside from
the CPU. Our work on Architecture-Independent Workload Characterisation or known as
(AIWC) is presented in Chapter 4 and extends Shao’s work to the broader OpenCL setting to
collect architecture independent metrics from a hardware-agnostic language – OpenCL. We
also added metrics such as Instructions To Barrier (ITB), Vectorization (SIMD) indicators and
Instructions Per Operand (SIMT) in order to perform a similar analysis for concurrent and
accelerator workloads.

AIWC relies on the selection of the instruction set architecture (ISA)-independent features de-
termined by Shao and Brooks [107], which in turn builds on earlier work in microarchitecture-

§2.8 Program Diversity Analysis and Characterization 25

independent workload characterization discussed in Section 2.8.1.

The branch entropy measure used by Shao and Brooks [107] was initially proposed by Yokota
[108] and uses Shannon’s information entropy to determine a score of Branch History Entropy.
De Pestel, Eyerman and Eeckhout [109] proposed an alternative metric, average linear branch
entropy metric, to allow accurate prediction of miss rates across a range of branch predictors.
As their metric is more suitable for architecture-independent studies, we adopt it for our work
on AIWC.

Caparrós Cabezas and Stanley-Marbell [110] present a framework for characterizing in-
struction and thread-level parallelism, thread parallelism, and data movement, based on
cross-compilation to a MIPS-IV simulator of an ideal machine with perfect caches and branch
prediction and unlimited functional units. Instruction-level and thread-level parallelism are
identified through analysis of data dependencies between instructions and basic blocks.

2.8.3 Workload Characterization for Benchmark Diversity Analysis

In contrast to our proposed multidimensional workload characterization, models such as
Roofline [111] and Execution-Cache-Memory [112] seek to characterize an application based
on one or two limiting factors such as memory bandwidth. The advantage of these approaches
is the simplicity of analysis and interpretation. We view these models as capturing a ‘principal
component’ of a more complex performance space; we claim that by allowing the capture
of additional dimensions, AIWC supports performance prediction for a greater range of
applications. In other words, there is less bias introduced when used for prediction since there
is no cherry-picking of features and all are provided directly into a model. However, this is
discussed in greater detail in the next section.

Several benchmarks have performed characterisation of applications in the past, this has been
primarily, at least historically motivated, for diversity analysis to justify the inclusion of an
application into a benchmark suite. Rodinia used MICA as the diversity analysis framework
[102]. The OpenDwarfs benchmark suite has applications which have been manually classified
as dwarfs and any characterisation into this taxonomy is based largely intuition. Some of
the shared applications ported from the Rodinia Benchmark suite cluster microarchitecture-
dependent characteristics of applications into dwarfs. Unfortunately, this approach has the
same limitations as those presented in Section 2.8.1.

For this reason, Chapter 4 of this thesis apart from extending the OpenDwarfs Benchmark
suite also adds formal verification of the diversity characterisation. To some extent Chapter 5
does this even more formally by generating and clustering the feature-space of all applications
grouped as dwarfs. The evaluation on the feature-space is critical to the inclusion of particular
extended OpenDwarfs applications and is performed in Chapter 4.

26 Background Information and Related Work

2.9 Performance Prediction for Heterogeneous Architectures

Predicting the performance of a particular application on a given device is challenging
due to complex interactions between the computational requirements of the code and the
capabilities of the target device. Certain classes of application are better suited to a certain
type of accelerator [113], and choosing the wrong device results in slower and more energy-
intensive computation. Fowers et al. [114] show how problem size and optimizations and
algorithm implementations affect energy performance on a range of accelerators. They use
1D convolutions as the area of study and found the FPGA was the most energy efficient
option for large signal and small kernel sizes, GPUs achieved a comparable performance
for larger kernels and the CPU implementation was fastest when signal and kernel sizes
were small where accelerator devices could not amortize high bus-transfer costs. The GPU
had the largest variation in energy efficiency in the time-domain tests and shows it can be
an inefficient candidate if given smaller problem sizes and the characteristics of the kernel
are ill-suited. The large range of inputs and the equally variable performance indicates
that accurate performance prediction is critical to making optimal scheduling decisions in a
heterogeneous supercomputing environment, and the associated potential energy savings are
large.

Lyerly [115] execute a subset of applications from OpenDwarfs to demonstrate that not one
accelerator has the fastest execution time for all benchmarks. This contribution focuses on
developing a schedule to delegate the most appropriate accelerator for a given program.
This was achieved by developing a partitioning tool to separate computationally intensive
OpenMP regions from C, extracting to and building a predictive model based on the past
history of the programs executing on the accelerators. We broaden their scheduling analysis
in Chapter 5 and claim that all benchmarks encompassing a dwarf will perform optimally on
one accelerator type, but identify that one type of accelerator is non-optimal for all dwarfs.

Hoste et al. [116] show that the prediction of performance can be based on inherent program
similarity. In particular, they show that the metrics collected from a program executing on a
particular instruction set architecture (ISA) with a specific compiler offers a relatively accurate
characterization of workload for the same application on a totally different micro-architecture.
Che et al. [69] broaden this finding by performing analysis on a single threaded CPU version
and find that a benchmark application maintains the underlying set of instructions – the
composition of the application is largely the same.

Partial execution, as introduced by Yang et al. [117] enables low-cost performance estimates
over a wide range of execution platforms. Here a short portion of parallel code is executed
and, since parallel codes are iterative behave predictably after the initial startup portion. An
important restriction for this approach is it requires execution on each of the accelerators for a
given code, which may be complicated to achieve using common HPC scheduling systems.

An alternative performance prediction approach is given by Carrington et al. [118]. Their
solution generates two separate models each requiring two fundamental components: firstly,

§2.9 Performance Prediction for Heterogeneous Architectures 27

a machine profile of each system generated by running micro-benchmarks to probe simple
performance attributes of each machine; and secondly, application signatures generated by
instrumented runs which measure block information such as floating-point utilization and
load/store unit usage of an application. In their method, no training takes place and the
micro-benchmarks were developed with CPU memory hierarchy in mind, thus it is unsuited
to a broader range of accelerator devices. There are also many components and tools in use,
for instance, network traffic is interpreted separately and requires the communication model
to be developed from a different set of network performance capabilities, which needs more
micro-benchmarks.

Karami et al. [119] design a performance model for Nvidia GPUs from OpenCL kernels to aid
developers to locate GPU specific performance bottlenecks in their codes. This model depends
on the collection of GPU performance counters over a range of benchmarks, these counters are
then provided to a regression model with principal component analysis to develop a model to
show how different GPU parameters account for applications performance bottlenecks. The
model predicts application behaviour with good accuracy (91%) and when coupled with a
larger database of collections can be used to predict their likely performance bottlenecks of
unknown applications based on similarities with those previously collected. A caveat of this
approach is that collecting performance counters as a basis for a model is microarchitecture
specific – where counters collected from a system can range wildly between the generation of
processor and is not portable between vendors.

A GPU power-estimation model was developed by Wu et al. [120] which also uses hardware
performance counter values to train a machine learning model. Values for a new application
are provided to a neural network at runtime to predict a scaling curve and correspond-
ing estimates around the performance and power of the application under different GPU
configurations. OpenCL kernels are examined over different AMD GPUs throughout this
investigation and the major factors contributing to the scaling curve was determined to be
performance counters collected over varying core frequencies, memory bandwidths, and
compute unit (CU) counts. The model’s performance was accurate to within 15% compared to
real hardware and power estimates to within 10%. These models are based on AMD vendor
specific counters which limit the scope of this work, however, the hardware configurations
should be considered in estimating accelerator performance and power usage.

The X-MAP tool is proposed by Shetty [121] to achieve performance prediction when porting
applications to accelerators. A Machine Learning based inference model is presented to
predict the performance of an application on the accelerator and programming language –
either CUDA or OpenCL. Hardware counters are collected and are used as inputs into a
Random Forest Classification Model. Most of the efforts of this tool are on locating bottlenecks
in applications and committing the developer to target a specific implementation and device
vendor. Thus this work is orthogonal to our aim of scheduling OpenCL kernels given a variety
of available devices.

Che and Skadron [122] propose a set of first-order metrics that most influence GPU perfor-

28 Background Information and Related Work

mance and scalability that are separate from those bound to CPUs. Hardware counters are
used to collect and generate these metrics, which are then used in a performance prediction
model. Similarly, a GPU performance modelling framework is proposed by Boyer, Meng and
Kumaran [123] which predicts both kernel execution time and data transfer time. The main
motivation of this work is to examine a CUDA kernels potential, in terms of performance,
before it is optimized. This work shows that the inclusion of transfer time is significant when
improving a predictive models accuracy and is especially useful for predicting speed-up on
accelerators located over slower interconnect, such as PCIe – including the data transfer time
in the model improved prediction error from 255% to 9%.

It is intuitive that the collection of characteristics a program collected using a simulator – such
as Oclgrind discussed in Section 2.7 – offers a more general purpose, abstract, representation
of the composition of the kernel and is indifferent to which accelerator it is ultimately mapped.
This device abstraction offers a more accurate architecture agnostic set of metrics for an
application workload, which, in turn, can be used as a basis for performance prediction on
general accelerators.

2.10 Scheduling for Heterogeneous HPC Systems

Augonnet et al. [124] propose a task scheduling framework for efficiently issuing work
between multiple heterogeneous accelerators on a per-node basis. They focus on the dynamic
scheduling of tasks while automating data transfers between processing units to better utilise
GPU-based HPC systems. Much of this work is placed on evaluating the scaling of two
applications over multiple nodes – each of which are comprised of many GPUs. Unfortunately,
the presented methodology requires code to be rewritten using their MPI-like library. The
algorithms presented to automate data movement should be reused for scheduling of OpenCL
kernels to heterogeneous accelerator systems.

Existing works [125], [126], [127], [128], have addressed heterogeneous distributed system
scheduling and in particular the use of Directed Acyclic Graphs to track dependencies of
high priority tasks. Provided the parallelism of each dependency is expressed as OpenCL
kernels, the model proposed here can be used to improve each of these scheduler algorithms
by providing accurate estimates of execution time for each task for each potential accelerator
on which the computation could be performed. In Chapter 5, we propose an alternative
model which allows accurate execution time predictions of OpenCL kernels on a wide range
of architecturally-diverse accelerators. This methodology uses features from AIWC – from
Chapter 4 – to form a basis for a predictive model bound to run-times measured or the
benchmark codes presented in Chapter 3.

Shelepov et al. [129] propose the Heterogeneity-Aware Signature-Supported (HASS) scheduler
– a scheduling algorithm that matching threads to the most appropriate CPU cores. The
architectural properties of an application are presented as signatures – a compact summary of

§2.10 Scheduling for Heterogeneous HPC Systems 29

the applications memory-boundedness, available ILP, sensitivity to variations in clock speed.
These are generated offline and can be embedded into the program binary. The scheduler then
matches these signatures to the most appropriate core. HASS is targeted on heterogeneous
CPU cores and is evaluated over two big.LITTLE type, asymmetric single-ISA, configurations –
an Intel Xeon X5365 and AMD Opteron 8356. CPU systems were treated as heterogeneous by
changing the clock frequencies of individual cores. The evaluation examines the performance
of automatic mapping of memory-bound threads to slow / smaller cores leaving threads
that are capable of fully utilizing the faster cores. A caveat of this approach is that other
accelerators are not considered and as such the signatures are not architecture-independent.
However, this the proposed methodology is the most similar and is the predecessor to our
work.

Lee and Wu [130] directly tackle the problem of scheduling OpenCL applications to the most
suitable accelerator device. They propose HeteroPDP – a scalable performance degradation
predictor – to dynamically balance the execution time slowdown when co-locating multiple
applications in the same heterogeneous system. The device selection decision is based on
individual kernel metrics such as the degree of parallelism and divergence in an application
and by the amount of data movement overhead between the host system and the selected
accelerator. They conclude that designing a scheduler which considers the effect of memory
interference between processes provides improvements. A major focus is on schedulers and
orchestrating these workloads – we believe the accuracy of our predictive framework [131]
based on AIWC metrics is complementary to this work and would only improve the accuracy
of their scheduler.

Chapter 3

Extending the OpenDwarfs
Benchmark Suite

The purpose of this chapter is to outline the development of a testbed that can be used to
evaluate approaches to workload characterization and device performance prediction that are
proposed in later chapters. Key characteristics of the testbed are that it should:

1. comprise compute-intensive kernels that are representative of real scientific application
codes;

2. support multiple devices;
3. support multiple problem sizes so it can be applied to embedded systems as well as top

end scientific processors; and
4. span as many of the dwarfs as possible.

In the related work, Section 2.4, three potential benchmark suites were considered for the
testbed: SHOC [73], Rodinia [69] and OpenDwarfs [70]. SHOC is focused on microbenchmarks
rather than complete kernels as required here. Rodinia, while focused on complete kernels,
is primarily developed as a benchmark suite to compare languages and does not cover all
dwarfs. OpenDwarfs has the widest coverage and is the best candidate for our purposes. The
problems with OpenDwarfs is that the current release:

• Includes architecture specific optimisations in many of the benchmarks, which impact
the functionality when executed on other accelerators and often result in crashes.

• Has several parameters fixed, which limits the performance portability on other devices.
• Does not currently support multiple problem sizes, which impacts benchmark perfor-

mance on accelerators with a memory hierarchy.

In this chapter, we show enhancements made to OpenDwarfs to remedy these issues; and
present the Extended OpenDwarfs benchmark suite (EOD) to provide a testbed of repre-
sentative codes required for the bulk of this thesis. The benchmarks and the associated
measurements of execution time presented in this chapter will be later used for workload
characterization, performance prediction and ultimately scheduling, but these sophisticated
studies first need simple empirical data. First, we review the existing OpenDwarfs Benchmark

30

§3.1 Extending the OpenDwarfs Benchmark Suite 31

Suite, we then discuss our enhancements. The experimental setup, methodology and results
are then reported concluding with a discussion of future work. Results and analysis are
reported for twelve benchmark codes on a diverse set of architectures – three Intel CPUs, five
Nvidia GPUs, six AMD GPUs and a Xeon Phi. This chapter is based on our publication in
the Proceedings of the 47th International Conference on Parallel Processing Companion, ICPP
2018 [132].

3.1 Extending the OpenDwarfs Benchmark Suite

The OpenDwarfs benchmark suite comprises a variety of OpenCL codes, classified according to
the Dwarf Taxonomy [15]. The original suite focused on collecting representative benchmarks
for scientific applications, with a thorough diversity analysis to justify the addition of each
benchmark to the corresponding suite. We extend these efforts to achieve a full representation
of each dwarf, both by integrating other benchmark suites and adding custom kernels. It
lacked coverage across all dwarfs, specifically, no representative application of the Map Reduce
dwarf was identified, and the Spectral Methods Dwarf had an FFT application that either
generated incorrect results or crashed.

The K-Means clustering benchmark was originally classified as the Dense Linear Algebra
Dwarf, however, we believe the K-means clustering algorithm is better represented by the
Map Reduce Dwarf. Dense Linear Algebra applications generally use unit-stride memory
accesses to read data from rows and strided accesses to read data from columns, while Map
Reduce calculations are considered embarrassingly parallel where a single function executes
on independent data sets with outputs that are eventually combined to form a single or small
number of results. K-means is an iterative algorithm which groups a set of points into clusters,
such that each point is closer to the centroid of its assigned cluster than to the centroid of
any other cluster. Each step of the algorithm assigns each point to the cluster with the closest
centroid, then relocates each cluster centroid to the mean of all points within the cluster.
Execution terminates when no clusters change membership between iterations. Starting
positions for the centroids are determined randomly. As such, we reclassified K-Means to the
Map Reduce dwarf in EOD. The algorithm and its implementation are further discussed in
Section 3.2.5.

For the Spectral Methods dwarf, the original OpenDwarfs version of the FFT benchmark was
complex, with several code paths that were not executed for the default problem size, and
returned incorrect results or failures on some combinations of platforms and problem sizes
we tested. We replaced it with a simpler high-performance FFT benchmark created by Eric
Bainville [133], which worked correctly in all our tests. We have also added a 2-D discrete
wavelet transform from the Rodinia suite [69] – with modifications to improve portability. The
final coverage of all the dwarfs and their benchmarks is presented in Table 3.1.

Marjanović et al. [134] argue that the selection of problem size for HPC benchmarking critically

32 Extending the OpenDwarfs Benchmark Suite

Table 3.1: List of Extended OpenDwarfs Applications and their respective dwarfs.

Dwarf Extended OpenDwarfs Application
Dense Linear Algebra LU Decomposition
Sparse Linear Algebra Compressed Sparse Row
Spectral Methods DWT2D, FFT
N-Body Methods Gemnoui
Structured Grid Speckle Reducing Anisotropic Diffusion
Unstructured Grid Computational Fluid Dynamics
Map Reduce K-Means
Combinational Logic Cyclic-Redundancy Check
Graph Traversal Breadth First Search
Dynamic Programming Smith-Waterman
Backtrack and Branch and Bound N-Queens
Graphical Methods Hidden Markov Models
Finite State Machines Temporal Data Mining

affects which hardware properties are relevant. We have observed this to be true across a
wide range of accelerators, therefore we have enhanced the OpenDwarfs benchmark suite to
support running different problem sizes for each benchmark. EOD supports four problem
sizes based on the working memory footprint of each benchmark in execution. These are
tiny, small, medium and large, and were selected in accordance to levels in the CPU memory
hierarchy – which is the type of accelerator most affected by size. In enabling multiple problem
sizes, we needed to: i) generate input sets for multiple problem sizes, ii) fix issues with code
that has been developed on GPU but show memory violations on the CPU, and, iii) determine
which parameters could be fixed and which need to be adjusted to have a different working
memory footprint.

Where possible each benchmark now supports running with arbitrary problem sizes. The
exceptions are Gemnoui, N-Queens, Hidden Markov Models and Smith-Waterman, where we
only offer a fixed problem size for these applications. This is because specifying problem size
according to working memory footprint does not work for these benchmarks – for instance N-
Queens has a small working memory footprint and this benchmark is highly compute-bound,
increasing the number of queens placed on a board is computationally intense at 20 queens,
increasing the problem size to several thousand queens to satisfy the memory conditions
for small sized benchmarks would take several orders of magnitude longer than the other
benchmarks to solve.

We also added python scripts with these fixed parameters to allow the rapid collection of
performance results on new accelerators. To improve reproducibility of results, we also
modified each benchmark to execute in a loop for a minimum of two seconds, to ensure
that sampling of execution time and performance counters was not significantly affected by
operating system noise.

Our philosophy for the benchmark suite is that firstly, it must run on all devices, and secondly,
it should run well on them. To this end, we removed hardware specific optimizations from
codes that would either diminish performance or crash the application entirely when executed
on other devices.

§3.2 Experimental Setup 33

Table 3.2: Hardware utilized during the Extended OpenDwarfs Benchmark Suite evaluation.

Name Vendor Type Series
Core

Count

Clock
Frequency

(MHz) (min/-
max/turbo)

Cache (KiB)
(L1/L2/L3)

TDP
(W)

Launch
Date

Xeon E5-2697 v2 Intel CPU Ivy Bridge 24∗ 1200/2700/3500 32/256/30720 130 Q3 2013
i7-6700K Intel CPU Skylake 8∗ 800/4000/4300 32/256/8192 91 Q3 2015
i5-3550 Intel CPU Ivy Bridge 4∗ 1600/3380/3700 32/256/6144 77 Q2 2012
Titan X Nvidia GPU Pascal 3584† 1417/1531/– 48/2048/– 250 Q3 2016
GTX 1080 Nvidia GPU Pascal 2560† 1607/1733/– 48/2048/– 180 Q2 2016
GTX 1080 Ti Nvidia GPU Pascal 3584† 1480/1582/– 48/2048/– 250 Q1 2017
K20m Nvidia GPU Kepler 2496† 706/–/– 64/1536/– 225 Q4 2012
K40m Nvidia GPU Kepler 2880† 745/875/– 64/1536/– 235 Q4 2013
FirePro S9150 AMD GPU Hawaii 2816∥ 900/–/– 16/1024/– 235 Q3 2014
HD 7970 AMD GPU Tahiti 2048∥ 925/1010/– 16/768/– 250 Q4 2011
R9 290X AMD GPU Hawaii 2816∥ 1000/–/– 16/1024/– 250 Q3 2014
R9 295x2 AMD GPU Hawaii 5632∥ 1018/–/– 16/1024/– 500 Q2 2014
R9 Fury X AMD GPU Fuji 4096∥ 1050/–/– 16/2048/– 273 Q2 2015
RX 480 AMD GPU Polaris 4096∥ 1120/1266/– 16/2048/– 150 Q2 2016
Xeon Phi 7210 Intel MIC KNL 256‡ 1300/1500/– 32/1024/– 215 Q2 2016
∗ HyperThreaded cores
† CUDA cores
∥ Stream processors
‡ Each physical core has 4 hardware threads per core, thus 64 cores

To understand benchmark performance, it is useful to be able to collect hardware performance
counters associated with each timing segment. LibSciBench is a performance measurement
tool which allows high precision timing events to be collected for statistical analysis [12]. It
offers a high-resolution timer in order to measure short running kernel codes, reported with
one cycle resolution and roughly 6 ns of overhead. We used LibSciBench to record timings
in conjunction with hardware events, which it collects via PAPI [95] counters. We modified
the applications in the OpenDwarfs benchmark suite to insert library calls to LibSciBench to
record timings and PAPI events for the three main components of application time: kernel
execution, host setup and memory transfer operations. Through PAPI modules such as Intel’s
Running Average Power Limit (RAPL)[135] and Nvidia Management Library (NVML) [136],
LibSciBench also supports energy measurements, for which we report preliminary results in
this chapter.

3.2 Experimental Setup

3.2.1 Hardware

The experiments were conducted on a varied set of 15 hardware platforms: three Intel CPU
architectures, five Nvidia GPUs, six AMD GPUs, and one MIC (Intel Knights Landing Xeon
Phi). The selection of hardware was largely determined by the availability of these systems.
CPU, Consumer GPU, HPC/Scientific GPUs – the K20m, K40m and FirePro GPUs – and
MIC type accelerators are included and span 6 years of microarchitecture changes. Key

34 Extending the OpenDwarfs Benchmark Suite

characteristics of the test platforms are presented in Table 3.2. The L1 cache size should be
read as having both an instruction cache and a data cache of the size displayed. For Nvidia
GPUs, the L2 cache size reported is the size of the L2 cache per SM multiplied by the number
of SMs. For the Intel CPUs, hyper-threading was enabled and the frequency governor was set
to performance.

3.2.2 Software

OpenCL version 1.2 was used for all experiments. On the CPUs, we used the Intel OpenCL
driver version 6.3, provided in the 2016-R3 opencl-sdk release. On the Nvidia GPUs we used
the Nvidia OpenCL driver version 375.66, provided as part of CUDA 8.0.61, AMD GPUs used
the OpenCL driver version provided in the amdappsdk v3.0.

The Knights Landing (KNL) architecture used the same OpenCL driver as the Intel CPU
platforms, however, the 2018-R1 release of the Intel compiler was required to compile for the
architecture natively on the host. Additionally, due to Intel removing support for OpenCL on
the KNL architecture, some additional compiler flags were required. Unfortunately, as Intel
has removed support for AVX2 vectorization (using the -xMIC-AVX512 flag), vector instructions
use only 256-bit registers instead of the wider 512-bit registers available on KNL. This means
that floating-point performance on KNL is limited to half the theoretical peak.

GCC version 5.4.0 with glibc 2.23 was used for the Skylake i7 and GTX 1080, GCC version
4.8.5 with glibc 2.23 was used on the remaining platforms. OS Ubuntu Linux 16.04.4 with
kernel version 4.4.0 was used for the Skylake CPU and GTX 1080 GPU, Red Hat 4.8.5-11 with
kernel version 3.10.0 was used on the other platforms.

As OpenDwarfs has no stable release version, it was extended from the last commit by the
maintainer on 26 Feb 2016. [137] LibSciBench version 0.2.2 was used for all performance
measurements.

3.2.3 Measurements

We measured execution time and energy for individual OpenCL kernels within each bench-
mark. Each benchmark run executed the application in a loop until at least two seconds had
elapsed, and the mean execution time for each kernel was recorded. Each benchmark was run
50 times for each problem size (see §3.2.4) for both execution time and energy measurements.
A sample size of 50 was used to ensure that sufficient statistical power β = 0.8 would be
available to detect a significant difference in means on the scale of half standard deviation of
separation. This sample size was computed using the t-test power calculation over a normal
distribution. For each benchmark we also measured memory transfer times between host and
device, however, only the kernel execution times and energies are presented here. Energy
measurements were taken on Intel platforms using the RAPL PAPI module, and on Nvidia
GPUs using the NVML PAPI module.

§3.2 Experimental Setup 35

3.2.4 Problem Size

This section outlines the choice of problem size, defines the “tiny”, “small”, “medium” and
“large” sizes and describes how they are influenced by cache size. A discussion around each
benchmark, how it operates and how it was extended is presented. This section concludes
with the arguments to reproduce our selected problem sizes for the EOD benchmarks.

For each benchmark, four different problem sizes were selected, namely tiny, small, medium
and large. These problem sizes are based on the memory hierarchy of the Skylake CPU.
Specifically, tiny should just fit within L1 cache, on the Skylake this corresponds to 32 KiB
of data cache, small should fit within the 256 KiB L2 data cache, medium should fit within
8192 KiB of the L3 cache, and large must be much larger than 8192 KiB to avoid caching and
operate out of main memory.

The memory footprint was verified for each benchmark by printing the sum of the size of all
memory allocated on the device. The applications examined in this work are presented in
Table 3.1 alongside their representative dwarf from the Berkeley Taxonomy.

For this study, problem sizes were not customized to the memory hierarchy of each platform,
since the CPU is the most sensitive to cache performance. CPUs hide memory access latency
through a large and deep cache hierarchy, while GPUs solve the same problem by having
a larger number of threads which can be quickly swapped out while waiting on memory
operations. For this reason, GPUs are less impacted by problem size – as long as it fits on
device memory – and therefore GPU cache size was not considered while setting problem
sizes. Also, note for these CPU systems the L1 and L2 cache sizes are identical, and since we
ensure that large is at least 4× larger than L3 cache, we are guaranteed to have last-level cache
misses for the large problem size.

The methodology to determine the appropriate size parameters is demonstrated in the k-means
benchmark.

3.2.5 kmeans

K-means is an iterative algorithm which groups a set of points into clusters, such that
each point is closer to the centroid of its assigned cluster than to the centroid of any other
cluster. Each step of the algorithm assigns each point to the cluster with the closest centroid,
then relocates each cluster centroid to the mean of all points within the cluster. Execution
terminates when no points move between clusters between iterations. Starting positions for
the centroids are determined randomly. The OpenDwarfs benchmark previously required
the object features to be read from a previously generated file. We extended the benchmark
to support the generation of a random distribution of points. This was done to more fairly
evaluate cache performance since repeated runs of clustering on the same feature space
(loaded from file) would deterministically generate similar caching behaviour. For all problem
sizes, the number of clusters is fixed at 5.

36 Extending the OpenDwarfs Benchmark Suite

Given a fixed number of clusters, the parameters that may be used to select a problem size
are the number of points Pn, and the dimensionality or number of features per point Fn. In
the kernel for k-means, there are three large one-dimensional arrays passed to the device,
namely feature, cluster and membership. In the feature array which stores the unclustered
feature space, each feature is represented by a 32-bit floating-point number, so the entire
array is of size Pn × Fn × sizeof (float). cluster is the working and output array to store the
intermediately clustered points, it is of size Cn × Fn × sizeof (float), where Cn is the number of
clusters. membership is an array indicating whether each point has changed to a new cluster
in each iteration of the algorithm, it is of size Pn × sizeof (int), where sizeof (int) is the number
of bytes to represent an integer value. Thereby the working kernel memory, in KiB, is:

size (feature)+ size (membership)+ size (cluster)
1024

(3.1)

Using this equation, we can determine the largest problem size that will fit in each level of
cache. The tiny problem size is defined to have 256 points and 30 features; from Equation
3.1, the total size of the main arrays is 31.5 KiB, slightly smaller than the 32 KiB L1 cache. The
number of points is increased for each larger problem size to ensure that the main arrays
fit within the lower levels of the cache hierarchy, measuring the total execution time and
respective caching events. The tiny, small and medium problem sizes in the first row of Table
3.3 correspond to L1, L2 and L3 cache respectively. The large problem size is at least four
times the size of the last-level cache – in the case of the Skylake, at least 32 MiB – to ensure
that data are transferred between main memory and cache.

For brevity, cache miss results are not presented in this chapter but were used to verify the
selection of suitable problem sizes for each benchmark. The procedure to select problem size
parameters is specific to each benchmark but follows a similar approach to k-means.

3.2.6 lud, fft, srad, crc, nw

The LU-Decomposition lud, Fast Fourier Transform fft, Speckle Reducing Anisotropic
Diffusion srad, Cyclic Redundancy Check crc and Needleman-Wunsch nw benchmarks did
not require additional data sets. Where necessary these benchmarks were modified to generate
the correct solution and run on modern architectures. Correctness was examined either by
directly comparing outputs against a serial implementation of the codes (where one was
available) or by adding utilities to compare norms between the experimental outputs.

3.2.7 csr

The Compressed Sparse Row format is used to store sparse matrices by storing only non-zero
values and their positions. It allows for large space savings compared to a dense matrix
format, but the algorithm adds computationally intensive lookup steps to process the data.

§3.2 Experimental Setup 37

Three different arrays are used to track the locations and values in a matrix. The benchmark
implementation performs a number of matrix operations such as computing the Laplacian
and performing a binary search over the irregularly spaced data. It has been extended by
using the createcsr application to create 99.5% sparse matrices of our four selected problem
sizes.

3.2.8 dwt

Two-Dimensional Discrete Wavelet Transform is commonly used in image compression. It has
been extended to support loading of Portable PixMap (.ppm) and Portable GrayMap (.pgm)
image format and storing Portable GrayMap images of the resulting DWT coefficients in a
visual tiled fashion. The input image dataset for various problem sizes was generated by
using the resize capabilities of the ImageMagick application. The original gum leaf image is
the large sample size with a ratio of 3648× 2736 pixels and was down-sampled to 1152× 864
for medium, 200× 150 for small and 72× 54 for the tiny problem size.

3.2.9 gem, nqueens, hmm, swat

For four of the benchmarks, we were unable to generate different problem sizes to properly
exercise the memory hierarchy.

Gemnoui gem is an n-body-method based benchmark which computes electrostatic poten-
tial of biomolecular structures. Determining suitable problem sizes was performed by ini-
tially browsing the National Center for Biotechnology Information’s Molecular Modeling
Database (MMDB)[138] and inspecting the corresponding Protein Data Bank format (pdb) files.
Molecules were then selected based on complexity since the greater the complexity the greater
the number of atoms required for the benchmark and thus the larger the memory footprint.
tiny used the Prion Peptide 4TUT[139] and was the simplest structure, consisting of a single
protein (1 molecule), it had the device side memory usage of 31.3 KiB which should fit in the
L1 cache (32 KiB) on the Skylake processor. small used a Leukocyte Receptor 2D3V[140] also
consisting of 1 protein molecule, with an associated memory footprint of 252KiB. medium
used the nucleosome dataset originally provided in the OpenDwarfs benchmark suite, us-
ing 7498 KiB of device-side memory. large used an X-Ray Structure of a Nucleosome Core
Particle[141], consisting of 8 protein, 2 nucleotide, and 18 chemical molecules, and requiring
10 970.2 KiB of memory when executed by gem. Each pdb file was converted to the pqr atomic
particle charge and radius format using the pdb2pqr[142] tool. Generation of the solvent
excluded molecular surface used the tool msms [143]. Unfortunately, the molecules used
for the medium and large problem sizes contain uninitialized values only noticed on CPU
architectures and as such further work is required to ensure correctness for these larger
problem sizes. Although the small sized results have been collected, to be consistent with the
other fixed sized benchmarks only the tiny problem size is presented. The datasets used for

38 Extending the OpenDwarfs Benchmark Suite

gem and all other benchmarks can be found in this chapter’s associated GitHub repository
[144].

The nqueens benchmark is a good representative of backtrack/branch-and-bound code which
finds valid placements of queens on a chessboard of size n×n, where each queen cannot be
attacked by another. For this code, memory footprint scales very slowly with the increasing
number of queens, relative to the computational cost. Thus it is significantly compute-bound
and only one problem size is tested.

The Baum-Welch Algorithm Hidden Markov Model hmm benchmark represents the Graphical
Models dwarf and did not require additional data sets, however, uninitialized values are
encountered when considering problem sizes larger than tiny. The tiny problem size has been
validated – results are correct – and, as such, it is the only size presented in the evaluation.

Smith-Waterman alignment swat is a variation of the Needleman-Wunsch algorithm, used for
computing local sequence alignment. The original OpenDwarfs suite included a selection of
data files, but no method to generate arbitrarily-sized inputs, as such, only the tiny problem
size is considered.

3.2.10 bfs, cfd, tdm

Results for bfs are not presented due to an error in the OpenDwarfs benchmark code. Results
for cfd and tdm are not presented as the provided datasets were invalid and no dataset
generator was available.

3.2.11 Summary of Benchmark Settings

The problem size parameters for all benchmarks are presented in Table 3.3.

Table 3.3: The different problem sizes in the Extended
OpenDwarfs adjusted by selecting the workload scale pa-
rameter (Φ).

Benchmark tiny small medium large
kmeans 256 2048 65600 131072
lud 80 240 1440 4096
csr 736 2416 14336 16384
fft 2048 16384 524288 2097152
dwt 72x54 200x150 1152x864 3648x2736
srad 80,16 128,80 1024,336 2048,1024
crc 2000 16000 524000 4194304
nw 48 176 1008 4096
gem 4TUT – – –
nqueens 18 – – –
hmm 8,1 – – –
swat 1k1 – – –

§3.3 Results 39

Table 3.4: Program Arguments for benchmarks in
the Extended OpenDwarf Suite.

Benchmark Arguments
kmeans -g -f 26 -p Φ
lud -s Φ
csr† -i Ψ

Ψ = createcsr -n Φ -d 5000 △
fft Φ
dwt -l 3 Φ-gum.ppm
srad Φ1 Φ2 0 127 0 127 0.5 1
crc -i 1000_Φ.txt
nw Φ 10
gem Φ 80 1 0
n-queens Φ
hmm -n Φ1-s Φ2-v s
swat ’queryΦ’ ’sampledbΦ’
△ The -d 5000 indicates density of the matrix in

this instance 0.5% dense (or 99.5% sparse).
† The csr benchmark loads a file generated by
createcsr according to the workload size pa-
rameter Φ; this file is represented by Ψ.

