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Abstract

Full-duplex (FD) wireless communications, along with millimeter wave (mmWave),

and massive multiple-input multiple-output (MIMO) are key technologies for future

communication networks, known as 5G networks. The main challenge in exploit-

ing the full potential of FD communication systems lies in cancellation of strong

self-interference (SI) signal. In particular, since SI cancellation requires accurate

knowledge of both SI and communication channels, bandwidth efficient channel es-

timation techniques are of practical interest. Furthermore, SI cancellation encoun-

ters new challenges, once FD technology is combined with mmWave or massive

MIMO technologies. This is because FD communication at mmWave frequencies

needs to be able to deal with fast phase noise (PN) variation, and FD massive

MIMO base station (BS) requires simultaneous cancellation of SI and multi-user

interference (MUI).

The first half of this thesis investigates channel estimation techniques to simul-

taneously estimate both SI and communication channels for FD communication

at microwave and mmWave frequencies. We first consider FD communication at

microwave frequencies and inspired by superimposed signalling, we propose a novel

bandwidth efficient channel estimation technique for estimating the SI and com-

munication channels. To evaluate the performance of the proposed estimator, we

derive the lower bound for the estimation error, and show that the proposed esti-

mator reaches the performance of the bound. In contrast to microwave frequencies,

at mmWave frequencies the challenge lies in jointly estimating the channels and

tracking the fast varying PN process. We address this problem by proposing an

Extended Kalman filter to jointly estimate the channels and track the PN process.

We derive a lower bound for the estimation error of PN at mmWave, and nu-

merically show that the mean square error performance of the proposed estimator

approaches the lower bound.

The second half of this thesis focuses on the SI cancellation and data detection
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problems. The ultimate goal of SI cancellation in FD communication is to allow

reliable data detection. However, achieving perfect SI cancellation is not always

feasible. This is because accurate channel estimates might not be available. In this

regard, we investigate blind data detection problem, when only statistical prop-

erties of SI and communication channels are available. We propose a maximum

aposterior probability (MAP) based blind detector, which allows for data detec-

tion without channel estimation and SI cancellation stages. This blind detection is

achieved by using the statistical properties of the SI and communication channels

instead of accurate channel estimation and SI cancellation. Finally, we rigorously

study precoder design for a FD enabled massive MIMO BS. The main design chal-

lenge in here is to design precoders that can simultaneously cancel SI and MUI. We

prove that in order to suppress both SI and MUI, the number of transmit antennas

must be greater than or equal to the sum of the number of receive antennas and

the number of uplink users. In addition, we rigorously show that the problem of

simultaneous suppression of SI and MUI has a solution with probability 1. These

results validate previous heuristic assumptions made in the literature.
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j
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A Matrix
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Chapter 1

Introduction

1.1 Background

The next generation of wireless communication networks, i.e., 5G networks, are

promising faster, more reliable, and better quality communications [1–3]. 5G net-

works are expected to allow for many new wireless applications, which were deemed

impossible with older generation networks [4–6]. It is expected that these net-

works will be significantly different from their predecessor networks and introduce

a paradigm shift in wireless communication research [7–9]. This paradigm shift

requires technologies to revolutionize the performance of the current networks in

terms of data rates, latency, connectivity, and energy efficiency. This expected

technological leap then allows for the realization of important applications such as

internet of things (IoT), and virtual reality [10]. In this regard, many technolo-

gies have been proposed for 5G networks and among the most prominent ones are

full duplex, millimeter wave (mmWave), and massive multiple-input multiple-out

(MIMO) technologies [11–13].

In the remainder of this chapter we first review each of these technologies in-

dividually. We then identify the scope of this thesis, and subsequently, review the

literature of the problems that will be discussed in this thesis. Finally, this section

is concluded by discussing contributions and organization of this thesis.

1



2 Introduction

1.1.1 Full Duplex Communication

Traditionally, communication systems are designed to communicate in half duplex

(HD) mode. This means that separate time and frequency resources are allo-

cated to transmission and reception [14]. This separation in time and frequency is

achieved by using time division duplexing (TDD), and frequency division duplexing

(FDD), respectively. However, the inefficiency of allocating different resources to

transmission and reception has encouraged research in FD communication, where

devices are allowed to transmit and receive over the same temporal and spectral

resources [15,16]. FD communication can potentially double the spectral efficiency

of future wireless communication systems [17–19].

FD communication has been used in the context of wired communication, where

an interference signal is generated due to the electromagnetic coupling between the

receive and transmit wires [20]. This electromagnetic coupling creates a channel,

which is known as the echo channel, and is normally weaker than the commu-

nication channel [20, 21]. In the context of wireless communication however, the

interference is due to in-band transmission and reception. The transmitted signal

intended for the destination node is also received by all the receiver antennas of

the transmitter. Consequently, the interference channel is significantly stronger

compared to wired communication. This interference channel is known as self-

interference (SI) channel and it is a major obstacle in realising the full potential of

wireless FD communication systems, i.e., doubling the spectral efficiency [22–25].

Fig. 1.1 shows the transceiver structure of a FD communication device as proposed

in [26]. The transmitter chain of the structure contains similar functional blocks

to a HD device, and includes a digital to analog converter (DAC), low pass fil-

ter (LPF), IQ mixer, variable again amplifier (VGA), and power amplifier blocks.

However, in comparison to hardware architecture for HD devices, the receiving

chain additionally includes analog and digital cancellation blocks to deal with the

strong SI signal. The figure also illustrates a link between the transmit and receive

chains. This link is necessary to reliably feed the self-interference signal back to

the receive chain, and subsequently use this reliable signal to cancel the SI signal

received through the receiving antenna, i.e., the wireless channel.

The received SI signal through the wireless channel has a significantly higher
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Modulator DAC LPF IQ Mixer VGA Power amplifier

Digital cancellation ADC LPF IQ Mixer LNA Analogue cancellation

TX

RX

Passive isolation

S
elf-In

terferen
ce

Figure 1.1: Transceiver structure of a FD device, where DAC: digital to analog con-
verter, LPF: low pass filter, VGA: variable gain amplifier, LNA: low noise amplifier,
and ADC: analog to digital converter.

power compared to the intended signal. This is because the SI signal travels a

smaller distance in orders of centimetres to reach the receiving antenna, as opposed,

to the intended signal which might be travelling hundreds of meters to reach the

receiving antenna. If this strong SI signal is left untreated it will saturate the ADC

and result in total loss of the intended signal. For example, if 8-bit ADC is used,

the quantization error is approximately given by 48 dBm. On the other hand, the

received SI power can be in order of 100 to 150 dB [15, 27]. This means that the

received SI power will dominate the quantization error, and the accuracy of the

ADC is predominantly determined by the received SI power.

Recently, there has been a lot of interest in designing SI cancellation techniques

to deal with the strong SI signal [15,26–31]. Different techniques for SI cancellation

can be divided into two main categories [15]: (i) passive suppression in which the SI

signal is suppressed by suitably isolating the transmit and receive antennas [15,27,

32], and (ii) active cancellation which uses knowledge of the SI signal to cancel the

interference in either the analog domain (i.e., before the signal passes through the

analog-to-digital converter (ADC) [15,28,33] and/or the digital domain [26,29,30].

Passive suppression techniques normally require directional and polarized an-

tennas to deal with the strong SI signal [28]. For example, the authors of [15] use

polarized antennas to provide 40 dB attenuation. Furthermore, the authors of [31]

propose a passive suppression technique to provide for up to 60 dB suppression of

the SI signal. Analog suppression techniques use the knowledge of SI channel to

suppress the SI signal via an analog circuitry. For example, the authors of [26, 29]
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propose a direct conversion FD transceiver architecture to suppress the SI signal

using an analog circuit. In the proposed FD architecture of [26, 29], the SI signal

is fed back to the receiver chain via a wired link. This fed-back SI signal is then

used to cancel the SI signal receive through the wireless channel before the ADC

block. Furthermore, a transceiver architecture is proposed for FD communication

in [30], where the wired link that feeds back the SI signal shares oscillator with the

receiver chain. The proposed architecture is then shown to have a better robustness

to oscillator impairments compared to the architecture proposed by [26,29].

Depending upon the design, passive suppression and analog cancellation can

provide about 40 − 80 dB cancellation in total [31], which is not sufficient for

reliable communication. Hence, in practice, the SI is cancelled in multiple stages,

beginning with passive suppression and followed by cancellation in the analog and

digital domains.

1.1.2 Millimeter Wave Communication

MmWave networks are expected to explore the large unprecedented frequency

bands available at mmWave to provide fast and directional communication [34].

For example, the available unlicensed spectrum at 60 GHz is ten times larger than

the spectrum used for 4G cellular communication, which can be used to provide

faster communications compared to the current cellular and WiFi networks [35].

A number of successful experiments with mmWave communication has persuaded

the regularity bodies such as U.S. Federal Communication Commission (FCC) to

allow for the use of mmWave spectrum for 5G communications [36].

MmWave communication is one of the key technologies, which allows many

important fantasy applications, such as IoT, drive-less cars, and smart cities, to

become realities [34]. However, there are certain impairments associated with

mmWave communication that can significantly affect quality of reliable commu-

nications at mmWave band frequencies [35–37]

Firstly, due to short wave length of mmWave frequencies, the signal power

is largely attenuated before reaching receiving antennas [35, 36]. This is because

diffraction and material penetration at mmWave frequencies cause more signal

attenuation in contrast to microwave frequencies, i.e., signal blockage [37]. Con-
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sequently, a communication system operating at mmWave frequencies requires to

rely more on line-of-sight (LoS) communication, which is not always feasible due

to physical constraints. A large body of research investigates the problem with

short effective range for mmWave communication [38–40]. The principle idea be-

hind the proposed techniques is to explore the small size of antennas at mmWave

frequencies to pack more antennas into the antenna array. Once antenna arrays

are constructed for mmWave communication, then beamforming can be used to

increase the effective communication range at mmWave frequencies. However, two

types of beamforming have received more attention compared to the other types

due to their simplicity and practical feasibility: (i) analog beamforming [40], and

(ii) hybrid beamforming [38, 39]. Analog beamforming does not require channel

knowledge and it involves using phase shifters to steer the signal into the de-

sired direction. Despite, the simplicity of analog beamforming techniques, they

can only steer the transmission in a single direction. Hybrid beamforming allows

for directional transmission in multiple directions, however, they require channel

knowledge. Hybrid beamforming is achieved by using analog and digital beamform-

ing techniques in combination. The advantage of hybrid beamforming techniques

compared to fully digital beamforming techniques is that they allow for directional

communication with less complexity [38].