Each Device can be selected in a uniform way between applications using the same notation,
on our sample system Device comprises of -p 1 -d 0 -t 0 for the Intel Skylake CPU, where
p and d are the integer identifier of the platform and device to respectively use, and -p 1 -d

0 -t 1 for the Nvidia GeForce GTX 1080 GPU. The availability and ordering of platform and
device ids vary between nodes and will need to be adjusted accordingly. Each application
is run as Benchmark Device – Arguments, where Arguments is taken from Table 3.4 at the
selected scale of Φ. For reproducibility, the entire set of Python scripts with all problem sizes
is available in a GitHub repository [144]. Where Φ is substituted as the argument for each
benchmark, it is taken as the respective scale from Table 3.3 and is inserted into Table 3.4.

3.3 Results

The primary purpose of including these time results is to demonstrate the benefits of the
extensions made to the OpenDwarfs Benchmark suite. We use the benchmarks to assess
and compare performance across the chosen hardware systems. The use of LibSciBench
allowed high-resolution timing measurements over multiple code regions. To demonstrate the
portability of the Extended OpenDwarfs benchmark suite, we present results from 12 varied
benchmarks running on 15 different devices representing four distinct classes of accelerator.
For eight of the benchmarks, we measured multiple problem sizes and observed distinctly
different scaling patterns between devices. This underscores the importance of allowing a
choice of problem size in a benchmarking suite. The primary analysis is for time, but energy

40 Extending the OpenDwarfs Benchmark Suite

results over two devices are also presented.

3.3.1 Time

The distribution of execution times required to execute each of the benchmarks for all available
hardware is presented in Figures 3.1 and 3.2. Eight of the benchmark applications offer four
different problem sizes, we only present the medium problem size in Figure 3.1 to highlight
the variation in runtimes between benchmarks, while Figure 3.2 presents execution times for
the four benchmarks with fixed problem size. The results are coloured according to accelerator
type: purple for CPU devices, blue for consumer GPUs, green for HPC GPUs, and yellow for
the KNL MIC.

The results presented in Figure 3.1 show the total kernel execution time in milliseconds for
each of the benchmark applications on various accelerator devices. The reported iteration
time is the sum of all compute time spent on that accelerator for all kernels.

In Figure 3.1 (a) (kmeans) shows applications typical of the MapReduce dwarf are best suited
to GPU devices, this is unsurprising given it has embarrassingly parallel characteristics that
are well suited to this accelerator type. The performance of the various GPU devices generally
follows their date of manufacture. For instance, the Nvidia gaming devices such as the TitanX,
GTX 1080 and GTX 1080 Ti are the newest devices and perform best; similar trends emerge in
the AMD cards – the RX 480 has a higher clock frequency (1120 MHz) relative to the oldest
AMD device the HD7970 (925 MHz) and performance ranges between these two extremes
accordingly. Interestingly the HPC GPUs buck this trend with a lower clock frequency
(706-900MHz) and older manufacture date than many of the gaming GPUs performing at a
similar level to the newer AMD gaming GPUs and only 1-2ms slower per kernel run than the
newest Nvidia GPU. This is attributed to the larger number of threads supported on these
devices and is a good match to the high degree of parallelism in the benchmark. The i7 is
the best performer of all the CPU type accelerators, taking 6ms which is 2-3ms slower than
the fastest GPU, this is expected since it has the highest clock frequency. As the CPUs have
fewer hardware threads they are less able to exploit the available parallelism in the benchmark
than the GPUs. The Xeon Phi 7210 MIC is ≈ 10− 20× slower than the other accelerators, we
believe this is due to the lack of vectorization of the kernel. Indeed, many of the kernels lack
vectorization and explain much of the poor performance on the KNL MIC.

Figure 3.1 (b) (lud) from the Dense Linear Algebra dwarf shows similar trends. It is largely
well suited to GPUs however is less suited to the HPC scientific cards and the MIC performs
better. The oldest CPU considered (the i5-3550) performs much worse than the other CPU
devices, and is because the medium problem size requires 8100KiB of cache which spills
outside of the L3 cache 6133KiB on this processor thus this performance is due to the high
penalties of L3 cache misses and accessing main memory.

Figure 3.1 (c) (csr) – Sparse Linear Algebra – shows a performance which scales with clock-
frequency and the newer CPU and GPU devices with the highest frequency offer the shortest

§3.3 Results 41

execution times. The i7 CPU and Titan X, GTX 1080 Ti GPUs are the most suitable accelerators
for these type of codes. Interestingly, the difference in execution times between the GTX 1080
and the GTX 1080 Ti highlights the memory critical nature of this dwarf. Irregular memory
access in sparse matrices benefits the higher memory bandwidth lower latency interconnect
in the Ti, where despite being 127-151MHz slower in base clock speed, the doubling in
peak memory bandwidth and the extra 125MHz memory clock speeds give the Ti better
performance. The Titan X has a similarly high memory configuration and justifies why it
performs as well as the GTX 1080 Ti.

Figure 3.1 (d) (fft) and Figure 3.1 (e) (dwt) represent Spectral Methods. These benchmarks
are high floating point intensity applications which explain the poor suitability of the Xeon
Phi 7210 MIC – which is limited to half the theoretical peak of its floating-point performance
as explained in Section 3.2.2. The CPU devices also suffer from this high floating point
demand which has lower raw FLOPs than the GPUs. On average, the worst performing
device over both Spectral Methods applications is the i5-3550 which has the poorest FLOPs of
any of the CPUs coupled with the smallest L3 cache which frequently spills over into main
memory during execution of these benchmarks. It is interesting to note that both benchmarks
representing the same dwarf have very similar performance results over all the accelerators –
where generally the ordering of optimal device is largely the same between both applications.

Figure 3.1 (f) (srad) represents the Structured Grid dwarf and has similar performance results
to fft and dwt. This tells us the regular grid points which are updated together are well
suited to GPUs and accelerators with higher floating intensity. The high spatial locality and
embarrassingly parallel nature of Structured Grids indicate that it has similar properties to
Spectral Methods.

Additional experiments could be performed using the LibSciBench hardware performance
counters to confirm our explanation of these poor CPU and MIC results, while Nvidia’s
Perftool could examine similar hardware metrics on the Nvidia accelerators. However, since
the broader focus of this thesis is to use the evaluation of a range of accelerators over a broad
suite of benchmarks, the interest in predicting poor performance is more interesting than a
closer level inspection of the deficiencies of each platform.

Figure 3.1 (g) (crc) is from the Combinational Logic dwarf where the benchmark performs
error-detecting code caused by network transmission or any other accidental error, work is
performed in workgroups determined by polynomial division. There are no floating point
operations within each workgroup and a checksum is computed for each. Integer vectorization
is high and each work-item processes 8 bytes at once using the “Slice-by-8” algorithm. This
requires a large number of bit shifts and conditional loop nesting which results in irregular
integer comparisons that are ill-suited to GPU architectures – which are not optimized for
integer operations and suffer from thread-divergence. GPU devices suffer further since they
are not equipped with wide integer units – 64-bit wide ALUs are typical. By comparison,
CPUs and the MIC are accelerator types which excel at this computation; the high degree of
vector parallelism inherent in the algorithm suit the E5-2697 and i7-6700K CPUs with 128-bit

42 Extending the OpenDwarfs Benchmark Suite

and 256-bit wide SIMD units respectively, and is ideal for the MIC which has very wide
512-bit SIMD units. Examining the crc benchmark is examined in greater detail in Figure 3.3
as problem size increases.

Figures 3.1 (h) (nw) and 3.2 (d) (swat) both represent Dynamic Programming. The order
of performance results is also similar, with the newest Nvidia GPUs performing best, the
different generations of CPUs falling around the older GPUs and the MIC being the worst
performer by a large margin (30%). The ordering of performance of devices between both
benchmarks is similar. It is equally interesting to note that 3.2 (a) (gem) and 3.2 (a) (nqueens)
also have a similar ordering of fastest accelerator devices.

Comparing the medium problem size between all the benchmarks, we see individual devices
with significantly longer execution times than the others, these large differences in execution
times hide many of the finer differences in detail between accelerators with similar good
performance and identify the penalties when selecting a suboptimal accelerator device. The
Xeon Phi 7210 MIC is 2.5× slower than the next worse accelerator in the kmeans benchmark,
the rest of the accelerators all have average execution times less than 18ms. It was had the
worst execution times for csr and nw benchmarks being 2-4× slower than the other accelerators.
The i5-3550 performed 6× worse than the MIC on the lud benchmark which on average take
≈ 1ms. Similarly, the i5-3550 CPU was the poorest choice of accelerator for dwt and srad

benchmarks, being on average 6× and 5× slower, respectively, than the other accelerators. The
Xeon Phi and i5-3550 were equally poor on the fft benchmark, taking 12ms per run, despite
the other non-CPU accelerators taking less than 2ms. Finally, the GPUs performed worse
on the crc benchmark, with the K20m taking 100ms, compared to the CPU and MIC taking
<5ms. These large differences in execution times show the importance in selecting an optimal
accelerator by highlighting the large difference between the good performance of accelerators
on average and the poorest device for a benchmark – it results in a 2-100× longer execution
time.

Figure 3.2 presents results for the four applications with restricted problem sizes. The per
kernel invocation is relatively low regardless of device selected for the (a) gem or (b) nqueens
benchmark. The newer Nvidia GPUs collectively tended to be the best-performed accelerator
on gem taking ≈ 110µs while the MIC saw the worst performance at 0.85 ms. The nqueens

benchmark saw the i7-6700K and i5-3550 CPUs finish the kernel in ≈ 80µs to ≈ 100µs per
invocation, respectively, again the MIC had the worst performance at 900µs on average.
Figures (c) hmm and (d) swat are more computationally intensive and took longer to complete.
The hmm benchmark shows the CPU and modern Nvidia GPUs performing equally well <
1ms, the older AMD and HPC GPUs ranged from 1-3ms, and the MIC averaged 7.5ms per
run. Finally, swat had the modern Nvidia GPUs as the fastest devices at ≈ 5ms and ranged up
to 40ms on the MIC which was the slowest device for this benchmark.

We selected the crc and kmeans benchmarks for the detailed analysis to show how the
amount of work increases over each of the four problem sizes, since the former experiences
exceptionally good performance on the KNL MIC, while the latter typifies the benchmarks

§3.3 Results 43

suitable to GPU architectures as problem size increases.

The crc benchmark is a standout in benchmarks for the MIC; it the only benchmark where the
MIC is competitive with the other accelerators, probably due to the low floating-point intensity
of the crc computation[145]. The effect of problem size on this application is presented as
Figure 3.3. Starting with the tiny size, it experiences comparable performance to all of the
older GPUs, for the small size it offers similar performance to the latest Nvidia GPUs, and for
the medium and large problem sizes its performance rivals the CPU accelerators. This is due
to the larger problem sizes generating enough work to fully utilize the 512-bit wide SIMD
units over the 256-threads on the MIC.

We have omitted the KNL MIC platform from the kmeans results in Figure 3.4 because they are
typically an order of magnitude worse than the other devices. The full results with the MIC
device are presented in Appendix A. The devices are grouped in this analysis: CPU devices
(1-3) are presented in purple; the high-performance GPUs designed for scientific workloads
(devices 7-9) are presented in green; the modern Nvidia GPUs are in blue to the left of HPC
GPUs (devices 4-6); and the last group consists of the older AMD GPUs (devices 10-14) and
are also in blue to the right of the green results. Both groups of Nvidia GPUs and AMD GPUs
are both presenting in blue since they are both consumer GPUs. As problem size increases,
the order of devices in a group rarely changes and only the magnitude of differences increase
between groups. The CPU accelerator group performs worse as the problem size increases,
this is because performance is tightly bound to the level of the cache hierarchy used. The
modern Nvidia GPU was the 2nd fastest set of devices in the tiny problem size, and this
performance improved under the demand of larger workloads and culminates in being 2-5×
faster than the CPU devices. HPC GPUs had average performance over the increasing problem
sizes, while the HD7970 GPU suffered worse runtimes relative to the rest of the AMD gaming
GPUs, this confirms that the performance of this benchmark corresponds to clock frequency
and FLOPs achievable for the devices.

The entire set of results and a detailed discussion is presented in Appendix A.

3.3.2 Energy

In addition to execution time, we are interested in differences in energy consumption between
devices and applications. We measured the energy consumption of benchmark kernel execu-
tion on the Intel Skylake i7-6700k CPU and the Nvidia GTX1080 GPU, using PAPI modules
for RAPL and NVML. These were the only devices examined since the collection of PAPI
energy measurements (with LibSciBench) requires root access, and these devices were the only
accelerators available with this permission. The distributions were collected by measuring
solely the kernel execution over 50 runs. RAPL CPU energy measurements were collected
over all cores in package 0 rapl:::PP0_ENERGY:PACKAGE0. NVML GPU energy was collected
using the power usage readings nvml:::GeForce_GTX_1080:power for the device and presents
the total power draw (+/-5 watts) for the entire card – memory and chip. Measurements

44 Extending the OpenDwarfs Benchmark Suite

results converted to energy J from their original resolution nJ and mW on the CPU and GPU
respectively.

From the time results presented in Section 3.3.1 we see the largest difference occurs between
CPU and GPU type accelerators at the large problem size. Thus we expect that the large
problem size will also show the largest difference in energy.

Figures 3.5 (a) and (b) show the kernel execution energy for several benchmarks for the large
size. All results are presented in joules. The box plots are coloured according to device: purple
for the Intel Skylake i7-6700k CPU and blue for the Nvidia GTX1080 GPU. The logarithmic
transformation has been applied to Figure 3.5 (b) to emphasise the variation at smaller energy
scales (< 1 J), which was necessary due to small execution times for some benchmarks. In
future this will be addressed by balancing the amount of computation required for each
benchmark, to standardize the magnitude of results.

All the benchmarks use more energy on the CPU, with the exception of crc which as previously
mentioned has low floating-point intensity and so is not able to make use of the GPU’s greater
floating-point capability. The execution times and corresponding energy usage is tightly
coupled for all the benchmarks presented. While not initially apparent in Figures 3.5 (a) and
(b) the variability of energy usage is slightly larger on the CPU, which is consistent with the
larger variation in execution time results.

3.4 Discussion

In this chapter, we presented EOD which places a strong focus on the robustness of bench-
marks, curation of additional benchmarks with an increased emphasis on correctness of results
and choice of problem size. Other improvements focus on adding additional benchmarks
to better represent each Dwarf along with supporting a range of 4 problem sizes for each
application to allow for a deeper analysis of the memory subsystem on each of these devices.
Having a common back-end in the form of OpenCL allows a direct comparison of identical
code across diverse architectures. We improved coverage of spectral methods by adding a new
Discrete Wavelet Transform benchmark, and replacing the previous inadequate fft benchmark.

Older hardware was used in this evaluation, but having a greater diversity between generations
of microarchitecture could be useful when examining the general purpose nature of the
predictive model in Chapter 5. Energy results were not able to be collected on many of these
systems since we lacked root access, however, we have proposed a methodology that can
easily be applied to collect additional energy results on the next generation of hardware.

The work presented in this chapter presents the ground-work required to evaluate the
performance of heterogeneous devices from a shared language – OpenCL.1 The introduced
benchmarking suite – EOD – and the corresponding execution times on the full range of

1No claim is made regarding the optimality of OpenCL for accelerator programming.

§3.4 Discussion 45

accelerators are used in the remainder of this thesis. While performance could be individually
analysed for each kernel in EOD, we will instead propose to collect results on an abstract
OpenCL device to enable a largely automated approach to compare feature-spaces and their
suitability/mapping to accelerators.

Additionally, the recorded EOD runtimes from this chapter are used as a testbed for the
predictive model presented in Chapter 5. It serves as a platform which is essential to measure
the performance of scientific workloads on accelerators. The goal of this thesis is scheduling
of scientific workloads to accelerator devices which will be a standard feature of the next-
generation of HPC nodes.

In general, the results of this chapter identify a few major points. Firstly, energy is correlated
to execution time for most applications. Secondly, particular accelerator types do not perform
best under all applications encompassing a dwarf. Finally, each dwarf is ill-suited to at least
one type of accelerator – for instance, GPU type accelerators are unsuited to the combinational-
logic dwarf.

These last two points reinforce the assumption that there is a most appropriate accelerator
for any particular OpenCL code, this, in turn, raises an interesting research question: “can
the automatic characterization of a kernel allow the efficient scheduling of work to the
most appropriate accelerator”? Our proposed workload characterization tool – AIWC – is
introduced in the next Chapter whilst the above question is addressed in Chapter 5.

46 Extending the OpenDwarfs Benchmark Suite

0

20

40

60

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(a) kmeans

0

2

4

6

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(b) lud

0

2

4

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(c) csr

0

5

10

15

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(d) fft

0

3

6

9

12

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(e) dwt

0

2

4

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(f) srad

0

25

50

75

100

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(g) crc

0.0

0.3

0.6

0.9

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(h) nw

accelerator type CPU Consumer GPU HPC GPU MIC

Figure 3.1: Kernel execution times for the medium problem size benchmarks on different
accelerator devices.

§3.4 Discussion 47

0.00

0.25

0.50

0.75

1.00

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(a) gem

0.0

0.5

1.0

1.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(b) nqueens

0

5

10

15

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(c) hmm

0

10

20

30

E5−
26

97

i7−
67

00
K

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m

K40
m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

5x
2

Xeo
n

Phi
72

10

tim
e

(m
s)

(d) swat

accelerator type CPU Consumer GPU HPC GPU MIC

Figure 3.2: Kernel execution times for the single sized benchmarks on various accelerator
devices.

48 Extending the OpenDwarfs Benchmark Suite

0.0

0.1

0.2

0.3

0.4

0.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

tiny

0

1

2

3

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

small

0

25

50

75

100

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

medium

0

200

400

600

800

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

large

accelerator type CPU Consumer GPU HPC GPU MIC

Figure 3.3: Kernel execution times for the crc benchmark on different hardware platforms.

§3.4 Discussion 49

0.0

0.5

1.0

1.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m

K40
m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

tim
e

(m
s)

tiny

0.0

0.5

1.0

1.5

2.0

2.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m

K40
m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

tim
e

(m
s)

small

0

5

10

15

20

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m

K40
m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

tim
e

(m
s)

medium

0

10

20

30

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m

K40
m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

tim
e

(m
s)

large

accelerator type CPU Consumer GPU HPC GPU MIC

Figure 3.4: Kernel execution times for the kmeans benchmark on different hardware platforms.

50 Extending the OpenDwarfs Benchmark Suite

0

50

100

150

200

km
ea

ns lud cs
r fft dw

t
ge

m
sr

ad cr
c

benchmark

en
er

gy
 (

J)

(a)

0.02

0.2

2

20

200

km
ea

ns lud cs
r fft dw

t
ge

m
sr

ad cr
c

benchmark

lo
g 1

0 en
er

gy
 (

J)

(b)

accelerator i7−6700K GTX 1080

Figure 3.5: Execution energy required to perform EOD benchmarks, presented on a linear
(a) and logarithmic scale (b) from left to right respectively, on the (large problem size) on the
Intel i7-6700K and Nvidia GTX1080.

Chapter 4

AIWC: OpenCL based Architecture
Independent Workload
Characterization

In this chapter, we present the Architecture Independent Workload Characterization (AIWC)
tool. AIWC simulates the execution of OpenCL kernels to collect architecture-independent
features that characterize each code, which may also be used in performance prediction.

AIWC verifies the architecture independent metrics since they are collected on a toolchain
and in a language actively executed on a wide range of accelerators – the OpenCL runtime
supports execution on CPU, GPU, DSP, FPGA, MIC and ASIC hardware architectures. The
intermediate representation (IR) of the OpenCL kernel code is a subset of LLVM IR known as
SPIR – Standard Portable Intermediate Representation. This IR forms a basis for Oclgrind to
perform OpenCL device simulation, which interprets LLVM IR instructions.

We migrate the metrics presented in the ISA-independent workload characterization paper
[107] to the Oclgrind tool offers an accessible, high-accuracy and reproducible method to
acquire these AIWC features. We also add additional metrics to be more general architecture-
independent instead of ISA-independent workload characterization. Namely:

• Accessibility: since the Oclgrind OpenCL kernel debugging tool is one of the most
adopted OpenCL debugging tools freely available to date, having AIWC metric genera-
tion included as an Oclgrind plugin allows rapid workload characterization.

• High-Accuracy: evaluating the low level optimized IR does not suffer from a loss of
precision since each instruction is instrumented during its execution in the simulator,
unlike with the conventional metrics generated by measuring architecture driven events
– such as PAPI and MICA analysis.

• Reproducibility: each instruction is instrumented by the AIWC tool during execution,
there is no variance in the metric results presented between OpenCL kernel runs, it is
deterministic: the order the work-items execute is identical between runs with the AIWC
simulator.

51

52 AIWC: OpenCL based Architecture Independent Workload Characterization

A caveat with this approach is the overhead imposed by executing full solution HPC codes on
a slower simulator device. However, since AIWC metrics do not vary between runs, this is
still a shorter execution time than the typical number of iterations required to get a reasonable
statistical sample when compared to a MICA or architecture dependent analysis.

AIWC is run on full application codes, but it is difficult to present an entire summary due to
the nature of OpenCL. Computationally intensive kernels are simply selected regions of the
full application codes and are invoked separately for device execution. As such, the AIWC
metrics can either be shown per kernel run on a device or as the summation of all metrics for
a kernel for a full application at a given problem size; for the results presented in this thesis,
we chose the latter. Additionally, given the number of kernels we present in this chapter, we
believe AIWC will generalize to full codes in other domains.

Application codes differ in resource requirements, control structure and available parallelism.
Similarly, accelerator devices differ in number and capabilities of execution units, processing
model, and available resources. Given performance measurements for particular combinations
of codes and devices, it is difficult to generalize to novel combinations. Hardware designers
and HPC integrators would benefit from accurate and systematic performance prediction, for
example, in designing an HPC system, to choose a mix of accelerators that are well-suited to
the expected workload.

Measuring performance-critical characteristics of application workloads is important both
for developers, who must understand and optimize the performance of codes, as well as
designers and integrators of HPC systems, who must ensure that accelerator architectures are
suitable for the intended workloads. However, if these workload characteristics are tied to
architectural features that are specific to a particular system, they may not generalize well
to alternative or future systems. An architecture-independent method ensures an accurate
characterization of inherent program behaviour, without bias due to architecture-dependent
features that vary widely between different types of accelerators.

AIWC is the first workload characterization tool to support multi-threaded or parallel work-
loads, which it achieves by collecting metrics that indicate both instruction and thread-level
parallelism. We demonstrate the use of AIWC to characterize a variety of codes in the
Extended OpenDwarfs Benchmark Suite [132] – presented in chapter 3. We begin with an
introduction of the metrics collected by AIWC, we then discuss how AIWC was implemented
and demonstrate its usage on the lud, nw, swat, gem, kmeans and hmm benchmarks. Finally, we
conclude with a summary of what AIWC and the associated metrics provide to prediction. A
majority of this chapter was published in the LLVM-HPC workshop proceedings as part of
the 30th International Conference for High Performance Computing, Networking, Storage,
and Analysis (SC18) 2018 [146].

§4.1 Metrics 53

Table 4.1: ISA-Independent Workload Characterization metrics.

Type Metric Description
Compute Opcode Unique Opcodes required to cover 90% of dynamic instructions

Memory

Total Memory Footprint Total number of unique memory addresses accessed
90% Memory Footprint Number of unique memory addresses that cover 90% of memory accesses
Global Memory Address Entropy Measure of the randomness of memory addresses
Local Memory Address Entropy Measure of the spatial locality of memory addresses

Control Unique Branch Instructions Total number of unique branch instructions
Branch Entropy Measure of the randomness of branch behavior, representing branch predictability

4.1 Metrics

Shao and Brooks [107] proposed metrics to represent the characteristics of workloads indepen-
dent of Instruction Set Architectures (ISA) – these are provided in Table 4.1. The selection
of these metrics was considered to characterize the workload, however, they were focused
on micro-architecture independence and were evaluated on x86 CPUs. It is the focus of our
work to collect metrics that are a higher level of abstraction and to this end, we present a
larger set of metrics which are more comprehensive in order to characterize the workload in
an architecture independent way. The full list of our AIWC metrics is presented in Table 4.2.
The original choice of metrics does not consider parallel codes, but since this is critical for
modern accelerators and the OpenCL framework it was the largely the focus of our work. In
this section, we discuss each metric and what they represent for workload characterization. In
particular, we added a new category of metric, called parallelism, where we present metrics for
Granularity, Barriers Per Instruction, Instructions per Operand and Load Imbalance.

The Oclgrind simulator is a free and open source tool to debug OpenCL codes and is achieved
by simulating on LLVM SPIR instructions. To this end, the OpenCL device is architecture-
independent – no final register allocation or ISA has been selected at this level of execution
(directly on the IR). A secondary contribution of our work is that we facilitate the collection of
our metrics directly in Oclgrind. Whereas Shao collected metrics from static traces using a JIT
compiler which emitted ISA-independent instructions, we collect metrics on-the-fly during
OpenCL device simulator runs. These live traces are evaluated before each kernel terminates,
the statistics computed and metrics presented at the end of each kernels execution. None of
these metrics was previously available in Oclgrind and they are a direct contribution of the
AIWC tool. Each of our metrics is described in greater detail in the remainder of this Section
while the methodology around their collection is the focus for the next Section (4.2).

For each OpenCL kernel invocation, the Oclgrind simulator AIWC tool collects a set of 28
metrics, which are listed in Table 4.2. The Opcode, total memory footprint and 90% memory
footprint measures are simple counts. Likewise, total instruction count is the number of
instructions achieved during a kernels execution. The global memory address entropy is a
positive real number that corresponds to the randomness of memory addresses accessed. The
local memory address entropy is computed as 10 separate values according to an increasing
number of Least Significant Bits (LSB), or low order bits, omitted in the calculation. The
number of bits skipped ranges from 1 to 10, and a steeper drop in entropy with an increasing

54 AIWC: OpenCL based Architecture Independent Workload Characterization

Table 4.2: Metrics collected by the AIWC tool ordered by type.

Type Metric Description

Compute Opcode total # of unique opcodes required to cover 90% of dynamic instructions
Total Instruction Count total # of instructions executed

Parallelism

Work-items total # of work-items or threads executed
Total Barriers Hit total # of barrier instructions
Min ITB minimum # of instructions executed until a barrier
Max ITB maximum # of instructions executed until a barrier
Median ITB median # of instructions executed until a barrier
Min IPT minimum # of instructions executed per thread
Max IPT maximum # of instructions executed per thread
Median IPT median # of instructions executed per thread
Max SIMD Width maximum # of data items operated on during an instruction
Mean SIMD Width mean # of data items operated on during an instruction
SD SIMD Width standard deviation across # of data items affected

Memory

Total Memory Footprint total # of unique memory addresses accessed
90% Memory Footprint # of unique memory addresses that cover 90% of memory accesses
Unique Reads total # of unique memory addresses read
Unique Writes total # of unique memory addresses written
Unique Read/Write Ratio indication of workload being (unique reads / unique writes)
Total Reads total # of memory addresses read
Total Writes total # of memory addresses written
Reread Ratio indication of memory reuse for reads (unique reads/total reads)
Rewrite Ratio indication of memory reuse for writes (unique writes/total writes)
Global Memory Address Entropy measure of the randomness of memory addresses
Local Memory Address Entropy measure of the spatial locality of memory addresses

Control

Total Unique Branch Instructions total # of unique branch instructions
90% Branch Instructions # of unique branch instructions that cover 90% of branch instructions
Yokota Branch Entropy branch history entropy using Shannon’s information entropy
Average Linear Branch Entropy branch history entropy score using the average linear branch entropy

number of bits indicates greater spatial locality in the address stream. Both unique branch
instructions and the associated 90% branch instructions are counts indicating the count of
logical control flow branches encountered during kernel execution. Yokota branch entropy
ranges between 0 and 1, and offers an indication of a program’s predictability as a floating
point entropy value. [108] The average linear branch entropy metric is proportional to the
miss rate in program execution; p = 0 for branches always taken or not-taken but p = 0.5 for
the most unpredictable control flow. All branch-prediction metrics were computed using a
fixed history of 16-element branch strings, each of which is composed of 1-bit branch results
(taken/not-taken).

As the OpenCL programming model is targeted at parallel architectures, any workload
characterization must consider exploitable parallelism and associated communication and
synchronization costs. We characterize thread-level parallelism (TLP) by the number of work-
items executed by each kernel, which indicates the maximum number of threads that can be
executed concurrently.

Work-item communication hinders TLP, and in the OpenCL setting, takes the form of either
local communication (within a work-group) using local synchronization (barriers) or globally
by dividing the kernel and invoking the smaller kernels on the command queue. Both local
and global synchronization can be measured in instructions to barrier (ITB) by performing
a running tally of instructions executed per work-item until a barrier is encountered under
which the count is saved and resets; this count will naturally include the final (implicit)

§4.2 Implementation 55

barrier at the end of the kernel. Min, max and median ITB are reported to understand
synchronization overheads, as a large difference between min and max ITB may indicate an
irregular workload.

Instructions per thread (IPT) based metrics are generated by performing a running tally of
instructions executed per work-item until completion. The count is saved and resets. Min,
max and median IPT are reported to understand load imbalance.

To characterize data parallelism, we examine the number and width of vector operands in
the generated LLVM IR, reported as max SIMD width, mean SIMD width and standard
deviation – SD SIMD width. Further characterisation of parallelism is presented in the
work-items and total barriers hit metrics.

Some of the other metrics are highly dependent on workload scale, so work-items may be
used to normalize between different scales. For example, total memory footprint can be
divided by work-items to give the total memory footprint per work-item, which indicates the
memory required per processing element.

Finally, unique verses absolute reads and writes can indicate shared and local memory
reuse between work-items within a work-group, and globally, which shows the predictability
of a workload. To present these characteristics the unique reads, unique writes, unique
read/write ratio, total reads, total writes, reread ratio, rewrite ratio metrics are proposed.
The unique read/write ratio shows that the workload is balanced, read intensive or write
intensive. They are computed by storing read and write memory accesses separately and are
later combined, to compute the global memory address entropy and local memory address
entropy scores.

4.2 Implementation

AIWC is implemented as a plugin for Oclgrind, which simulates kernel execution on an
abstract compute device. OpenCL kernels are executed in series, and Oclgrind generates
notification events which AIWC handles to populate data structures for each workload metric.
Once each kernel has completed execution, AIWC performs statistical summaries of the
collected metrics by examining these data structures. The entire AIWC plugin is ≈ 1000 lines
of C++ code and collects the metrics based on the relative callbacks triggered during Oclgrind
kernel execution. The remainder of this section outlines some of the logic required to collect
these metrics.

The Opcode diversity metric updates a counter on an unordered map during each
workItemBegin event, the type of operation is determined by examining the opcode name
using the LLVM Instruction API.

The number of work-items is computed by incrementing a global counter – accessible by all
work-item threads – once a workItemBegin notification event occurs.

56 AIWC: OpenCL based Architecture Independent Workload Characterization

TLP metrics require barrier events to be instrumented within each thread. Instructions
To Barrier ITB metrics require each thread to increment a local counter once each
instructionExecuted has occurred, this counter is added to a vector and reset once the
work-item encounters a barrier. The Total Barriers Hit counter also increments on the same
condition. Work-items are executed sequentially within all work-items in a work-group. If a
barrier is hit the queue moves onto all other available work-items in a ready state. Collection
of the metrics post barrier resumes during the workItemClearBarrier event.

ILP SIMD metrics examine the size of the result variable provided from the instructionExecuted
notification, the width is then added to a vector for the statistics to be computed once the
kernel execution has completed.

Total Memory Footprint 90% Memory Footprint and Local Memory Address Entropy LMAE
metrics require the address accessed to be stored during kernel execution and occurs during
the memoryLoad, memoryStore, memoryAtomicLoad and memoryAtomicStore notifications.

Branch entropy measurements require a check during the instructionExecuted event on
whether the instruction is a branch instruction, if so a flag indicating a branch operation
has occurred is set and both LLVM IR labels – which correspond to branch targets – are
recorded. On the next instructionExecuted the flag is queried and reset while the current
instruction label is compared against which of the two targets were taken, the result is stored
in the branch history trace. The implementation of this is shown in Listing 4.1. Note the
instructionExecuted callback is propagated from Oclgrind during every OpenCL kernel
instruction – emulated in LLVM IR. This function also updates variables to track instruction
diversity by counting the occurrences of each instruction, instructions to barrier and other
parallelism metrics by running a counter until a barrier is hit, finally, the vectorization – as part
of the parallelism metrics – are updated by recording the width of executed instructions. The
m_state variable is shared between all work-items in a work-group and these are stored into
a global set of variables using a mutex lock once the work-group has completed execution.

The branch metrics are then computed by evaluating the full history of the combined branches
taken and not-taken.

The Total Unique Branch Instructions is a count of the absolute number of unique locations
that branching occurred, while the 90% Branch Instructions indicates the number of unique
branch locations that cover 90% of all branches. Yokota from Shao [107], and Average Linear
Branch Entropy, from De Pestel [109] and have been computed and are also presented based
on this implementation. workGroupComplete events trigger the collection of the interme-
diate work-item and work-group counter variables to be added to the global suite, while
workGroupBegin events reset all the local/intermediate counters.

Finally, kernelBegin initializes the global counters and kernelEnd triggers the generation
and presentation of all the statistics listed in Table 4.2. The AIWC source code is available at
the GitHub Repository [147].

§4.2 Implementation 57

Listing 4.1: The Instruction Executed callback function collects specific program metrics and
adds them to a history trace for later analysis.

1 void WorkloadCharacterisat ion : : i n s t r u c t i o n E x e c u t e d (. . . , const llvm
: : I n s t r u c t i o n * i n s t r u c t i o n , . . .) {

2 unsigned opcode = i n s t r u c t i o n −>getOpcode () ;
3 std : : s t r i n g opcode_name = llvm : : I n s t r u c t i o n : : getOpcodeName (

opcode) ;
4 / / up da t e key −v a l u e p a i r o f i n s t r u c t i o n name and i t s o c c u r r e n c e

in t h e k e r n e l
5 (* m_state . computeOps) [opcode_name]++;
6 std : : s t r i n g S t r = " " ;
7 / / i f a c o n d i t i o n a l branch which has l a b e l s , s t o r e t h e l a b e l s t o

t r a c k
8 / / in t h e nex t i n s t r u c t i o n which o f t h e two l i n e s we end up in
9 i f (opcode == llvm : : I n s t r u c t i o n : : Br && i n s t r u c t i o n −>

getNumOperands () == 3) {
10 i f (i n s t r u c t i o n −>getOperand (1)−>getType ()−>isLabelTy () &&
11 i n s t r u c t i o n −>getOperand (2)−>getType ()−>isLabelTy ()) {
12 m_state . p r e v i o u s _ i n s t r u c t i o n _ i s _ b r a n c h = t rue ;
13 llvm : : raw_string_ostream OS(S t r) ;
14 i n s t r u c t i o n −>getOperand (1)−>printAsOperand (OS, f a l s e) ;
15 m_state . t a r g e t 1 = S t r ;
16 S t r = " " ;
17 i n s t r u c t i o n −>getOperand (2)−>printAsOperand (OS, f a l s e) ;
18 m_state . t a r g e t 2 = S t r ;
19 llvm : : DebugLoc l o c = i n s t r u c t i o n −>getDebugLoc () ;
20 m_state . branch_loc = l o c . getLine () ;
21 }
22 }
23 / / i f t h e l a s t i n s t r u c t i o n was a branch , l o g which o f t h e two

t a r g e t s were t a k e n
24 e lse i f (m_state . p r e v i o u s _ i n s t r u c t i o n _ i s _ b r a n c h == t rue) {
25 llvm : : raw_string_ostream OS(S t r) ;
26 i n s t r u c t i o n −>getParent ()−>printAsOperand (OS, f a l s e) ;
27 i f (S t r == m_state . t a r g e t 1)
28 (* m_state . branchOps) [m_state . branch_loc] . push_back (t rue)

; / / t a k e n
29 e lse i f (S t r == m_state . t a r g e t 2) {
30 (* m_state . branchOps) [m_state . branch_loc] . push_back (f a l s e

) ; / / no t t a k e n
31 }
32 m_state . p r e v i o u s _ i n s t r u c t i o n _ i s _ b r a n c h = f a l s e ;
33 }
34 / / c o u n t e r f o r i n s t r u c t i o n s t o b a r r i e r and o t h e r p a r a l l e l i s m

m e t r i c s
35 m_state . i n s t r u c t i o n _ c o u n t ++;
36 m_state . worki tem_instruct ion_count ++;
37 / / SIMD i n s t r u c t i o n width m e t r i c s use t h e f o l l o w i n g
38 m_state . instruct ionWidth −>push_back (r e s u l t .num) ;

58 AIWC: OpenCL based Architecture Independent Workload Characterization

4.3 Demonstration

We now demonstrate the use of AIWC on several scientific application kernels selected from
the Extended OpenDwarfs Benchmark Suite [132]. The details of the suite are described in
Chapter 3. Our selection of benchmarks run with AIWC is not intended to be exhaustive,
rather, it is meant to illustrate how key properties of the codes are reflected in the metrics
collected by AIWC.

We present metrics for the four different problem sizes, and all 11 different application
codes (37 kernels) from EOD, as described in Chapter 3. As simulation within Oclgrind is
deterministic, all results presented are for a single run for each combination of code and
problem size.

To briefly examine AIWC metrics over the entire EOD suite, four selected metrics are presented
in Figure 4.1. One metric was chosen from each of the main categories, namely, Opcode,
Barriers Per Instruction, Global Memory Address Entropy, Branch Entropy (Linear Average).
Each category has also been segmented by colour: blue results represent compute metrics,
green represent metrics that indicate parallelism, yellow represents memory metrics and purple
bars represent control metrics. Median results are presented for each metric – while there is no
variation between invocations of AIWC, certain kernels are iterated multiple times and over
differing domains/data sets. Each of the 4 sub-figures shows all kernels over the 4 different
problem sizes. The x-axis shows different kernels but due to the unavailability of kernels on
larger problem sizes the bottom half (4 metric) is not aligned to the top half.

The top-left quadrant displays each of the four chosen metrics on the tiny problem size. The
linear average branch entropy (purple) between tiny kernels the bfs_kernel2 has the largest
value, and thus least predictable branching behaviour, which we expect for sorting algorithms
where the behaviour around swapping values depends on the ordering of the data. Some
kernels display irregular branching while a majority of the tiny kernels are predictable. The
diversity in opcodes ranges from 7-15 unique instructions on the tiny problem sized kernels,
with the srad kernels using the most unique opcodes and some initialization kernels using
the least. Barriers per instruction (shown in green) on the tiny problem size shows that most
of the kernels in EOD have no internal barriers, except for lud_diagonal, cl_fdwt53Kernel,
and the nw (needle_opencl_shared_*) kernels. 18% of instructions in the lud_diagonal

kernel will hit a barrier – and is slightly less balanced given the unequal distribution of work
for different starting locations of the decomposition. The nw kernels frequently block, with
many barriers comprising 40% of the instructions encountered, this dependency between
other work-items indicate these benchmarks are less able to benefit from Single-Instruction
Multiple-Thread (SIMT) parallelism. The top-right quadrant displays the four chosen metrics
on the small problem size, while the bottom-left quadrant present the same metrics on the
medium problem size and the bottom-right quadrant shows the large sized EOD problems.

Almost all benchmarks show the global memory address entropy metric increase with
problem size, whereas the other metrics do not. Notably, memory entropy is low for

§4.4 Detailed Analysis of LU Decomposition Benchmark 59

lud_diagonal, reflecting memory access with constant strides of diagonal matrix elements,
and cl_fdt53Kernel, again reflecting regular strides generated by downsampling in the
discrete wavelet transform. We do not present all problem sizes for the kernels corresponding
to gem, nqueens, hmm and swat benchmarks, since these only operate on a fixed problem size –
as discussed in Chapter 3.

Looking at branch entropy, bfs_kernel2 stands out as having by far the greatest entropy. This
kernel is dominated by a single branch instruction based on a flag value which is entirely
unpredictable and could be expected to perform poorly on a SIMT architecture such as a GPU.

Barriers per instruction are quite low for most kernels, with the exception of needle_opencl_shared_1
and needle_opencl_shared_2 from the Needleman-Wunsch DNA sequence alignment
dynamic programming benchmark. These kernels each have 0.04 barriers per instruction
(i.e. one barrier per 25 instructions), as they follow a highly-synchronized wavefront pattern
through the matrix representing matching pairs. Barriers per instruction are unchanged
regardless of problem size and show that the patterns of computation are fixed and
independent from the data in many of these benchmarks. The performance of this kernel
on a particular architecture could be expected to be highly dependent on the cost of
synchronization.

4.4 Detailed Analysis of LU Decomposition Benchmark

We now proceed with a more detailed investigation of one of the benchmarks, lud, which
performs decomposition of a matrix into upper and lower triangular matrices. The AIWC
metrics for a kernel are presented as a Kiviat or radar diagram, for each of the problem sizes.
We do not perform any dimensionality reduction but choose to present all collected metrics.

The ordering of the individual spokes is not chosen to reflect any statistical relationship
between the metrics, however, they have been grouped into four main categories: green
spokes represent metrics that indicate parallelism, blue spokes represent compute metrics, beige
spokes represent memory metrics and purple spokes represent control metrics. For clarity of
visualization, we do not present the raw AIWC metrics but instead, normalize or invert the
metrics to produce a scale from 0 to 1.

Values are normalized according to the maximum value measured across all kernels examined
– and on all problem sizes. This presentation allows a quick value judgement between kernels,
as values closer to the centre (0) generally have lower hardware requirements, for example,
smaller entropy scores indicate more regular memory access or branch patterns, requiring
less cache or branch predictor hardware; smaller granularity indicates higher exploitable
parallelism; smaller barriers per instruction indicates less synchronization; and so on.

The only metrics not normalized relative to the maximum measured values are granular-
ity, barriers per instruction, instructions per operand and load imbalance. Parallelism

60 AIWC: OpenCL based Architecture Independent Workload Characterization

inv
er

t_
m

ap
pin

g

km
ea

ns
Poin

t

ca
lc_

po
te

nt
ial

_s
ing

le_
ste

p_
de

v

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er

cs
r
fft

Rad
ix1

6K
er

ne
l

fft
Rad

ix8
Ker

ne
l

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

bf
s_

ke
rn

el1

bf
s_

ke
rn

el2

ac
c_

b_
de

v

ca
lc_

alp
ha

_d
ev

ca
lc_

be
ta

_d
ev

ca
lc_

ga
m

m
a_

de
v

ca
lc_

xi_
de

v

es
t_

a_
de

v

es
t_

b_
de

v

es
t_

pi_
de

v

ini
t_

alp
ha

_d
ev

ini
t_

be
ta

_d
ev

ini
t_

on
es

_d
ev

m
vm

_n
on

_k
er

ne
l_n

aiv
e

m
vm

_t
ra

ns
_k

er
ne

l_n
aiv

e

sc
ale

_a
_d

ev

sc
ale

_a
lph

a_
de

v

sc
ale

_b
_d

ev

s_
do

t_
ke

rn
el_

na
ive

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

cr
c3

2_
sli

ce
8

0.00

0.25

0.50

0.75

0

5

10

15

0.00

0.01

0.02

0.03

0.04

0

4

8

12

Kernel

C
ou

nt

inv
er

t_
m

ap
pin

g

km
ea

ns
Poin

t

ca
lc_

po
te

nt
ial

_s
ing

le_
ste

p_
de

v

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er

cs
r
fft

Rad
ix1

6K
er

ne
l

fft
Rad

ix4
Ker

ne
l

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

bf
s_

ke
rn

el1

bf
s_

ke
rn

el2

ac
c_

b_
de

v

ca
lc_

alp
ha

_d
ev

ca
lc_

be
ta

_d
ev

ca
lc_

ga
m

m
a_

de
v

ca
lc_

xi_
de

v

es
t_

a_
de

v

es
t_

b_
de

v

es
t_

pi_
de

v

ini
t_

alp
ha

_d
ev

ini
t_

be
ta

_d
ev

ini
t_

on
es

_d
ev

m
vm

_n
on

_k
er

ne
l_n

aiv
e

m
vm

_t
ra

ns
_k

er
ne

l_n
aiv

e

sc
ale

_a
_d

ev

sc
ale

_a
lph

a_
de

v

sc
ale

_b
_d

ev

s_
do

t_
ke

rn
el_

na
ive

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

cr
c3

2_
sli

ce
8

0.00

0.25

0.50

0.75

1.00

0

5

10

15

0.00

0.01

0.02

0.03

0.04

0

5

10

15

Kernel
C

ount
Tiny Small

inv
er

t_
m

ap
pin

g

km
ea

ns
Poin

t

ca
lc_

po
te

nt
ial

_s
ing

le_
ste

p_
de

v

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er cs

r

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix8
Ker

ne
l

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

bf
s_

ke
rn

el1

bf
s_

ke
rn

el2

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

cr
c3

2_
sli

ce
8

0.00

0.25

0.50

0.75

1.00

0

5

10

15

0.00

0.01

0.02

0.03

0.04

0

5

10

15

20

Kernel

C
ou

nt

inv
er

t_
m

ap
pin

g

km
ea

ns
Poin

t

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er cs

r

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix2
Ker

ne
l

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

bf
s_

ke
rn

el1

bf
s_

ke
rn

el2

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

cr
c3

2_
sli

ce
8

0.00

0.25

0.50

0.75

1.00

0

5

10

15

0.00

0.01

0.02

0.03

0.04

0

5

10

15

20

Kernel

C
ount

 Medium Large

Metric Branch Entropy (Linear Average) Opcode Barriers Per Instruction Global Memory Address Entropy

Figure 4.1: Selected AIWC metrics from each category over all kernels and 4 problem sizes.

§4.4 Detailed Analysis of LU Decomposition Benchmark 61

0

0.25

0.5

0.75

1

Opcode

Granularity

Barriers Per Instruction

Instructions Per Operand

Load Imbalance

Total
Memory
Footprint

90%
Memory
Footprint

Global Memory
Address Entropy

LMAE −−
Skipped 1 LSBs

LMAE −−
Skipped
2 LSBs

LMAE −−
Skipped 3 LSBs LMAE −−

Skipped 4 LSBs

LMAE −−
Skipped 5

 LSBs

LMAE −−
Skipped 6

 LSBs

LMAE −−
Skipped 7 LSBs

LMAE −−
Skipped 8 LSBs

LMAE −−
Skipped 9

LSBs

LMAE −−
Skipped
10 LSBs

Total Unique
Branch

Instructions

90% Branch
Instructions

Branch Entropy
(Yokota)

Branch Entropy
(Average Linear)

tiny
small
medium
large

A) LUD Diagonal

0

0.25

0.5

0.75

1

Opcode

Granularity

Barriers Per Instruction

Instructions Per Operand

Load Imbalance

Total
Memory
Footprint

90%
Memory
Footprint

Global Memory
Address Entropy

LMAE −−
Skipped 1 LSBs

LMAE −−
Skipped
2 LSBs

LMAE −−
Skipped 3 LSBs LMAE −−

Skipped 4 LSBs

LMAE −−
Skipped 5

 LSBs

LMAE −−
Skipped 6

 LSBs

LMAE −−
Skipped 7 LSBs

LMAE −−
Skipped 8 LSBs

LMAE −−
Skipped 9

LSBs

LMAE −−
Skipped
10 LSBs

Total Unique
Branch

Instructions

90% Branch
Instructions

Branch Entropy
(Yokota)

Branch Entropy
(Average Linear)

tiny
small
medium
large

B) LUD Internal

Figure 4.2: A) and B) show the AIWC features of the diagonal and internal kernels of the
LUD application over all problem sizes.

62 AIWC: OpenCL based Architecture Independent Workload Characterization

0

0.25

0.5

0.75

1

Opcode

Granularity

Barriers Per Instruction

Instructions Per Operand

Load Imbalance

Total
Memory
Footprint

90%
Memory
Footprint

Global Memory
Address Entropy

LMAE −−
Skipped 1 LSBs

LMAE −−
Skipped
2 LSBs

LMAE −−
Skipped 3 LSBs LMAE −−

Skipped 4 LSBs

LMAE −−
Skipped 5

 LSBs

LMAE −−
Skipped 6

 LSBs

LMAE −−
Skipped 7 LSBs

LMAE −−
Skipped 8 LSBs

LMAE −−
Skipped 9

LSBs

LMAE −−
Skipped
10 LSBs

Total Unique
Branch

Instructions

90% Branch
Instructions

Branch Entropy
(Yokota)

Branch Entropy
(Average Linear)

tiny
small
medium
large

 A) LUD Perimeter

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

0

2

4

6

8

10

12

2 4 6 8 10

of Bits Skipped

M
em

or
y

A
dd

re
ss

 L
oc

al
 E

nt
ro

py

Invocation #
●

●

●

●

0
1
2
3

B) LUD Perimeter LMAE on tiny

Figure 4.3: A) shows the AIWC features of the perimeter kernel of the LUD application
over all problem sizes. B) shows the corresponding Local Memory Address Entropy for the
perimeter kernel over the tiny problem size.

§4.4 Detailed Analysis of LU Decomposition Benchmark 63

metrics presented are the inverse values of the metrics collected by AIWC, i.e. granu-
larity = 1/work-items ; barriers per instruction = 1/mean ITB ; instructions per operand
= 1/∑SIMD widths. Additionally, a common problem in parallel applications is load imbal-
ance – or the overhead introduced by unequal work distribution among threads. A simple
measure to quantify imbalance can be achieved using a subset of the existing AIWC metrics
and is included as a further derived parallelism metric by computing load imbalance = max
IPT − min IPT.

The lud benchmark application comprises three major kernels, diagonal, internal and perime-
ter, corresponding to updates on different parts of the matrix. The AIWC metrics for each
of these kernels are presented – superimposed over all problem sizes – in Figure 4.2 A)
B) and Figure 4.3 A) respectively. Comparing the kernels, it is apparent that the diagonal
and perimeter kernels have a large number of branch instructions with high branch entropy,
whereas the internal kernel has few branch instructions and low entropy. This is borne out
through inspection of the OpenCL source code: the internal kernel is a single loop with fixed
bounds, whereas diagonal and perimeter kernels contain doubly-nested loops over triangular
bounds and branches which depend on thread id. Comparing between problem sizes, the
large problem size shows higher values than the tiny problem size for all of the memory
metrics, with little change in any of the values.

The visual representation provided from the Kiviat diagrams allows the characteristics of
OpenCL kernels to be readily assessed and compared. It allows developers to be able to
quickly evaluate AIWC features. Which may allow the effectiveness of vectorization to be
evaluated or to gauge the baseline predictability of memory access and branch behaviour. For
instance, reordering a for-loop would change both the branching and memory access entropy
scores. Additionally, the bottlenecks when vectorizing codes can be evaluated by examining
the mean vectorization in the kiviat diagrams. This change would allow the suitability of a
code on a range of expected data sets to be tested between AIWC runs.

Finally, we examine the local memory access entropy (LMAE) presented in the Kiviat diagrams
in greater detail. Figure 4.3 B) presents a sample of the local memory access entropy, in this
instance of the LUD Perimeter kernel collected over the tiny problem size. The kernel is
launched 4 separate times during a run of the tiny problem size, this is application specific
and in this instance, each successive invocation operates on a smaller data set per iteration.
This corresponds to repeatedly performing elimination in order to solve the lower and upper
matrices, this iterative method results in solving intermediate and incrementally smaller
matrices. Computing the memory access entropy with AIWC for each of these intermediate
results shows increasingly smaller memory accesses, this is intuitive since smaller matrices
will require more localised memory accesses. Note there is a steady decrease in starting
entropy, and each successive invocation of the LU Decomposition Perimeter kernel the lowers
the starting entropy. However, the descent in entropy – which corresponds to more bits being
skipped, or bigger the strides or the more localized the memory access – shows that the
memory access patterns are the same regardless of actual problem size. In general, for cache-

64 AIWC: OpenCL based Architecture Independent Workload Characterization

sensitive workloads – such as LU-Decomposition – a steeper descent between increasing LMAE
distances indicates more localized memory accesses, and this corresponds to better cache
utilisation when these applications are run on physical OpenCL devices. It is unsurprising
that applications with a smaller working memory footprint would exhibit more cache reuse
with highly predictable memory access patterns.

4.5 Use Case: AIWC analysis of OpenDwarf bioinformatics

related benchmarks

A further study of the AIWC feature-space is now performed on bioinformatics type com-
putations to show the benefits of performing AIWC analysis and a sample methodology to
examine the change in AIWC metrics over a range of kernels. The bioinformatics subset of
applications from the extended OpenDwarfs benchmark suite includes computations used in
sequence analysis, biophysics, gene expression/similarity and pattern identification. nw and
swat applications from the Dynamic-Programming dwarf are both directly used in sequence
analysis, gem from the N-Body-Methods dwarf to cover biophysics computations, hmm from the
Graphical-Models dwarf considers both sequence analysis and gene expression. Finally, the
MapReduce dwarf features the kmeans benchmark, which can be used directly in both pattern
identification and gene similarity comparisons. Figures 4.4 and 4.5 present radar/Kiviat
diagrams of architecture-independent characteristics collected for each of the bioinformatics
benchmarks. All results are presented over a single small problem size and show the multiple
kernels required to compute each benchmark application as superimposed plots in the same
diagram. The small size was selected since hmm, gem and swat benchmarks are from the fixed
benchmarks – they only offer one size – however, the execution times typify those seen in the
small sized nw and kmeans applications.

The corresponding execution times of these applications is presented in Figure 4.6. Figure 4.4a
shows that the nw benchmark is characterized by high available thread parallelism (low values
for granularity and imbalance) and a very high level of barrier synchronization. This explains
its superior performance on Nvidia GPUs compared to CPUs – shown in Figure 4.6(a). The
Nvidia devices examined are roughly two years newer than the AMD GPUs, we expect
modern AMD GPUs to form a better comparison.

Figure 4.4b shows that the swat benchmark also has a high level of available thread parallelism,
however, it has many fewer barriers and a much higher branch entropy. Given this, we expect
to see relatively better performance on CPU architectures when examining execution times in
Figure 4.6(b) – the i7600k CPU is two years older than the optimal Nvidia GPUs presented –
it would be interesting to repeat this evaluation on a CPU of comparable vintage.

Figure 4.4c shows that the gem benchmark is characterized by very high available thread
parallelism, and low branch and memory entropies. This makes it ideal for GPU architectures,
which is reflected in the superior performance for the modern Nvidia GPUs in Figure 4.6 (c).

§4.5 Use Case: AIWC analysis of OpenDwarf bioinformatics related benchmarks 65

0

0.25

0.5

0.75

1

Opcode
Imbalance

Granularity

Barriers Per Instruction

Instructions Per
 Operand

Total Memory
Footprint

90% Memory
Footprint

Global Memory
Address Entropy

LMAE −−
Skipped 1 LSBs

LMAE −−
Skipped
2 LSBs

LMAE −−
Skipped 3 LSBs LMAE −−

Skipped 4 LSBs

LMAE −−
Skipped 5

 LSBs

LMAE −−
Skipped 6

 LSBs

LMAE −−
Skipped 7 LSBs

LMAE −−
Skipped 8 LSBs

LMAE −−
Skipped 9

 LSBs

LMAE −−
Skipped
10 LSBs

Total Unique
Branch

 Instructions

90% Branch
Instructions

Branch Entropy
(Yokota)

Branch Entropy
(Average Linear)

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

shared_1
shared_2

(a) nw

0

0.25

0.5

0.75

1

Opcode
Imbalance

Granularity

Barriers Per Instruction

Instructions Per
 Operand

Total Memory
Footprint

90% Memory
Footprint

Global Memory
Address Entropy

LMAE −−
Skipped 1 LSBs

LMAE −−
Skipped
2 LSBs

LMAE −−
Skipped 3 LSBs LMAE −−

Skipped 4 LSBs

LMAE −−
Skipped 5

 LSBs

LMAE −−
Skipped 6

 LSBs

LMAE −−
Skipped 7 LSBs

LMAE −−
Skipped 8 LSBs

LMAE −−
Skipped 9

 LSBs

LMAE −−
Skipped
10 LSBs

Total Unique
Branch

 Instructions

90% Branch
Instructions

Branch Entropy
(Yokota)

Branch Entropy
(Average Linear)

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

MatchStringGPUSync
trace_back2

(b) swat

0

0.25

0.5

0.75

1

Opcode
Imbalance

Granularity

Barriers Per Instruction

Instructions Per
 Operand

Total Memory
Footprint

90% Memory
Footprint

Global Memory
Address Entropy

LMAE −−
Skipped 1 LSBs

LMAE −−
Skipped
2 LSBs

LMAE −−
Skipped 3 LSBs LMAE −−

Skipped 4 LSBs

LMAE −−
Skipped 5

 LSBs

LMAE −−
Skipped 6

 LSBs

LMAE −−
Skipped 7 LSBs

LMAE −−
Skipped 8 LSBs

LMAE −−
Skipped 9

 LSBs

LMAE −−
Skipped
10 LSBs

Total Unique
Branch

 Instructions

90% Branch
Instructions

Branch Entropy
(Yokota)

Branch Entropy
(Average Linear)

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● calc_potential_single_step_dev

(c) gem

0

0.25

0.5

0.75

1

Opcode
Imbalance

Granularity

Barriers Per Instruction

Instructions Per
 Operand

Total Memory
Footprint

90% Memory
Footprint

Global Memory
Address Entropy

LMAE −−
Skipped 1 LSBs

LMAE −−
Skipped
2 LSBs

LMAE −−
Skipped 3 LSBs LMAE −−

Skipped 4 LSBs

LMAE −−
Skipped 5

 LSBs

LMAE −−
Skipped 6

 LSBs

LMAE −−
Skipped 7 LSBs

LMAE −−
Skipped 8 LSBs

LMAE −−
Skipped 9

 LSBs

LMAE −−
Skipped
10 LSBs

Total Unique
Branch

 Instructions

90% Branch
Instructions

Branch Entropy
(Yokota)

Branch Entropy
(Average Linear)

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●

●

invert_mapping
kmeansPoint

(d) kmeans

Figure 4.4: Architecture-Independent Workload Characterization features for selected bioin-
formatics benchmarks.

66 AIWC: OpenCL based Architecture Independent Workload Characterization

0

0.25

0.5

0.75

1

Opcode
Imbalance

Granularity

Barriers Per Instruction

Instructions Per
 Operand

Total Memory
Footprint

90% Memory
Footprint

Global Memory
Address Entropy

LMAE −−
Skipped 1 LSBs

LMAE −−
Skipped
2 LSBs

LMAE −−
Skipped 3 LSBs LMAE −−

Skipped 4 LSBs

LMAE −−
Skipped 5

 LSBs

LMAE −−
Skipped 6

 LSBs

LMAE −−
Skipped 7 LSBs

LMAE −−
Skipped 8 LSBs

LMAE −−
Skipped 9

 LSBs

LMAE −−
Skipped
10 LSBs

Total Unique
Branch

 Instructions

90% Branch
Instructions

Branch Entropy
(Yokota)

Branch Entropy
(Average Linear)

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

acc_b
calc_alpha
calc_beta
calc_gamma
calc_xi
est_a
est_b
est_pi
init_alpha
init_beta
init_ones
mvm_non_kernel_naive
mvm_trans_kernel_naive
s_dot_kernel_naive
scale_a
scale_alpha
scale_b

Figure 4.5: Architecture-Independent Workload Characterization features for the hmm bioinfor-
matics benchmark.

The kmeans benchmark (Figure 4.4d) also has a high level of available parallelism and low
branch and memory entropies; as expected, the measurements in Figure 4.6(d) show that both
modern GPUs and older HPC GPUs perform equally well as CPUs for this benchmark, for
larger problem sizes the GPUs outperform the CPU since a sufficient amount of work has
been given and is presented in the Appendix (Figure A.2).

The hmm benchmark (Figure 4.5) is composed of a large number of kernels, which differ
significantly in granularity. Most kernels have very little available parallelism, suggesting that
this benchmark would perform best on CPU architectures with a small number of powerful
cores; this is borne out by the measurements in Figure 4.6 (e) which show the smallest
benchmark time was recorded on the powerful i7-6700k CPU.

None of the bioinformatics benchmarks is vectorized (instructions per operand = 1), and
therefore fail to take advantage of the floating point capabilities available on CPU and MIC
architectures.

4.6 Usage and Limitations

We believe that AIWC will be useful to diversity analysis, to this end, this Section presents
information about using the tool. The AIWC plugin is only ≈ 1000 lines of code and it is

§4.6 Usage and Limitations 67

0.0

0.3

0.6

0.9

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(a) nw

0

10

20

30

40

50

E5−
26

97

i7−
67

00
K

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m

K40
m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

5x
2

Xeo
n

Phi
72

10

tim
e

(m
s)

(b) swat

0

25

50

75

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(c) gem

0

5

10

15

20

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(d) kmeans

0

10

20

30

40

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(e) hmm

accelerator type CPU Consumer GPU HPC GPU MIC

Figure 4.6: EOD runtimes for small problem sized bioinformatics benchmarks.

68 AIWC: OpenCL based Architecture Independent Workload Characterization

Table 4.3: Overhead of the AIWC tool on the fft benchmark and the Intel i7-6700K CPU.

time memory
usage (ms) increase usage (MB) increase

without AIWC with AIWC without AIWC with AIWC
tiny 0.04 73.4 ≈1830× 80.0 85.9 1.07×
small 0.2 427.8 ≈2800× 75.9 149.0 1.96×
medium 2.9 12420 ≈4300× 101.4 636.8 6.28×
large 19.6 69300 ≈3540× 203.8 2213.2 10.86×

available as a fork of Oclgrind and can be publicly found on GitHub1. To use AIWC over the
command line it is passed the appropriate --aiwc argument immediately after calling the
oclgrind program. An example of its usage on the kmeans application is shown below:

oclgrind --aiwc ./kmeans <args>

The collected metrics are logged as text in the command line interface during execution and
also in a csv file, stored separately for each kernel and invocation. These files can be found
in the working directory with the naming convention aiwc_α_β.csv, where α is the kernel
name and β is the invocation count.

AIWC imposes significant overheads compared to normal execution, for illustration, we
examined the overheads of using AIWC on the fft benchmark – from Chapter 3. The fft

benchmark was selected as it has average runtime results – it falls roughly in the middle of
the other benchmarks. Table 4.3 shows the relative overhead in terms of the elapsed time per
kernel invocation and the maximum resident set size (peak virtual memory usage) during
the benchmark execution, the results report with and without AIWC on four sizes of the fft

benchmark on the Intel i7-6700K CPU. These results were collected with LibSciBench, for
the kernel execution time, and Unix GNU time tool for the maximum resident set size. The
execution times are the mean time from collecting a two second sample – the fft benchmark
invokes the top level kernel many times during a two second run depending on problem size
and the choice of OpenCL device.

We see that executing the same application on a simulator instead of directly on the Intel
OpenCL runtime has significant performance costs, both in terms of execution time and
memory usage. AIWC takes 1800-4300× longer to execute depending on the problem size
and uses 1.07×, 1.96×, 6.2×, and 10.8× more memory as the problem size increases from tiny,
small, medium and large respectively. The large memory footprint was limiting for us on
one of the benchmarks; we encountered an issue with running the largest lud application
where we exhausted the available RAM on our test system (16 GB), this was overcome by
running the same experiment on a system with more RAM. The memory usage of AIWC is
due to storing the index of every memory location accessed during the simulated kernel run,
it is needed for the local and global memory accesses entropy metrics which are calculated
over different striding distances once the kernel has finished. Instead of these addresses
being stored in memory they instead could be written to disk. Until this improvement is

1https://github.com/BeauJoh/Oclgrind

https://github.com/BeauJoh/Oclgrind

§4.6 Usage and Limitations 69

performed, alternatives exist if the user is running out of memory, instead of executing the
full range of kernel invocations to completion – since some applications will repeat kernel
execution hundreds or thousands of times to completion – the developer could use AIWC
for performance analysis on just a few iterations or a subset of the larger problem. The
performance of the tool was not a limiting factor on a majority of the codes examined with
AIWC taking just a few minutes to be generated on large problem sizes.

The use of a simulator incurs performance penalties when comparing to using hardware
directly. For comparison, on the Intel Xeon Gold 6134 CPU running at 3.20 GHz and on the
tiny size of kmeans benchmark, the mean kernel execution time was ≈ 44.4 µs, however when
running Oclgrind on the same CPU hardware the mean kernel execution time increased to ≈

8.7 ms, two orders of magnitude slower. The overhead of adding the AIWC plugin on the
simulator results in a mean kernel execution time of ≈ 116 ms. In other words, using the
simulator is almost 200× slower than directly using the same hardware, and using AIWC
takes 10× longer than solely using Oclgrind, which is ≈ 2600× longer than immediately the
CPU. When we consider the same kmeans application, on the large problem size, the mean
kernel execution elapsed time directly on the Xeon Gold CPU was ≈ 395 µs, with the Oclgrind
simulator included in the mix mean kernel execution times increased to ≈ 1 second, and with
AIWC also added this further increased the mean time taken to ≈ 50 seconds. Simply put, on
the large problem size, using the simulator takes ≈ 2500× longer than directly using the same
hardware, and using AIWC takes 50 × longer again than solely using Oclgrind.

The computation times grow substantially when using the Oclgrind simulator and only
worsen when AIWC is added into the mix. If we decide to use the Oclgrind simulator, say for
profiling, and it runs 2.5k× slower, that is a significant hit on performance, the further slow
down of using AIWC is only an inconvenience. However, this is not seen as restrictive once
we consider the one-shot nature of AIWC for testing and profiling instead of it being needed
at run-time for scheduling.

The envisaged use of AIWC is that it is only run once, for instance, a developer wished
to examine the characteristics of the kernel in order to identify suitability for accelerators
or verify that a high degree of SIMD vectorization had been achieved. In the predictive
scheduling setting, AIWC would be run on the codes prior to them being shipped/delivered;
since these characteristics are collected by the developer on a realistic problem size, the metrics
can be included as a comment in each kernel’s SPIR code, and the scheduler can use them by
evaluating the shipped metrics on the model. Given the proposed workflow, the overhead
added by AIWC is not significant or prohibitive to the prediction and scheduler pipeline. The
predictive model is presented in detail in Chapter 5.

Examples of how AIWC metrics can be used for diversity analysis and device predictions are
presented as Jupyter artefacts2 3.

2https://github.com/BeauJoh/aiwc-opencl-based-architecture-independent-workload-characterization-artefact
3https://github.com/BeauJoh/opencl-predictions-with-aiwc

https://github.com/BeauJoh/aiwc-opencl-based-architecture-independent-workload-characterization-artefact
https://github.com/BeauJoh/opencl-predictions-with-aiwc

70 AIWC: OpenCL based Architecture Independent Workload Characterization

4.7 Summary

We have presented the Architecture-Independent Workload Characterization tool (AIWC),
which supports the collection of architecture-independent features of OpenCL application
kernels. It is the first workload characterization tool to support parallel workloads. The
collected features can be used to predict the most suitable device for a particular kernel, or
to determine the limiting factors for performance on a particular device, allowing OpenCL
developers to try alternative implementations of a program for the available accelerators – for
instance, by reorganizing branches, eliminating intermediate variables et cetera. In addition,
the architecture independent characteristics of a scientific workload will inform designers and
integrators of HPC systems, who must ensure that accelerator architectures are suitable for
the intended workloads.

To identify which AIWC characteristics are the best indicators of opportunities for optimization,
we are currently looking at how individual characteristics change for a particular code through
the application of best-practice optimizations for CPUs and GPUs (as recommended in vendor
optimization guides).

AIWC was also used to evaluate the performance bottlenecks of bioinformatics codes from
the EOD suite. When also coupled with the runtime performance results of Chapter 3, it is
interesting to note that optimal accelerators are typically GPU based, given the high available
thread parallelism and high barrier synchronization counts of many sequencing analysis
applications. However, the bioinformatics applications examined contain a few kernels with
higher branch and memory access entropies, which suggests that CPUs are critical to achieving
good performance on these applications.

Chapter 5

Making Performance Predictions
for Scheduling

Predicting the performance of a particular OpenCL application on a selected accelerator
is challenging due to complex interactions between the computational requirements of the
code and the capabilities of the target device. Certain classes of application are better suited
to a certain type of accelerator [113], and choosing the wrong device results in slower and
more energy-intensive computation [114]. The penalties involved in selecting the wrong
accelerator for a given code is shown in the ranges between the best and worst execution
times of the Figures 3.1 and 3.2 in Chapter 3. Thus, accelerator selection is critical to making
optimal scheduling decisions to achieve good performance in a heterogeneous supercomputing
environment. The ability to predict which device is optimal without having to first run a
new code on all devices first is desirable. AIWC metrics – from Chapter 4 – provide a good
representation of the characteristics of codes; we propose that these metrics can be used
directly for the prediction of execution times over various accelerators. In this chapter, we
develop a model that employs the AIWC features to make accurate predictions over a range
of current accelerators. The execution times from Chapter 3 are used as response variables
and the AIWC metrics are used as input variables to train this model. This chapter discusses
how the model is developed and optimized for our data, an evaluation is presented along
with a discussion of its use case on predictions for scheduling.