Secondly, the oscillators designed to operate at mmWave frequencies suffer from

a large phase noise (PN) [41, 42]. If the oscillator PN is not accurately tracked

and eliminated, it will have detrimental effect on the communication performance

at mmWave frequencies. This is because PN causes the constellation diagram

to rotate [43]. This rotation in turn results in erroneous detection. For a HD

single-input single-out (SISO) system the PN problem at mmWave bands has been

thoroughly investigated in [44], where the authors derive the lower bound for the

PN estimation error and show that the proposed estimation algorithm reaches the

performance of the derived bound. A joint channel and PN estimation algorithm

is proposed in [43] for a HD MIMO communication system. The performance of

the estimator proposed in [43] for HD MIMO system is improved in [45] by using

a soft-input estimator.

Moreover, since for hybrid and digital beamforming require the knowledge of

the channels, the importance of PN estimation problem is compounded. This is
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because without an accurate PN tracking mechanism, accurate channel knowledge

cannot be obtained.

1.1.3 Massive MIMO

Massive MIMO is a physical layer technology, which proposes to deploy a large

antenna array at base stations (BS) to serve smaller number of users in the down-

link [46, 47]. Massive MIMO systems are expected to significantly improve the

performance of current MIMO systems. Furthermore, the use of large antenna ar-

rays at BS allows for effective way of dealing with the wireless channel impairments

including fast fading effect [46].

Massive MIMO systems promote network architectures, where minimum pro-

cessing is required by the users. This is achieved by using TDD and assuming

channel reciprocity for downlink and uplink [47]. In this case, only the BS needs

to know the channels, and since the uplink and downlink channels are the same,

beamforming matrices can be designed at the BS to direct the communication in

the downlink and remove the interference in the uplink. The advantage of this net-

work architecture is that the complexity of the system only grows with the number

of users and is independent of number of BS antennas.

Despite the potential benefits of massive MIMO systems, important drawbacks

are associated with these networks. In particular, [46] shows how pilot contami-

nation can act as a bottleneck and does not allow for exploiting the full potential

of HD massive MIMO. Pilot contamination is a term used to describe the inac-

curacy of the channel estimates, when a set of pilots are shared and transmitted

by a number of base stations in a cellular network [48]. The phenomenon of pi-

lot contamination emerges in massive MIMO communication because of the TDD

based nature of these networks. In TDD based networks, the length of the pilots

are limited by the coherence of the channel. Since the length of pilot sequences

are limited, a large set of independent sequences cannot be generated, and hence,

the pilots need to be reused in the network. However, reusing the pilots causes

an interference for channel estimation, which in turns results in inaccurate channel

estimates. A large body of research has investigated the pilot contamination prob-

lem for HD massive MIMO systems [48–52].
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The second associated problem with massive MIMO systems, which is of practical

importance, is the problem of low complexity channel estimation and data detec-

tion algorithms [53,54]. The importance of low complexity algorithms for massive

MIMO systems is two fold, not only they need to be low complexity to be feasible

for large antenna systems, but also they need to be low complexity to limit the

power consumption of the system [54]. For this reason, linear processing is more

desirable for massive MIMO systems [47].

In the following section, we discuss the focus of this thesis. In particular, we

show how this thesis considers solutions for the problems involving FD, mmWave,

and massive MIMO technologies.

1.2 Research Challenges and Motivation

While this thesis primarily focuses on FD communication, it also investigates the

FD communication at mmWave frequency bands, and FD massive MIMO BS. In

the remainder of this section we present the problems that will be discussed in this

thesis and their relevant literature review.

In this thesis, we focus on the SI cancellation and data detection after the

passive suppression and analog cancellation, termed residual SI. Since, the effec-

tiveness of any digital interference cancellation technique depends strongly on the

quality of the available channel estimates for both the SI and desired communi-

cation channels [55–57], we first study the channel estimation problems for FD

communication., and then study the problems of residual SI cancellation and data

detection based on available channel estimates.

Section 1.1.1 has identified that the main obstacle in enabling FD communica-

tion in 5G networks is the SI cancellation. We focus on the SI cancellation and

data detection after the passive suppression and analog cancellation, termed resid-

ual SI. Since, the effectiveness of any digital interference cancellation technique

depends strongly on the quality of the available channel estimates for both the SI

and desired communication channels [55–57], we first study the channel estimation

problems for FD communication. In particular by focusing on FD communication
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at microwave frequencies, we formulate the first problem considered in this thesis

as follows:

• Problem 1: Bandwidth efficient channel estimation techniques for FD com-

munication systems.

Section 1.1.2 has highlighted oscillator PN as an important issue associated

with HD mmWave communication systems. However, this issue is compounded for

FD communication systems. This is because for FD communication the channel

estimation and PN tracking needs to be done in the presence of a strong SI signal.

In addition, since PN is a hardware impairment the algorithms developed for PN

tracking for HD devices cannot be used for FD devices, which have fundamentally

different hardware architecture as shown in Fig. 1.1. Consequently, we formulate

the second problem considered in this thesis as follows:

• Problem 2: Joint channel and PN estimation algorithms for FD communica-

tion at mmWave frequencies.

Once the channels are estimated then they are used to: (i) cancel the strong

SI to below the receiver noise floor, and (ii) detect the desired communication

symbols. For this reason, this thesis also investigates the problem of SI cancellation

and data detection based on the availability of channel estimates. In particular,

since obtaining accurate channel estimates is not always feasible, this thesis seeks

to address the following problem:

• Problem 3: Data detection for FD communication using statistical properties

of the channels.

Section 1.1.3 has discussed the problem associated with HD massive MIMO

systems. While a large body of research studies the associated problems of HD

massive MIMO, achieving FD communication with massive MIMO BS is still chal-

lenging. This is because even in the presence of accurate channel estimates, SI

cancellation is a very challenging problem for massive MIMO BS. Furthermore,

this challenge becomes even harder in the context of cellular communication, when

both SI and MUI should be cancelled simultaneously. Hence, we formulate the last

problem considered in this thesis as follows:
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• Problem 4: Precoder design for joint SI and MUI suppression for FD massive

MIMO BS.

We can put the considered problems in this thesis into two groups: (i) channel

estimation problems, and (ii) SI cancellation and data detection problems. In the

remainder of this section, we review the literature of the four problems presented

here, and provide background and motivation for each problem.

1.2.1 Channel Estimation

Accurate channel estimates are fundamentally important for reliable wireless com-

munication [58–62]. The accuracy of these estimates becomes even more important

in FD communication [15, 55, 63]. This is because these estimates serve two pur-

poses. On the one hand, the estimate of communication channel is needed to

reliably detect the transmitted symbols, and on the other hand, the SI channel

estimation is needed to cancel the residual SI signal at the baseband.

The channel estimation for FD communication at microwave frequency differs

substantially from the channel estimation at millimeter wave (mmWave) communi-

cation [64,65]. This is because the mmWave channel suffers from the rapid variation

of phase noise (PN) [66]. In this thesis we first consider the channel estimation

at microwave frequencies, where the channel is not affected by the random varia-

tion of the PN. Given the importance and emergence of mmWave communication

systems, we then study the joint channel and PN estimation problem at mmWave

frequencies.

In what follows the literature of channel estimation techniques for FD commu-

nication at microwave and mmWave is reviewed.

1.2.1.1 Channel Estimation at Microwave Frequencies

Conventionally in FD communication, the baseband channels are estimated by us-

ing data-aided channel estimation techniques, where a portion of the data frame is

allocated for known training sequences or pilot symbols [56,67–69]. In this regard,

a maximum-likelihood (ML) approach was proposed in [56] to jointly estimate the

residual SI and communication channels by exploiting the known transmitted SI
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symbols, and both the known pilot and unknown data symbols from the other

intended transceiver. Another approach was proposed in [70] where a sub-space

based algorithm was developed to jointly estimate the residual SI and communica-

tion channels, using known pilots.

Bandwidth efficient channel estimation techniques for FD communication can

be inspired from the HD counterparts. A bandwidth efficient channel estimation

technique in HD systems is superimposed training [71, 72]. The authors of [72]

propose a superimposed training based channel estimation technique for HD com-

munication. The proposed technique alleviates the need to explicit time slots al-

location for channel estimation, by superimposing a periodic low power training

sequence onto the data symbols. The downside of this approach is that some power

is consumed in superimposed training which could have otherwise been allocated

to the data transmission. This lowers the effective signal-to-noise ratio (SNR) for

the data symbols, and affects the bit error rate (BER) at the receiver.

In contrast to data-aided and superimposed training based channel estimation

techniques, blind techniques avoid the use of pilots altogether by exploiting statis-

tical and other properties of the transmitted signal [73–78]. A blind channel esti-

mation technique for HD communication systems is proposed in [73]. The authors

consider a single-input multiple-output (SIMO) system, and through identifiability

analysis show that blind estimation can only recover the channel coefficients up to

a scaling factor, i.e., ambiguous channel estimation. This means that the channel

phases cannot be fully recovered. To overcome the ambiguity problem, semi-blind

approaches, where the HD channel is estimated using the combination of known pi-

lots and unknown data symbols, are proposed in [79,80]. Moreover, in the context

of cooperative communication blind and semi-blind channel estimation techniques

have been proposed in [74,75], for a HD two way relay network, respectively.

The above literature review motivates the study of bandwidth efficient channel

estimation techniques for FD communication. Furthermore, it indicates that this

study should include an investigation of ambiguity problem, which is associated with

the estimation techniques that do not use conventional data-aided piloting.
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1.2.1.2 Channel Estimation at mmWave Frequencies

Recently, SI channel measurements have been carried out for FD communication

at mmWave frequencies [81, 82]. The measurements indicate that, as opposed to

the microwave frequency band, the SI channel at mmWave has a non-line-of-sight

(NLoS) component, which cannot be cancelled using passive and active analog

suppression techniques. This partial suppression of the SI signal results in a large

residual SI signal at baseband, which is still significantly higher than the receiver

noise floor [81]. Digitally cancelling the residual SI signal at the baseband, requires

tracking the large and rapidly changing oscillator PN [66, 83]. The existing tech-

niques for residual SI signal cancellation at baseband assume a very steady oscillator

PN [70,84–86], and hence, they cannot be used for FD mmWave communication.

The authors in [66] consider a FD communication system, where the digital

SI cancellation is hampered by oscillator PN. However, the authors assume that

the PN stays constant over a number of orthogonal frequency division multiplex-

ing (OFDM) symbols. This assumption is in contrast to fast variation of PN at

mmWave communication [43]. Furthermore, channel and PN estimation problems

for FD communication is also investigated in [87], where the authors propose two

separate maximum likelihood (ML) estimators for channel and PN estimation. The

proposed ML estimators require two separate set of piloting. This makes them less

bandwidth efficient compared to the joint channel and PN estimation techniques.

In addition, the authors of [84] assume a slow varying PN process, which is a

valid assumption for FD communication at microwave frequency. For a single-

input single-output (SISO) FD communication system the PN estimation problem

is considered in [86]. Beside the SISO system assumption, there are two other

limiting factor associated with the proposed PN estimator in [86]. Firstly, the ML

based estimator is complex and cannot be directly applied to more general sys-

tem models, such as MIMO FD communication system, and secondly, the authors

assumptions about the PN process is only valid when the PN variations are small.

The above mentioned works motivate the study of joint channel and PN esti-

mation problem for FD communication system at mmWave frequency band, where

the PN variations are significantly larger compared to the microwave frequencies.
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1.2.2 SI Cancellation and Data Detection for FD Commu-

nication

Ultimate goal of any communication system is to reliably detect the transmitted

symbols to allow robust end-to-end communication [88–90]. For this reason, once

the channels are accurately estimated, for reliable data detection, the SI signal

needs to be suppressed to below the receiver noise floor. However, the desired SI

suppression cannot be achieved using a single cancellation technique. For instance,

for small-cells in Long Term Evolution (LTE), the maximum transmit power is

typically 23 dBm (200 mW) and the typical noise floor is −90 dBm [91]. Ideally,

this requires a total of 113 dB SI cancellation for realizing the full potential of

FD systems [91]. While passive and active RF cancellation can provide some

cancellations, the residual SI can still be relatively strong in the baseband digital

signal. For example, for the LTE small-cell example, it can be as high as 50

dB assuming state-of-the-art passive suppression and analog cancellation provide

60 dB of the total required SI cancellation of 113 dB. Thus, accurate digital SI

cancellation is also required to bring the SI as close to the noise floor as possible.

However, achieving effective digital SI cancellation might not always be feasible.

This can be due to the lack of availability of accurate channel estimates. In this

case, it is important to investigate data detection techniques for FD communication,

which only require statistical properties of the channels instead of accurate channel

estimates. The detection techniques that work with empirical statistical knowledge

of the channels do not need channel estimation and SI cancellation stages. Hence,

they can save both bandwidth and processing power.

Moreover, even with the perfect channel knowledge, SI cancellation and data

detection in cellular networks with FD enabled massive MIMO BS imposes new

challenges that are not encountered in point to point FD communication systems.

In particular, the problem of spatial suppression of the SI signal via transmit pre-

coding is both interesting and challenging. This is because there are two major

challenges associated with precoder design for FD enabled massive MIMO BS: (i)

the challenge to overcome multi-user interference (MUI) in the downlink (DL),

which is caused by the inherent multi-user communication [14], and (ii) the chal-

lenge to overcome SI in the uplink (UL), which is caused by the simultaneous
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in-band transmission (in the DL) and reception (in the UL) [92,93].

This thesis studies the SI cancellation and data detection for both point-to-

point FD communication, and cellular network with FD massive MIMO BS. In

what follows the SI cancellation and data detection literature for these systems is

reviewed.

1.2.2.1 Blind Data Detection for Point-to-Point FD System

Conventionally, for data detection, the SI signal is cancelled using a replica of the SI

signal and available SI channel estimates, which are obtained through pilot-based

estimation techniques [15,28,29,84].

For SI cancellation and data detection in a SISO FD communication system,

the authors of [15, 16] propose an initial HD phase, in which the transmitting

node is switched off, while pilots are sent from the receiving node for SI channel

estimation. The SI channel is then estimated using a least square (LS) based

estimator. The LS-based channel estimates are subsequently used to cancel the

residual SI signal at the baseband and detect communication signals. However,

not only does the initial HD phase for SI channel estimation waste the bandwidth,

but it also introduces processing delays. The associated problem with the initial

HD phase needed for SI cancellation for FD SISO system proposed by [15, 16], is

resolved in [67]. The authors of [67] allow for the transmitting node to transmit

during the SI channel estimation phase, however, they treat the intended received

signal as noise, which significantly degrades the quality of channel estimates and

subsequently the reliability of the detected symbols. The reliability of the detected

symbols is improved in [94, 95], by obtaining the SI channel estimates through an

adaptive least mean square (LMS) algorithm. Although, in contrast to [15,16], the

proposed SI cancellation and data detection technique does not need an initial HD

phase, the proposed algorithm requires many iterations to converge.

SI cancellation and data detection for MIMO FD communication is considered

in [70, 84]. The authors in [84] use extensive two-stage piloting to obtain the

estimates of the SI channel for digital SI cancellation and data detection. The

extensive two-stage piloting of [84] is omitted in [70]. This is done by exploiting

the sparsity of the channel. Despite better bandwidth efficiency, the proposed
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technique in [70] still requires significant processing to obtain the estimates of both

SI and communication channel. This in turn adds undesirable processing delays.

Blind data detection techniques, where the data symbols are detected with-

out obtaining channel estimates, have been investigated for HD communication

systems [96–98]. In [96], an iterative sequential Monte Carlo based method is pro-

posed for blind data detection in the presence of PN in HD communication. The

authors have shown how blind detection cannot recover the phase of the transmit-

ted data symbols, and have used some channel estimates to remove this ambiguity.

In [97], the authors propose to use cyclic prefix to avoid the ambiguity of blind

data detection for HD OFDM systems. Finally, the authors of [98] consider blind

detection problem for a HD two way relay network, and investigate the ambiguity

problem associated with it.

The above mentioned works clearly show that the channel estimation and SI can-

cellation stages require significant processing and bandwidth resources. This makes

the problem of data detection using statistical properties of the channels, instead of

actual channel estimates (blind data detection), of great practical importance and

interest. Furthermore, any such study also needs to address the ambiguity problem

associated with blind data detection.

1.2.2.2 SI Cancellation for Cellular Network with FD Massive MIMO

Base Station

Point-to-point communication systems are considered in the reviewed works in

Section 1.2.2.1. However, the SI cancellation for FD MIMO communication systems

in the context of cooperative and cellular communications has been studied in [92,

99–102].

In the context of cooperative communication, the authors of [92] consider a

MIMO FD relay and propose two different SI cancellation techniques based on

antenna and beam selection techniques. However, the issue associated with both

the techniques is the complexity associated with selecting a set of antennas or beams

to suppress the SI signal. While the proposed techniques completely suppress

the SI signal for MIMO system with low number of antennas, they might not

be directly applicable to massive MIMO systems, where the BS is expected to
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have hundreds of antennas. The authors of [99] take a non-linear approach in

designing precoder matrix for MIMO FD relays to jointly perform beamforming

and SI suppression. However, the proposed non-linear approach, which is based on

non-convex optimization is computationally complex for massive MIMO BS with

large number of antennas.

Recently, in the context of cellular communication, the problem of linear pre-

coder design to suppress both SI and MUI for massive MIMO BS has been investi-

gated [100–102]. In this context, the existing solutions in the literature [100–102],

assume the number of transmit antennas is greater than the number of receive an-

tennas and heuristically design the precoding matrices based on the transmission

of zeros to all or a subset of the receive antennas. In [102], the authors consider

a FD massive MIMO BS, which serves a number of single antenna HD users. A

transmit precoder is designed by first adding a number of zeros to the vector of

data symbols and making it as large as the number of transmit antennas. Then

zero forcing (ZF) based precoder is designed by exploiting the added zeros, such

that the receive antenna array receives all the zeros. This work is extended to HD

users with MIMO users in [103], which uses the same design procedure for trans-

mit precoder design. Furthermore, the authors of [101] consider an FD massive BS

with MIMO FD users, and design precoder matrix to suppress both SI and MUI

in two stages. First, assuming that a subset of receive antennas receives zeros, a

precoder matrix is designed such that the transmit vector lies in the null space of

the interfering channel. Second, a precoder matrix is designed such that the overall

effect of applying the first and second precoder matrices removes MUI. However,

these works lack a well-established mathematical foundation to allow validating

their core central assumptions. In particular, the assumption of being able to send

zeros to all or a subset of receive antennas cannot be validated using any existing

framework.

The above works motivate the study of precoding design in FD massive BS to

provide a rigorous mathematical foundation for the design of linear low complexity

precoders.