There are many current projects which attempt task scheduling on heterogeneous multicore
architectures, these include StarPU [148], Ompss [149] and CoreTSAR [150] Many of these
schedulers track dependencies within tasks and target either compute, bandwidth or latency
by scheduling work to the most appropriate accelerator at the granularity of function call level
or the work inside a single parallel region. The history of the performance of a task is used
to determine the optimal device to use in the future. However, the nature of this approach
means these schedulers must execute a new kernel code on all available accelerators before
any scheduler smart strategies can be used. Our model can predict the expected execution
time of a kernel before it is run; if this prediction is incorrect, these schedulers can default
back to their old strategy of measuring the performance on all available accelerators. This

71

72 Making Performance Predictions for Scheduling

work was published in the 16th International Conference on High Performance Computing &
Simulation, HPCS 2018 [131].

5.1 Model Development

This section outlines how AIWC features are used to build a model which accurately predicts
the execution times of a previously unencountered OpenCL code over the range of available
devices. The AIWC metrics are generated over the EOD benchmark suite and serve as input
variables, while all the execution times presented in Chapter 3 serve as response variables for
model training. The generation of a random forest model was used to learn each machine
profile. This model should be able to offer accurate predictions of execution times based only
on the AIWC metrics – this would be used in the real world by having the trained model
available to the scheduler, the AIWC metrics shipped with kernel codes, and the scheduler
making accelerator selections entirely by querying the model with these metrics.

We initially performed an evaluation with general linear mixed (GLM) models but found the
random forest model to offer a higher accuracy of predictions. The evaluation and associated
prediction results of the GLM are presented in Appendix B.

The methodology to develop the model is outlined in this section. All tools used are open
source, and all code is available in the respective repositories: [144] and [147]. In the remainder
of this section, we outline the experimental setup, describe how the initial predictive model
was constructed, examine various optimizations to improve the accuracy of the model and
conclude with a study on how the model performs with unencountered codes.

5.1.1 Experimental Setup

AIWC – from Chapter 4 – was used to characterize a variety of codes in the OpenDwarfs
Extended (EOD) Benchmark Suite – from Chapter 3 – and the corresponding AIWC metrics
were used as predictor variables to fit a random forest regression model. The metrics were
generated over 4 problem sizes for each of the 12 applications / 37 kernels. Response variables
were collected following the same methodology outlined in Chapter 3 – where the details
for each of the applications is also presented. Execution times were measured for at least
50 iterations and a total runtime of at least two seconds for each combination of device and
benchmark. Each application was run over 15 different accelerator devices and each kernel
collected at four different problem sizes. Our data comprises of 2200+ unique mean runtime
entries but when coupled with the AIWC metrics for each observation our data comprises up
to 64k entries in total; we train our model with 20% of the data entries (randomly selected)
and use the remaining 80% for evaluation.

§5.1 Model Development 73

5.1.2 Constructing the Random Forest Performance Model

The random forest model is used to estimate the execution times based on the 28 AIWC metrics
for all 64k observations. This regression model uses the measured execution times from EOD
as the response and AIWC metrics as predictor variables. Other predictive models such
as linear regression, Principal component regression, generalised linear models, vectorized
generalised additive models, however, were discarded due to their multivariate outcomes.
K-nearest neighbours were also considered but the dimensionality of the search-space was too
high. Feed-forward general networks with multiple hidden layers were considered but the
sample size was insufficient to ensure valid convergence of the learning function and also the
network structure was too simple for the complicated manifold induced by the data. Random
forests were selected since they are a well known robust performer, quick to compute and
easy to store the computed object model. Random forests do not assume any underlying
structure in the data but rather finds these automatically using tree pruning methods – and
they are good at segmenting the data for individual regression problems and thus are well
suited to our goals; building a performance prediction model that can select between various
devices based solely on that kernel’s AIWC feature-space.

The R programming language was used to analyse the data, construct the model and analyse
the results. In particular, the ranger package by Wright and Ziegler [151] was used for the
development of the regression model. The ranger package provides computationally efficient
implementations of the Random Forest model [152] which performs recursive partitioning of
high dimensional data.

The ranger function accepts three main parameters, each of which influences the fit of the
model to the data. In optimizing the model, we searched over a range of values for each
parameter including:

• num.trees, the number of trees grown in the random forest: over the range of 10 −
10, 000 by 500

• mtry, the number of features tried to possibly split within each node: ranges from 1− 34,
where 34 is the maximum number of input features available from AIWC,

• min.node.size, the minimal node size per tree: ranges from 1 − 50, where 50 is the
number of observations per sample.

Given the size of the data set, it was not computationally viable to perform an exhaustive
search of the entire 3-dimensional range of parameters. Autotuning to determine the suitability
of these parameters has been performed by Ließ et al. [153] to determine the optimal value of
mtry given a fixed num.trees. Instead, to enable an efficient search of all variables at once, we
used Flexible Global Optimization with Simulated-Annealing, in particular, the variant found
in the R package optimization by Husmann, Lange and Spiegel [154]. The simulated-annealing
method both reduces the risk of getting trapped in a local minimum and is able to deal with
irregular and complex parameter spaces as well as with non-continuous and sophisticated
loss functions. In this setting, it is desirable to minimise the out-of-bag prediction error of

74 Making Performance Predictions for Scheduling

0

5

10

0 10 20 30 40 50
min.node.size

pr
ed

ic
tio

n
er

ro
r

(%
)

Figure 5.1: Full coverage of min.node.size with fixed tuning parameters: num.trees = 300 and
mtry = 30.

the resultant fitted model, by simultaneously changing the parameters (num.trees, mtry and
min.node.size). The optim_sa function allows defining the search space of interest, a starting
position, the magnitude of the steps according to the relative change in temperature and
the wrapper around the ranger function (which parses the 3 parameters and returns a cost
function — the predicted error). It allows for an approximate global minimum to be detected
with significantly fewer iterations than an exhaustive grid search.

Figure 5.1 shows the relationship between out-of-bag prediction error and min.node.size,
with the num.trees = 300 and mtry = 30 parameters fixed. In general, the min.node.size
has the smallest prediction error for values less than 15 and variation in prediction error is
similar throughout this range. As such, the selection to fix min.node.size = 9 was made to
reduce the search-space in the remainder of the tuning work. We assume conditional (relative)
independence between min.node.size and the other variables.

Figure 5.2 shows how the prediction error of the random-forest ranger model changes over
a wide range of values for the two remaining tuning parameters, mtry and num.trees. Full
coverage was achieved by selecting starting locations in each of the 4 outer-most points of the
search space, along with 8 random internal points — to avoid missing out on some critical
internal structure. For each combination of parameter values, the optim_sa function was

§5.1 Model Development 75

1

2500

5000

7500

10000

1 5 10 15 20 25 30 34
mtry

nu
m

.tr
ee

s

40
80
120
160

prediction
error (%)

Figure 5.2: Full coverage of num.trees and mtry tuning parameters with min.node.size fixed
at 9.

allowed to execute until a global minimum was found. At each step of optimization a full
trace was collected, where all parameters and the corresponding out-of-bag prediction error
value were logged to a file. This file was finally loaded, the points interpolated using the R
package akima, without extrapolation between points, using the mean values for duplication
between points. The generated heatmap is shown in Figure 5.2.

A lower out-of-bag prediction error is better. For values of mtry above 25, there is a good
model fit irrespective of the number of trees. For lower values of mtry, fit varies significantly
with different values of num.trees. The worst fit was for a model with a value of 1 num.trees,
and 1 for mtry, which had the highest out-of-bag prediction error at 194%. In general, the
average prediction error across all choices of parameters is very low at 16%. Given these
results, the final ranger model should use a small value for num.trees and a large value for
mtry, with the added benefit that such a model can be computed faster given a smaller number
of trees.

76 Making Performance Predictions for Scheduling

Algorithm 1: Find the suitability of the optimal parameters for random forest models for
future kernels.
for each unique kernel do

construct a full data frame with all but the current kernel;
run optimization optim_sa with the full data frame at selected starting location;
record the final optimal parameters

5.1.3 Parameters for the Random Forest Performance Model

The selected model should be able to accurately predict execution times for a previously
unencountered kernel over the full range of accelerators. To show this, the model must not
be over-fitted, that is to say, the random forest model parameters should not be tuned to the
particular set of kernels in the training data, but should generate equally good fits if trained
on any other reasonable selection of kernels.

We evaluated how robust the selection of model parameters is to the choice of kernel by
repeatedly retraining the model on a set of kernels, each time removing a different kernel.
The procedure used is presented in Algorithm 1. For each selection of kernels, optima_sa was
run from the same starting location – num.trees=500, mtry=32 – and the final optimal values
were recorded. min.node.size was fixed at 9. The 64k entries are stored in an R data frame – a
table or a two-dimensional array-like structure.

The optimal – and final – parameters for each omitted kernel are presented in Table 5.1.
Regardless of which kernel is omitted, the R-squared values – or explained variance – is very
high at 0.99, indicating a good model fit. The optimal parameters are very similar regardless of
which kernel was omitted. As such, the median value of each of the parameters was selected
for the final model: num.trees = 505, mtry = 30 and min.node.size = 9. These parameters were
used for all further model training.

5.1.4 Tuning the Random Forest Model

For a model to be useful in predicting execution times for previously unencountered kernels,
it needs to be trained on a representative sample of kernels i.e. a sample that provides good
coverage of the AIWC feature space of all possible application kernels.

We measured how model fit improves with the number of kernels used in training, following
the method presented in Algorithm 2. The set of unique kernels available during model
development is denoted by k (37 kernels in this study), s is the maximum number of sample
models (including different combinations of kernels) to evaluate for each number of kernels
1..∣k∣, φ is a data frame of the combined AIWC feature-space with measured runtime results.
The parameters to the random forest model were fixed at num.trees = 505, mtry = 30 and
min.node.size = 9, according to the methodology in Section 5.1.3.

The results presented in Figure 5.3 show the mean absolute error of models trained on varying

§5.1 Model Development 77

Table 5.1: Optimal tuning parameters from the same starting location for all models omitting
each individual kernel.

Kernel omitted num.trees mtry
prediction
error (%)

invert_mapping 521 31 4.3
kmeansPoint 511 30 4.1
lud_diagonal 527 29 4.4
lud_internal 488 31 4.5

lud_perimeter 480 31 4.4
csr 507 30 4.4

fftRadix16Kernel 484 29 4.4
fftRadix8Kernel 529 34 4.3
fftRadix4Kernel 463 30 4.2
fftRadix2Kernel 443 28 4.4

calc_potential_single_step 502 24 4.8
c_CopySrcToComponents 529 31 4.1

cl_fdwt53Kernel 499 26 4.7
srad_cuda_1 504 32 4.7
srad_cuda_2 500 29 4.6

kernel1 536 30 4.5
kernel2 469 31 4.6

acc_b_dev 576 28 4.4
calc_alpha_dev 469 30 4.3
calc_beta_dev 498 30 4.3

calc_gamma_dev 517 28 4.4
calc_xi_dev 439 33 4.3
est_a_dev 524 30 4.2
est_b_dev 533 28 4.3
est_pi_dev 450 31 4.3

init_alpha_dev 558 32 2.6
init_beta_dev 467 30 4.1
init_ones_dev 566 32 4.1

mvm_non_kernel_naive 514 30 4.3
mvm_trans_kernel_naive 449 32 4.4

scale_a_dev 508 31 4.3
scale_alpha_dev 530 30 3.8

scale_b_dev 565 31 4.2
s_dot_kernel_naive 509 30 4.5

needle_opencl_shared_1 499 30 4.4
needle_opencl_shared_2 504 29 4.5

crc32_slice8 511 29 4.3

78 Making Performance Predictions for Scheduling

Algorithm 2: Compute average fit of random forest models trained on different numbers of
kernels.
s ← 500
k ←unique(kernel)
for i ← 1to length(k) do

vp ← []

vm ← []

for j ← 1 to s do
x ←shuffle(k)
y ← x[1 . . i]
training data ← subset(φ, kernel == y)
test data ← subset(φ, kernel ! = y)
discard variables unavailable during real-world training from training data e.g. size,
application, kernel name and measured total application time

build ranger model r using training data
generate prediction responses p from r using test data
append predicted execution times p to vp
append measured execution times from test data to vm

compute the mean absolute error e from vector of p relative to vector m
store(e)

numbers of kernels. As expected, the model fit improves with increasing number of kernels.
In particular, larger improvements occur with each new kernel early in the series and tapers
off as a new kernel is added to an already large number of kernels. The gradient is still
significant until the largest number of samples examined (k = 37) suggesting that the model
could benefit from additional training data. However, the model proposed is a proof of
concept and suggests that a general purpose model is attainable and may not require many
more kernels.

5.2 Evaluation

Figure 5.4 presents the measured kernel execution times (in log(µs)) against the predicted
execution times from the trained model. Each point represents a single combination of kernel
and problem size – there are 64k points in total. The plot shows a strong linear correlation
indicating a good model fit. Under-predictions typically occur on four kernels over the
medium and large problem sizes, while over-predictions occur on the tiny and small problem
sizes. However, these outliers are visually over-represented in this figure as the final mean
absolute error is low, at ~0.1.

5.2.1 Predicting Kernel Execution Time

In this section, we examine differences in the accuracy of predicted execution times between
different kernels, which is of importance if the predictions are to be used in a scheduling

§5.2 Evaluation 79

0.0

0.5

1.0

1.5

0 10 20 30
number of kernels

m
ea

n
ab

so
lu

te
 e

rr
or

Figure 5.3: Prediction error across all benchmarks for models trained with varying numbers
of kernels.

●●● ●● ●●●● ● ●●● ●● ●●● ●● ●● ●●●●● ● ●● ●●●●●

●●● ●●●
●●●●●●●●
●●●●●●●●●●● ●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●

●●● ●● ●●●●●●●●●●●●●●● ●●●●●●● ●●●●●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●

● ●●●●●
● ●●● ●●●●●● ●●● ●●● ●● ●● ● ●

●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●

● ●
● ●●● ●●●●●●●

●● ●●●● ●●●●●●●● ●●●

●●●●● ●●●●● ●●●●●●●●● ●●●●●● ●●●●●●●●●●●●

● ●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●

●

● ●●●
● ●●●●●

●●● ●●●● ●● ●●●●●● ●●

●● ●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●

● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●● ●●●●●●●●●●● ●●●● ●●●●●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●● ●●●● ●●● ●● ●●●● ●● ●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●
●●●●●●●●●● ●●●●●● ● ●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ●●●●●●
●●● ●●●● ●●●● ●●●●●● ●

●●●●●●●●●●●●
●●● ●●●●●●●●●●●●●●●

●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●● ●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●
● ●●●●● ●● ●● ●●●●●● ●● ●●● ●●●● ●●● ●●●●●

● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●

● ●●● ●●● ●●● ●● ●●●● ●●●● ●●● ●●●●● ●●●● ●

● ●●●●● ●●●●●●●●●●●●● ●●●●●●●●● ●●●●

●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●●●●●●●●●●● ●●●●● ●● ●●●

●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●●●●●●● ●●●●●●● ●●●●● ●●●● ●●●●

●●

●●

●●●●●●● ●●●● ●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●
●●●●●●●●●●●●●●●●
●●●●●●
●●●●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●● ●
● ●●● ●● ● ●●● ●● ●●●●●● ●● ●● ●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●●
●●●●●● ●● ●● ●●●● ●●● ●●●●●● ●●●● ●

●●●●●● ●●●● ●●●●●●● ●●●●●●●●●
●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●

●●●●
●●

●● ●●●●● ●●●●●●● ●●●●●● ●●●●● ●●
●
●●●●●●

●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●
●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●
●●●

●●●●●●●●●●●
●●●

●●●●
●●

●●

●
●●

●
●

●●●●●● ●●●●●●● ●●●● ●●●●●●● ●●●●●●●● ●

●●●

●
●●●

●●●●●●●●●●●●
●●●

●●
●●●●

●

●●

●● ●● ●●●●● ●●●●●●● ●●● ●●●●●●●● ●● ●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●● ●●●●●
●●●● ●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●

●●●
●●●●●●●●●
●●●●●
●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●
●
●●●
●●●

●
●●●●●
●●●●
●
●

●●
●●●

●●

●
●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●

●
●

●●●
●●●●●●●
●

●●●●●●●●
●●●●
●

●

●●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●● ●● ● ●●●●●●●●

●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

●● ●●●●●
●● ●●●● ●●●●● ●● ●● ●●●●●● ●●● ●●

●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●

●●●● ●●●
●●●●●●●●●●●●●● ●● ●●● ●●●●●●●

●
●● ●●●● ●● ●●● ●● ●●● ●● ●●●●● ●●

●● ●● ●●●●

●● ●●
●●●●●● ●●● ●●●●●● ●●

● ●●● ● ● ●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●● ● ●●●● ●● ●●

●●●●●● ●●●●● ●●● ●●● ●●● ●● ●●●● ●●●●●● ●●●

●
●●●●● ●● ●●● ●●●●● ●●●● ●●● ●●●● ●●●● ●●

●●●●● ●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

● ●
●●● ●● ●
●● ●● ●●●●●●●●

●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●

●●●●●●●●● ●●● ●●●

●●●●●● ●● ●● ●●● ●●●●●● ●● ●
●
●● ●●●

●●
●● ●●●

●● ●●●● ●●●●●● ●●●
●●● ●● ●●●● ●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●

●●●●●●●●●●● ●●●●● ●●● ●●●●●●● ●● ●●●●●●

●●
●●●● ●●● ●●●● ●●●●●● ●●● ●●● ●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●

●●●●●●
●● ●●●●● ●●●●
●●● ●●●
●● ●●

● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●

●● ●● ●●●●● ●● ●● ●●●●● ●● ●●●● ●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●● ●●●●●●●●●●●●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●

●●●●●● ●● ●●●● ●●● ●●● ●● ●● ●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●
●●●●●●
●●●●●

●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●
●●●●●●●●●●●●
●

●●●●●
●●●●

●●●

●●●●●●●●●●●●●●●●●

●
●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●
●●●● ●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●● ●●●●●●●●● ●●●●● ●● ●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●
●●●●●●●●●●●●●● ●●●●●● ●●●●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●

●●●●●●● ●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●● ●●●●●●●●●●●●●● ●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
● ●●●●● ● ●● ●●●●● ●● ●●●● ●●●●●

● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●● ●●●● ●●●●●● ●●●●● ●●●●● ●
●●●

●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●●●● ●●●●●●●●●●● ● ●●●●●●●●●

●●●●●●●● ●●●●●●●●●●●● ●●●● ●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●● ●
●

● ●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●● ●● ●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●●●●● ●●●●●●●● ●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●●●●● ● ●●●●●● ●
●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●

●●●●●●●●
●●●●●●●●● ●●●● ●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●● ●● ●● ●●●● ●● ● ●● ●● ●

● ●●
●● ●

●●● ●●

●

●●●●●● ●●●●● ●● ●● ●●● ●●●●●●●●●●●●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●●●●●●●●●●●●●●●●
●●●●

●● ●

●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●●
●●●●●●

●● ●● ●●●● ●● ●● ● ●●●●● ● ● ●●
● ●●●● ●●● ●●●

●● ●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●● ●●
●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●

● ●●●●● ●●●●●● ●● ●●● ●●●● ●●●●● ●●●●●●● ●●

●● ●● ●● ●●●● ●● ●●●●● ●

●● ●
● ●

●●● ●●● ●●

●●

●● ● ●●●●●● ●● ●●●● ●● ● ●●● ●●●●● ●●●●● ●●

●●●● ●●● ●●●●● ●● ●●●● ●●●●● ●●
●●●●● ●●● ●

●● ●●●●● ●●●●●● ●●●● ●●●●● ●● ●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●● ●●●●●●●●● ●● ●●● ●● ●● ●● ●● ●●●●●●●● ●

●●●● ● ●●●● ●●● ●●● ●
●●

●●●●● ●●●●●● ●●

●●●●●●●●●●● ●●●●●●●●●
●●●●●●●●● ●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●● ●●

●●●●●●●●● ●●●●●●●●
●●●●●●●●

● ●●●●●●●

● ●●● ● ●● ●● ●●●●●●● ● ●

●

●● ●● ●●●●●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●● ● ●●●● ●● ●●● ●● ● ●●●●● ●● ●● ●● ●●● ● ●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●
● ●●●

●●●●●●●●●● ●●●●●●●●●
●●●● ●●●●●●●●●● ●

● ●●
●● ●●●

● ● ●●● ● ●● ● ●●●●
●●● ●●●

●
● ●● ●●

●● ●●●● ●●● ●●●●●● ● ●●●●● ●● ●●●●●●● ●●●

●
●● ● ●● ●●

● ●●
●

●●
●●●●●●● ●●● ●●●
●● ●●●

●
●●● ●

●● ●● ●● ●●● ●●
●●●●

●●
●● ● ●●●●●●

●
● ●●● ●● ●●
●

● ●●●●●●●● ●●
● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●● ●●●●
●●●●● ●●●● ●●●●●●

●●●●● ●●●●● ●●●● ●● ●●●●● ●
●
●●●●●● ●●●

●● ●●●●●●
●●●● ●● ●● ●●●●●● ●●●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●● ●●●●●●●● ●●●●●●●●●●● ●●●●● ●

●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●● ●●●●●●●●●●●●●●●
●● ●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●●●●● ●●● ●●●●●● ●●● ●●●●●●●●●● ●● ●● ●●

●●● ●●●●●●●● ●●●●●●●●●
●●●●●●● ●●

● ●●●●
●●●●●●●●●●● ●●●● ●●●●●●

●●●●

●● ●●●● ●●●●●●● ●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●● ●●● ●●●●●●●●●●●
●●●

●●● ●

●●●●●●●●●●●● ●● ●● ●●●●●● ●●●●●●

●●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●● ●●

● ●●●● ●●●●●●●●● ●● ●●●● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●● ●●● ●●● ●● ●●● ●● ●●●● ●●●●● ●● ●●

●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●

●
● ●● ●●●●
●
●●● ●●● ●● ●●● ●
●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●

●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●
●

●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●● ●●●●●●●● ●●●●●●●●●●●● ●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●
●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●● ●●● ●●● ● ●●●●● ●● ● ●●●●●●● ●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●● ●●●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●● ●●● ●●● ●●●●● ●● ●● ●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●●●● ●● ●●●
●

●● ●● ●● ●●● ●● ●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●● ●●● ●●●●●●●● ● ●●●●●● ● ●●●●●● ●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●● ●●●

●
●● ●● ●●●● ●● ●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●● ●● ●●●●● ●●●●● ●●●●●●●
●●●●●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●
●●

●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●● ●

● ●●● ●●●
● ●●● ●● ●●●●● ●

●●● ●
●

●●●●●●●●
●●●●●●●●●●●●
●●
●●●●
●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●
●
●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●● ●●●●● ●● ●● ●●●●●●● ●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●● ●●● ●● ●●● ●●●●●●● ●●● ●●●●

●●●●●●● ●● ●●● ●●●● ●●
●●●●●● ●● ●● ●●●

●●
●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●

●●● ●●● ●●●●● ●●
●

●●● ●● ●●●● ●●●●

●●
●●●

●●

●
●●●●●●
●
●●●●●●●●●●●
●
●●●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●
●
●●●●●●●

●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●
●
●●●●●●●●●
●

●●●●●●●

●
●●●

●●●

●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●● ●●●● ●● ● ●● ●●● ●●●●●● ●● ●●●●●
●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●●●●●●●●● ●● ●●●●●●●● ●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●
●●●
●
●
●
●●●●●●●●●●●●●

●●
●●

●●●●● ●● ●● ●● ●●●●●●●● ●●●●● ●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●●●● ●● ●●● ●●● ●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●● ●●●

●

●●
●●●●●●●●●●●●●●●●
●●

●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●

●●●●●●●●● ●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

●●●

●●
● ●●●●
● ●● ● ●● ●●● ●●●●●●● ●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●● ●● ●●●●● ●● ●
●●●●

●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●
●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●● ●●●●●●●● ●●●●● ●●●●●
●●
● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●
●● ●●● ●●●● ●●● ●●●●●● ●●●● ●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●
●●●●
●●●●●
●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●●
● ●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●● ●●●● ●●●●●●●●● ●●●● ●●●●●●●●● ●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●● ●●●●●●

●●●●●●●●
●
●●● ●●●●●●●●●●●●●●●●●● ●●●

●●●● ●●●● ●● ●●
●●● ●
●●● ●●● ●●● ●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●

● ●●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●
●
●●●

●● ●●●●●● ●●●●●●● ●● ● ●● ●● ●●●●● ●●●● ●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●● ●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●● ● ●●●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

● ●●● ●●●●●●●
●●●●●●● ●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●

● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●● ●

● ●●● ●●● ●●● ●●●

●●●●● ●●●● ●●● ●● ● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ●●●●●●●●
●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●● ●● ●●
●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●

●●

●

● ●●●●●●●●●

●●●
●

●●
●●●
●●

● ●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●

●●●●
●●● ●●● ●●●● ●●
●●●●●●●●●●●●

●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●●●●●● ●●●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●● ●●●●●●●● ●●●●●●●● ●●● ●●●● ●●●
●● ●● ●●

●● ●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●● ●●● ●●● ●●●●●●● ●● ●●● ●●
●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●● ●● ●●●●● ●●●●●

●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●

● ●●●●
●●●●
●●●●●
●● ●●●●●● ●●●●●●●●●●●

● ●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●● ●● ●●●●●● ●●●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●● ●●● ●●
●● ●

●●●●●●● ●●● ●●●
●●● ●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●● ●●●●●
●
●●●●●●●●

● ●●●●

●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●
●● ●● ●●● ●●●●●●●●●●●● ●●●● ●●●● ●●

●●●

●●

●● ●● ●●●●●●
●

● ●●●●● ●
●●

●●●●
●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●● ●
●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●
●

●
●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●● ●●●●●● ●●●●● ●●●● ● ●●●
●●

●●

●●

●●●

●

●●

●● ●●●●●●●●●●●●●●●●● ●
●●●●●●●●●●●●●● ●●●●

●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●

●●●●●● ●● ●● ●● ●●●●●● ●● ●● ●●
●

●●●
●

● ●●●●●● ●●●●●● ●
●●●●●●●●●● ●●● ●

●●●●●

●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●

●●●● ●● ●● ●●●●●● ●●●●●●● ●●●●●●●●●●

● ●●●● ●●●●●●● ●●● ●●●● ●●●●●● ●●● ●● ●

●●●● ●●●●● ●●●●● ●●●● ●● ●●● ●
●●●●●●●●

●●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●●●●●●●

● ●●● ●●●●●● ●●●● ●● ●● ●●●●●
●●

● ●● ●●●●●
●●● ●●●●●● ●● ●●●● ●●● ●●● ● ●● ●●

●● ●●●●●●●● ●●●●●●●● ●●● ●
●● ●●●● ●●● ●● ●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●●● ●●● ●●●●●●
●
●
●● ●● ●●●●●●●●●●●●● ●●

●● ●●● ●●●● ●●● ●●●● ●●● ●●●●● ●●●●
●●●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●● ●●● ● ●●●●●●●●● ●●●●●● ●●● ●●

● ●
● ●●● ●●● ●●●●●●●●● ● ●●●●● ●

●●●

●●●● ●●
●
●●● ●●● ●●●●●●● ●● ●

●●

● ●● ●●

●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●●●

●●
● ●●● ●●
● ●

●●●

●●

● ●●●
●

●
●
●●● ●●●●

●

●●●●●●●●● ●●● ●●●●●●●● ●●●●● ●●● ●● ●●● ●

● ●●●●●●●●●●● ●●●● ●● ●●●●
●●●●

●● ●●●● ●

●

●●
●●

●
●●
●●●●●
●●●●

●
●

●●

●
●

●
●
●● ●●

●●● ●●

●●●●
● ●●●●●● ●●●
●●● ●●
●●●● ●
● ●●

●
●●●● ●

●●●●●●●
●●● ●

●●
●● ●●●

● ●● ●●
●
● ●
● ●●●● ●●● ●

●●●●●●
●
●●

●●
●●
●
●●
●
●●●●
●●
●●●●●
●●●●

●●●

● ●● ●● ●● ●●●●●● ●● ●●●●
●● ●●● ●●●●●●

●●
● ● ●

● ●●● ● ●
●

●●
● ●

●
● ●●

●● ●

●
●

●● ●

●●● ●● ●●●

●●●●● ●●●● ●● ●●
●● ●●● ● ●●● ●●

●●●●

●

●●
●

●
●

● ●●
●●●

●

●●●●●

●

●

●●●● ●

●●●●●
●●●
●●●

●●●

●●●●
●●

●●●●●●
●●●
●

●●●●●●

●●●●●

●

●

●

●●
●

●●
●

●●
●●●
● ●

●

●
●

●

●
●●●●

●●

●●●
●●●

●

● ●
● ●

●● ●●●●● ● ●●

●

●●●●
●●●●●

●●

●●

●●
●
●●

●

●●●
●

●●●●●●●●●
●●

●●

●●
●●●●

●●●●● ●●●● ●●●
●● ● ●

●●● ●●●●● ●
●● ●●

●

●
●●

●●
●●●●●●●●●

● ●●●● ●●● ●●●●●●●●●●● ●
●●●●

●● ●●●●● ●● ●●●●●●●●● ●●● ●●●●●

● ●● ●●●● ●● ●●●●
●●

●
●●

●●●● ●●●●●● ●●

●●●●●●●●● ●●●●●●

●●●

● ●●● ●●● ●●●●●●●

●● ●
●●●● ●●●● ● ●●●● ●● ●●●●●●●● ●●●●●

●●● ●●

● ●●●●●●● ●● ●● ●●●
●

●
●

●●● ●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●

●
●
●
●

● ●●

●

●●● ●● ●

●●
●

●●●●●●●●●●●● ●●● ●●●● ●● ●●●●● ●●●●●●● ●

●●● ●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●●● ●● ●●●●●●●● ●●● ●●●● ●●●●

●

●●●
●

●

●● ●●●●●●●
●●●●● ●● ●●●●●●●● ●●

●●●

●●●●●

●

●
●●●●●●●●●●●●●●●●●●

●●● ● ●●
●●

●● ●
●●●● ●●

●●●

● ●●● ● ●●
●

●●●●●● ●● ●●●●●●●● ●●●●●●●

●● ●
● ●●●●

●●● ●●●● ●●●●●●●● ●●●●● ●●●● ●●●●
●● ●●

●●●●●●●●●●●●●●
●
●
●●
●
●●●●●●●●●●●●●●

●●●
●●●●●●●●●●

●●●●●
●

●●●●●●●●●●
●

●●●●● ●●●●●●●●●● ●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●● ●

●●●● ●●● ●● ●●●● ●●●●● ●●●●
● ●●● ●●●●●●●

●●●● ● ●● ●●● ●● ●● ● ●● ●● ●●● ●● ● ●
●●●● ● ●●

●●

● ●● ●●●●●● ●●●●●● ●●●● ●
●● ●● ●●●●●

●

●● ●● ●●● ●●●●● ●●●●●●● ●●●●●●● ●● ●●
●
●●●●●●● ●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●● ●●
●●●●●●● ●●●● ●●● ●●●

●●●
●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ●●● ● ●
●

●
●● ●

●●● ●●● ●●

●●●
●●●● ●● ●●

●

● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●
●●● ●●●●●●● ●● ●●●●●●●●●● ●●●●●● ●●●●●●

●●●●● ●●●●●●●●●●●● ●●●●●●●●●
●

●●●

●● ● ●●● ●●●● ●● ●●●●●●●●●
● ●● ●● ●●●● ●● ●

●●● ●●
●●● ●●● ●● ●●●●●● ●●● ●●●●● ●

●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●● ●
●
●

●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●●●
● ●●●● ●●● ●●
● ●● ●

●●●
●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●

●

●●●●●●
●●●

●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●

●●●●●●●●●●
●●
●

●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●●●● ●●●●● ●●●●●● ●●●●●●
●● ●

●●●●●●●●●●●●● ●●●●●●●●●
●
●●●●●●●●●

●●●●●●● ●● ●●
●●●●● ●● ●●●●●●●●● ●●●●●●

●●●●●●●●●● ●●●●
●● ●●●● ●●●●● ●●● ●●●●●

●●●● ●●●●
● ●●●● ●● ●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●● ●● ●●●● ●● ●● ●●● ●●●●●● ●●●

●●●

●● ●●●● ●●●●●●●● ●●● ●●●●●●●

●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●●●●●●●●● ●●● ●●
●●●●●●● ●●●●

●●● ●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●

●● ●●●●●●●●● ●●●●
●●●

●●●● ●●●● ●●●●●●

●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●

●●●●● ●●●●●●●●●●●● ●●
●
● ●●●

●
●

●● ●●●●●●●
●●●●● ●●● ●●●●● ●●●●●●●

●●●●●●● ●●● ●●●●●●●●●●●

●● ●●●●●●●●●●●●●●

● ●●●● ●●● ●● ● ●
●

●●● ●●● ●

●● ●●●
●●● ●●●●

●● ●●●●●●●
●●● ●●●●●
●●●●●●●●● ●●● ●●●

●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●● ●●●●●●●●● ●●●
● ● ●●●●●●● ●●

●

●●● ●●● ●●●●●● ●●●●●●
● ●● ●●● ●●●

●●●●
●●●●● ●● ●●● ●● ●●●●
●●●●●● ●●●●●●●●

● ●●● ● ●●●●● ●●●●●●● ●
●●●●● ●●● ●●●● ●● ●●

● ●●
●●

●● ●● ●● ●●●● ●● ●●●●● ●
●
●

●●● ●

●
●●

●● ●●
●●● ●

●

●

● ●● ● ●● ●●● ●●● ●●●
●●● ●● ●●● ●

● ●●
●●●
●

● ●●●
●●●●● ●●

● ●● ●● ●●
●●● ●●●●●●●●● ●●●

●●● ●●●●
●●●● ●●● ●●●●●●● ●●●●●●●●●●● ●● ●●

●●●●●●●●● ●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●● ●●●●●●●●●●●● ●●●●●●●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●●●●