In what follows, we provide an overview of the thesis and show how this thesis

addresses the questions that were not investigated in the existing works.
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Figure 1.2: Overview of the thesis and its contributions

1.3 Overview and Contributions of Thesis

Fig. 1.2 presents an overview of the thesis. The content of this thesis can be

divided into two halves. In the first of half of the thesis the channel estimation

problems for FD communication systems are studied. The second half of the thesis

is dedicated to the study of SI cancellation and data detection techniques for FD

communication systems. In particular, this thesis seeks to provide solution to the

existing problems in the literature. More specifically, as outlined in Section 1.1,

the following problems are studied in this thesis:

• Problem 1: Bandwidth efficient channel estimation techniques for FD com-

munication systems.

• Problem 2: Joint channel and PN estimation algorithms for FD communica-

tion at mmWave frequencies.

• Problem 3: Data detection for FD communication using statistical properties

of the channels.

• Problem 4: Precoder design for joint SI and MUI suppression for FD massive

MIMO BS.
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1.3.1 Questions to be Answered

Solutions to the above mentioned problems will answer the following open ques-

tions:

Q1. Can both SI and communication channels be estimated without sending data-

aided pilot sequences?

Q2. Can the inherent ambiguity of blind channel estimation techniques for FD

communication be resolved?

Q3. What is the lower bound on the estimation error estimating both SI and

communication channels in a FD communication system?

Q4. How can we jointly estimate the channel and a fast varying PN process for

FD communication at mmWave frequencies?

Q5. What is the lowest achievable mean square error (MSE) for joint channel and

PN estimation for mmWave FD communication?

Q6. Can the transmitted symbols be detected without SI and channel estima-

tion stages, solely based on the available statistical properties of the SI and

communication channels?

Q7. Can transmit precoders be designed to jointly cancel SI and MUI for FD-

enabled massive MIMO by sending zeros to all or a subset of receive antennas?

1.3.2 Thesis Contributions and Organization

The first part of this thesis focuses mainly on channel estimation techniques for

FD communication (Chapters 2 and 3), while in the second part of the thesis

(Chapters 4 and 5), the focus is on SI cancellation and data detection for FD

communication.

In this regard, the problem of bandwidth-efficient channel estimation for FD

communication is considered in Chapter 2. Chapter 3 discusses the problem of

joint channel and PN estimation for mmWave FD communication. In Chapter 4,

we study data detection problem when channel estimates are not available, and
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only the statistical properties of the SI and communication channels are known.

Chapter 5 studies the precoder design for both SI and MUI suppression for FD-

enabled massive MIMO BS. The chapter-wise summary of the contributions is given

as follows:

Chapter 2 – Superimposed Signalling Inspired Channel Estimation

in Full-Duplex Systems

In Chapter 2, we consider the problem of bandwidth efficient channel estima-

tion in a SISO FD communication system. We propose a new technique for chan-

nel estimation and residual SI cancellation in FD systems. Our approach draws

inspiration from (i) blind channel estimation techniques in that we examine the

condition for identifiability of channel parameters in FD systems, and (ii) super-

imposed signalling in that we superimpose (i.e., add) a constant real number to

each constellation point of the modulation constellation. However, our proposed

technique is distinct from superimposed signalling. In superimposed signalling, the

superimposed signal is typically a periodic training sequence that is added to the

data signal after the data symbols are modulated. Hence, the additional power of

the superimposed signal is only used for channel estimation. In our proposed tech-

nique, the superimposed signal is a constant (non-random) signal and the objective

is to shift the modulation constellation away from the origin, which we exploit for

estimating the SI and communications channels without ambiguity. In addition,

the additional power of the superimposed signal is used for both modulating the

data symbols and channel estimation, which does not reduce the effective SNR as

in superimposed signalling. The novel contributions are as follows:

• We derive the condition for blind identifiability of channel parameters in a

FD system (cf. Theorem 2.1) and show that symmetric modulation constel-

lations with respect to the origin cannot be used for ambiguity-free channel

estimation in a FD system. Based on Theorem 2.1, our proposed technique

is able to resolve the inherent ambiguity of blind channel estimation in FD

communication via shifting the modulation constellation away from origin.

• Using the proposed technique, we derive a computationally efficient expecta-

tion maximization (EM) estimator for simultaneous estimation of both SI and

communication channels. We derive a lower bound for the channel estimation
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error, which depends on the energy used for shifting the modulation constel-

lations, and use it to find the minimum signal energy needed for accurate

channel estimation in a given FD communication system.

• We use simulations to compare the performance of the proposed technique

against that of the data-aided channel estimation method, under the condi-

tion that the pilots use the same extra power as the shift. Our results show

that the proposed technique performs better than the data-aided channel es-

timation method both in terms of the MSE of channel estimation and BER.

In addition, the proposed technique is robust to an increasing SI power.

The results in Chapter 2 have been presented in the following publication [104],

which is listed again for ease of reference:

J1. A. Koohian, H. Mehrpouyan, A. A. Nasir, S. Durrani, and S. D. Blostein,

“Superimposed signaling inspired channel estimation in full-duplex systems,” EURASIP

Journal on Advances in Signal Processing, vol. 2018, no. 1, p. 8, Jan. 2018. [On-

line]. Available: https://doi.org/10.1186/s13634-018-0529-9.

Chapter 3 – Joint Channel and Phase Noise Estimation for mmWave

Full-Duplex Communication Systems

In Chapter 3, we consider the problem of joint channel and PN estimation for a

mmWave FD MIMO communication systems. We assume that oscillator PN varies

from one communication symbol to another. This assumption best captures the

fast variation of PN at mmWave frequencies [43]. The main contributions of this

work are as follows:

• We construct a state vector for the joint estimation of the channel and PN,

and propose an algorithm based on extended Kalman Filtering (EKF) tech-

nique to track the fast PN variation at mmWave band.

• We derive the lower bound on the estimation error of the proposed estimator,

and numerically show that the proposed estimator reaches the performance

of the lower bound. We also show the effectiveness of a digital SI cancellation,

which uses the proposed estimation technique to estimate the SI channel.
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• We present simulation results to show the MSE and BER performance of

a mmWave FD MIMO system with different PN variances, and signal-to-

interference-ratios (SIR). The results show that for a 2 × 2 FD system with

64− quadrature amplitude modulation (QAM), and PN variance of 10−4, the

residual SI power can be reduced to −25 dB and −40 dB, respectively, for

SIR of 0 and 15 dB.

The results in Chapter 3 have been presented in the following publication [105],

which is listed again for ease of reference:

J2. A. Koohian, H. Mehrpouyan, A. A. Nasir, and S. Durrani, “Joint chan-

nel and phase noise estimation for mmWave full-duplex communication systems,”

EURASIP Journal on Advances in Signal Processing, vol. 2019, no. 1, p. 18, Mar

2019. [Online]. Available: https://doi.org/10.1186/s13634-019-0614-8

Chapter 4 – Data Detection in Full-Duplex Communication Systems

In Chapter 4, we focus on the received signal after the passive and RF cancella-

tion stages in a point-to-point FD communication system. Different from existing

works, we propose a data detection technique based on superimposed signalling

which does not require any channel estimates. We show that superimposed sig-

nalling can overcome the inherent ambiguity of blind data detection problem when

channel estimates are not used. The main contributions of this work are:

• We formulate a maximum a posterior (MAP) detector, based on the poste-

rior probability distribution (PDF) function of the data, to detect the data

symbols in FD communication with no need for obtaining channel estimates

(blind detection).

• We show that if the modulation constellation is symmetric around the origin,

blind data detection in FD communication results in ambiguity when the

channel estimates are not available. We demonstrate that one simple method

to resolve this detection ambiguity is to use superimposed signalling, i.e.,

to shift the modulation constellation away from the origin and create an

asymmetric modulation constellation.
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• We compare the BER performance of the proposed detection method to that

of the conventional channel estimation-based detection method, where the un-

known channels are first estimated and then the data signal is detected, under

the constraint of same average energy over a transmission block. The results

show that the proposed method outperforms the conventional method. Since

the proposed method does not require any channel estimates, it enhances

bandwidth and power efficiency.

The results in Chapter 4 have been presented in the following publication [106],

which are listed again for ease of reference:

C1. A. Koohian, H. Mehrpouyan, A. A. Nasir, S. Durrani, and S. D. Blostein,

“Residual self-interference cancellation and data detection in full-duplex commu-

nication systems,” in Proc. IEEE ICC, May 2017, pp. 1–6.

Chapter 5 – Self-Interference Suppression in Full-Duplex Massive

MIMO Communication

In Chapter 5, we consider a single-cell multi-user scenario with a FD massive

MIMO BS. In particular, we focus on the problem of SI suppression via spatial

precoding. The main contributions of this work are:

• We develop a mathematical foundation for spatial suppression of SI and MUI.

• We prove that in order to suppress both SI and MUI, the number of transmit

antennas must be greater than or equal to the sum of the number of receive

antennas and the number of UL user equipments (UEs). In addition, we rig-

orously show that the problem of simultaneous suppression of SI and MUI has

a solution with probability 1. This validates previous heuristic assumptions

in the literature [100–102].

• We also study the precoder design for a special case, when the number of

transmit antennas is equal to the sum of the number of receive antennas and

the number of UL UEs.

• The simulation results demonstrate the validity of the proposed framework

and the effectiveness of the SI and MUI suppression via transmit precoding.
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The results in Chapter 5 have been prepared for submission in the following

manuscript [107], which is listed again for ease of reference:

J3. A. Koohian and S. Durrani, “Self-interference suppression in full-duplex

massive MIMO communication,” to be submitted.

Finally, Chapter 6 provides a summary of the thesis results and makes sugges-

tions for future research work.