● ●●● ● ●

●
● ●●●
●●● ●● ●●
●
●
● ●

●● ●●● ● ●●●
●●●

●
●●
●●

● ●●●

● ●●● ● ●●● ●
●●● ●
● ●● ● ●
● ●●● ● ●●● ● ●●● ●●● ●●●
●● ●●

●
●●● ●● ●● ●●● ●●●● ●● ●● ●● ●● ●●● ●● ●●● ●●

●● ●●● ●● ●● ●
●● ●●●● ●● ●●● ●●● ●●●● ●● ●● ●● ●●●●

●
● ●

● ●
●● ●● ●● ●● ●●

●
● ●

●● ●●●

● ●● ●

●●
●

● ●● ●● ●● ●
●● ● ●● ●● ●

●

●● ●● ● ●●● ●
●

● ●●● ●●
●

● ●
●● ●

● ●● ●●
● ●● ●● ●● ●● ●●

●●
●

●●
●●

●●●● ●● ●●●
●●

● ●●
●● ●

●● ●● ●● ●
●

● ●●
●● ● ●●●●

●
●●

●● ●●

●● ●●● ●● ●● ●● ●● ●●
●●

●
●
●
●●●

●

●● ● ●● ●
●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●●

●●●
●● ●● ●●

●
●●

● ●●

●●● ●● ●● ●

● ●

●
●

●
●●

●●● ●
●●

●●●

● ●●
● ●● ●●

●●
●● ●●● ●

●

●● ●●●
●●

●●
●●

●
●● ●●

●●
●●

●●

●●
●●● ●● ●●

●● ● ●● ●●●

●●●●●
●●● ●●

●
●●●● ●● ●●●●●●●●●●●●●
●●

●●●●●●●
●

●●●●●●●●●●●
●● ●●

●●●

●

●●●● ●●●●●
●●

●●●
●

●
●● ●●● ●●●●● ●●

●● ●●
●●●●

●● ●

●
●●

●●●●
●● ●●●●● ●● ●● ●●

●
●●

● ●●
●

●
●●

●●●● ●
●●● ●●●●

●● ●

●●

●

●●
●●●

●
●●●

●●
●● ●●

●●

●

●
●

●

●●
●

●●

●
●

●●● ●●
●●

● ●

●
●● ●●

●●

●●

●● ●● ●●● ●●

● ●●
●●● ●●

●●● ●●●
● ●● ●●●●●
●● ●●● ●●●● ●● ●● ●● ●●●●●●●●● ●● ●●●●● ●●●●●●● ●●●●●●● ●●●●● ●

●●

●●●●●●● ● ●●●●●
●● ●●●●●●●●●● ●● ●●●● ●●●

● ●● ●●● ●●●●●●●
●●●● ●●

● ●●● ●● ● ●●●● ●●●●
●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●●● ●●●●● ●●●●● ●●● ●●●● ●● ●● ● ●●● ●●●●● ●●●●

●● ●●●●● ●●
● ●●●● ●●●●●● ●●●●●●●●●●

●● ●●● ●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●

●●●●●●● ●●●●●●
●●● ●● ●●●●●● ●●
●● ●

● ●●●●● ●● ●●●●●● ● ●
●●● ●●●●●●●●●●

●●●●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●

●●● ● ●●● ●●●●●●●●●● ●● ●●●●● ●●●● ●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●● ●●●● ●●●●●●●

●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●
●●

●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●● ● ●● ●● ●●● ●●●

●●●●●●●●●
●
●

●●

●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ●●● ●●●●●● ●●●●●●●●●●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●

● ●
●●●● ●●●●●●●

●●●●●●● ●●● ●●●●
●● ●

●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●● ●●●●●●●●●●●●●●●●●●●●●
● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●● ●● ●

●●

●
●●●●●●

●●
●●●

●
●●●●●●

● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●

●●●●●●●● ●●●●
●●●●●●● ● ●● ●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●●●●●●●●●●●●●●●●
●
●●●●

● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●●●●●● ●●●●●●●●●●●●● ●●●

●●

●●

● ●● ●●●● ● ●● ●●● ●●●● ●●● ●●● ●●●●●●●●
●●

●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●
●●● ●●●● ●●● ●●●● ●●● ●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●

● ●●●●●●● ●●●●
●●●●● ●●●● ●● ●●● ●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●

● ●●●●● ●
●●● ●●●●●●
●●●●●●●●● ●●●●●

●●●●●●●●●
●

●●●●●●●●●●● ●●
●●●●●●●●
●
●●●● ●●●●●●●●●●● ●●●●●●● ●

●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●● ● ●●● ●● ●●
●● ●●●●● ●●●●

● ●●● ●●
●●● ●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●
●

●●●● ●●●● ●● ●●● ●●●●●●● ●● ●●●●●
● ●● ●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●●

●
●

●●●●●
●●●●●●●●●●●● ●●●●●●●●●●● ●●●●

●● ●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●
●●

● ●●● ●●●●●●
●●●

●●●●● ●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●

●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●
●

● ●●●●●●● ●●●●●●●●●●●
●●●●●●●●●●
●

●

●● ●●● ●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●
● ●●● ●●●●●●●● ●●● ●●●●● ●●●● ●●●●●

●● ●●●●●●● ●●●● ●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●● ●● ●●●●●●●● ●●● ●● ●● ●

●●

●●

●● ●●●

●●●●●●●●● ●●●● ●●●●● ●
●●●● ●●●●●●●●●

●●●●●●●●● ●●●●●●● ●●● ●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●●●●●● ●●●● ●●● ●●● ●●●●●●●●
●

●●●●●●●●●● ●●● ●●● ●●●●●●●● ●●●●●●●
●●●● ●●

●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●● ●●●●●●●● ● ●●● ●●●●●●●●● ●●●●●

●● ●● ●●●●●● ●●●●● ●●●
●
●● ●●● ●●● ●●●

●●●●●● ●●●●●●●● ●●●●●● ●● ●
●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●

●●● ●●●●●● ●●●●●●●●●●
●●●● ●● ●●●●●● ●●●●●●●●● ●●● ●●● ●●●●●●●● ●●●●●●● ●●● ● ●● ●

●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●● ●●● ●●●●●●●●● ● ●●●●●● ●●●●●

●●●● ●● ●● ●●●●●● ●●●●●●●●●●
●●●● ●●

●●●●● ●●●●●●●●●●● ●●●● ●●●●●●● ●●●●

● ●●●●●● ● ●●●●●● ●●●●●● ●●● ●●●●● ●● ●● ●●●●●

●●
●●●●●● ●●●●● ●●●●● ● ●●●● ●
●●

●●●●●

●●●●●
●

●●
●●●● ●●●●●●●●●●●●●

●

●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●

●

●
●
●●● ●

●●

●
●

●
●

● ●● ●●●● ●●
●

●

●● ●● ●●●●●● ●●●●●●●● ●●● ●● ●●●●●●● ●●●

●●●●● ●● ●● ●●●●●● ● ●●●● ●
●●

●●● ●● ●

●

●●
●●●●●●
●
●●

●●●
●●●

●

●
●●

●●
●●

●●●●●●

● ●●

● ●● ●● ●● ● ●●● ●● ●●
●●●●●

●●●● ● ●●
●●● ●●●● ●●

● ●●● ●●
●●●●
●●
●

●● ●●●●
●●●●
●

●●● ●●●
● ●●● ●
●
●●●
● ●

● ●
●●

●
●●
●●
● ●

●
●●●● ●
●●
● ●

●
●
●●●

●●
●●

●●●● ●●●●●● ●●●●●●● ●●●●●●
● ●●● ●●●●●●●

●●
● ●

●● ●
●

● ●

●●●●
● ●

●●
● ●●

●
● ●

● ●●

●● ●●

● ●●● ●● ●●

●● ●●●●●●●●●
●● ●●●●● ●● ●● ●●●

● ●●●

●

● ●

● ●
●
●
●

●● ●●
●●●
●●●● ●●●●

●●●●

●●●●
●●●●

●●●
●●●
●●

●●●

●
●

●●●●●●

●●● ●

● ●●●

●
●

●● ●●
●

● ●●
●●

●

●
●

●● ●●

●

●

●
● ●●● ●

●●●

●●
●
●●●●
●●

●●●●●●●●●●●●●●●
●●●

●●
●●●●●●
●

●

●

●●
●

●●●●●●●
●●●●●●
●●●●●

●●● ●●● ●● ●● ●● ●●● ●
●●● ●● ●●●●● ● ●●●

● ● ● ●

●
●●

●●
●● ●●●●
●● ●●●●●●●● ●●●● ●●●●●● ●

●●●●
●●●●●●● ●●
●●●● ●●● ●●● ●●●● ●●●●● ●●●

●● ●● ●●●● ●●●● ●
● ●●

●
●●
●●●●●●●●● ●● ●●●

●●● ● ●●●●● ●●●
● ●

●● ●● ●● ●
● ●●●● ●● ●●●●

●●
● ●●●●● ●●●● ●●● ●●●●● ●● ●

●●● ●● ●

●●●● ●●●●●●●●
●●
●● ●●●●●● ●● ●●

●●●●● ●● ●●●● ●●●●● ●●●● ●●●●●●● ●●●● ●●●●

●●
●

●
●●●●●●●●●●

●●●
●●

●●●●●●●●●●

●
●●

●●●●●●●● ●●● ● ●●●●●●●●●●●●●●●●● ●●

●● ●●●●●● ●●●●● ●● ●●●●● ●●●●●●●● ●●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●● ●●●
●●●●●●●●●●● ●●●●●●● ●●● ●●●●●

●●●

●● ●● ●● ●
●

●●
●●●●●●●●●●●●●●●

●●●

●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●

● ●●● ●
●

●
●●●

●
●

●●●●●
●

●●●

●●●●● ●●●
●

● ●

●●●● ●●●●●● ● ●●●●●● ●●● ●●●
●

●●●

●●● ●●
●●●●●● ●●●●●●● ●●● ●●●●●●●● ●●●●● ●

●● ● ●●●

●●●●●●●●●
●●
●
●●
●●
●●●●●●●●●●

●●●●
●
●
●●●●●●●●●
●●●●●●
●

●●●●●● ●●
●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●

●●●● ●●●●●●●●●●●●●●● ●●●●
● ●●● ●●● ●● ●

●●●● ●●●● ●●● ●●● ● ●●
● ●● ●● ●●●●●● ●● ●
●●

●●●●●
● ●●● ●●● ●● ●●●● ●● ●●●●● ●●● ●●

●● ●●

●●●● ●● ●● ●● ●●●●●●●● ●●● ●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●
●

● ●●● ●●● ●● ●●●●● ●●●● ●●● ●● ●●●●● ●●

●●● ● ●●●●●● ●

●
●

●●●●● ●
●●●●●●●●● ●

● ●●

●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●

●

●
●●●

●

●●●●
● ●
● ●●●

● ●● ●●

● ●●● ●
● ●●●●

●●● ●● ●●●●●●●●● ●●● ●●● ●●●● ●●●●●●● ●●●
●●●●● ●● ●●●●● ●●● ●●●●●●●●●●●● ●●●● ●

● ●●●●●●●●●●●●●● ●●●●●●●●●●●● ●● ●●●
●●●●

●●● ●●●● ●●● ●● ●● ●●●●● ●●● ●●● ●
●●●●●

●● ●

●● ●● ●● ●●
●● ●● ●● ●●●●●●●● ●●● ●●● ● ●●● ●

●●●●●●●●●●●●●●●●● ●● ●●● ●● ●●●● ●
●●●●

●●● ●●●● ●●● ●●●● ●●●● ●●● ●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●● ●● ●● ●●
●● ●●● ●● ●●●●●

●●
●●● ● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●● ●●

●

●●●●●● ●
●●●●●●●●

●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●
●
●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●
●● ●●●●●●●●

●●●● ●●●●●●● ●●
●

●

●●●●●●●● ●●●●●●●●●●●●●●●●
●●●● ●●●●

●●●●●● ●●●
●●●●● ●●●●●●● ●●●●●●●●● ●●●

●●● ●●● ●● ●●●●
●●●●●●●●●● ●●●● ●●●

●●●● ●●
●● ●● ●● ●●● ●● ●●●●●●●●●●●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●● ●●● ●●●● ●●●●●● ●●●●●● ●●●●
●●

●●●

●
●●●● ●●●● ●●●● ●●●●●●●●●● ●●●●●

●
●●●

●●●●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●● ●●● ●●●● ●●●●●●●●
●●●● ●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●

●●●●●●●●● ●●● ●●●●●●●●●●●
●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●
●

●●● ●●●● ●
●● ●●●●●●●●●●●●●●●● ●●● ●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●●●●●●●●●●●●●●

●●●

●● ●●● ●●●●●●●
●● ●●●●●●●●●●●●●●●●

●● ●●

●●●●● ●●●●●●●●●●●● ●●●●
●●●●●● ●●●●● ● ●●●

●●● ●●●●● ●●●●● ●●● ●
●●●●●● ●●

●●●●●●●●●●●● ●● ●● ●
● ●●●●●●●●●●●●

●●● ● ●● ●●●● ●●●●
●●●●● ● ●●●● ●●
●
●●●●●●
●

●

●● ●●●●● ●● ●● ●●● ● ●●● ●●●●●●●●●●●
● ●● ● ●

●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●
●●● ●●●● ●●
●●●● ●● ● ●●●● ●● ●●● ●●● ●●●●● ●●●

●●

● ●● ●●● ●●● ●● ● ●●● ●●
●●

● ●

●

●
●

●●● ●
●● ●●●

●●

●●

●● ●●● ●●● ● ●● ●●● ● ●●
●● ●●●● ●●●

●● ● ●●
● ●●

●

●●●●
● ●●●●

●●●●● ●●●●●
●●●● ●●●●●●●●

●●●●
●
●●●●●●●●●●●
● ●●●●●●●●●●●●●●●● ●● ●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●
●●●●●

●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●
●●
●●●●●●

● ●●● ●

●●
● ●●● ● ●
●● ●● ● ●
●

● ●

●● ● ●●● ●
●

● ●
●●

●
●●

●●● ●● ●●
● ● ●

●● ●● ●● ●● ●●● ●● ●●● ●●● ●● ●●
●● ●● ●●

●
●

● ●● ●●● ●●●● ●● ●●● ●● ●● ●● ●●● ●● ●● ● ●●
●●●●● ●●
●● ●●● ●● ●●●●● ●● ●●●● ●● ●● ●● ●

● ●
●●

●
●●● ● ●● ●●● ● ●

●●

● ●● ●●

●● ●

●●
●

● ●● ●●●● ●●

●●● ●●●

● ●

●● ●● ●●●●
●

● ●● ●
● ●

●●
●

●

● ●●●
●● ●● ●●●

●●
●●

●
●●

●●●●
● ●● ●● ●● ●

●● ●●
●●●

● ●●● ●●
●

●●●
●● ●● ●● ●● ●●

●●
● ●●

●●●

●●●● ●●● ●● ●● ●● ●● ●●
●

●●● ●●
●● ●●
●
●
●●●● ●●
●● ●●● ●●● ●●● ●●● ●● ●● ●● ●●

●●
● ● ●● ●

●●
●●●

● ●●

●●● ●● ●● ●

●● ●●

●●
●

●
●

● ●● ●●●
●●

●

●●●
● ●●●

●●
●● ●●●

●

●●●
●●

●
●

●
●●

●●●
●● ●●

●●

●●
●● ●● ●● ●●●●

●●● ●●● ●●

●●●●●●●
●●●

●●
●●●●● ●● ●●●●●●●●● ●●

●● ●●●●● ●●●●
●●

●●●●●●●●●●
●●●

●●●●

●●

●● ●●●● ●●●
●● ●●

●●●●
●

●
●● ● ●●●●●●●● ●●●

●●
● ●●

●●●

●
●●
●●
●●●●● ●● ●
●●●●●

●●●
●●
●

●●
●● ●●●● ●●
●●●●●●●

●● ●

●

●

●
●● ●

●●
●●●
●●

●● ●

●
●●

●●
● ●●

●●
●●

●
●

●●

●●
●●

●● ●● ●● ●●
●●

● ●●

●●
●● ●●

●

●

●

●● ●● ●● ●● ●●

●● ●●
●● ●

● ●● ●●
●● ● ●●● ●● ●● ●●●●● ●● ●●● ●●●●●●● ●● ●●●●●●●● ●●●● ●●●●●●● ●●●●● ●●● ●● ●●●● ●●●

● ●●

●●●●● ● ●●●●● ●● ●●● ●●●● ●● ●●●●●●●●●● ●

●● ● ●●● ●● ●●●●●● ●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●● ●●●● ●●●●●●●●●● ●●●●● ●●

●●● ●●● ●● ●●● ●●
●● ●● ●●●●● ●●●●●●●●●●●● ●●●●●●● ●●● ●● ●●●●●●●● ●●●●● ●● ●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●
●● ●●● ●●●●● ●●●●●●● ●●●● ●● ●●● ● ●●● ●●

●● ●●● ●●●● ●●●● ●● ●●●●●●● ●● ●● ●●●
● ●●●●

●
●●●●●●●● ●●●●●●●●● ●●● ●● ●●●●●●●

●●●
●●●●●●●●● ●●●●●● ●●● ●●●●●●●● ●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●● ●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●
●●● ●●●●●●● ●●●●
●●●●

●●●●●●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●

●●●●●●● ●●● ●
● ●● ●●● ●●●
● ●● ●●●●●

●
●
●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●

●
● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●● ●●● ● ●● ●
●●●● ●●

● ●●●●

●
●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●● ●●●●● ●●●●●●●●●●●●●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●● ●●● ●●●● ●● ●● ● ●● ●●
●●● ●●●

●●
● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●● ●●●●●●●● ●● ●●●●●●●●●●●● ●●●●●

●●●●●●●●●● ●●●●●●●
●●●●●●●●●●●

●●●● ●●●●● ●●●● ●●● ● ●● ●●●●●●● ●●● ●●
● ● ●

●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●

●●●●● ●● ●●●●●●●●
●● ●●● ●●

●●●●● ●●
●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●● ●●●●●●●●● ●●●●● ●●● ●●●●●●●● ●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●

● ●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●

●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
● ●●●● ●●●●●●●● ●●●● ●●●● ●●●●● ●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●● ●● ●●●● ●● ●●●●● ●●● ●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ●●●●●●●● ●●●● ●● ●●●●●●●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●

●●
●●●●●●●●●●●●●●●●●
●●●●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●

●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●

●
●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●

●●●●●●
●●●
●●●●
●●●●
●●●●●●●●●●●●●●●

●●●●●
●●●●
●●●●
●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●● ●
●●●

●●

●●

5

10

5 10

log(measured µs)

lo
g(

pr
ed

ic
te

d
µs

)

size
●

●

●

●

tiny
small
medium
large

Figure 5.4: Predicted vs. measured execution time (in log(µs)) for all kernels.

80 Making Performance Predictions for Scheduling

setting.

The four heat maps presented in Figure 5.5 show the difference between mean predicted and
measured kernel execution times as a percentage of the measured time. Thus, they depict the
relative error in prediction – lighter indicates a smaller error. Four different problem sizes are
presented: tiny in the top-left, small in the top-right, medium bottom-left, large bottom-right.
The kernels (y-axis) between each of problem size do not align due to the number of supported
applications, and kernels, in each problem size – this is discussed in Chapter 3.

In general, we see highly accurate predictions which on average differ from the measured
experimental run-times by 1.2%, which correspond to actual execution time mispredictions of
8 µs to 1s according to problem size.

The init_alpha_dev kernel is the worst predicted kernel over both the tiny and small problem
sizes, with mean misprediction at 7.6%. However, this kernel is only run once per application
run – it is used in the initialization of the Hidden Markov Model – and as such there are fewer
samples available to influence the model, this may lead its poorer predictions.

5.2.2 Choosing The Optimal Accelerator for a Kernel

To demonstrate the utility of the trained model to guide scheduling choices, we focus on the
accuracy of performance time prediction of individual kernels over all devices. The model
performance in terms of real execution times is presented for four selected kernels in Figure
5.6. The shape denotes the type of execution time data point, a square indicates the mean
measured time, and the diamond indicates the predicted time. Thus, a perfect prediction
occurs where the measured time – square – fits perfectly within the predicted – diamond – as
shown in the legend.

The purpose of showing these results is to highlight the setting in which they could be used
– on the supercomputing node. In this instance, it is expected a node to be composed of
any combination of the 15 devices presented in the Figure 5.6. Thus, to be able to advise
a scheduler which device to use to execute a kernel, the model must be able to correctly
predict on which of a given pair of devices the kernel will run fastest. For any selected pair of
devices, if the relative ordering of the measured and predicted execution times is different, the
scheduler would choose the wrong device. In almost all cases, the relative order is preserved
using our model. In other words, our model will correctly predict the fastest device in all
cases – with one exception, the kmeansPoint kernel. For this kernel, the predicted time of
the fiji-furyx is lower than the hawaii-r9-290x, however the measured times between the two
shows the furyx completing the task in a shorter time. For all other device pairs, the relative
order for the kmeansPoint kernel is correct. Additionally, the lud_diagonal kernel suffers
from systematic under-prediction of execution times on AMD GPU devices, however, the
relative ordering is still correct. As such, the proposed model provides sufficiently accurate
execution time predictions to be useful for scheduling to heterogeneous compute devices on
supercomputers.

§5.2 Evaluation 81

xe
on

_e
s−

26
97

v2

i7−
67

00
k

tita
nx
gt

x1
08

0

gt
x1

08
0t

i

k2
0c

k4
0c

kn
l

fiji
−f

ur
yx

ha
waii

−r
9−

29
0x

ha
waii

−r
9−

29
5x

2

i5−
33

50

po
lar

is−
rx

48
0

ta
hit

i−h
d7

97
0

fir
ep

ro
−s

91
50

 n
ee

dle
_o

pe
nc

l_s
ha

re
d_

2

ac
c_

b_
de

v

c_
Cop

yS
rc

To
Com

po
ne

nt
s

ca
lc_

alp
ha

_d
ev

ca
lc_

be
ta

_d
ev

ca
lc_

ga
m

m
a_

de
v

ca
lc_

po
te

nt
ial

_s
ing

le_
ste

p_
de

v

ca
lc_

xi_
de

v

cl_
fd

wt5
3K

er
ne

l

cr
c3

2_
sli

ce
8

cs
r

es
t_

a_
de

v

es
t_

b_
de

v

es
t_

pi_
de

v

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix8
Ker

ne
l

ini
t_

alp
ha

_d
ev

ini
t_

be
ta

_d
ev

ini
t_

on
es

_d
ev

inv
er

t_
m

ap
pin

g
ke

rn
el1ke

rn
el2

km
ea

ns
Poin

t

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er

m
vm

_n
on

_k
er

ne
l_n

aiv
e

m
vm

_t
ra

ns
_k

er
ne

l_n
aiv

e

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

s_
do

t_
ke

rn
el_

na
ive

sc
ale

_a
_d

ev

sc
ale

_a
lph

a_
de

v

sc
ale

_b
_d

ev

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

device
ke

rn
el

xe
on

_e
s−

26
97

v2

i7−
67

00
k

tita
nx
gt

x1
08

0

gt
x1

08
0t

i

k2
0c

k4
0c

kn
l

fiji
−f

ur
yx

ha
waii

−r
9−

29
0x

ha
waii

−r
9−

29
5x

2

i5−
33

50

po
lar

is−
rx

48
0

ta
hit

i−h
d7

97
0

fir
ep

ro
−s

91
50

ac
c_

b_
de

v

c_
Cop

yS
rc

To
Com

po
ne

nt
s

ca
lc_

alp
ha

_d
ev

ca
lc_

be
ta

_d
ev

ca
lc_

ga
m

m
a_

de
v

ca
lc_

po
te

nt
ial

_s
ing

le_
ste

p_
de

v

ca
lc_

xi_
de

v

cl_
fd

wt5
3K

er
ne

l

cr
c3

2_
sli

ce
8

cs
res
t_

a_
de

v

es
t_

b_
de

v

es
t_

pi_
de

v

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix4
Ker

ne
l

ini
t_

alp
ha

_d
ev

ini
t_

be
ta

_d
ev

ini
t_

on
es

_d
ev

inv
er

t_
m

ap
pin

g

ke
rn

el1ke
rn

el2km
ea

ns
Poin

t

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er

m
vm

_n
on

_k
er

ne
l_n

aiv
e

m
vm

_t
ra

ns
_k

er
ne

l_n
aiv

e

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

s_
do

t_
ke

rn
el_

na
ive

sc
ale

_a
_d

ev

sc
ale

_a
lph

a_
de

v

sc
ale

_b
_d

ev

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

device

kernel

Tiny Small

 n
ee

dle
_o

pe
nc

l_s
ha

re
d_

2

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

cr
c3

2_
sli

ce
8

cs
r

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix8
Ker

ne
l

inv
er

t_
m

ap
pin

gke
rn

el1
ke

rn
el2

km
ea

ns
Poin

t

lud
_d

iag
on

al
lud

_in
te

rn
al

lud
_p

er
im

et
er

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

xe
on

_e
s−

26
97

v2

i7−
67

00
k
tita

nx

gt
x1

08
0

gt
x1

08
0t

i
k2

0c
k4

0c kn
l

fiji
−f

ur
yx

ha
waii

−r
9−

29
0x

ha
waii

−r
9−

29
5x

2

i5−
33

50

po
lar

is−
rx

48
0

ta
hit

i−h
d7

97
0

fir
ep

ro
−s

91
50

device

ke
rn

el

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

cr
c3

2_
sli

ce
8

cs
r

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix2
Ker

ne
l

inv
er

t_
m

ap
pin

g

ke
rn

el1
ke

rn
el2

km
ea

ns
Poin

t

lud
_d

iag
on

al

lud
_in

te
rn

al
lud

_p
er

im
et

er

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

xe
on

_e
s−

26
97

v2

i7−
67

00
k
tita

nx

gt
x1

08
0

gt
x1

08
0t

i
k2

0c
k4

0c kn
l

fiji
−f

ur
yx

ha
waii

−r
9−

29
0x

ha
waii

−r
9−

29
5x

2

i5−
33

50

po
lar

is−
rx

48
0

ta
hit

i−h
d7

97
0

fir
ep

ro
−s

91
50

device

kernel

 Medium Large

0 10 20 30
prediction error (%)

Figure 5.5: Error in predicted execution time for each kernel invocation over four problem
sizes.

82 Making Performance Predictions for Scheduling

100 µs

1 ms

10 ms

xe
on

_e
s−

26
97

v2

i7−
67

00
k

tita
nx

gt
x1

08
0

gt
x1

08
0t

i
k2

0c
k4

0c kn
l

fiji
−f

ur
yx

ha
waii

−r
9−

29
0x

ha
waii

−r
9−

29
5x

2

i5−
33

50

po
lar

is−
rx

48
0

ta
hit

i−h
d7

97
0

fir
ep

ro
−s

91
50

device

lo
g(

ex
ec

ut
io

n
tim

e)

kernel
srad_cuda_2
kmeansPoint
lud_diagonal
needle_opencl_shared_1

Figure 5.6: Mean measured kernel execution times compared against mean predicted kernel
execution times to perform a selection of kernels on large problem sizes across 15 accelerator
devices. The square indicates the mean measured time, and the diamond indicates the mean
predicted time.

5.3 Discussion

The AIWC metrics generated from the full set of Extended OpenDwarfs kernels are used
as input variables in a regression model to predict kernel execution time on each device
[131]. From the accuracy of these predictions, we can conclude that while our choice of
AIWC metrics is not necessarily optimal, they are sufficient to characterize the behaviour of
OpenCL kernel codes and identify the optimal execution device for a particular kernel. The
model predictions differed from the measured experimental results by an average of 1.2%,
had a mean predicted accuracy of 98.8%, which corresponds to the actual execution time
mispredictions of ≈ 8 µs to ≈ 1 s according to problem size.

A major motivation of our prediction work is on reducing energy consumption of modern
supercomputers. Typically, minimizing execution time also reduces energy if a race-to-halt
strategy is used thus predicting the execution time also can be used to directly predict energy
consumption. We acknowledge that this is not always the case, for instance, control parameters
might slow down the processor slightly for a much larger reduction in energy use. However,
we believe the same predictive modelling strategy outlined in this Chapter can be employed
to predict energy consumption directly – by using the joules collected by RAPL and NVML in
LibSciBench instead of the execution times as the response variable – but this is left as future
work.

There are limitations of the random forest model for extrapolation of data. Namely, if you have

§5.3 Discussion 83

different kernels then you are going to need to collect lots of data concerning the performance
of these kernels and then re-fit the random forest model again. This is not very efficient to have
to re-train but if you don’t then there is a strong risk of poor prediction. Other approaches are
more robust in this situation.

Other potential critiques of using the random forest for this problem include the potential for
comparatively large model storage as dimensionality increases, and that there is no feedback
from the model as to why a particular device choice is optimal. The metrics used in the
assessment are quite limited and more detailed error investigation analysis could include
confidence scores or uncertainty on the predictions based on a more comprehensive error
analysis which explores the levels of prediction uncertainty associated with each kernel.

If the predictive model were used in a real-world setting – say on an HPC system – the final
metrics collected by AIWC could be embedded as a comment at the beginning of each kernel
code. This would follow the use-case for AIWC as a plugin to the OpenCL debugger Oclgrind.
The developer would first use Oclgrind to debug, optimize and confirm functionality of a
kernel, then, enable the AIWC plugin to generate the metrics for the final kernel code with the
program settings that will be used at runtime. Our proposed solution uses AIWC as a plugin
to the Oclgrind tool, which is already widely used by OpenCL developers. These metrics are
included as a comment into the kernel – either in source or SPIR form. The scheduler extracts
these metrics at runtime and evaluates them with the model to make performance predictions
on the available devices (if the runtime settings lead to substantially different AIWC features
to the ones collected than the runtimes predictions may be inaccurate). This approach would
allow the high accuracy of the predictive model without any significant overhead – metrics
are only generated and embedded once per kernel and is done largely automatically, with the
guidance of the developer. The training of the model would only need to occur when the HPC
system is updated, such that, a new accelerator device is added, or the drivers, or compiler
updated. The extent of model training is also largely automatic following the methodology
presented in this thesis: EOD is run over updated devices and the performance runtimes
provided into a newly trained regression model.

The predictive model can choose the most appropriate accelerator for a given kernel. Given a
workload of varied applications, execution time predictions can be used to choose which nodes
to allocate for each application. The execution time predictions can be used to determine
whether to migrate applications between nodes e.g. when new nodes become available.

AIWC and the prediction methodology could also be used to guide system designers on
the optimal mix of accelerators for future supercomputers. For instance, the range of codes
expected to run on the machine can be examined with AIWC before any hardware is purchased.
The predictive model can be trained by the hardware vendor using EOD (or other benchmark
suites) and the trained model can be used by an HPC facility owner to predict the performance
of their own suite of codes, without the need to provide the characteristics of these codes to
the vendor.

Chapter 6

Conclusions and Future Directions

The contents of this thesis fall into the areas of benchmarking, workload characterization,
high-performance computing, predictive modelling, software engineering and performance
evaluation. Its main goal is, however, improving the performance of large HPC systems by
providing useful scheduling information of scientific applications to the most appropriate
accelerator. We hope this work will modestly contribute to the increasing interaction between
domain sciences and high-performance computing. As tool builders for domain sciences,
computer scientists face a challenging task imposed by increasingly complex computer
architectures.

This thesis demonstrates that architecture-independent features are sufficient to characterize
codes and to predict performance so as to schedule the optimal device. We proposed
an extended benchmark suite which supports diverse accelerators and demonstrated the
performance of these devices over a large number of codes/kernels. We developed the
Architecture-Independent Workload Characterization Tool (AIWC) to examine the structural
characteristics and implementation constraints of kernels to offer an understanding of the
algorithm without having to consider the hardware. Finally, we used these AIWC metrics to
identify the most suitable device for each kernel using a predictive regression model.

The extended OpenDwarf suite provides a reliable benchmark suite with multiple problem
sizes and high precision measurements. Reproducible results can be generated quickly and
over a range of heterogeneous accelerator devices. A full set of execution times and other
performance metrics were generated using 15 devices over 12 benchmarks and 42 kernels.
The energy and hardware events metrics allowed direct performance evaluations to be made
between devices.

The exploration of the differences in the characteristics of codes is used to examine this
variation in performance between heterogeneous devices. To this end, AIWC was developed
and is capable of identifying the fundamental characteristics of programs free from any
specific device. AIWC allowed extraction of a set of pre-defined features or characteristics
for analysis of kernels. The tool was used in diversity analysis – see Appendix C – which
is essential when assembling benchmark suites and justifying the inclusion of a benchmark.
These AIWC metrics were used for creating a predictive model of the performance of OpenCL

84

§6.1 Extended OpenDwarfs – EOD 85

kernels on different hardware devices and settings. This model can be incorporated into
existing HPC schedulers and has no run-time overhead – a code is instrumented once only
using AIWC and the resulting features are embedded into the header of each kernel code to
be used by the scheduler at runtime.

The use of accelerators is pervasive in HPC and will become more so in the future. We showed
that AIWC and the predictive model support a methodology to achieve better performance
on HPC systems composed of heterogeneous accelerators. Fine-grained scheduling decisions
could be supported with the high accuracy of predictions, which we expect will lead to more
efficient scheduling of HPC workloads.

The contributions of each chapter are now discussed in greater detail, concluding with a
summary of the future directions currently being pursued as a result of this thesis.

6.1 Extended OpenDwarfs – EOD

We have performed essential curation of the OpenDwarfs benchmark suite in Chapter 3. We
selected OpenDwarfs as the basis for our extensions as it:

1) solely focused on an OpenCL implementation, which avoids the fragmentation and
different optimizations between language codes common to the SHOC and Rodinia
Suites,

2) existing benchmarks had already been classified according to the Dwarf Taxonomy to
justify each addition, and,

3) this work was current with the latest use as an evaluation of OpenCL for FPGA devices
[11].

We removed hardware specific optimizations from codes that would either diminish perfor-
mance or crash the application on other devices, these optimizations adversely affect the
general-purpose nature which is critical to a benchmark suite. We improved coverage of
spectral methods by adding a new Discrete Wavelet Transform benchmark and replacing
the previous inadequate fft benchmark. All benchmarks were enhanced to allow multiple
problem sizes; in Chapter 3 we reported results for four different problem sizes, selected
according to the memory hierarchy of CPU systems as motivated by Marjanović’s findings
[134]. These can now be easily adjusted for next-generation accelerator systems using the
methodology outlined in Section 3.2.4.

All of the benchmarks presented in the most recent (2016) OpenDwarfs [11] paper were rerun
on current hardware. This was done for two reasons, firstly to attempt to replicate the original
findings to the modern systems and secondly to extend the usefulness of the benchmark suite.
Re-examining the original codes on a range of modern hardware showed limitations, such
as the fixed problem sizes along with many platform-specific optimizations (such as local
work-group size). In the best case, such optimizations resulted in sub-optimal performance for

86 Conclusions and Future Directions

newer systems (many problem sizes favoured the original GPUs on which they were originally
run). In the worst case, they resulted in failures when running on untested platforms or
changed execution arguments. We fixed these issues in the Extended OpenDwarfs benchmark
suite to support multiple devices, over multiple problem sizes – so it can be applied to
embedded systems as well as top end scientific processors – and added the DWT and a stable
FFT implementation to allow the benchmarks to span as many of the Dwarfs as possible.