Chapter 2

Superimposed Signaling Inspired

Channel Estimation in

Full-Duplex Systems

Residual SI cancellation in the digital baseband of an FD communication system

requires an accurate knowledge of the SI channel. Furthermore, robust data detec-

tion requires a reliable estimate of the communication channel. Hence, in contrast

to HD communication, where only the communication channel is estimated, both SI

and communication channels need to be estimated for reliable end-to-end FD com-

munication. Obtaining accurate estimates for both SI and communication channels

via piloting wastes a significant portion of the sacred bandwidth. Blind channel

estimation techniques estimate the channel with no piloting and are more band-

width efficient compared to their piloting counterparts, but they have an inherent

ambiguity problem.

This chapter of the thesis investigates the problem of bandwidth efficient chan-

nel estimation for FD communication. In particular, it mathematically studies

the ambiguity problem associated with blind channel estimation techniques for

FD communication, and shows how this ambiguity can be resolved. In addition,

this chapter proposes a novel bandwidth efficient channel estimation techniques to

estimate both the SI and communication channels with no ambiguity.

The remainder of this chapter is organised as follows. The system model is

23
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Figure 2.1: Illustration of full duplex communication between two transceivers,
each with a single transmit and a single receive antenna. ADC = analog to digital
converter, DAC = digital to analog converter. TX = transmit. RX = receive.

presented in Section 2.1. The bandwidth efficient channel estimation problem and

the proposed technique are formulated in Section 2.2. The EM estimator and the

lower bound on the channel estimator error are derived in Section 2.3. The per-

formance of the proposed technique is assessed in Section 2.4. Finally, conclusions

are presented in Section 2.5.

2.1 System Model

Consider the channel estimation problem for a SISO FD communication system

between two nodes a and b, as illustrated in Fig. 2.1. Transceiver nodes a and b are

assumed to have passive suppression and analog cancellation stages and we only

consider the digital cancellation to remove the residual SI, i.e., the SI, which is

still present after the passive suppression and analog cancellation. We consider the

received signal available at the output of the analog to digital converter (ADC).

The received signal at node a is given by1

ya = haaxa + hbaxb + wa, (2.1)

where xa , [xa1 , · · · , xaN ]T , xb , [xb1 , · · · , xbN ]T are the N × 1 vectors of trans-

1Note that the system model for FD communication in (2.1) is applicable to per subcarrier
communication in orthogonal frequency division multiplexing (OFDM) FD communication [15,
23,108].
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mitted symbols from nodes a and b, respectively, ya , [ya1 , · · · , yaN ]T is the N × 1

vector of observations, wa is the noise vector, which is modeled by N indepen-

dent Gaussian random variables, i.e., fWa(wa) = CN (0, σ2IN), and haa, hba are

the residual SI and communication channel gains, respectively. Furthermore, we

model haa and hba as independent random variables that are constant over one

frame of data and change independently from frame to frame [55]. Finally, N is

the number of transmitted symbols in a given communication packet, i.e., the size

of communication packet.

Remark 2.1 Including all the hardware impairments and unknown parameters in

mathematical modeling of parameter estimation problem in FD communication re-

sults in a highly non-linear system model, which may not have a tractable solution.

The current approach is to separate the estimation of the linear and non-linear

parameters [56,84]. In this work, we focus on the estimation of linear parameters,

while the estimation of non-linear parameters can be the topic of future works.

Modulation Assumptions and Definitions: In this thesis, we assume that the

transmitted symbols are all equiprobable and call the set A , {x1, x2, ..., xM},
which contains an alphabet of M constellation points, a modulation set. Let K ,

{1, · · · ,M} denote set of indices of the constellation points.

We define E as the average symbol energy of a given constellation, i.e.,

E , EXk
[|xk|2] =

∑M
k=1 |xk|2
M

, (2.2)

where xk ∈ A. Note that the average symbol energy can be related to the average

bit energy as Eb , E/ log2(M).

2.2 Channel Estimation for FD Systems

In this section, we first formulate the blind channel estimation problem for the FD

system considered in Section 2.1. Based on this formulation, we present a theorem

which provides the necessary and sufficient condition for ambiguity-free channel

estimation. Finally, we discuss the proposed technique to resolve the ambiguity

problem.
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2.2.1 Problem Formulation

Without loss of generality, we consider the problem of baseband channel estimation

at node a only (similar results apply at node b). In formulating the problem, we

make the following assumptions: (i) the transmitter is aware of its own signal, i.e.,

xa is known at node a, which is a commonly adopted assumption in the litera-

ture [15, 23], (ii) the interference channel haa, and the communication channel hba

are unknown deterministic parameters, (iii) the transmit symbol from node b is

modelled using a discrete random distribution, and (iv) we observe N independent

received symbols.

The blind channel estimation problem requires the knowledge of the joint prob-

ability density function (PDF) of all observations, which is derived from the condi-

tional PDF of a single observation. Given the system model in (2.1), the conditional

PDF of a single observation is given by

fYai (yai |xbi ;haa, hba) =
1

πσ2
exp

(−1

σ2
|yai − hbaxbi − haaxai |2

)
, (2.3)

where i ∈ I , {1, · · · , N}, yai is the ith received symbol, and xai and xbi are the

ith transmitted symbols from nodes a and b, respectively.

The marginal PDF of a single observation is then found by multiplying (2.3) by

the uniform distribution pXbi
(xbi) = 1

M
I{A}(xbi), and summing the results over all

the possible values of xbi , where, I{A}(x) = 1 if x ∈ A and 0 otherwise. Therefore,

we have

fYai (yai ;haa, hba) =
∑
∀xbi

fYai (yai |xbi ;haa, hba)pXbi
(xbi)

=
1

Mπσ2

∑
∀xbi

exp

(−1

σ2
|yai − hbaxbi − haaxai |2

)
I{A}(xbi)

=
1

Mπσ2

M∑
k=1

exp

(−1

σ2
|yai − hbaxk − haaxai |2

)
, (2.4)

where the last step follows from the fact that I{A}(xbi) = 1 if and only if xbi = xk,

where xk ∈ A. Finally, since the transmitted symbols are assumed independent,
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and we observe N independent observations, the joint PDF of all the observations

is given by

fYa(ya;haa, hba) =
N∏
i=1

fYai (yai ;haa, hba)

=

(
1

Mπσ2

)N N∏
i=1

M∑
k=1

exp

(−1

σ2
|yai − hbaxk − haaxai |2

)
. (2.5)

where we substitute the value of fYai (yai ;haa, hba) from (2.4).

Using (2.5), we can state the channel estimation problem as shown in the propo-

sition below.

Proposition 2.1 The blind maximum likelihood (ML) channel estimation problem

in a SISO FD system is given by

arg max
haa,hba

fYa(ya;haa, hba), (2.6)

where fYa(ya;haa, hba) is given by (2.5).

In the next subsection, we show that (2.6) does not have a unique solution if

modulation sets which are symmetric around the origin are used.

2.2.2 Identifiability Analysis

In this subsection, we present the identifiability analysis for the blind channel

estimation problem in (2.6), which allows us to determine when ambiguity-free

channel estimation is possible. For ease of analysis, we first define θ , [haa, hba]

and rewrite (2.5) as

fYa(ya;θ) =

(
1

Mπσ2

)N N∏
i=1

M∑
k=1

exp

(−1

σ2
|yai − θ(1)xai − θ(2)xk|2

)
, (2.7)

where θ(1) and θ(2) represent the first and second elements of θ.

We start the identifiability analysis by presenting the following definition and

remark:
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Definition 2.1 [109, Definition 5.2] If Y is a random vector distributed according

to fY(y;θ), then θ is said to be unidentifiable on the basis of y, if ∀y there exists

θ′ 6= θ for which fY(y;θ) = fY(y;θ′).

Remark 2.2 Definition 2.1 states that θ and θ′ (θ 6= θ′) cannot be distinguished

from a given set of observations if they both result in the same probability density

function for the observations. This implies that if θ is unidentifiable, then it is

impossible for any estimator to uniquely determine the value of θ.

In order to present the main result in this subsection, we first give the definitions

of a symmetric modulation constellation [110] and a bijective function [111].

Definition 2.2 We mathematically define modulation constellation as the graph of

the function f(xk) = xk, where xk ∈ A ∀k ∈ K. Then a modulation constellation is

symmetric with respect to the origin if and only if f(−xk) = −f(xk) ∀xk ∈ A [110].

Definition 2.3 Let C and D be two sets. A function from C to D denoted t : C → D
is a bijective function if and only if it is both one-to-one and onto.

The above definition states that a bijective function is a function between the

elements of two sets, where each element of one set is paired with exactly one

element of the other set and there are no unpaired elements. Note that a bijective

function from a set to itself is also called a permutation [111].

In this work, we define and use the bijective function g: K → K, i.e., g is a

one-to-one and onto function on K → K. Using this bijective function, we present

the main result as below.

Theorem 2.1 There exists a θ′ 6= θ for which the joint probability density fYa(ya;θ)

given by (2.7) is equal to fYa(ya;θ′) ∀ya, if and only if there exists a bijective func-

tion g: K → K, such that xk
xg(k)

= c ∀k ∈ K, where c 6= 1 is a constant and |c| = 1,

i.e., the modulation constellation is symmetric about the origin.

Proof : We prove the result in Theorem 2.1 in three steps. First, we assume

θ′ 6= θ for which fYa(ya;θ) = fYa(ya;θ′) ∀ya exists, and show that it leads to a

bijective function g satisfying xk
xg(k)

= c ∀k ∈ K. Then, we assume that a bijective

function g satisfying xk
xg(k)

= c ∀k ∈ K exists, and show that there exists a θ′ 6= θ
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for which fYa(ya;θ) = fYa(ya;θ′) ∀ya. Finally, using Definition 2.2, we show that

the condition xk
xg(k)

= c ∀k ∈ K is equivalent to the modulation constellation being

symmetric with respect to the origin. The details are in Appendix A.1.

Remark 2.3 From Theorem 2.1, we can see that since the modulation constella-

tions, such as M-QAM, satisfy the definition of symmetric modulation constella-

tions in Definition 2.2, the blind channel estimation problem in (2.6) does not have

a unique solution and suffers from an ambiguity problem.