Finally, a major contribution of this work was to integrate LibSciBench into the benchmark
suite, which adds high precision timing and support for statistical analysis and visualization.
This has allowed collection of PAPI, energy and high resolution (sub-microsecond) time
measurements at all stages of each benchmark. The use of LibSciBench has also increased
the reproducibility of timing data for both the current study and on new architectures in the
future.

The Extended OpenDwarfs Benchmark Suite can be found on Github1 and a Jupyter artefact
demonstrating its usage is also available. 2

6.2 AIWC

In Chapter 4, we presented the Architecture-Independent Workload Characterization tool
(AIWC), which supports the collection of architecture-independent features of OpenCL
application kernels. These features can be used to predict the most suitable device for
a particular kernel, or to determine the limiting factors for performance on a particular device,
allowing OpenCL developers to try alternative implementations of a program for the available
accelerators – for instance, by reorganizing branches, eliminating intermediate variables et
cetera. The additional architecture independent characteristics of a scientific workload will be
beneficial to both accelerator designers and computer engineers responsible for ensuring a
suitable accelerator diversity for scientific codes on supercomputer nodes.

Each OpenCL kernel presented in Chapter 3 of EOD was inspected using AIWC. Analysis
using AIWC helps to understand how the structure of kernels contributes to the varying
runtime characteristics between devices, it is envisaged that this will be of greater importance
in the future when codes will need to be run on a wider range of accelerators.

AIWC is an additional tool to be used by developers and does not attempt to replace classical
device-specific instrumentation and profiling. It is intended to integrate with existing develop-
ment workflows, indeed, since AIWC is a plugin into Oclgrind which is an OpenCL device
simulator, and is mostly used for debugging, the developer may check for memory leaks and
race conditions in their code and use the same tool to examine its architecture-independent
workload characteristics. Optimization could be guided by AIWC metrics but does not exclude

1https://github.com/BeauJoh/OpenDwarfs
2https://github.com/BeauJoh/Benchmarking-bioinformatics-workloads-and-exploring-suitability-for-

heterogeneous-HPC-artefact/blob/master/codes/AIWC spaces of bioinformatics workloads.ipynb

§6.3 Performance Prediction 87

the ability to use hardware performance counters, PIN events or vendor-specific profiler tools.
AIWC is available on Github3, there is a Jupyter artefact to demonstrate how metrics are
collected on the EOD benchmark suite and how the figures are produced4, there is also a
Binder version of the artefact also available.5

6.3 Performance Prediction

A highly accurate model, capable of predicting execution times of OpenCL kernels on specific
devices based on the computational characteristics captured by the AIWC tool was presented
in Chapter 5. A real-world scheduler could be developed based on the accuracy of the
presented model.

We do not suppose that we have used a fully representative suite of kernels – Section
6.4.1 outlines future work to address this – however, we have shown that this approach
can be used in the supercomputer accelerator scheduling setting, and the model can be
extended/augmented with additional training kernels using the methodology presented in
Chapter 5.

To use this predictive model in a real-world setting, the final metrics collected by AIWC could
be embedded as a comment at the beginning of each kernel code. This approach would allow
the high accuracy of the predictive model without any significant overhead – metrics are only
generated and embedded once each kernel was written and could be done automatically
with AIWC once a developer was ready for a code to be shipped. Separately, the training
of the model would only need to occur when the HPC system is updated such that a new
accelerator device is added, or the drivers, or compiler updated. The extent of model training
is also largely automatic and is based on the measured bias from the recorded runtimes –
if the node were updated the EOD suite would need to be rerun over updated devices and
the performance runtimes incorporated into a newly trained regression model. The runtime
results from EOD could also be saved in an online corpus/database with the corresponding
devices name allowing the automatic training of one large shared model.

Using the same predictive model for run-times generated over compute devices spanning
6 years and four processor generations shows both that OpenCL has reached a position
of maturity and stability, and that the methodology of prediction is sound. Specifically,
performing predictions with a single model generated over a large window of time shows
that with each generation the individual device prediction accuracy is good and we expect
this same methodology to continue to be equally accurate on future systems. The model is

3https://github.com/BeauJoh/Oclgrind
4https://github.com/BeauJoh/aiwc-opencl-based-architecture-independent-workload-characterization-

artefact/blob/master/AIWC-figures.ipynb
5https://mybinder.org/v2/gh/BeauJoh/aiwc-opencl-based-architecture-independent-workload-

characterization-artefact/master

88 Conclusions and Future Directions

available as a Jupyter workbook6 which allows users to run new predictions, automatically
compare them to the measured runtimes and provides transparency around how each figure
in Chapter 5 was generated.

6.4 Future Directions

Each of the lines of investigation described in this thesis has a future – from examining
benchmark diversity to improving the characterization of codes. The following sections,
however, focus on directions that may have the most significant impact in shifting us toward
understanding the characteristics of codes and how to best improve the performance on the
accelerator rich systems of the future.

6.4.1 EOD

EOD and the work presented in Chapter 3 resulted in a flexible benchmark suite that can
be run quickly and reliably on a range of accelerators and forms a foundation for testing
AIWC and the predictive model. We started to use the OpenTuner[90] autotuning library to
achieve the optimal performance of each device on all the benchmarks in EOD but realised
that it is beyond the scope of this thesis. Others [88], [58], [59], [60], [89], [61] have shown
that autotuners offer good performance for configuring OpenCL kernel parameters – such
as local workgroup size – for the different accelerators and could be readily incorporated
into EOD in a consistent manner. However, the presented execution times do not change
the presented methodologies around workload characterization and prediction, individual
features and the predictions may change with different tuning arguments but the use case
is the same. The developer needs to instrument a kernel before it is shipped and the most
accurate predictions will come from instrumenting under a realistic setting – tuning arguments
included. Schedulers will need to take autotuning and optimization into account but our
prediction methodology offers a good initial performance estimate without having to perform
the historic approach of running the same kernel on all the devices.

The cfd, bfs and tdm benchmarks due to the unavailability of external software to generate
the datasets lack multiple problem sizes. It would be nice to have this for completeness of
the extensions presented in the EOD benchmark suite, but ultimately, is not the focus of this
thesis.

In addition to comparing performance between devices, we would also like to develop some
notion of “ideal” performance for each combination of benchmark and device, which would
guide efforts to improve performance portability. This upper-bound for performance could
arise from the AIWC analysis on each benchmark. Additional architectures such as FPGA,
DSP and Radeon Open Compute based APUs will be considered.

6https://nbviewer.jupyter.org/github/BeauJoh/opencl-predictions-with-aiwc/blob/master/ OpenCL Perfor-
mance Prediction using Architecture-Independent Features.ipynb

§6.4 Future Directions 89

6.4.2 AIWC

Caparrós Cabezas and Stanley-Marbell [110] examine the Berkeley dwarf taxonomy by mea-
suring instruction-level parallelism (ILP), thread parallelism, and data movement. They
propose a sophisticated metric to assess ILP by examining the data dependency graph of the
instruction stream. Similarly, Thread-Level-Parallelism (TLP) was measured by analysing the
block dependency graph. Whilst we propose alternative metrics to evaluate ILP (SIMD width)
and the TLP (Total Barriers Hit and Instructions To Barrier) – a quantitative evaluation of
the dwarf taxonomy using these metrics is left as future work. We expect that the additional
AIWC metrics mirroring Caparrós Cabezas and Stanley-Marbells measurements will generate
a comprehensive feature-space representation. This comprehensive feature-space will permit
cluster analysis and comparison with the dwarf taxonomy.

A major limitation of running large applications under AIWC is the high memory footprint
– as discussed in Chapter 4.6. Memory access entropy scores require a full recorded trace
of every memory access during a kernel’s execution. However, graceful degradation in
performance is preferable to an abrupt crash in AIWC if virtual memory is exhausted. For this
reason, work is currently being undertaken for an optional build of AIWC with low memory
usage by writing these traces to disk.

6.4.3 Performance Predictions

Our model currently predicts execution time, however, we expect that a similar model could
be constructed to predict energy or power consumption. We have not yet collected the energy
measurements over the wide range of devices required to construct such a model.

We have not examined which AIWC features are most important in the predictive model.
Presenting a subset of the metrics may reduce complexity showing only the most important
data may be more informative for the developer when making these considerations. Principal
component analysis of these features was considered when evaluating potential modelling
approaches and is included in Appendix C.

Kumar et al. [155] provide an interesting and different use of Shao’s [107] ISA-independent
features. They present Peruse, a tool to characterize the features of loops at an IR level to
guide a programmer’s efforts in locating loops suitable for parallel execution. In an approach
similar to ours, they use machine-learning algorithms directly on ISA metrics to predict the
accelerability of loops. The model they present predicts the speedup of loops with an accuracy
of 79%. It is promising that a similar methodology has been developed based on the same
intuition and common set of tools, and is exciting to see if both works could be combined
in the form of scheduling abstract for-loops instead of OpenCL kernels. This would allow a
language-agnostic approach to accelerator scheduling – say on C codes instead of depending
on OpenCL specifically.

Following the work presented in this thesis, five additional research topics have become

90 Conclusions and Future Directions

apparent and will be pursued. They fall outside of the original scope of this thesis but are
nonetheless important.

6.4.4 Finding holes in benchmarks: Evaluating the coverage and corre-
sponding performance predictions for conventional vs synthetic
benchmarking

Our prediction methodology can be used to evaluate the coverage/diversity of the benchmarks
included in the EOD benchmark suite. This work is currently focused on augmenting EOD
with synthetic benchmarks. The predictive model is used to make predictions on previously
unseen codes against the trained set of EOD runtime results. These unseen codes are randomly
generated using the OpenCL kernel generation framework (CLgen) by Cummins et al. [156]
with a training corpus of all OpenCL applications available on GitHub. The previous success
of our model to predict execution times across many devices with high accuracy has led us to
believe that the Extended OpenDwarfs Benchmark Suite is a good platform for training – it
adequately covers the feature space for many scientific problems typical of the HPC setting.
However, we expect that testing the model with synthetic benchmarking may identify gaps in
the coverage provided by the existing suite of benchmarks, which would manifest as poor
predictions on particular synthetic kernels. These poorly predicted kernels could be added
back into the EOD benchmark suite – thus better encompassing the work expected to be run
on these accelerator devices.

6.4.5 AIWC for the Masses: Towards language-agnostic architecture-
independent workload characterization

OpenCL was the optimal language for the evaluation of codes on the broadest range of accel-
erators required for this thesis, however, several other programming systems are commonly
used for accelerators in HPC, including CUDA, OpenMP and OpenACC. The last two offer
an accelerator directives approach to offload work to accelerators. It would be useful to
perform the same architecture-independent workload characterization on all these languages.
Thankfully, there exist source-to-source translation tools such as Coriander [157] which allows
a largely automatic conversion from CUDA to OpenCL codes. Also, LLVM is the common
intermediate-representation or backend between OpenMP, OpenACC and OpenCL. We are
currently writing an LLVM pass to generate OpenCL device payloads for AIWC from OpenMP
and OpenACC.

§6.4 Future Directions 91

6.4.6 Examining the Characteristics of Scientific Codes in Supercomputing
with AIWC

Porting large HPC codes from conventional CPU architectures to accelerators is intensive on
the developer. However, many codes currently run on supercomputer systems are legacy
and as these systems increasingly utilize accelerators, more of this porting work will be
required. Many of these codes were written in OpenMP making them a suitable target for
the language-agnostic architecture-independent workload characterization. In addition to
supporting scheduling as presented in this thesis, AIWC and the predictive model could be
used to identify the primary characteristics of codes run on supercomputers. For instance,
if the supercomputing centre knows which codes are likely to be frequently executed, by
identifying the characteristics of these codes and the most suitable accelerators they can design
nodes with the optimal accelerator configurations.

6.4.7 Guiding Device Specific Optimization using Architecture-Independent
Metrics

We believe AIWC will also be useful in guiding device-specific optimization by providing
feedback on how particular optimizations change performance-critical characteristics. To
identify which AIWC characteristics are the best indicators of opportunities for optimization,
we are currently looking at how individual characteristics change for a particular code through
the application of best-practice optimizations for CPUs and GPUs (as recommended in vendor
optimization guides).

Metrics from AIWC could be compared after applying device-specific optimizations to see how
these features change and could identify performance-critical characteristics. The selection of
best practices such as, “Intel 64 and IA-32 Architectures Optimization Reference Manual” for
CPU and “CUDA C Best Practices Guide, Design Guide” for GPU could be taken from their
respective source code and ported to OpenCL. The examination of the change of AIWC feature-
spaces after each device specific optimization may suggest accelerator-agnostic optimization
strategies.

6.4.8 Faster FPGA development with AIWC and the Predictive Model

Finally, complicated OpenCL codes can take many hours – if not days – to compile for FPGA
devices. This makes the trial-and-error approach commonly taken when optimizing code for a
device untenable. Given the accuracy of the predictive model, there is a use-case for AIWC to
augment this workflow. Speculative optimization changes could be made to an OpenCL code,
the AIWC metric regenerated and predictive model queried, if the predicted device execution
result is better it could indicate a suitable optimization. This would potentially take seconds
instead of the long compile times when evaluating FPGA performance. The inherent difficulty

92 Conclusions and Future Directions

of predicting application performance on a reconfigurable architecture is the ultimate test for
the predictive model outlined in this thesis.

6.5 Closing Remarks

We hope the work presented in this thesis will serve as the basis for the scheduling of HPC
workloads as accelerator usage becomes more prevalent in this space. Our next goal is
to incorporate our methodology with AIWC and random forest models into the StarPU
accelerator scheduler, this will serve as a prototype scheduler, which we hope will become
the norm on the next generation of accelerator-based supercomputers. We hope our work on
benchmarking, workload characterization and prediction has made a modest contribution
and that the proposed techniques may help HPC developers make sense of an increasingly
complex hardware and software environment.

Appendices

93

Appendix A

Time Results

The primary purpose of including these time results is to demonstrate the benefits of the
extensions made to the OpenDwarfs Benchmark suite. In this appendix, we present all runtime
results collected from EOD and use the benchmarks to assess and compare performance
across the chosen hardware systems. The use of LibSciBench allowed high-resolution timing
measurements over multiple code regions. To demonstrate the portability of the Extended
OpenDwarfs benchmark suite, we present results from 12 benchmarks running on 15 different
devices representing four distinct classes of an accelerator. For eight of the benchmarks, we
measured multiple problem sizes and observed distinctly different scaling patterns between
devices. This underscores the importance of allowing a choice of problem size in a bench-
marking suite. The remaining four benchmarks only support one fixed problem size and are
included in Figure A.5.

Figures A.1, A.2, A.3 and A.4 shows the distribution of kernel execution times for the
benchmarks with multiple problem sizes. The tiny and small sizes for the kmeans, lud, csr
and dwt benchmarks are presented in Figure A.1 results, the medium and large problem
sizes are presented in Figure A.2. Similarly, the remaining four applications which support
multiple problem sizes – fft, srad, crc and nw – display the time results for tiny and small
in Figure A.3, and medium and large times are shown in Figure A.4.

Some benchmarks execute more than one kernel on the accelerator device; the reported
iteration time is the sum of all compute time spent on the accelerator for all kernels. Each
benchmark corresponds to a particular dwarf: From Figures A.1 and A.2 (a) (kmeans) repre-
sents the MapReduce dwarf, (b) (lud) represents the Dense Linear Algebra dwarf, (c) (csr)
represents Sparse Linear Algebra, (d) (dwt) and from Figures A.3 (a) and A.4 (a) (fft) repre-
sents Spectral Methods, (b) (srad) represents the Structured Grid dwarf, (c) (crc) represents
Combinational Logic and (d) (nw) represents Dynamic Programming.

Finally, Figure A.5 presents results for the four applications with restricted problem sizes
and only one problem size is shown. The N-body Methods dwarf is represented by (gem)
and the results are shown in Figure A.5 (a), the Backtrack & Branch and Bound dwarf is
represented by the (nqueens) application in Figure A.5 (b), (hmm) results from Figure A.5 (c)
represent the Graphical Models dwarf and (swat) from Figure A.5 (d) also depicts the Dynamic

95

96 Time Results

Programming dwarf.

The results are coloured according to the accelerator type: purple for CPU devices, blue for
consumer GPUs, green for HPC GPUs, and yellow for the KNL MIC. Examining the transition
from tiny to large problem sizes in Figures A.3 (b) and A.4 (b) shows the performance gap
between CPU and GPU architectures widening for srad – indicating codes representative of
structured grid dwarfs are well suited to GPUs.

In contrast, nw – (b) from Figures A.3 and A.4 – shows that the Intel CPUs and Nvidia
GPUs perform comparably for all problem sizes, whereas all AMD GPUs exhibit worse
performance as size increases. This suggests that performance for this Dynamic Programming
problem cannot be explained solely by considering accelerator type and may be tied to
micro-architecture or OpenCL runtime support.

For most benchmarks, the variability in execution times is greater for devices with a lower
clock frequency, regardless of accelerator type. While execution time increases with problem
size for all benchmarks and platforms, the modern GPUs (Titan X, GTX1080, GTX1080Ti,
R9 Fury X and RX 480) performed relatively better for large problem sizes, possibly due to
their greater second-level cache size compared to the other platforms. A notable exception is
kmeans for which CPU execution times were comparable to GPU, which reflects the relatively
low ratio of floating-point to memory operations in the benchmark.

Generally, the HPC GPUs are older and were designed to alleviate global memory limitations
amongst consumer GPUs of the time. (Global memory size is not listed in Table 3.2.) Despite
their larger memory sizes, the clock speed of all HPC GPUs is slower than all evaluated
consumer GPUs. While the HPC GPUs (devices 7-9, in green) outperformed consumer GPUs
of the same generation (devices 4-6 and 10-13, in blue) for most benchmarks and problem
sizes, they were always beaten by more modern GPUs. This is no surprise since all selected
problem sizes fit within the global memory of all devices.

A comparison between CPUs (devices 1-3, in purple) indicates the importance of examining
multiple problem sizes. Medium-sized problems were designed to fit within the L3 cache of
the i7-6700K system, and this conveniently also fits within the L3 cache of the Xeon E5-2697 v2.
However, the older i5-3550 CPU has a smaller L3 cache and exhibits worse performance when
moving from small to medium problem sizes, and is shown in (b),(d) and (e) in Figures A.1
and A.2, and in (a) from Figures A.3 and A.4.

Increasing problem size also hinders the performance in certain circumstances for GPU devices.
For example, (b) from Figures A.3 and A.4 shows a widening performance gap over each
increase in problem size between AMD GPUs and the other devices.

Execution times for crc are lowest on CPU-type architectures, probably due to the low floating-
point intensity of the CRC computation [145]. In general, the performance on the Xeon Phi
7210 MIC is poor due to the lack of support for wide vector registers in Intel’s OpenCL SDK.
The low clock frequency and inability to exploit sufficient levels of parallelism on tiny and
small problem sizes usually means it is the worst performer on these sized benchmarks. As

97

we move onto larger problem sizes the MIC outperforms the AMD GPUs on the largest lud
and nw benchmarks. Similarly, for the large srad benchmark the MIC bests most of the CPUs.
The crc benchmark is a standout in benchmarks for the MIC; It is one of the only applications
where the MIC is competitive with the performance on the whole mix of accelerators. Starting
with the tiny size, it experiences comparable performance to all of the older GPUs, for the
small size it offers similar performance to the latest Nvidia GPUs, and for the medium and
large problem sizes it is almost the best performing device rivalling the CPU accelerators.

For the fixed problem sized benchmarks, presented in Figure A.5, the per kernel invocation
is relatively low regardless of device selected for the (a) gem or (b) nqueens benchmark. The
newer Nvidia GPUs collectively tended to be the best-performed accelerator on gem taking
≈ 110µs while the MIC saw the worst performance at 0.85 ms. The nqueens benchmark saw the
i7-6700K and i5-3550 CPUs finish the kernel in ≈ 80µs to ≈ 100µs per invocation, respectively,
again the MIC had the worst performance at 900µs on average. Figures (c) hmm and (d) swat
are more computationally intensive and took longer to complete. The hmm benchmark shows
the CPU and modern Nvidia GPUs performing equally well < 1ms, the older AMD and HPC
GPUs ranged from 1-3ms, and the MIC averaged 7.5ms per run. Finally, swat had the modern
Nvidia GPUs as the fastest devices at ≈ 5ms and ranged up to 40ms on the MIC which was
the slowest device for this benchmark.

Predicted application properties for the various Berkeley Dwarfs are evident in the measured
runtime results. For example, Asanović et al. [15] state that applications from the Spectral
Methods dwarf are memory latency limited. If we examine dwt and fft – the applications
which represent Spectral Methods – in Figure A.2 (d) and Figure A.4 (a) respectively, we see
that for medium problem sizes the execution times match the higher memory latency of the
L3 cache of CPU devices relative to the GPU counterparts. The trend only increases with
problem size: the large size shows the CPU devices frequently accessing main memory while
the GPUs’ larger memory ensures a lower memory access latency. It is expected if had we
extended this study to an even larger problem size that would not fit on GPU global memory,
much higher performance penalties would be experienced over GPU devices since the PCI-E
interconnect has a higher latency than memory access to main memory from the CPU systems.
As a further example, Asanović et al. [15] state that the Structured Grid dwarf is memory
bandwidth limited. The Structured Grid dwarf is represented by the srad benchmark shown
in Figure A.4 (b). GPUs exhibit lower execution times than CPUs, which would be expected
in a memory bandwidth-limited code as GPU devices offer higher bandwidth than a system
interconnect.

98 Time Results

0

5

10

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

 tiny(a) kmeans

0

5

10

15

20

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

small

0.0

0.3

0.6

0.9

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(b) lud

0.0

0.5

1.0

1.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

0.0

0.1

0.2

0.3

0.4

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(c) csr

0.0

0.1

0.2

0.3

0.4

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

0.0

0.5

1.0

1.5

2.0

2.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(d) dwt

0

1

2

3

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

accelerator type CPU Consumer GPU HPC GPU MIC

Figure A.1: Kernel execution times for the tiny and small problem sizes of the kmeans, lud,
csr and dwt benchmarks on different hardware platforms.

99

0

20

40

60

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

 medium(a) kmeans

0

50

100

150

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

large

0

2

4

6

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(b) lud

0

20

40

60

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

0

2

4

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(c) csr

0

2

4

6

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

0

3

6

9

12

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(d) dwt

0

25

50

75

100

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

accelerator type CPU Consumer GPU HPC GPU MIC

Figure A.2: Kernel execution times for the medium and large problem sizes of the kmeans,
lud, csr and dwt benchmarks on different hardware platforms.

100 Time Results

0.00

0.25

0.50

0.75

1.00

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

 tiny(a) fft

0.0

0.5

1.0

1.5

2.0

2.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

small

0.00

0.25

0.50

0.75

1.00

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(b) srad

0.0

0.4

0.8

1.2

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

0.0

0.1

0.2

0.3

0.4

0.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(c) crc

0

1

2

3

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

0.0

0.5

1.0

1.5

2.0

2.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(d) nw

0.0

0.3

0.6

0.9

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

accelerator type CPU Consumer GPU HPC GPU MIC

Figure A.3: Kernel execution times for the tiny and small problem sizes of the fft, srad and
nw benchmarks on different hardware platforms.

101

0

5

10

15

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

 medium(a) fft

0

20

40

60

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

large

0

2

4

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(b) srad

0

10

20

30

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

0

25

50

75

100

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(c) crc

0

200

400

600

800

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

0.0

0.3

0.6

0.9

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(d) nw

0.0

2.5

5.0

7.5

10.0

12.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

accelerator type CPU Consumer GPU HPC GPU MIC

Figure A.4: Kernel execution times for the medium and large problem sizes of the fft, srad
and nw benchmarks on different hardware platforms.

102 Time Results

0.00

0.25

0.50

0.75

1.00

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(a) gem

0.0

0.5

1.0

1.5

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(b) nqueens

0

5

10

15

E5−
26

97

i7−
67

00
K

i5−
35

50

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m
K40

m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

0X

R9
29

5x
2

R9
Fur

y X

RX 4
80

Xeo
n

Phi
72

10

tim
e

(m
s)

(c) hmm

0

10

20

30

E5−
26

97

i7−
67

00
K

Tita
n

X

GTX 1
08

0

GTX 1
08

0
Ti

K20
m

K40
m

Fire
Pro

 S
91

50

HD 7
97

0

R9
29

5x
2

Xeo
n

Phi
72

10

tim
e

(m
s)

(d) swat

accelerator type CPU Consumer GPU HPC GPU MIC

Figure A.5: Single problem sized benchmarks of kernel execution times on different hardware
platforms.

Appendix B

Linear Model Fitting

A linear model was evaluated during the initial attempt of the device prediction work
presented in this thesis. A Generalized Linear Model (GLM) was fitted to the AIWC features
and runtime data. For the comparison, the GLM used a gamma family variance and log
link function. In this appendix, we show the predictive relative accuracy of this model and
emphasize the high magnitude of error, and wide prediction intervals. To reproduce this
analysis, see the associated Jupyter artefact1.

The Gamma family is justified by the presence of skewed strictly positive responses, the
log-link was previously found by empirical comparisons of link functions options. Selection
of the log-link over the canonical (inverse) link also avoids limitations on the estimation of
the nu-parameter and the corresponding Beta model coefficients. Figure B.1 presents the
predicted vs measured execution times of the fitted GLM model and is coloured according
to problem size, we see poor prediction results – for instance we see a much wider range of
ground-truth values in the sample of measured execution times relative to the main linear
trend.

Figure B.2 presents the distribution of errors and their associated magnitude. The model
has a predictive relative accuracy2 of 84% and is skewed to underestimate execution times of
devices. The mean error of prediction times was ≈ 3 µs but this error could be much greater
and up to 450 µs. This level of error was unacceptable and it is suggested that the GLM
was unable to capture the complicated statistical relationships between AIWC features and
execution time. This motivated the use of non-parametric models — such as the random
forest — which we have demonstrated is more suitable for the data.

The prediction intervals for the GLM are presented in Figure B.3. These intervals show the
lower and upper error prediction bounds and were achieved by fixing all but one variable
– we selected the kmeansPoint kernel on the GTX1080Ti GPU – and vary the problem size.
In practice, any other variable could be fixed and varied, but this is only done to show the
huge variation in predictions and that the GLM is a poor choice of model, which is shown
by the significant errors – larger spread in mispredictions – for larger problem sizes. The

1https://github.com/BeauJoh/opencl-predictions-with-aiwc
2Relative accuracy (%): (1− ∣predicted−measured∣

measured)× 100 summed over all kernels and devices.

103

https://github.com/BeauJoh/opencl-predictions-with-aiwc

104 Linear Model Fitting

● ●●● ●●●●● ●●●● ●● ●●●● ● ●● ●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●● ●●●●●●●●●●●● ●● ●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●●●● ●●●●● ●●●●●● ● ●●●● ●●●● ●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●● ● ●●● ●●●● ●●●●●●● ●●● ●●●●●●●● ●● ●●●

●●●● ●●●● ●●●● ●●●●● ●●●● ●● ●●●●●●●●●●●●

● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●

● ●●●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●● ●

● ●● ●●●●●●● ●●● ●●●● ●●● ●● ●●●●●●●●●●

●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●● ●●●●●●●●●● ●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●● ●●●● ●●●● ●●●●● ●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●● ●●●●● ●●●●●●●●●●●● ●●●●●● ● ●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●● ●● ●●● ● ●●● ●● ●● ●● ●●●●

● ●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●

● ●●●●●●●●● ●●●●● ●● ●● ●●●● ●●●●●● ●●● ●

●●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●

●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●

●●●●●●●● ●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●

●●● ●●●●● ●●●●●● ●●●●●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●● ● ●● ●●● ● ●● ●●● ●●●●●●●● ●● ●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●● ●●● ●●● ●●●●● ●●●●●●

●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●● ●●●●

●●● ●●●●● ●●●●●●● ●●● ●●●● ●●●●● ●●●●●●●●●●

●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●●●● ●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●●● ●●

●●● ●● ●●● ●●●●●●●● ●●●● ●●●●● ●● ●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●● ●●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●●●●● ●●●●●● ●●● ●●●●●●●●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●●●●●●●●●●●●● ●● ●● ● ●●● ●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●
●●●●●●●● ●●● ●●●●●●●●●● ●● ●●●●●●● ●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●

●●●● ●●●●●●●●●●●●● ●● ●●● ● ●●● ●● ●

●● ●●●● ●●●●●●● ●●●●●● ●●●● ●● ●●
●● ●●●●● ●● ●●● ●●●●●●● ●● ●● ●●● ●● ● ●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●● ●● ●●● ●●●●

●●●●●●●●● ●●●● ●●● ●●● ●●● ●●● ●●●●● ●●

●● ●●●●●●●● ●●● ●●●●● ●●●●● ●●● ●●●● ●●●● ●

●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●●● ●●●● ●●●●●●● ●●●●●●● ●●● ●●● ●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●● ●●●●● ●●● ●●●● ●●●●●●● ●● ●●● ●●● ●●● ●●

●●●●● ●●● ●●●●● ●●●● ●●●●● ●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●● ●●● ●●● ●●●●●●●●

●●●●●● ●●●●● ●●●● ●●●●●●●●●● ●●●●●●

●●●● ●●● ●● ●●● ●●●●●●● ●●●●● ●●●● ●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●
●● ●●● ●●● ●●●●●●●●● ●● ●●●●● ● ●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●● ●● ●● ●●●●●● ●● ● ●●●●●● ●● ● ●●●● ●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ●● ●●●●● ●●● ●● ●●●●●●● ●●● ●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●
●●●●● ●● ●●●●●●● ●●●● ●●● ●● ●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●● ●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ● ●● ●●●●●●● ●●●●● ●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●● ●●●●●● ●●●●●●●●● ● ●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●● ●●●●●●● ●●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●● ●●●●●●● ●● ●●●●●●●● ●●●●●●●●

●●●●●●●● ●●●●●●●●●●●● ●●● ●● ●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●

● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●●●●●● ●●●●●●● ●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●●●●●●●●●●●● ●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●● ●●●●●●●●● ●● ●●●●● ●●●● ●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●● ●● ●●●● ●● ●● ●● ● ●●●● ● ●●●●● ●●

●●●●●● ●●●● ●●●● ●● ●● ●●● ●●●●●●●●●●●
● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●●●●●● ●●●●●●●● ●●●●●● ●●●●●●●●●●●●

●● ●● ●●● ●● ●●●●●● ● ● ●● ●●● ●●●● ●●●● ●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●● ●●●●●●● ●●● ●●● ●●●●● ●●●●●●●● ● ●●

●●● ●●● ●●● ●● ●● ●● ●●● ●●●● ●● ●●●

●● ● ●●●●●● ●●● ●●● ●● ●●● ●●●●●● ●● ● ●●
●●●●● ●●●●●● ● ●●●● ●●●●● ●●●●●● ●●● ●●

●● ●● ●●● ●●●●●●●●●● ●●●● ●●● ●●●●● ●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●● ●●● ●●● ●● ●● ●● ●●● ●●●●● ●

●●● ●●●● ●●● ●●● ●● ●● ●●●●● ●●● ●●●●●● ●●

●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●● ●●●
●● ●●●
●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●

● ●●● ● ●●● ●●● ●●● ●●● ● ●●● ●● ●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●● ●● ●●●● ●●● ●●● ●●●●●●●● ●● ●●●● ●● ●● ● ●

●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●
●●●●●●●● ●●●●●●● ●●●●● ●●●●●●● ● ●● ●●● ●●●● ● ●●● ●● ●● ● ●●●●● ●● ●●●●● ●● ●

● ●●●●●●● ●●●●●● ● ●●●●●● ● ●●●● ●● ●

●●●●● ●●●● ●●●●●●●●●●● ●● ●●●● ●● ●●

●● ●● ●●● ●● ●● ●● ●●● ●●●●● ●● ●●● ●●●●●
● ●● ●●● ●● ● ●●●● ● ●●●●●●● ●● ●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●● ●●●●●● ●●● ●● ●●●● ●●●●

●●●●●●●●●●●●●● ●●●● ●● ●● ●●●●●●●●●● ●●●

● ●● ●●● ●●●●●● ●●●● ●●● ●● ●●●●●●●●● ●●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●● ●
●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●●●● ●●●●●● ●●● ●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●● ●●●●●●● ●●●● ●●●●●●●●●●●●● ●● ●●

●●●●●●●●● ● ●●●●●●●●● ●● ●●●●●● ●
● ●●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●● ●●●●●● ●●● ●●●● ●●●● ●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ● ●● ●●●● ●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●● ●●● ●● ●●●●●●●●●●●●●● ●● ●● ●●● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●● ●● ●●● ●● ● ●●● ●●●●●● ● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●● ●●●●● ●●●● ●●● ●●● ●●●● ● ●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●● ●●● ●●●●● ●●●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●●● ●●● ●● ●●●● ●● ●●●●●●● ●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●● ●● ●●●● ●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●●● ●●●●●● ●●●● ●●● ●●●●●● ●● ●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●● ●● ●●●● ●●●● ●●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●● ●●●●●● ●●●●● ●●●● ●●●●●● ● ●●●●●● ●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●● ●●● ●●● ●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●● ●● ●●●●● ●● ●●●●●●●●●●● ●●●
● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●● ●●● ●●● ●●● ●● ●●●●● ●● ●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●● ●●●●●●●● ●●●●●● ●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●● ●●●●●

●●●●●● ●●●● ●● ●●●● ●● ●●●●●●● ●●● ●●●●

●●●●●● ●● ●●●● ●●●● ●●●●●●●●●●●● ●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●● ●●● ●●●●● ●●● ●●● ●● ●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●●● ●● ●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●● ●● ● ●● ●●● ●●●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ●●●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●● ●●●●● ●●●● ●●● ●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●
●●● ●●●●●● ●●●●●●● ●● ● ●● ●● ●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●● ●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●●●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●● ●●● ●●●●● ●●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●●● ●●●●●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●

●●●●●● ●●●●●● ●●●● ●● ●●●●● ●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●

● ●●●●●●●● ●●●●●●● ●●●●●● ●●●●●●●● ●●● ●
● ●●● ●●●●●● ●●●●●●●● ●●● ●●●●●● ●● ●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●●● ● ●●●●● ●● ●● ●●●● ●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●● ●●●● ●●●●●●●●●●● ●●●●●●●● ●●

●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●

● ●●● ●●●● ●●● ●●●● ●●●●●●● ●●●● ●●●● ●●● ● ●●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●

●●●

●●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●
●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●● ●●● ●●● ●●●
●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●●●●●●●●●● ●●● ●●●● ●● ●●

●● ●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●● ●●● ●● ●●●●●●●●● ●●● ●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●● ●●●●●●●●● ●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●●●
●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●● ● ●●●● ●●●●●●●● ●● ●●● ●●● ●●●●●●●●

●● ●●●

●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●

●●● ●●●● ●●●●●●●● ●●● ●●●●●●● ●●●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●● ●●● ●●●●●●●●●● ●●●●●● ●●●● ●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●● ●●● ●●●● ●●●●● ●●●●●●● ●●●●●●● ●● ●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●
●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●● ●●●●●●●●●●●● ●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●● ●●●● ●●●● ●● ●●● ●● ●●●●●●●● ●●●

●● ●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●

●●●●●●● ● ●●● ●● ●● ●●●●●● ●●●●●●●●●●●

● ●●●●● ●●●●●●● ●●●●●●●●● ●●● ●●●●●●
●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●

●●●● ●● ●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

● ●● ●● ●●●●●● ●●●●●●● ●●●● ●●●● ●

●●● ●●●●● ●●●●●●●●● ●● ●●●● ●●●●●●●●●●● ●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●● ●●●●● ●●● ●●● ●● ●● ●●●●●●●●●●

● ●●● ●●●●● ●● ●●● ●●●● ●● ●●●● ●●● ●●● ●● ●●●●●●● ●●●●● ●● ●●●● ●●●●● ●●●● ●●●● ●● ● ●●●●●●●●●●●● ●● ●●●●●●●●●● ●●●●●

●●●● ●●● ●●●●●● ●●●● ●●●●●●●●●●●● ●

●● ●●● ●●● ●● ●●●● ●●●● ●●● ●●●●● ●●● ●●●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●●●● ● ●●●●●●●●●● ●●●●●● ●●●● ●●

● ●●●●● ●●● ●●● ●●●●● ●● ●●●● ●● ●●● ●

●●●●● ●●●●●●● ●●●●● ●●●●●●● ●●●● ●● ●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●

●●●

●●● ●●● ●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●●●

●● ●●● ●●●●●● ●● ●●●● ●● ●●●● ●● ●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●● ● ●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●●● ●

●●●●● ●●●●●● ●●●●●● ●●●● ●●●●●●● ●●

●●●●●●●●●●●●●●● ●● ●●●● ●● ●●●● ●● ●●●● ●●●
●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

● ●● ●●● ●● ●●●●●●● ●● ●●●● ●● ●●● ●●●●●●

● ●●●●● ● ●● ●●● ● ●●●●● ● ●●● ●● ●● ●●●● ●● ●● ●

●●● ●●● ●●● ●●● ●● ●●●●● ●●●● ● ●● ●●● ●
●●● ●●● ●●● ●● ●●

●●●●●●●● ●● ●●●●●●●● ●● ●●● ●● ●●●●●

●●●●●●●●● ●●● ●● ●●● ●●●●● ● ●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●● ●●●●● ●● ●●● ●●●●● ●● ●●●● ● ●●

● ●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●● ●● ●●● ●●● ●●●●● ● ●●●● ●● ●●● ●●●●●●● ● ●●●●●●● ●●●● ●●●

●●●●●● ●●●●●●●●●●● ●●●●●● ●●● ●●●●●

● ●●● ●●●● ● ●●● ●●● ●●●●●●● ●●●●●●●●●● ●
● ●●●●●●●● ●● ●● ●●●●●● ●●●● ●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●●●● ●●●●●●●●● ● ●●●●

●●●●●●●●● ●●●● ●●●● ●●● ●●●●● ●●●● ●●
●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●

●●●●●●●●●● ●● ●●●●●●●●●●●●● ●●●● ●●●

● ●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●● ●● ●●●●● ●●●●● ●●●●● ●●●● ●● ●

●●●●●●● ●● ●●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●●● ●●●●● ●●● ●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●● ●●● ●●●●● ●●●●●●●● ●●●● ●●●●●●●
●●●● ●● ●●● ●●● ● ●● ●●● ●●●● ●●●●●●● ●

●●●● ●●●●●● ● ●●●●● ●●●● ● ●●●● ● ●● ●●●●
●●● ●●●● ●●●●● ●●●●●●●●●● ●●●

●●●●●●●● ●● ●● ●●●●●●●●● ●●●●● ●●●●●●●

●●● ●●●●● ●●

● ●●●● ●●● ●●● ●● ●●●● ●● ●●● ●●●● ●●●● ●●●

● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●
●●● ●●●●●●●● ●● ●●●●●●●● ●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●

●● ● ●●● ●●● ●●● ●●●●●●●●●● ●● ●● ●●●● ●● ●

●●●● ●● ●●●●●●●● ●●●● ● ●●● ●●●●●● ●

●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●
●● ●●● ●●● ●●● ●●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●●●● ●●● ●● ●●● ●●● ●●● ●● ●●● ●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●

●●

●●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●●● ●●●●●● ●●●●●● ●●●●●●●●●●● ●●

●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●

●●●●● ●●● ●●●● ●●● ●● ●●●●●●●●●●●●●●●

●●●●●● ●●●●●● ●●●● ●● ●●●●●●●●●●●●●● ●●●●●●
●●● ●●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●● ●●●●●● ●● ● ●●●● ●●● ●●●●●

●●

●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●● ●●●●●●●●● ●●● ●●● ●●●●●● ●●●●

●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●
●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●

●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●● ●●●●

●●●●●●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●●
●●●●●●●●●●●●●●●●●●●● ●●
●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●

●●

●● ●●● ●● ● ● ●● ●●●● ● ●●●●● ●●● ●●●●●●

● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●

●●●●●●● ●●● ●●●●●●● ●●●● ●●●●●●●●●●●

●●● ●●●●●●●●●● ●●●●●● ● ●● ●●● ●●●●●

●●●● ●● ●●●●●●●● ●●●● ●●●●●●●
●●● ●●●●● ●●●●●●●●● ●●●●●●●● ●● ●●● ● ●●

● ●● ● ●● ●● ●●● ●●●●● ●●● ●● ● ●● ●●● ● ●● ●● ● ●● ●● ●● ● ●●● ● ●● ●●● ●● ●●● ●●● ●● ●●● ● ●● ●●●● ●●●●

● ● ● ●●●●●● ●●●●●●●● ●● ●●● ●●●●● ●●●●●●●●● ●●●●● ●● ●●●●● ●● ●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●●
●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●

● ●●● ● ●●● ● ●● ●● ●●● ●● ●●● ●●● ●● ● ●● ●●● ● ●●● ●● ●●● ●● ●● ●● ● ●●● ●● ●●● ● ●●●● ● ●●● ● ●●● ●●●●● ●● ●●●● ●●● ●● ●● ●● ●● ●●●● ●●● ●●● ●● ●●● ●●● ●●● ●●● ●● ●●●● ●●● ●● ●● ●● ●●● ●● ●● ●●●●●

● ●●● ●●● ●●● ●●●● ●● ●● ●●● ●●●● ● ●●●●● ●● ● ●●● ●● ●●● ●●● ●●● ●● ● ●●●● ●●● ● ●●● ●●● ●● ●●

●●●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●●● ●● ●● ●●●● ●● ● ●● ●● ●● ●● ● ●●● ●● ●● ●●● ●● ●●● ●● ●●●● ●●● ●● ●● ●●●● ●●● ●●● ●● ●● ●● ●● ●●●● ●● ●●● ●● ● ●● ●● ●● ●● ●●● ●●●● ●● ●●● ●● ●●● ●● ●●● ●●● ●● ●●● ●● ●● ●● ● ● ●● ●● ●● ● ●●●● ●● ●● ●● ●●●●●● ● ●●● ●● ●● ●● ● ●●●● ●● ●● ●● ●● ●● ● ●● ●● ●●

●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●

●●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●●● ●●●● ●●● ●●●●●● ●●● ●● ●●●● ●●● ●● ●●● ●●● ●●● ●●● ●●●●
● ● ●●● ●● ●●● ● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●●●● ●●● ●●● ●● ●●

●●●● ●●● ●●● ●● ●●●●● ●●●● ●●●●●●● ●● ●●●● ●● ●●●●●● ●●●● ●●●●●●● ●● ●●●●●●●● ●●●●●● ●●●●● ●●● ●●

●● ●●● ●●●●●● ●●●●●●●● ●●●● ●●●●●●

● ●● ●●● ●●●●●● ●●● ●●● ●●● ●● ●● ●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●● ●● ●●● ●●●●●●● ●●●●● ● ●● ●●●●●●●●

●● ●● ●●● ●●● ●●●● ●●●●●●● ●●●● ●● ●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●

●●● ●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●● ●● ●

●● ●●●●● ●●● ●● ●●●●●● ●●●●●● ●●●● ●●●● ●●●
●●●●●●●●●● ●● ●●●●●●● ●●● ●●● ●●●● ●●●●

● ●●● ●●●●●●●●●●● ●● ●●●●● ●●●● ●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●●●●●●●●● ● ● ●●● ●●● ●●●●● ●●● ●●●●

●●

●● ●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●● ●●●●●●● ●●●●●●●●●●● ●●●●●●●●

●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●

● ●●●●●●●● ●●●●●●●●●●●●●●● ●● ●●●● ● ● ●●
●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●● ●● ●●● ●●●●●●● ●●●●● ●●●● ●● ●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●
●●●●●●●●● ●●●●● ●●●●●●●●●●● ●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●
● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●

●●●

●●● ●●● ●● ●● ●●● ●●●● ●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●● ●●●●● ●● ●●●●● ●●●●●●●●●●●●●
●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●

●●● ●●●●●●●●● ●● ●● ●●●● ●●●● ●●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●● ●● ●●● ●●●●●●●● ●●●●●●●● ●●●●
●●●●●●●●●●●●● ●●
●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●

●● ●●●●●●●●●●●●●●●●●●●●●● ●●●

●●● ●●● ●●● ● ●● ●●●●● ●●●●● ●●● ●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●● ●●●●● ●●●●● ●●● ●●●●●● ●●● ●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ●●●●● ●● ●●● ●●●●●●●●●
●●●
●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●● ●●●●●●● ●●●● ●●●● ●●●● ●●●● ●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●

● ●●●● ●●●●●●●●● ●●●●●● ●●●●●●●● ●●●●●●
● ●●●● ●●●● ●●●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●● ●● ●● ●●●●●●●●●● ●● ●

●●

●● ●●●● ●●●●●●●●● ●●● ● ●● ●● ●● ●●● ●●● ●● ●●●

●●●●●●●●●●● ●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●● ●●●●● ●●●●● ●●● ●●●●●●●●●●

●●●●●●●●●●●● ●●● ●●●● ●●● ●●●●●●●●● ●
●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●● ●●●●●●● ● ●● ●●●●●●●●● ●●●● ●● ●●●●● ● ●●● ●●●● ●●●●● ●● ●●●● ●● ●●●

●●●●●●●●●●●●●●●● ●●● ●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●

●●●

●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●● ●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●
●●● ●● ●●● ●●●●● ●●●● ●●●●●● ●● ●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●● ●●●● ● ●●●●● ●●●●●

●●●●●● ●●● ●● ●●●● ●● ●●●●●●●●●●●●●●●● ●●

●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●
● ●●●●●● ● ●●●● ●●●●●● ●●● ●●●●● ●● ●● ●●● ●●●

●●● ●●●●●●● ●●●●● ●● ●●●●●● ● ●●●● ●●●●●●●

●●●●● ●●●●●● ●●●●●●● ●●●●●●● ●●●● ●●
●●
●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●

●●●

●●●●●●●●● ●●●●● ●●● ●●●● ●● ●● ●●●● ●●●●

●●●● ●● ●●●●●●●●● ●●●●●●● ●●●● ●●●●●●● ●● ●●● ●●●● ●● ●●● ●●●●●●● ● ●●● ●●●● ● ● ●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●● ●●

● ●● ●● ● ●● ●● ● ●●● ● ●●●● ● ●●●● ●● ●●●●●●

● ●●● ●●●●●● ●●●●● ●●●●●● ●●●●● ●●●●●● ●●●
●●●● ●● ●●●●● ●●●●●● ●●●●● ●●●●●● ●●●●

●●●●●●●●●● ●●●●●●● ●●● ●●●●●

●●● ●●●●● ●●●●●● ●● ●●● ● ●● ● ●● ●● ●●● ●

●●● ●● ● ●●● ●●●●●●●● ●●●●●●●● ●●● ●●●
● ●●● ●●●● ●● ●● ●● ●●●● ●● ●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●● ●●● ●● ●● ●●●● ●●●●●● ●● ●●● ●●●●● ●

●●

●●●● ●● ●● ●● ●●●● ●●● ●●● ● ●●●● ●● ●●●●

●●●●● ●●●●●●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●● ●●●● ●● ●●● ●●●●●●● ●● ●●●●●●●●●●●●● ●●●●●

●●● ● ●●● ● ●●● ●●● ● ●●●● ●●●● ●● ●●

● ●● ●●●● ●●●● ●● ●●● ●●● ●●● ●●● ●●●● ●●●
●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●● ●●●● ●●

●●●●●●● ●● ●● ●●●●●● ●●●●●●● ●●●● ●●●

●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●● ●●●● ●●●● ●●●●●●●●●●●●●●● ●●
●● ●●●●●●●●● ●●●● ●● ●●●●●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●● ●●●● ●●●●●● ●●●● ●●●●●● ●●●

●● ●● ●● ●● ●●● ●●●

● ●●● ●● ●●● ●●● ●● ●●●●● ●●●●●●●●● ●●●● ●● ●

●●●● ●●●●● ● ●●●●● ●● ●● ●●●●● ● ●●● ●●●●●● ●● ●●●●●●● ●●● ●●●●●●● ●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●● ●● ●● ●●●●● ●●●●●● ●●●●● ●●●● ●● ●●● ●

●●●●●● ●● ●●● ●●● ●● ●● ●● ●●●● ●●● ●● ●●●

●●● ●● ●● ●●● ●●● ● ●●●●● ●● ●●●●● ●● ●●●
●●● ●●● ●●●●● ●●● ● ●●● ●● ●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●● ●●● ●●● ●●● ●●●●● ●●●●● ●● ●● ●●●●● ●●●

●● ●● ●●●●●● ●● ●●●●● ●● ●●●●●●●●●● ●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●● ●●●●● ●● ●●●● ●● ●●● ●●● ●●●●

●●●●● ●●●●●●●●● ●● ●● ●● ●● ●●●●● ●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●● ●●● ●●●●● ● ●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●

●●●●●●●● ●● ●● ●●●●● ● ●●●● ●●●●●●●●● ●

● ●●● ●●● ●●●●●● ●●●● ●●● ●● ●● ●●● ● ●●● ●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●

● ●●● ●●●● ●● ●●● ●●● ●● ●●●● ●● ●●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●● ●●● ●● ●●●● ●●● ●●●●●●●● ●● ●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●● ●●●●● ●●●● ●●●●●●●●● ●●●●

●●●

●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●

●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●

●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●● ●●

●●●●● ● ●● ●●●●● ●●●●●●●●●● ●●●● ●● ●● ●●
●●●●●● ●●●●● ●●●● ●●● ●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●● ●● ●● ●●●● ●●● ●●● ●●● ●●

●●●

●●●●● ●●● ●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●

●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●

● ●●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●

●●●●●●●●● ●●● ●●●● ●●●●●●● ●●●●●●●● ●●
●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●

●●●●●●●●● ●●● ●●●●●●●●●●●● ●●● ●● ●
●●

●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●● ●●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●

●● ●●●●●● ●●●●●●●● ●● ●●●●●● ●●●● ● ●●●● ●●●● ●●●●●● ●●●●●● ●●● ●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●

●●● ● ●● ●●● ●● ●●●●●●● ● ●●●● ●●●●●●●●●

●● ●●●● ●●●● ●●● ●●●●●●● ●●●●●●● ●●● ● ●

●●● ●●●●● ●●●●●●●●●●●●●●●●●●●● ●●
●●● ●●●●●●● ●●●● ●● ●● ●●● ● ●● ●●●●● ●●●●

● ●●● ●●● ●●●●● ●● ●● ●●● ●● ● ●●●● ●●● ● ● ●●● ● ● ●●● ●●● ●● ●●●● ● ●● ●●● ●●● ●●●● ●●●●●●● ● ●

●●●●● ●●●●●●●●●●●● ●●●●● ●● ●●●●●●● ●● ●●●●●●●●●● ● ●●●●●●●● ●●●●● ●● ●●●●●
●●● ●●● ●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●● ● ●●● ● ●●● ●●● ● ●● ●●●● ● ●●● ●●● ●●● ●●●●● ●● ●● ●●● ● ●●● ●● ●●● ●● ●●● ●● ●●● ●●●● ●●●● ●●●● ●●● ●● ●●● ●● ●●● ●● ●●●● ● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●●● ●●● ●● ●● ●● ●

● ●● ●● ●● ●● ●●● ●●●●●●●● ●● ● ●● ●● ● ● ●● ●●● ●●●●●● ●●● ●●●●● ●●● ●● ●● ●● ●●●●●● ●● ●●● ●● ●●●

●●●● ●● ●● ●● ●●● ●●● ●●●● ●●● ●●●● ●●●● ●●● ●● ●●● ●●● ●● ●● ●●●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●● ● ●● ●● ●●● ●● ●● ●●● ●● ●●● ●●●●● ●● ●●●●●●● ●●● ●● ●●● ●●●●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●●●●●●● ●● ●● ●● ●●● ●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●● ● ●●● ●● ●● ●●●● ●

●●●●● ●●●●●●● ●●●● ●●●●●●●●● ●● ●● ● ●●●●● ●●●● ●●●●● ●●●●●● ●●●●●●● ●●●●● ●●● ●●● ●●

●●●●● ●●●●●●● ●●●● ●●● ●● ●●●●●● ●● ●●● ●● ●●●● ●● ●● ● ●●● ●●●● ●● ●● ●●● ●●●● ●●●●●●●●●●
●●● ●●● ●● ●●● ●● ●●● ● ●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●●● ●● ●● ● ●●● ●

● ●● ●●●●● ● ●●● ●● ●●●●●● ●●●● ●●●●●●●● ●● ●●●●●● ●● ●●● ●● ●●●●●● ●●●● ●●● ●●●● ●● ●●●● ●●●●●●

●●●●● ●●●●● ●●● ●●● ●●● ●●● ●●●●●●●

●● ●●●● ●●●●●●●● ●●●●●●●●● ●●●●●●
●●●●●●●●●●●●● ●●
●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●

●●●

●●●●●●●●● ●●●●●● ●●●●●●●●●●● ●●●●● ●●●

●●● ●●●●● ●●●●●● ●● ●●●●● ●●●●●●●●●
●●● ●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●● ●● ●●● ●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●

●●●●● ●●● ●●● ●● ●●●●●●●● ●●●●● ● ●●● ●●

● ●● ●●●●●●● ●●●● ●● ●●●●●● ●● ●● ●●● ●●●

●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●

● ●●●● ●●●● ●●●●●●● ●●● ●●●●●● ●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●●●●●●● ● ●● ●●● ●● ●●● ●●● ●●● ●● ●●● ●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●● ●●● ●● ●●●●● ●● ●● ●● ●●●● ●● ●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ●●●●●● ●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●● ●●●● ●●●●● ●●●●●●●●●●●●●● ●

●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●
●●●●●●●●● ●●●● ●● ●● ●● ●●●●● ●●● ●● ●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●● ●●●●●●●● ●● ●●●●●●●●●●● ●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●● ●●● ● ●● ●●●●●● ● ●●● ●●● ● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●
●●●● ●● ●●●●●●●●●●●● ●● ●●● ●●● ●●●● ●●●●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●● ●●●●●● ●●●● ●●● ●●● ●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●● ●●●●●●●●●● ●●●●●●●●●●●● ●●●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●● ●● ●●●●● ●●● ●●● ●● ●●●● ●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●● ●●● ●● ●● ●●●● ●●● ●●●●●● ●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●● ●●● ●●● ●●●●●●● ●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

5

10

15

5 10

log(measured µs)

lo
g(

pr
ed

ic
te

d
µs

)

size
●

●

●

●

tiny
small
medium
large

Figure B.1: Predicted vs. measured execution time (in log(µs)) for all kernels and devices with
the GLM model.

0.0

0.2

0.4

0.6

−8 −4 0 4

Error Magnitude (loge)

%
 o

f d
is

tr
ib

ut
io

n

Figure B.2: Distribution of prediction errors with the GLM model, presented in a log scale.

105

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

2

4

6

tiny small medium large

problem size

lo
g

pr
ed

ic
te

d
tim

es
 (

µs
)

Figure B.3: Prediction intervals for the kmeansPoint kernel on the GTX1080Ti GPU over four
problem sizes.

intervals shown in Figure B.3 are the predictions and ranges for each problem size, the dots
are individual predictions, while the error-bars show the range of where expected future
values will fall. We see the predictions have a similarly wide spread for all problem sizes.
Given the resolution of the times, where on the tiny problem size, an accurate prediction is 40
µs, having a prediction interval of 30 µs to 148 µs demonstrates the unsuitability of the GLM
model; larger problem sizes will experience more severe mispredictions associated with these
wide prediction intervals.

The four heat maps presented in Figure B.4 show the difference between mean predicted and
measured kernel execution times as a percentage of the measured time when using the GLM
based model. Thus, they depict the relative error in prediction – lighter indicates a smaller
error. Four different problem sizes are presented: tiny in the top-left, small in the top-right,
medium bottom-left, large bottom-right. The kernels (y-axis) between each of problem size do
not align due to the number of supported applications, and kernels, in each problem size – this
is discussed in Chapter 3. There are many kernels which show bad prediction performance,
ranging from 25-100% error – for instance, the crc32_slice8 kernel suffers near 100% error
when compared to the measured times on most devices. The model predictions differed from
the measured experimental results by an average of 14.5%, had a mean predicted relative
accuracy of 85.5%, which corresponds to the actual execution time mispredictions of ≈ 109 µs
to ≈ 12 s according to problem size.

The unsuitability of the GLM motivates the use of non-parametric models – we have shown
the random forest in Chapter 5 to be an effective model for the data.

106 Linear Model Fitting

xe
on

_e
s−

26
97

v2

i7−
67

00
k

tita
nx
gt

x1
08

0

gt
x1

08
0t

i

k2
0c

k4
0c

kn
l

fiji
−f

ur
yx

ha
waii

−r
9−

29
0x

ha
waii

−r
9−

29
5x

2

i5−
33

50

po
lar

is−
rx

48
0

ta
hit

i−h
d7

97
0

fir
ep

ro
−s

91
50

 n
ee

dle
_o

pe
nc

l_s
ha

re
d_

2

ac
c_

b_
de

v

c_
Cop

yS
rc

To
Com

po
ne

nt
s

ca
lc_

alp
ha

_d
ev

ca
lc_

be
ta

_d
ev

ca
lc_

ga
m

m
a_

de
v

ca
lc_

po
te

nt
ial

_s
ing

le_
ste

p_
de

v

ca
lc_

xi_
de

v

cl_
fd

wt5
3K

er
ne

l

cr
c3

2_
sli

ce
8

cs
r

es
t_

a_
de

v

es
t_

b_
de

v

es
t_

pi_
de

v

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix8
Ker

ne
l

ini
t_

alp
ha

_d
ev

ini
t_

be
ta

_d
ev

ini
t_

on
es

_d
ev

inv
er

t_
m

ap
pin

g
ke

rn
el1ke

rn
el2

km
ea

ns
Poin

t

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er

m
vm

_n
on

_k
er

ne
l_n

aiv
e

m
vm

_t
ra

ns
_k

er
ne

l_n
aiv

e

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

s_
do

t_
ke

rn
el_

na
ive

sc
ale

_a
_d

ev

sc
ale

_a
lph

a_
de

v

sc
ale

_b
_d

ev

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

device

ke
rn

el

xe
on

_e
s−

26
97

v2

i7−
67

00
k

tita
nx
gt

x1
08

0

gt
x1

08
0t

i

k2
0c

k4
0c

kn
l

fiji
−f

ur
yx

ha
waii

−r
9−

29
0x

ha
waii

−r
9−

29
5x

2

i5−
33

50

po
lar

is−
rx

48
0

ta
hit

i−h
d7

97
0

fir
ep

ro
−s

91
50

ac
c_

b_
de

v

c_
Cop

yS
rc

To
Com

po
ne

nt
s

ca
lc_

alp
ha

_d
ev

ca
lc_

be
ta

_d
ev

ca
lc_

ga
m

m
a_

de
v

ca
lc_

po
te

nt
ial

_s
ing

le_
ste

p_
de

v

ca
lc_

xi_
de

v

cl_
fd

wt5
3K

er
ne

l

cr
c3

2_
sli

ce
8

cs
res
t_

a_
de

v

es
t_

b_
de

v

es
t_

pi_
de

v

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix4
Ker

ne
l

ini
t_

alp
ha

_d
ev

ini
t_

be
ta

_d
ev

ini
t_

on
es

_d
ev

inv
er

t_
m

ap
pin

g

ke
rn

el1ke
rn

el2km
ea

ns
Poin

t

lud
_d

iag
on

al

lud
_in

te
rn

al

lud
_p

er
im

et
er

m
vm

_n
on

_k
er

ne
l_n

aiv
e

m
vm

_t
ra

ns
_k

er
ne

l_n
aiv

e

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

s_
do

t_
ke

rn
el_

na
ive

sc
ale

_a
_d

ev

sc
ale

_a
lph

a_
de

v

sc
ale

_b
_d

ev

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

device
kernel

Tiny Small

 n
ee

dle
_o

pe
nc

l_s
ha

re
d_

2

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

cr
c3

2_
sli

ce
8

cs
r

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix8
Ker

ne
l

inv
er

t_
m

ap
pin

gke
rn

el1
ke

rn
el2

km
ea

ns
Poin

t

lud
_d

iag
on

al
lud

_in
te

rn
al

lud
_p

er
im

et
er

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

xe
on

_e
s−

26
97

v2

i7−
67

00
k
tita

nx

gt
x1

08
0

gt
x1

08
0t

i
k2

0c
k4

0c kn
l

fiji
−f

ur
yx

ha
waii

−r
9−

29
0x

ha
waii

−r
9−

29
5x

2

i5−
33

50

po
lar

is−
rx

48
0

ta
hit

i−h
d7

97
0

fir
ep

ro
−s

91
50

device

ke
rn

el

c_
Cop

yS
rc

To
Com

po
ne

nt
s

cl_
fd

wt5
3K

er
ne

l

cr
c3

2_
sli

ce
8

cs
r

fft
Rad

ix1
6K

er
ne

l

fft
Rad

ix2
Ker

ne
l

inv
er

t_
m

ap
pin

g

ke
rn

el1
ke

rn
el2

km
ea

ns
Poin

t

lud
_d

iag
on

al

lud
_in

te
rn

al
lud

_p
er

im
et

er

ne
ed

le_
op

en
cl_

sh
ar

ed
_1

ne
ed

le_
op

en
cl_

sh
ar

ed
_2

sr
ad

_c
ud

a_
1

sr
ad

_c
ud

a_
2

xe
on

_e
s−

26
97

v2

i7−
67

00
k
tita

nx

gt
x1

08
0

gt
x1

08
0t

i
k2

0c
k4

0c kn
l

fiji
−f

ur
yx

ha
waii

−r
9−

29
0x

ha
waii

−r
9−

29
5x

2

i5−
33

50

po
lar

is−
rx

48
0

ta
hit

i−h
d7

97
0

fir
ep

ro
−s

91
50

device

kernel

 Medium Large

25 50 75 100
prediction error (%)

Figure B.4: Error in predicted execution time with a GLM model for each kernel invocation
over four problem sizes.

Appendix C

Diversity Analysis

A brief overview of the diversity analysis conducted is presented in this appendix. Features
from AIWC are used as the predictor variables in the random forest model – presented in
Chapter 5. This model was trained from the combined results of all application kernels and all
problem sizes. In this section, the predictor variables are examined independently to evaluate
the variances between kernels and problem sizes in the AIWC feature-space.

Evaluation uses dimensionality reduction techniques, from Principal Component Analysis
(PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE). The feature-space reduction
methods allow the determination of the loading, or relative contributions, of each component
metric. t-SNE is a machine learning visualization algorithm used to find the optimal projection
of high dimensional data into two-dimensional point by a way that similar objects are modelled
by nearby points and dissimilar objects are modelled by distant points with high probability.
On the t-SNE visualization use k-means clustering to present the grouping between features.

From the PCA biplot in Figure C.1, we can determine that Total Memory Footprint, any
of the branch entropy metrics and one of the memory address entropy variables are the 3
most principal components to be used when forming a predictive model. The proportion of
variance of each principal component is presented in Figure C.2 and shows these 3 principal
components can cover 95% of the contributions of difference in a 19-dimensional AIWC
feature-space, 5 principal components represent ~98% variance in the data and 6 variables
cover more than 99%. Similarly, the t-SNE clustering, from Figure C.3, tell a similar story,
namely, 5-6 features convey a majority of the information. There is clearly a cluster structure
in the manifold – which is good news for prediction – but there are also 2 interesting linear
strings structures (correlations) – which suggests that one method of regression or prediction
will not suffice. The visualization and the same methodology can be used to justify the
inclusion of a new benchmark, for instance, if an application kernel extends the coverage in
the projection.

107

108 Diversity Analysis

●

●●●●●●●

●

●●●

●

●●●

●

●●●

●●●●●

●
●

●

●

●
●

●

●

●●●●●●●●●●●●●●●

●●

●
●

●

●

●●●●●
●

●
●

●●

●
●

●

●

●●●●●●
●

●

●●
●●●●●●●●●●●●

●
●●●●●●●●●●

●
●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●
●

●
●

●

●

●

●

●●

●●
●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●

●
●

●

●

●
●

●

●

●

●●●●

●

●●●●●●●●●●

●

●●●●●●●●●
●

●

●●●●●●●●●
●

●

●●●●●●●●●●

●

●●●●●●●
●●●

●

●●●●●●●●●●

●

●●●●●●●●
●●

●●●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●
●

●

●
●

●

●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●

●
●●●●●●●●●●

●
●●●●●●●●●●

●
●●●●●●●●●●

●
●●●●●●●●●●

●

●●●●●●●●●●

●

●

●
●

●●

●

●●
●

●

●●
●●

●

●● ●●●

●

●

●

op
co

de

w
or

ki
te

m
s

total_memory_
footprin

t

ninety_percent_memory_footprint

global_memory_address_entropy
local_memory_address_entropy_1

local_memory_address_entropy_2
local_memory_address_entropy_3
local_memory_address_entropy_4
local_memory_address_entropy_5
local_memory_address_entropy_6

local_memory_address_entropy_7

local_memory_address_entropy_8

local_memory_address_entropy_9

local_memory_address_entropy_10

to
ta

l_
un

iq
ue

_b
ra

nc
h_

in
st

ru
ct

io
ns

ninety_percent_branch_instructions

branch_entropy_yokota
branch_entropy_average_linear

−5.0

−2.5

0.0

2.5

−5.0 −2.5 0.0 2.5

PC1 (72.5% explained var.)

P
C

2
(9

.5
%

 e
xp

la
in

ed
 v

ar
.)

● ● ● ●large medium small tiny

Figure C.1: Biplot Principal Components of AIWC metrics over all application kernels and all
problem sizes.

109

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

5 10 15

Principal Component

P
ro

po
rt

io
n

of
 V

ar
ia

nc
e

E
xp

la
in

ed

Figure C.2: The proportion of explained variance of each Principal Component.

110 Diversity Analysis

●

●●●●●●●

●

●●●●●●●●●

●

●

●●

●●●●●●

●

●

●●

●●

●●●

●

●

●●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●
● ●

● ●

●

●

● ●

●
●

●

●

● ●

●
●

●

●

●
●●●●

●

● ●●
●

●

●

●

●

●

●●● ●
●●●

●

●●

●

● ●

●●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
● ●

●●
●

●

●

●
●

●

●●
●

●

●

●

●
● ●●●

●

●

●
●

●
●

●

●
●

●●

● ●●●●

●
●

●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●
●

●●●●●●●●●

●

●

●

●

●
●●

●

●

●

●

● ●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●
●
●
●

●
●●

●

●●

●●●●●

●●●●●●

●●

●
●

●
●
●
●

●
●
●
●
●
●
●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●●

●
●
●
●

●
●

●
●
●●

●

●●
●●

●
●
●
●

●
●

●

●
●

●●●
●
●
●

●
●

●

●●
●

●
●
●●

●
●●

●

●
●●

●
●●

●●
●

●

●

●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●

●
●
●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●

●

●●

● ●●●

●

●●

●

●

●

●

● ●
●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●
●●●

●

●●
●

●
●●

●● ●

●

●
●

●●

●

●

●●●

●●
●●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●●●●
●●●
●●●

●

●●
●●
●●
●●
●●

●

●●
●●
●●
●●
●●

●

●●
●●●
●●
●●
●

●

●●
●●
●●
●●
●●

●

●●
●●
●●
●●
●●

●

●●
●●
●●●
●

●●

●

●●
●●

●●
●
●
●
●

●

●
●

●
●
●●
●●

●●

●

●
●

●●
●

●
●
●
●
●

●●

●
●
●

●
●
●

●●

●
●

●

●
●●

●
●●

●
●●

●

●

●●
●
●

●
●●

●
●
●

●

●
●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●
●
●

●

●

●
●
●
●

●●●●

●

●●●
●●●●
●●●

●

●●●
●●
●●
●●
●

●

●●
●●
●●
●●
●●

●

●●
●●
●●
●●
●●

●

●●
●
●●
●●
●●
●

●

●●
●●
●●
●●●
●

●

●●●●
●●●●

●●

●●●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●
●
●
●

●

●
●
●
●
●
●
●
●
●●

●

●
●
●
●
●
●
●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●

●
●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●

●●

●

●

● ● ● ● ●1 2 3 4 5

Figure C.3: The t-SNE with k-means cluster results to show Principal Components.