2.2.3 Proposed Technique

In this subsection, we present our proposed technique to resolve the ambiguity

problem in (2.6).

The rationale behind the proposed technique comes from the fact that Theo-

rem 2.1 shows that symmetry of the modulation constellation with respect to the

origin is the cause of the ambiguity. A simple way to achieve constellation asym-

metry2 is to add a constant s to each element of A. The resultant asymmetric

shifted modulation constellation is formally defined as follows:

Definition 2.4 The asymmetric shifted modulation constellation, A, is defined as

A , {xk + s, ∀ xk ∈ A, s ∈ R+}, (2.8)

where R+ is the set of positive real numbers.

In the rest of the thesis, we also use xk = xk + s to denote the kth element of

A.

For illustration, Fig. 2.2 shows the effect of the proposed technique on the

16-QAM constellation. We can see that the resulting modulation constellation is

shifted along the horizontal axis, which increases the average energy per symbol of

the modulation constellation. This increase in the average energy per symbol can

be justified as follows: in reality it is inevitable to use some extra energy to estimate

2Note that it may be possible to achieve constellation asymmetry through other means, such
as design of irregular modulation constellations. The optimum design of such modulation con-
stellations is outside the scope of this work.
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s =
√
βE

Figure 2.2: Effect of the proposed technique on the constellation of 16-QAM. The
resulting constellation is shifted along the horizontal axis, i.e., it is asymmetric
around the origin.

the unknown channels, whether it is done by pilots or by the proposed technique. In

this regard, it is important to note that the smaller the energy used for shifting the

modulation constellation, the closer the average energy of the proposed technique is

to the ideal scenario where the channels are perfectly known at the receiver and no

extra energy is needed for channel estimation.

Remark 2.4 The addition of the DC component lowers power efficiency similar

to the use of superimposed training [72]3. However, the proposed shifted modulation

technique has the offsetting advantages that i) bandwidth efficiency is not reduced,

and ii) the DC offset can be used to reduce the peak-to-average power of the signal

envelope during transmissions resulting in lowered cost/complexity power ampli-

fiers. Moreover, the proposed scheme is well-suited to MQAM as investigated here.

Since, this is a spectrally efficient modulation scheme used where power efficiency

is not critical

For the sake of numerically investigating the problem of smallest possible shift

energy, we define β as the portion of the average energy per symbol that is allocated

to the shift and use the real constant s ,
√
βE, where 0 < β < 1 to shift the

symmetric modulation constellation, and E as the average symbol energy of a given

constellation as defined by (2.2). In this case, the problem of smallest shift energy

3Note that the existing hardware implementations for superimposed training [112], can also
be used here for shifting the modulation constellation.
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corresponds to the problem of finding the minimum value of β. The minimum

value of β is an indication of how much extra energy is needed compared to the

perfect channel knowledge scenario.

In Section 2.3.1, we derive a lower bound on the estimation error, which allows

us to numerically find the minimum value of β.

2.3 EM-Based Estimator

In this section, we derive an EM estimator to obtain channel estimates in a FD

system with asymmetric shifted modulation constellation defined in Definition 2.4.

We derive a lower bound on the estimation error of the estimator. Finally, we

investigate the complexity of the proposed estimator.

For the sake of notational brevity, we first define

φ , [<(haa),=(haa),<(hba),=(hba)]. (2.9)

We can then reformulate the ML problem in (2.6) as follows

[<̂(haa), =̂(haa), <̂(hba), =̂(hba)] , arg max
φ

(ln fYa(ya;φ)), (2.10)

where fYa(ya;φ) is given by (2.7) and ln fYa(ya;φ) is known as the log-likelihood

function.

In formulating the channel estimation problem in (2.6) (and hence in (2.10)),

we assumed unknown transmitted symbols. These unknown transmitted symbols

can be treated as hidden data. A common approach to solving the maximization

problem in (2.10) in the presence of hidden data is the EM algorithm [113], which

is adopted in this work. The main steps of EM algorithm are

1. Expectation step: In the E-step, the expectation of the log-likelihood is taken

over all the values of the hidden variable, conditioned on the vector of observa-

tions, and the nth estimate of φ (φ(n)). In (2.1), the hidden variable is xb and

consequently, we need to evaluate Q(φ|φ(n)) , EXb|ya,φ
(n) [ln fYa(ya,xb|φ)].

2. Maximization step: In the M -step, the function Q(φ|φ(n)) obtained from the
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E-step is maximized with respect to φ.

3. Iterations: We iterate between the E- and M -steps until convergence is

achieved.

The equations needed for the E- and M -steps are summarized in the proposi-

tions below.

Proposition 2.2 The E-step during nth iteration of the algorithm is given by

Q(φ|φ(n)) = −N ln(Mπσ2)− 1

σ2

N∑
i=1

M∑
k=1

T
(n)
k,i |yai − hbaxk − haaxai |2, (2.11)

where φ(n) , [ĥ
(n)
aa , ĥ

(n)
ba ] are the estimates of the channels obtained from φ(n) during

the nth iteration of the algorithm, and T
(n)
k,i is defined as

T
(n)
k,i ,

exp
(
−1
σ2 |yai − ĥ(n)

ba xk − ĥ
(n)
aa xai |2

)
∑M

k=1 exp
(
−1
σ2 |yai − ĥ(n)

ba xk − ĥ
(n)
aa xai |2

) , (2.12)

where k ∈ K, i ∈ I , [1, 2, · · · , N ], xk ∈ A, xai ∈ A and xk ∈ A.

Proof : See Appendix A.2.

Proposition 2.3 The M-step during the nth iteration of the algorithm is given by

φ(n+1) =
1

s1s4 − s2
2 − s2

3


−s2v3 − s3v4 + s4v1

−s2v4 + s3v3 + s4v2

s1v3 − s2v1 + s3v2

s1v4 − s2v2 − s3v1

 , (2.13)

where

s1 ,
N∑
i=1

|xai |2, s2 ,
N∑
i=1

M∑
k=1

T
(n)
k,i <(xaix

∗
k), (2.14a)

s3 ,
N∑
i=1

M∑
k=1

T
(n)
k,i =(xaix

∗
k), s4 ,

N∑
i=1

M∑
k=1

T
(n)
k,i |xk|2, (2.14b)
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v1 ,
N∑
i=1

<(x∗aiyai), v2 ,
N∑
i=1

=(x∗aiyai), (2.14c)

v3 ,
N∑
i=1

M∑
k=1

T
(n)
k,i <(yaix

∗
k), v4 ,

N∑
i=1

M∑
k=1

T
(n)
k,i =(yaix

∗
k). (2.14d)

Proof : See Appendix A.2.

Remark 2.5 It is well-known that the EM algorithm may be very sensitive to ini-

tialization [114]. Although different methods exist for EM initialization, generally

they are not computationally efficient [114,115]. For the given channel assumptions

in Section 2.4, our empirical results showed that initializing the EM algorithm by

φ(0) , [0, 0, 0, 0] resulted in the lowest estimation error. Hence, this initialization

is used in this work.

2.3.1 Lower Bound on the Estimation Error

In this section we derive a closed-form lower bound on the estimation error of the

proposed estimator. The derived lower bound directly links the channel estimation

error to the parameter β, defined in Section 2.2.3.

The EM algorithm, defined in Propositions 2.2 and 2.3, is a ML estimator for

the parameter vector φ in (2.9). Hence, we aim to derive the lower bound for

the variance of the proposed ML estimator. The ML estimator is asymptotically

efficient [116] and its MSE is lower bounded by the inverse of the Fisher information

matrix (FIM) [116]. This result is known as Cramer Rao lower bound (CRLB) and

is given by

EΦ̂l
[|φ̂l − φl|2] ≥

[
I−1 [fYa(ya;φ)]

]
l,l
, (2.15)

where φl is the lth element of the parameter vector φ, φ̂l is an estimate of φl, for l ∈
{1, 2, 3, 4}, [·]l,l is the lth diagonal element of a square matrix, and I−1 [fYa(ya;φ)]

is the inverse of FIM. Since the inverse of FIM in (2.15) cannot be found in closed-

form [74, 117], we derive a lower bound on the MSE of the proposed estimator,

which is in closed-from. The result is presented in the proposition below.
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Proposition 2.4 The variance of the proposed estimator is lower bounded by

EΦ̂l
[|φ̂l − φl|2] ≥

(
σ2

2NE

)
1 + β

(1 + 2β)
, (2.16)

where l ∈ {1, · · · , 4}, N is the number of observations, E is the average symbol

energy of the modulation constellation before the shift, and β is the portion of E

that is allocated to the shift.

Proof : See Appendix A.3.

Remark 2.6 The result in (2.16) links the closed-form lower bound of the estima-

tion error to the average energy of the modulation constellation before the shift and

the portion of this average energy allocated to the shift. This is important because

in Section 2.4.1, we will use (2.16) to find the minimum shift energy needed for the

proposed technique.

2.3.2 Complexity Analysis

To evaluate the feasibility in implementing the proposed estimator, we investigate

the computational complexity of the estimator in terms of required floating point

multiplications and additions (flops) [118].

Table 2.1 shows the number of multiplications and additions needed for the

EM estimator for hba. Although we only present the complexity analysis of hba,

similar complexity is also observed for estimating haa. In each row of the table, the

number of required additions and multiplications to implement a given equation is

presented and are then summed to obtain overall complexity.

It is clear from Table 2.1 that the complexity of EM estimator per iteration

is proportional to NM2. This analysis shows that the EM algorithm is compu-

tationally very efficient since, for a given modulation constellation with size M ,

the computational complexity of the EM estimator only grows linearly with the

number of observations, N .