Appendix D

Abbreviations

AIWC Architecture Independent Workload Characterization
ASIC Application-Specific Integrated Circuit
AVX Advanced Vector Extensions
CLgen OpenCL kernel generation framework
CPE Computer Processing Elements
CPU Central Processing Unit
DSP Digital Signal Processor
EOD Extended Open Dwarfs Benchmark Suite
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
GLM Generalized Linear Model
HASS Heterogeneity-Aware Signature-Supported scheduler
HCC Heterogeneous Compute Compiler
HPC High Performance Computing
ILP Instruction Level Parallelism
IPC Instructions Per Cycle
ISA Instruction Set Architecture
ITB Instructions To Barrier
KNL Knights Landing
LMAE Local Memory Address Access Entropy
LSB Least Significant Bits
MIC Many Integrated Core
MICA Microarchitecture-Independent Workload Characteristics
MPE Management Processing Elements
NVML Nvidia Management Library
OpenCL Open Computing Language
OpenDwarfs OpenCL and the 13 Dwarfs
PAPI Performance Application Programming Interface
PARSEC Princeton Application Repository for Shared-Memory Computers
PCA Principal Component Analysis

111

112 Abbreviations

PDB Protein Data Bank format
RAM Random Access Memory
RAPL Running Average Power Limit
RISC Reduced Instruction-Set Computers
SC Super Computing
SHOC Scalable Heterogeneous Computing benchmark suite
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
SMaC Scalable Many Core
SoC System-on-a-Chip
SPIR Standard Portable Intermediate Representation
TLB Translation Look-aside Buffer
TLP Thread Level Parallelism
TPU Tensor Processing Units
t-SNE t-Distributed Stochastic Neighbor Embedding
VPU Vector Processing Unit

References

1. TOP500, “TOP500 list - June 2018,” TOP500.org. https://www.top500.org/list/2018/06/;
TOP500.org, June-2018.

2. J. Stuecheli et al., “IBM POWER9 opens up a new era of acceleration enablement: Open-
CAPI,” IBM Journal of Research and Development, vol. 62, no. 4/5, pp. 8–1, 2018.

3. D. Foley and J. Danskin, “Ultra-performance Pascal GPU and NVLink interconnect,” IEEE
Micro, vol. 37, no. 2, pp. 7–17, 2017.

4. S. K. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke, “IBM Power9 processor
architecture,” IEEE Micro, vol. 37, no. 2, pp. 40–51, 2017.

5. C. Nvidia, “Compute unified device architecture programming guide,” 2007.

6. M. Breternitz, “Machine learning at AMD foundations and support.”

7. L. Dagum and R. Menon, “OpenMP: An industry standard API for shared-memory
programming,” IEEE computational science and engineering, vol. 5, no. 1, pp. 46–55, 1998.

8. J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming standard for
heterogeneous computing systems,” Computing in science & engineering, vol. 12, no. 3, pp.
66–73, 2010.

9. J. Price and S. McIntosh-Smith, “Oclgrind: An extensible OpenCL device simulator,” in
Proceedings of the 3rd international workshop on opencl, 2015, p. 12.

10. K. Rupp, “The OpenCL library ecosystem: Current status and future perspectives,” in
Proceedings of the 4th international workshop on OpenCL, 2016, p. 13.

11. K. Krommydas, W.-C. Feng, C. D. Antonopoulos, and N. Bellas, “OpenDwarfs: Character-
ization of dwarf-based benchmarks on fixed and reconfigurable architectures,” Journal of
Signal Processing Systems, vol. 85, no. 3, pp. 373–392, 2016.

12. T. Hoefler and R. Belli, “Scientific benchmarking of parallel computing systems: Twelve
ways to tell the masses when reporting performance results,” in Proceedings of the inter-
national conference for high performance computing, networking, storage and analysis, 2015, p.
73.

13. P. Colella, “Defining software requirements for scientific computing, 2004,” DARPA HPCS
presentation.

113

114 References

14. D. Patterson, K. Keutzer, K. Asanovic, K. Yelick, and R. Bodik, “Dwarf Mine,” Berkeley
Wiki. http://view.eecs.berkeley.edu/wiki/Dwarf_Mine, Dec-2006.

15. K. Asanović et al., “The landscape of parallel computing research: A view from Berkeley,”
EECS Department, University of California, Berkeley, UCB/EECS-2006-183, 2006.

16. V. W. Lee et al., “Debunking the 100X GPU vs. CPU myth: An evaluation of throughput
computing on CPU and GPU,” SIGARCH Comput. Archit. News, vol. 38, no. 3, pp. 451–460,
Jun. 2010.

17. J. Dongarra, “Report on the Sunway TaihuLight system,” PDF). www. netlib. org. Retrieved
June, vol. 20, 2016.

18. E. L. Padoin, L. L. Pilla, M. Castro, F. Z. Boito, P. O. A. Navaux, and J.-F. Méhaut,
“Performance/energy trade-off in scientific computing: The case of ARM big. LITTLE and
Intel Sandy Bridge,” IET Computers & Digital Techniques, vol. 9, no. 1, pp. 27–35, 2014.

19. R. V. Aroca and L. M. G. Gonçalves, “Towards green data centers: A comparison of x86
and ARM architectures power efficiency,” Journal of Parallel and Distributed Computing, vol.
72, no. 12, pp. 1770–1780, 2012.

20. N. Rajovic, L. Vilanova, C. Villavieja, N. Puzovic, and A. Ramirez, “The low power
architecture approach towards exascale computing,” Journal of Computational Science, vol.
4, no. 6, pp. 439–443, 2013.

21. K. Keipert et al., “Energy-efficient computational chemistry: Comparison of x86 and ARM
systems,” Journal of chemical theory and computation, vol. 11, no. 11, pp. 5055–5061, 2015.

22. V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense linear algebra,” in High
performance computing, networking, storage and analysis, 2008. sc 2008. international conference
for, 2008, pp. 1–11.

23. S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense linear algebra solvers for multicore
with GPU accelerators,” in Parallel & distributed processing, workshops and phd forum (ipdpsw),
2010 ieee international symposium on, 2010, pp. 1–8.

24. D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa, “High-order finite-element seis-
mic wave propagation modeling with mpi on a large GPU cluster,” Journal of computational
physics, vol. 229, no. 20, pp. 7692–7714, 2010.

25. R. Nicolescu, “Structured grid algorithms modelled with complex objects,” in International
conference on membrane computing, 2015, pp. 321–337.

26. D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph traversal,” in ACM sigplan
notices, 2012, vol. 47, pp. 117–128.

27. P. Springer, “Berkeley’s dwarfs on CUDA,” RWTH Aachen University, Tech. Rep, 2011.

28. S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter, “NVIDIA tensor core
programmability, performance & precision,” arXiv preprint arXiv:1803.04014, 2018.

References 115

29. S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear algebra for hybrid GPU
accelerated manycore systems,” Parallel Computing, vol. 36, nos. 5-6, pp. 232–240, 2010.

30. A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra, “Analysis and design techniques
towards high-performance and energy-efficient dense linear solvers on GPUs,” IEEE
Transactions on Parallel and Distributed Systems, 2018.

31. A. Sodani et al., “Knights landing: Second-generation Intel Xeon Phi product,” IEEE Micro,
vol. 36, no. 2, pp. 34–46, 2016.

32. J. Dongarra et al., “HPC programming on Intel Many-Integrated-Core hardware with
MAGMA port to Xeon Phi,” Scientific Programming, vol. 2015, p. 9, 2015.

33. M. Rajan, D. Doerfler, and S. Hammond, “Trinity benchmarks on Intel Xeon Phi (Knights
Corner).”

34. K. Antypas, N. Wright, N. P. Cardo, A. Andrews, and M. Cordery, “Cori: A Cray XC
pre-exascale system for NERSC,” Cray User Group Proceedings. Cray, 2014.

35. W. Akram, T. Hussain, and E. Ayguade, “FPGA and ARM processor based supercomput-
ing,” in Computing, mathematics and engineering technologies (iCoMET), 2018 international
conference on, 2018, pp. 1–5.

36. N. Fujita et al., “Accelerating space radiative transfer on FPGA using OpenCL,” in Pro-
ceedings of the 9th international symposium on highly-efficient accelerators and reconfigurable
technologies, 2018, p. 6.

37. M. Abadi et al., “Tensorflow: A system for large-scale machine learning.” in OSDI, 2016,
vol. 16, pp. 265–283.

38. E. Gallopoulos, B. Philippe, and A. H. Sameh, Parallelism in matrix computations. Springer,
2016.

39. G. Mitra, J. Bohmann, I. Lintault, and A. P. Rendell, “Development and application of
a hybrid programming environment on an ARM/DSP system for high performance
computing,” in 2018 ieee international parallel and distributed processing symposium (ipdps),
2018, pp. 286–295.

40. B. Reagen, Y. S. Shao, G.-Y. Wei, and D. Brooks, “Quantifying acceleration: Power/perfor-
mance trade-offs of application kernels in hardware,” in Low power electronics and design
(ISLPED), 2013 ieee international symposium on, 2013, pp. 395–400.

41. J. Maqbool, S. Oh, and G. C. Fox, “Evaluating ARM HPC clusters for scientific workloads,”
Concurrency and Computation: Practice and Experience, vol. 27, no. 17, pp. 5390–5410, 2015.

42. N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and A. Ramirez, “Tibidabo1: Making
the case for an ARM-based HPC system,” Future Generation Computer Systems, vol. 36, pp.
322–334, 2014.

116 References

43. M. Jarus, S. Varrette, A. Oleksiak, and P. Bouvry, “Performance evaluation and energy
efficiency of high-density HPC platforms based on Intel, AMD and ARM processors,” in
European conference on energy efficiency in large scale distributed systems, 2013, pp. 182–200.

44. M. Feldman, “Cray to deliver ARM-powered supercomputer to UK consortium,” TOP500
Supercomputer Sites, Jan. 2017.

45. S. W. Lacy, J. P. Noe, J. B. Ogden, and S. D. Hammond, “Building 725 astra and vanguard.”
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2018.

46. S. McIntosh-Smith, J. Price, T. Deakin, and A. Poenaru, “Comparative benchmarking of
the first generation of HPC-optimised ARM processors on Isambard.”

47. T. Morgan, “Inside Japan’s future exascale ARM supercomputer,” The Next Plat-
form. https://www.nextplatform.com/2016/06/23/inside-japans-future-exaflops-arm-
supercomputer/; Stackhouse Publishing Inc., Jun-2016.

48. F. Simula et al., “Real-time cortical simulations-energy and interconnect scaling on dis-
tributed systems,” arXiv preprint arXiv:1812.04974, 2018.

49. O. Villa et al., “Scaling the power wall: A path to exascale,” in Proceedings of the international
conference for high performance computing, networking, storage and analysis, 2014, pp. 830–841.

50. M. Feldman, “TOP500 meanderings: Supercomputers take big green leap in 2017,” TOP500
Supercomputer Sites. https://www.top500.org/news/top500-meanderings-supercomputers-
take-big-green-leap-in-2017/; Top500.org, Sep-2017.

51. T. Declerck et al., “Cori - a system to support data-intensive computing,” Proceedings of the
Cray User Group, p. 8, 2016.

52. T. Morgan, “NVLink takes GPU acceleration to the next level,” The Next Platform, May
2016.

53. T. Morgan, “The Power9 rollout begins with Summit and Sierra supercomputers,” The Next
Platform. https://www.nextplatform.com/2017/09/19/power9-rollout-begins-summit-
sierra/; Stackhouse Publishing Inc., Sep-2017.

54. T. Morgan, “China arms upgraded Tianhe-2A hybrid supercomputer,” TOP500 Supercom-
puter Sites. https://www.nextplatform.com/2017/09/20/china-arms-upgraded-tianhe-2a-
hybrid-supercomputer/; Top500.org, Sep-2017.

55. M. Feldman, “Prototypes of China’s exascale supercomputers point to some new reali-
ties,” TOP500 Supercomputer Sites. https://www.top500.org/news/prototypes-of-chinas-
exascale-supercomputers-point-to-some-new-realities/; Top500.org, Aug-2018.

56. G. Mitra, E. Stotzer, A. Jayaraj, and A. P. Rendell, “Implementation and optimization of the
OpenMP accelerator model for the TI Keystone II architecture,” in International workshop
on openmp, 2014, pp. 202–214.

References 117

57. M. Martineau et al., “Performance analysis and optimization of Clang’s OpenMP 4.5 GPU
support,” in International workshop on performance modeling, benchmarking and simulation of
high performance computer systems (pmbs), 2016, pp. 54–64.

58. K. Spafford, J. Meredith, and J. Vetter, “Maestro: Data orchestration and tuning for
OpenCL devices,” Euro-Par 2010-Parallel Processing, pp. 275–286, 2010.

59. N. Chaimov, B. Norris, and A. Malony, “Toward multi-target autotuning for accelerators,”
in IEEE international conference on parallel and distributed systems (ICPADS), 2014, pp. 534–541.

60. C. Nugteren and V. Codreanu, “CLTune: A generic auto-tuner for OpenCL kernels,” in
IEEE international symposium on embedded multicore/many-core systems-on-chip (MCSoC), 2015,
pp. 195–202.

61. J. Price and S. McIntosh-Smith, “Analyzing and improving performance portability of
OpenCL applications via auto-tuning,” in Proceedings of the 5th international workshop on
opencl, 2017, p. 14.

62. J.-J. Li, C.-B. Kuan, T.-Y. Wu, and J. K. Lee, “Enabling an OpenCL compiler for embedded
multicore DSP systems,” in Parallel processing workshops (ICPPW), 2012 41st international
conference on, 2012, pp. 545–552.

63. D. H. Bailey et al., “The NAS parallel benchmarks,” International Journal of Supercomputing
Applications, vol. 5, no. 3, pp. 63–73, 1991.

64. T. Barnes et al., “Evaluating and optimizing the NERSC workload on Knights Land-
ing,” in International workshop on performance modeling, benchmarking and simulation of high
performance computer systems (pmbs), 2016, pp. 43–53.

65. Y. Sun et al., “Hetero-Mark, a benchmark suite for CPU-GPU collaborative computing,” in
IEEE international symposium on workload characterization (iiswc), 2016.

66. J. Gómez-Luna et al., “Chai: Collaborative heterogeneous applications for integrated-
architectures,” in IEEE international symposium on performance analysis of systems and software
(ispass), 2017.

67. C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite: Characterization
and architectural implications,” in Proceedings of the 17th international conference on parallel
architectures and compilation techniques, 2008, pp. 72–81.

68. B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “Machsuite: Benchmarks for
accelerator design and customized architectures,” in Workload characterization (IISWC),
2014 IEEE international symposium on, 2014, pp. 110–119.

69. S. Che et al., “Rodinia: A benchmark suite for heterogeneous computing,” in IEEE
international symposium on workload characterization (iiswc), 2009, pp. 44–54.

70. W.-c. Feng, H. Lin, T. Scogland, and J. Zhang, “OpenCL and the 13 dwarfs: A work in
progress,” in Proceedings of the 3rd acm/spec international conference on performance engineering,

118 References

2012, pp. 291–294.

71. M. G. Lopez, J. Young, J. S. Meredith, P. C. Roth, M. Horton, and J. S. Vetter, “Examining
recent many-core architectures and programming models using SHOC,” in International
workshop on performance modeling, benchmarking and simulation of high performance computer
systems (pmbs), 2015, p. 3.

72. S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and K. Skadron, “A characteriza-
tion of the Rodinia benchmark suite with comparison to contemporary CMP workloads,”
in Workload characterization (iiswc), 2010 ieee international symposium on, 2010, pp. 1–11.

73. A. Danalis et al., “The scalable heterogeneous computing (SHOC) benchmark suite,” in
Proceedings of the 3rd workshop on general-purpose computation on graphics processing units,
2010, pp. 63–74.

74. K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage and frequency scaling
for precise energy and performance tradeoff based on the ratio of off-chip access to on-chip
computation times,” IEEE transactions on computer-aided design of integrated circuits and
systems, vol. 24, no. 1, pp. 18–28, 2005.

75. D. J. Brown and C. Reams, “Toward energy-efficient computing,” Communications of the
ACM, vol. 53, no. 3, pp. 50–58, 2010.

76. S. Albers and A. Antoniadis, “Race to idle: New algorithms for speed scaling with a sleep
state,” ACM Trans. Algorithms, vol. 10, no. 2, pp. 9:1–9:31, Feb. 2014.

77. V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock rate versus IPC: The
end of the road for conventional microarchitectures,” in Proceedings of the 27th annual
international symposium on computer architecture, 2000, pp. 248–259.

78. A. Sembrant, “Hiding and reducing memory latency: Energy-efficient pipeline and
memory system techniques,” PhD thesis, Acta Universitatis Upsaliensis, 2016.

79. S. K. Muller and U. A. Acar, “Latency-hiding work stealing: Scheduling interacting parallel
computations with work stealing,” in Proceedings of the 28th ACM symposium on parallelism
in algorithms and architectures, 2016, pp. 71–82.

80. C. Lively, X. Wu, V. Taylor, S. Moore, H.-C. Chang, and K. Cameron, “Energy and
performance characteristics of different parallel implementations of scientific applications
on multicore systems,” The International Journal of High Performance Computing Applications,
vol. 25, no. 3, pp. 342–350, 2011.

81. B. Johnston, B. Lee, L. Angove, and A. Rendell, “Embedded accelerators for scientific high-
performance computing: An energy study of OpenCL Gaussian elimination workloads,”
in International conference on parallel processing workshops (icppw), 2017, pp. 59–68.

82. B. Johnston and E. C. McCreath, “Parallel huffman decoding: Presenting fast and scalable
algorithm for increasingly multicore devices,” in International symposium on parallel and
distributed processing with applications (ispa), 2017.

References 119

83. A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, “Scaling hypre’s multigrid solvers
to 100,000 cores,” in High-performance scientific computing, Springer, 2012, pp. 261–279.

84. M. J. Abraham et al., “GROMACS: High performance molecular simulations through
multi-level parallelism from laptops to supercomputers,” SoftwareX, vol. 1, pp. 19–25, 2015.

85. G. Venkatesh et al., “Conservation cores: Reducing the energy of mature computations,”
in ACM sigarch computer architecture news, 2010, vol. 38, pp. 205–218.

86. H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark silicon and
the end of multicore scaling,” in Computer architecture (isca), 2011 38th annual international
symposium on, 2011, pp. 365–376.

87. M. B. Taylor, “Is dark silicon useful? Harnessing the four horsemen of the coming dark
silicon apocalypse,” in Design automation conference (dac), 2012 49th acm/edac/ieee, 2012, pp.
1131–1136.

88. P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra, “From CUDA to
OpenCL: Towards a performance-portable solution for multi-platform GPU programming,”
Parallel Computing, vol. 38, no. 8, pp. 391–407, 2012.

89. J. Filipovič, F. Petrovič, and S. Benkner, “Autotuning of OpenCL kernels with global
optimizations,” in Proceedings of the 1st workshop on autotuning and aDaptivity approaches for
energy efficient HPC systems, 2017, pp. 2:1–2:6.

90. J. Ansel et al., “OpenTuner: An extensible framework for program autotuning,” in Interna-
tional conference on parallel architectures and compilation techniques, 2014.

91. S. McIntosh-Smith, J. Price, R. B. Sessions, and A. A. Ibarra, “High performance in
silico virtual drug screening on many-core processors,” The international journal of high
performance computing applications (IJHPCA), vol. 29, no. 2, pp. 119–134, 2015.

92. L. Eeckhout, J. Sampson, and B. Calder, “Exploiting program microarchitecture inde-
pendent characteristics and phase behavior for reduced benchmark suite simulation,” in
Workload characterization symposium, 2005. proceedings of the IEEE international, 2005, pp.
2–12.

93. T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Discovering and exploiting
program phases,” IEEE micro, vol. 23, no. 6, pp. 84–93, 2003.

94. T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically characterizing large
scale program behavior,” in ACM sigarch computer architecture news, 2002, vol. 30, pp. 45–57.

95. P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable interface to hardware
performance counters,” in Proceedings of the department of defense hpcmp users group conference,
1999, vol. 710.

96. C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program analysis
& transformation,” in Proceedings of the international symposium on code generation and

120 References

optimization: Feedback-directed and runtime optimization, 2004, p. 75.

97. S. Muralidharan, K. O’Brien, and C. Lalanne, “A semi-automated tool flow for roofline
anaylsis of OpenCL kernels on accelerators,” in First international workshop on heterogeneous
high-performance reconfigurable computing (H2RC’15), 2015.

98. J. Kessenich, “A Khronos-defined intermediate language for native representation of
graphical shaders and compute kernels.” 2015.

99. S. M. Blackburn et al., “The DaCapo benchmarks: Java benchmarking development and
analysis,” in ACM sigplan notices, 2006, vol. 41, pp. 169–190.

100. A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and application balance
in the SPEC CPU2006 benchmark suite,” ACM SIGARCH Computer Architecture News, vol.
35, no. 2, pp. 412–423, 2007.

101. A. I. Meajil, T. El-Ghazawi, and T. Sterling, “An architecture-independent workload char-
acterization model for parallel computer architectures,” in Parallel algorithms/architecture
synthesis, 1997. proceedings., second aizu international symposium, 1997, pp. 143–150.

102. K. Hoste and L. Eeckhout, “Microarchitecture-independent workload characterization,”
IEEE Micro, vol. 27, no. 3, 2007.

103. K. Ganesan, L. John, V. Salapura, and J. Sexton, “A performance counter based workload
characterization on Blue Gene/P,” in Parallel processing, 2008. icpp’08. 37th international
conference on, 2008, pp. 330–337.

104. T. K. Prakash and L. Peng, “Performance characterization of SPEC CPU2006 benchmarks
on Intel Core 2 Duo processor,” ISAST Trans. Comput. Softw. Eng, vol. 2, no. 1, pp. 36–41,
2008.

105. C.-K. Luk et al., “Pin: Building customized program analysis tools with dynamic instru-
mentation,” in Acm sigplan notices, 2005, vol. 40, pp. 190–200.

106. J. H. Lee, N. Nigania, H. Kim, K. Patel, and H. Kim, “OpenCL performance evaluation
on modern multicore CPUs,” Scientific Programming, vol. 2015, p. 4, 2015.

107. Y. S. Shao and D. Brooks, “ISA-independent workload characterization and its implica-
tions for specialized architectures,” in Performance analysis of systems and software (ispass),
2013 ieee international symposium on, 2013, pp. 245–255.

108. T. Yokota, K. Ootsu, and T. Baba, “Introducing entropies for representing program behav-
ior and branch predictor performance,” in Proceedings of the 2007 workshop on experimental
computer science, 2007, p. 17.

109. S. De Pestel, S. Eyerman, and L. Eeckhout, “Linear branch entropy: Characterizing and
optimizing branch behavior in a micro-architecture independent way,” IEEE Transactions
on Computers, vol. 66, no. 3, pp. 458–472, Mar. 2017.

References 121

110. V. Caparrós Cabezas and P. Stanley-Marbell, “Parallelism and data movement characteri-
zation of contemporary application classes,” in Proceedings of the twenty-third annual ACM
symposium on parallelism in algorithms and architectures, 2011, pp. 95–104.

111. S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual performance
model for floating-point programs and multicore architectures,” Communications of the
Association for Computing Machinery, 2009.

112. G. Hager, J. Treibig, J. Habich, and G. Wellein, “Exploring performance and power
properties of modern multi-core chips via simple machine models,” Concurrency and
Computation: Practice and Experience, vol. 28, no. 2, pp. 189–210, 2013.

113. S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive
applications with GPUs and FPGAs,” in Application specific processors, 2008. sasp 2008.
symposium on, 2008, pp. 101–107.

114. J. Fowers, G. Brown, J. Wernsing, and G. Stitt, “A performance and energy comparison of
convolution on GPUs, FPGAs, and multicore processors,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 9, no. 4, p. 25, 2013.

115. R. F. Lyerly, “Automatic scheduling of compute kernels across heterogeneous architec-
tures,” 2014.

116. K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and K. De Bosschere,
“Performance prediction based on inherent program similarity,” in Parallel architectures and
compilation techniques (pact), 2006 international conference on, 2006, pp. 114–122.

117. L. T. Yang, X. Ma, and F. Mueller, “Cross-platform performance prediction of parallel
applications using partial execution,” in Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, 2005, p. 40.

118. L. Carrington, A. Snavely, and N. Wolter, “A performance prediction framework for
scientific applications,” Future Generation Computer Systems, vol. 22, no. 3, pp. 336–346,
2006.

119. A. Karami, S. A. Mirsoleimani, and F. Khunjush, “A statistical performance prediction
model for OpenCL kernels on NVIDIA GPUs,” in Computer architecture and digital systems
(cads), 2013 17th csi international symposium on, 2013, pp. 15–22.

120. G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou, “GPGPU performance
and power estimation using machine learning,” in High Performance Computer Architecture
(HPCA), 2015 ieee 21st international symposium on, 2015, pp. 564–576.

121. A. Shetty, “X-MAP a performance prediction tool for porting algorithms and applications
to accelerators,” 2017.

122. S. Che and K. Skadron, “BenchFriend: Correlating the performance of GPU benchmarks,”
The International Journal of High Performance Computing Applications, vol. 28, no. 2, pp.
238–250, 2014.

122 References

123. M. Boyer, J. Meng, and K. Kumaran, “Improving GPU performance prediction with data
transfer modeling,” in Parallel and distributed processing symposium workshops & phd forum
(ipdpsw), 2013 ieee 27th international, 2013, pp. 1097–1106.

124. C. Augonnet, J. Clet-Ortega, S. Thibault, and R. Namyst, “Data-aware task scheduling on
multi-accelerator based platforms,” in IEEE international conference on parallel and distributed
systems (ICPADS), 2010, pp. 291–298.

125. H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task scheduling algorithms for heterogeneous
processors,” in Heterogeneous computing workshop (HCW), 1999, pp. 3–14.

126. R. Bajaj and D. P. Agrawal, “Improving scheduling of tasks in a heterogeneous environ-
ment,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 2, pp. 107–118,
2004.

127. T. Xiaoyong, K. Li, Z. Zeng, and B. Veeravalli, “A novel security-driven scheduling
algorithm for precedence-constrained tasks in heterogeneous distributed systems,” IEEE
Transactions on Computers, vol. 60, no. 7, pp. 1017–1029, 2011.

128. O. Sinnen and L. Sousa, “List scheduling: Extension for contention awareness and
evaluation of node priorities for heterogeneous cluster architectures,” Parallel Computing,
vol. 30, no. 1, pp. 81–101, 2004.

129. D. Shelepov et al., “HASS: A scheduler for heterogeneous multicore systems,” SIGOPS
Oper. Syst. Rev., vol. 43, no. 2, pp. 66–75, Apr. 2009.

130. S.-Y. Lee and C.-J. Wu, “Performance characterization, prediction, and optimization for
heterogeneous systems with multi-level memory interference,” in Workload characterization
(iiswc), 2017 ieee international symposium on, 2017, pp. 43–53.

131. B. Johnston, G. Falzon, and J. Milthorpe, “OpenCL performance prediction using
architecture-independent features,” in 2018 international conference on high performance
computing & simulation (hpcs), 2018, pp. 561–569.

132. B. Johnston and J. Milthorpe, “Dwarfs on accelerators: Enhancing OpenCL benchmarking
for heterogeneous computing architectures,” in Proceedings of the 47th international conference
on parallel processing companion, 2018, pp. 4:1–4:10.

133. E. Bainville, “OpenCL fast Fourier transform.” 2010.

134. V. Marjanović, J. Gracia, and C. W. Glass, “HPC benchmarking: Problem size mat-
ters,” in International workshop on performance modeling, benchmarking and simulation of high
performance computer systems (pmbs), 2016, pp. 1–10.

135. H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL: Memory power
estimation and capping,” in Proceedings of the 16th ACM/IEEE international symposium on
low power electronics and design, 2010, pp. 189–194.

136. K. Kasichayanula, D. Terpstra, P. Luszczek, S. Tomov, S. Moore, and G. D. Peterson,

References 123

“Power aware computing on GPUs,” in Application accelerators in high performance computing
(SAAHPC), 2012 symposium on, 2012, pp. 64–73.

137. “OpenDwarfs (base version).” https://github.com/vtsynergy/OpenDwarfs/commit/
31c099aff5343e93ba9e8c3cd42bee5ec536aa93, 26-Feb-2017.

138. T. Madej et al., “MMDB and VAST+: Tracking structural similarities between macromolec-
ular complexes,” Nucleic Acids Research, vol. 42, no. D1, pp. D297–D303, 2013.

139. L. Yu, S.-J. Lee, and V. C. Yee, “Crystal structures of polymorphic prion protein β1
peptides reveal variable steric zipper conformations,” Biochemistry, vol. 54, no. 23, pp.
3640–3648, 2015.

140. M. Shiroishi, M. Kajikawa, K. Kuroki, T. Ose, D. Kohda, and K. Maenaka, “Crystal
structure of the human monocyte-activating receptor, ‘Group 2’ leukocyte Ig-like receptor
A5 (LILRA5/LIR9/ILT11),” Journal of Biological Chemistry, vol. 281, no. 28, pp. 19536–19544,
2006.

141. C. A. Davey, D. F. Sargent, K. Luger, A. W. Maeder, and T. J. Richmond, “Solvent mediated
interactions in the structure of the nucleosome core particle at 1.9Å resolution,” Journal of
Molecular Biology, vol. 319, no. 5, pp. 1097–1113, 2002.

142. T. J. Dolinsky, J. E. Nielsen, J. A. McCammon, and N. A. Baker, “PDB2PQR: An automated
pipeline for the setup of Poisson–Boltzmann electrostatics calculations,” Nucleic Acids
Research, vol. 32, no. suppl_2, pp. W665–W667, 2004.

143. M. F. Sanner, A. J. Olson, and J.-C. Spehner, “Reduced surface: An efficient way to
compute molecular surfaces,” Biopolymers, vol. 38, no. 3, pp. 305–320, 1996.

144. B. Johnston, “OpenDwarfs,” GitHub repository. https://github.com/BeauJoh/
OpenDwarfs; GitHub, 2017.

145. A. S. Joshi, “A performance focused, development friendly and model aided paralleliza-
tion strategy for scientific applications,” Master’s thesis, Clemson University, 2016.

146. B. Johnston and J. Milthorpe, “AIWC: OpenCL-based Architecture-Independent Work-
load Characterisation,” LLVM-HPC2018 Workshop, held in conjunction with the 30th Interna-
tional Conference for High Performance Computing, Networking, Storage, and Analysis (SC18),
May 2018.

147. B. Johnston et al., “BeauJoh/Oclgrind: Adding AIWC – An Architecture Independent
Workload Characterisation Plugin.” https://doi.org/10.5281/zenodo.1134175, Dec-2017.

148. C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: A unified platform for
task scheduling on heterogeneous multicore architectures,” Concurrency and Computation:
Practice and Experience, vol. 23, no. 2, pp. 187–198, 2011.

149. A. Duran et al., “Ompss: A proposal for programming heterogeneous multi-core architec-
tures,” Parallel Processing Letters, vol. 21, no. 02, pp. 173–193, 2011.

https://github.com/vtsynergy/OpenDwarfs/commit/31c099aff5343e93ba9e8c3cd42bee5ec536aa93
https://github.com/vtsynergy/OpenDwarfs/commit/31c099aff5343e93ba9e8c3cd42bee5ec536aa93
https://github.com/BeauJoh/OpenDwarfs
https://github.com/BeauJoh/OpenDwarfs

124 References

150. T. R. Scogland, W.-c. Feng, B. Rountree, and B. R. de Supinski, “Coretsar: Adaptive
worksharing for heterogeneous systems,” in International supercomputing conference, 2014,
pp. 172–186.

151. M. Wright and A. Ziegler, “ranger: A Fast Implementation of Random Forests for High
Dimensional Data in C++ and R,” Journal of Statistical Software, Articles, vol. 77, no. 1, pp.
1–17, 2017.

152. L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

153. M. Ließ, M. Hitziger, and B. Huwe, “The sloping mire soil-landscape of southern Ecuador:
Influence of predictor resolution and model tuning on random forest predictions,” Applied
and environmental soil science, vol. 2014, 2014.

154. K. Husmann, A. Lange, and E. Spiegel, “The R package optimization: Flexible global
optimization with simulated-annealing,” 2017.

155. S. Kumar, V. Srinivasan, A. Sharifian, N. Sumner, and A. Shriraman, “Peruse and profit:
Estimating the accelerability of loops,” in Proceedings of the 2016 international conference on
supercomputing, 2016, pp. 21:1–21:13.

156. C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, “Synthesizing benchmarks for
predictive modeling,” in CGO, 2017.

157. H. Perkins, “CUDA-on-CL: A compiler and runtime for running NVIDIA CUDA C++11
applications on OpenCL 1.2 devices,” in Proceedings of the 5th international workshop on
OpenCL, 2017, pp. 6:1–6:4.

	Declaration
	Acknowledgements
	Abstract
	Contents
	Introduction
	Context
	Thesis Contributions
	Thesis Structure
	Publications

	Background Information and Related Work
	The Dwarf Taxonomy
	Accelerator Architectures in HPC
	The Open Compute Language (OpenCL)
	Benchmark Suites
	Rodinia
	OpenDwarfs
	SHOC

	Hardware Performance and Scaling
	OpenCL Performance
	Autotuning
	Phase-Shifting
	Measurements

	Offline Ahead-of-Time Analysis
	Program Diversity Analysis and Characterization
	Microarchitecture-Independent Workload Characterization
	Architecture Independent Workload Characterization
	Workload Characterization for Benchmark Diversity Analysis

	Performance Prediction for Heterogeneous Architectures
	Scheduling for Heterogeneous HPC Systems

	Extending the OpenDwarfs Benchmark Suite
	Extending the OpenDwarfs Benchmark Suite
	Experimental Setup
	Hardware
	Software
	Measurements
	Problem Size
	kmeans
	lud, fft, srad, crc, nw
	csr
	dwt
	gem, nqueens, hmm, swat
	bfs, cfd, tdm
	Summary of Benchmark Settings

	Results
	Time
	Energy

	Discussion

	AIWC: OpenCL based Architecture Independent Workload Characterization
	Metrics
	Implementation
	Demonstration
	Detailed Analysis of LU Decomposition Benchmark
	Use Case: AIWC analysis of OpenDwarf bioinformatics related benchmarks
	Usage and Limitations
	Summary

	Making Performance Predictions for Scheduling
	Model Development
	Experimental Setup
	Constructing the Random Forest Performance Model
	Parameters for the Random Forest Performance Model
	Tuning the Random Forest Model

	Evaluation
	Predicting Kernel Execution Time
	Choosing The Optimal Accelerator for a Kernel

	Discussion

	Conclusions and Future Directions
	Extended OpenDwarfs – EOD
	AIWC
	Performance Prediction
	Future Directions
	EOD
	AIWC
	Performance Predictions
	Finding holes in benchmarks: Evaluating the coverage and corresponding performance predictions for conventional vs synthetic benchmarking
	AIWC for the Masses: Towards language-agnostic architecture-independent workload characterization
	Examining the Characteristics of Scientific Codes in Supercomputing with AIWC
	Guiding Device Specific Optimization using Architecture-Independent Metrics
	Faster FPGA development with AIWC and the Predictive Model

	Closing Remarks

	Appendices
	Time Results
	Linear Model Fitting
	Diversity Analysis
	Abbreviations
	References