Remark 2.7 In data-aided approaches to channel estimation both xa and xb in (2.1)

are assumed to be known. Consequently, linear channel estimation can be performed

for linear Gaussian models (LGMs) as explained in [116]. It is a well-known fact
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Table 2.1: Complexity analysis of the EM estimator.

EM - Complexity per iteration
(Eq. No.) Additions Multiplications

(2.12) 3M + 2 6M + 6
(2.11) NM(3M + 4) NM(6M + 9) + 5
(2.13) 4NM(3M + 2) + 3N + 14 4NM(6M + 8) + 3N + 33

ĥba 15NM2 + 12NM + 3N + 3M + 16 30NM2 + 41NM + 3N + 6M + 44

that linear estimator complexity estimators for LGM is independent of the mod-

ulation size M , and only grows linearly with the number of observations [116].

The extra complexity of the proposed algorithm compared to linear estimators is

expected. This is because as opposed to linear estimators, the proposed estimator

requires no data-aided piloting, and hence, it allows for efficient use of the band-

width for channel estimation.

2.4 Simulation Results

In this section, we present numerical and simulation results to investigate the per-

formance of the proposed estimator with asymmetric shifted modulation constel-

lation. We consider a FD communication system as illustrated in Fig. 2.1. The

analysis in Section 2.3.1 shows an identical lower bound for the estimation error

of both haa and hba. Hence, in this section, we only present the results for the

communication channel hba since identical results are obtained for the SI channel

haa.

For each simulation run, N data and interfering symbols are randomly generated

assuming shifted 16-QAM modulation constellation is used (M = 16). The chan-

nels are constant for the transmission of N symbols, i.e., the quasi static assump-

tion. We assume that there is no line-of-sight (LOS) communication link between

the transmitter of node b and the receiver of node a. Hence, the communication

channel hba can be modelled as a Rayleigh fading channel, i.e., hba ∼ CN (0, σ2
hba

).

For the SI channel, experimental results have shown that before passive and active

cancellation the SI channel has a strong LOS component and can be modelled as a

Rician distribution with a large K factor (approximately 20-25 dB). After passive
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suppression and analog cancellation, the strong LOS component is significantly re-

duced but still present and can be modelled as a Rician distribution with K = 0

dB [15]. Hence, we generate the SI channel as

haa =

√
K

K + 1
σhaae

jζ +

√
1

K + 1
CN (0, σ2

haa), (2.17)

where ζ is uniformly distributed angle of arrival of the LOS component of the SI

channel [119].

For the simulations, the signal-to-interference-noise ratio (SINR) is given by [15]

SINR =
1

1
SIR

+ 1
SNR

, (2.18)

where the signal-to-interference ratio SIR =
σ2
hba

σ2
haa

assuming both nodes use con-

stellations with the same average energy, the desired-signal-to-noise ratio SNR =
σ2
hba

log2 (M)Eb

N0
, Eb is the average bit energy which is defined below (2.2) and N0 is

the noise power spectral density.

As discussed in Section 1.1, even with state-of-the-art passive suppression and

analog cancellation, the SIR can still be around −50 dB [15,30]. Hence, we adopt

this value of the SIR in the simulations while assuming that the communication

channel has average energy of unity, i.e., E[|hba|2] = σ2
hba

= 1. Furthermore, in

order to investigate the performance of the proposed estimator over a range of

SINR, we fix N0 = 1 and run the simulations for different values of Eb/N0 (in dB).

The figures of merit used are the average mean square error (MSE) and the BER,

which are obtained by averaging over 5000 Monte Carlo simulation runs.

2.4.1 Minimum Energy Needed for Channel Estimation

In this subsection, we are interested in finding the minimum value of β, for a given

Eb/N0 and N . As discussed in Section 2.2.3, we use s ,
√
βE, where 0 < β < 1, to

shift the symmetric modulation constellation. Hence, a lower value of β is desirable

since it means less energy is used to shift the modulation constellation.

In order to find a minimum value of β suitable for a practical range of Eb/N0

and N , we use the average MSE lower bound in (2.16) to observe the behavior
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Figure 2.3: MSE performance of the proposed channel estimator for different values
of β for Eb/N0 = 0 dB, N = 128 and SIR = −50 dB.

of the proposed estimator as a function of β at low N and low Eb/N0. This is

motivated by the fact that the minimum value of β found for low N and low Eb/N0

will ensure that the desired estimation error will also be achieved for high Eb/N0

and/or when the number of observations N is large. This intuition is confirmed

from (2.16), which indicates that higher values of β are needed at low Eb/N0

to reach a given estimation error. Furthermore, since the lower bound on the

estimation error also decreases with N , the minimum value of β found for smaller

N can also serve for larger N . Since the experimental results of [15, 108] show

that the FD communication channel is normally constant for more than N > 128

symbols, we propose to find the minimum β at N = 128 and Eb/N0 = 0 dB.

Fig. 2.3 shows the MSE performance of the proposed technique versus β for

Eb/N0 = 0 dB, N = 128 and SIR = −50 dB. If the desired estimation error is

taken to be within 10% of the lower bound error, then we can see from the figure

that for β < 0.2, the MSE of the proposed estimator is within 10% of the lower

bound. Consequently, the minimum value of β is 0.2. This minimum value of β in
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Figure 2.4: MSE performance of the proposed channel estimator vs. Eb/N0 for
β = 0.2, N = 128 and SIR = −50 dB.

turn determines the minimum required shift energy, i.e., the optimum shift energy.

This is because the energy of the shift for a fixed constellation energy (E) is given

by s2, where s is given by s =
√
βE.

Fig. 2.4 shows the MSE performance of the proposed estimator with β = 0.2

(the selected minimum value of β) vs. Eb/N0 (dB) for N = 128 and SIR = −50

dB. The lower bound in (2.16) is plotted as a reference. The figure shows that as

Eb/N0 increases, the gap between the performance of the proposed estimator and

the lower bound decreases. The gap is less than 2 dB after Eb/N0 = 20 dB.

In the following sections, we set β = 0.2 and N = 128 to study the performance

of the FD communication system.

2.4.2 Comparison with Data-Aided Channel Estimation

In this section we compare the MSE and BER performance of the proposed esti-

mator against a data-aided channel estimator for the case that the average energy
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Figure 2.5: MSE performance of the proposed technique.

per transmitted frame is the same for both methods 4. For the proposed technique,

we assume that (i) all the transmitted symbols are data symbols, and (ii) shifting

the modulation constellation increases the average energy by 20% compared to the

ideal scenario when no channel estimation is needed (corresponds to β = 0.2). For

the data-aided channel estimation, we assume that (i) 64 pilot symbols are used in

a frame of 128 symbols and (ii) these pilots also require an extra 20% energy.

MSE performance: The average MSE reveals the accuracy of the channel esti-

mation. Fig. 2.5 plots the average MSE vs. Eb/N0 with β = 0.2, N = 128 and SIR

= −50 dB. The lower bound from (2.16) is plotted as a reference. We also plot

the MSE for data-aided channel estimation with (i) 64 pilot symbols in a frame of

128 symbols and (ii) 128 pilot symbols in a frame of 128 symbols. Fig. 2.5 shows

that the proposed technique outperforms data-aided channel estimation when both

methods use the same extra amount of energy for channel estimation. At high

4Note that the simulation results have been obtained by normalizing the shifted modulation so
the extra power needed to shift the modulation does not push the power amplifiers into saturation
and hence, power amplifiers do not experience any non-linearities.
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Eb/N0, the MSE performance of the proposed technique is within 3− 4 dB of the

lower bound.

It has been shown in [26] that the effect of quantization error in FD commu-

nication system can be modeled as an additive Gaussian noise. This means the

system model given by (2.1) implicitly includes the effect of quantization noise as

well as the effect of thermal noise in the Gaussian noise term wa. Consequently,

the effect of quantization noise on the performance of the proposed estimator can

be studied by observing the MSE results of the proposed estimator in the low SNR

region as shown by Fig. 2.5. The results of Fig. 2.5 show that at low SNR region a

noticeable MSE gain is not obtained by using the proposed estimator instead of the

data-aided technique that uses 128 pilots. However, the proposed technique is still

more attractive compared to the data-aided technique because of the bandwidth

efficiency.

BER performance: Fig. 2.6 shows the average BER vs. Eb/N0 (dB) with β =

0.2, N = 128 and SIR = −50 dB. The BER performance with perfect channel

knowledge is plotted as a reference. We also plot the BER for data-aided channel

estimation with 64 pilot symbols in a frame of 128 symbols. Fig. 2.6 shows that

the proposed technique outperforms the data-aided channel estimation in terms of

the BER. This is to be expected since, as shown in Fig. 2.5, for the same extra

amount of energy for channel estimation the proposed technique has much lower

MSE compared to data-aided channel estimation. In addition, at high Eb/N0, the

BER performance of the proposed technique is within 1 dB of the ideal performance

obtained with perfect channel knowledge.

As shown in this sub-section, In comparison to the data-aided algorithms, the

proposed algorithm is more bandwidth efficient. Also comparison to Compared to

the existing blind algorithms, which suffer from phase ambiguity [73], the proposed

algorithm can estimate the channel with no phase ambiguity. These advantages

have been obtained by an increase in complexity as explained in Remark 2.7. How-

ever, the superior performance of the proposed algorithm as shown in Figs. 2.5

and 2.6 produces attractive tradeoffs compared to the existing data-aided and blind

algorithms.
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Figure 2.6: BER performance of the proposed technique.

2.4.3 Effect of Power of SI Signal

In the results so far, we have set the SIR to −50 dB. In this section, we assess the

impact of the SI power level on the performance of the proposed technique.

Fig. 2.7 plots the BER versus the SIR (dB) for Eb/N0 = 0, 10, 20 dB, with

β = 0.2 and N = 128. We can see that as the SI power increases, the BER perfor-

mance of the proposed technique remains nearly constant. This is because in FD

communication the self-interference signal is completely known to the receiver [23].

Consequently, for relatively small channel estimation error of the proposed estima-

tor, the SI can be cancelled regardless of its power. Fig. 2.7 illustrates the robust-

ness of the proposed technique, i.e., even with weak passive suppression and analog

cancellation requiring digital SI cancellation to handle a very large SIR (e.g., −100

dB), the BER is not significantly altered.
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Figure 2.7: Effect of SI power level on the BER performance of the proposed
technique.

2.5 Conclusions

In this chapter, we have proposed a new technique to estimate the SI and commu-

nication channels in a FD communication systems for residual SI cancellation. In

the proposed technique, we add a real constant number to each constellation point

of a modulation constellation to yield asymmetric shifted modulation constellations

with respect to the origin. Using identifiability analysis, we showed mathematically

that such a modulation constellation can be used for ambiguity-free channel esti-

mation in FD communication systems. We proposed a computationally efficient

EM-based estimator to estimate the SI and communication channels simultaneously

using the proposed technique. We also derived a lower bound for the estimation

error of the proposed estimator. The results showed that the proposed technique

is robust to the level of SI power.



Chapter 3

Joint Channel and Phase Noise

Estimation for mmWave

Full-Duplex Communication

Systems

The PN process associated with local oscillators varies significantly faster at mm-

Wave frequency band as opposed to microwave frequency band. This fast variation

of the PN process reduces the effectiveness of digital SI cancellation techniques.

However, in contrast to HD communication, tracking the PN process for FD en-

abled systems is more challenging. This is due to the presence of strong SI signal,

which corrupts the observations needed for tracking. This chapter of the thesis con-

siders a MIMO mmWave FD communication system, and proposes an EKF based

estimation algorithm to track the rapid variation of PN at mmWave frequencies in

the presence of a strong SI signal.

The remainder of this chapter is organised as follows. In Section 3.1, we present

the system model. Then in Section 3.2, we propose an EKF based algorithm

to jointly estimate the channel and track the PN process. In this same section

we also discuss the complexity of the proposed algorithm, and present Proposi-

tion 3.1, which derives a lower bound for the estimation error of PN at mmWave.

In Section 3.3, we numerically show that the mean square error performance of the

43
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proposed estimator approaches the lower bound. We also simulate the bit error

rate performance of the proposed system and show the effectiveness of a digital

canceller, which uses the proposed estimator to estimate the SI channel.

3.1 System Model

We consider the MIMO communication system between two mmWave FD nodes a

and b, each with Nt transmit and Nr receive antennas as illustrated in Fig. 3.1. The

considered communication system can be a model for backhaul communication for

cellular systems [43]. In this work, we make the following assumptions:

1. The same number of transmit and receive antennas for both nodes : We as-

sume both nodes in the considered FD communication system have the same

number of transmit and receive antennas.

2. Modeling of RF impairments : RF impairments due to imperfect transmitter

and receiver chain electronics have been shown to significantly degrade the

performance of the analogue cancellation techniques [26,29]. Since the focus

of this work is residual SI cancellation, we only include PN in our model and

assume that the other hardware impairments are dealt by a RF canceller.

Such an assumption is also made in [70,84,120,121].

3. Assumptions on oscillators : We make two assumptions about the oscillators.

First, we assume that free running oscillators are used. The assumption of

using free running oscillators for mmWave communications has also been

made in [43, 122]. Second, we assume each transmit and receive antenna is

equipped with an independent oscillator.

4. Quasi-static flat fading channel assumption: The SI measurement results

of [81] show that even with omnidirectional dipole antennas, the delay spread

of the channel does not exceed 800 ns. This delay is significantly smaller than

the proposed symbol durations for 5G communication [123, 124], which are

in order of µs. Hence, not only can the channel be assumed flat but it can

also be assumed to remain constant over transmission of one block of data

(quasi-static). Similarly, measurement results of the desired communication
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Figure 3.1: System model block diagram of FD communication, where AC stands

for analogue SI cancellation, DC stands for digital SI cancellations, ejθ
[r/rb/t/SI]

l rep-
resents the PN at the lth antenna.

channel show that the channel delays are relatively small compared to the

symbol durations [125].1

5. Synchronized transmission and reception: Although synchronizing transmis-

sion and reception of analogue desired communication signal with the recep-

tion of analogue SI signal is an important practical problem and requires its

own detailed investigation, the synchronized FD communication assumption

is widely used in the literature of channel and PN estimation for digital SI

cancellation (DC) [55,70,84].

Before proceeding further, we tabulate the mathematical notations used in this

chapter in Table 3.1, for the ease of reference.

1While some studies consider multiple non line of sight (NLoS) for mmWave channels [126–
128], in this work we only consider a mmWave communication channel with a single-tap multipath
channel. The same assumption has also been made in [43,122,129], where PN problem at mmWave
communication is studied.
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Table 3.1: Important symbols used in Chapter 3.

Symbol Description

y(n) The (Nr × 1) vector of received symbols.

x(n) The (Nt × 1) vector of transmitted symbols.

xSI(n) The (Nt × 1) vector of self-interfering (SI) symbols.

w(n) The (Nr × 1) Gaussian noise vector.

θ
[m]
i (n) The time varying phase noise of ith oscillator and m ∈ {t = transmit, r = receive, SI}.

H(n) The (Nr ×Nt) communication channel.

HSI(n) The (Nr ×Nt) self-interference (SI) channel.

H(n) The (Nr × 2Nt) state transition matrix for joint PN and channel estimation.

β(n) The (2Nt × 1) state vector for joint channel and PN estimation.

3.1.1 Mathematical Representation of Received Vector

In this subsection, we present a mathematical model for the received vector of a

FD MIMO communication system at mmWave frequencies. The received vector at

node a and at time instant n, is y(n), and is given by

y(n) = H(n)x(n) + HSI(n)xSI(n) + w(n), (3.1)

where y(n) , [y1(n), · · · , yNr(n)]T , and yi(n) is the received symbol at the ith

antenna. For i ∈ {1, · · · , Nr} and k ∈ {1, · · · , Nt}, the element in the ith row and

kth column of Nr ×Nt channel matrix H(n) is given by hi,ke
j
(
θ
[r]
i (n)+θ

[t]
k (n)

)
, where,

hi,k is the communication channel between the kth transmit antenna of node b to

the ith receive antenna of node a, for m ∈ {r, t, SI}, θ[m]
j (n) is the oscillator PN at
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the jth antenna and m determines the type of antenna such that m = r indicates

a receive antenna, m = t means a transmit antenna, and m = SI indicates an

interfering antenna. Furthermore, PN variation of a free running oscillator follows

a Wiener process [130], i.e.,

θ
[m]
j (n) = θ

[m]
j (n− 1) + δ(n), (3.2)

where δ(n) is Gaussian noise with mean 0 and variance σ2
[m], i.e., δ(n) ∼ N (0, σ2

[m]).

Similarly, the element in the ith row and kth column of Nr × Nt SI channel

matrix HSI(n) is given by hSI
i,ke

j
(
θ
[r]
i (n)+θ

[SI]
k (n)

)
, where hSI

i,k is the interference channel

between the kth transmit antenna to the ith receive antenna of node a.

In addition, the kth elements of Nt × 1 vectors x(n) and xSI(n) are given by

xk(n) and xSI
k (n), respectively, which are the transmitted symbols from the kth

transmit antenna of nodes b and a, respectively.

Finally, w(n) , [w1(n), · · · , wNr(n)]T , where wi(n) is the complex Gaussian

noise, i.e., wi(n) ∼ CN (0, σ2).

3.1.2 Mathematical Representation for Joint Channel and

PN Estimation

For received vector y(n) and noise vector w(n) in (3.1), a useful mathematical

model for joint channel and PN estimation, is of the form [116, Ch. 13, pp.450,

eq.13.66]

y(n) = H(n)f (β(n)) + w(n), (3.3)

where H(n) is the state transition model matrix, f is a nonlinear function, and

β(n) is the state vector to be estimated.

A fundamental step in the problem of joint channel and PN estimation is the

construction of the state vector and the state transition matrix based on the system

model given by (3.1). The state vector and the state transition matrix for the joint

PN and channel estimation in the presence of SI signal are given by (3.4) and (3.5),

respectively.
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• The state vector : We construct the state vector using the time evolution

of phase given by (3.2) as follows:

β(n) , [β1(n), · · · ,βNr
(n)]T (3.4)

• The state transition matrix :

H(n) ,


h1 0 0

0
. . . 0

0 0 hNr

 (3.5)

where

βi(n) , [βi,1, · · · , βi,2Nt
], (3.6a)

βi,k(n) ,

{
θ

[r]
i (n) + θ

[t]
k (n), k is odd;

θ
[r]
i (n) + θ

[SI]
k (n), k is even

, (3.6b)

hi , [hi,1, · · · , hi,2Nt ]� [x1(n), · · · , x2Nt(n)], (3.6c)

hi,k ,

{
hi,k, k is odd;

hSI
i,k, k is even

, (3.6d)

xk(n) ,

{
xk(n), k is odd;

xSI
k (n), k is even

, (3.6e)

k = {1, · · · , 2Nt} (3.6f)

k =

{
k, k < Nt ;

k −Nt, k > Nt

. (3.6g)

The principle idea behind the design of the state vector β(n) and the state

transition matrix H(n) as given by (3.4) and (3.5), respectively, is the fact that

the PN noise is the only random variable that varies from one symbol to another,

and needs to be tracked. On the other hand, because of the quasi-static nature of

the communication and SI channels, they remain constant over transmission of a

single data packet. Therefore, these channels need to be estimated only once at the
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beginning of data transmission. This initial channel estimation for the constant

channels can be done using pilot transmission.

Furthermore, we note that at each receive antenna there are 2Nt parameters

that need to be estimated, Nt parameters for the communication channel andNt pa-

rameters for the SI channel. This explains the existence of index k ∈ {1, · · · , 2Nt}.

Finally, with the state vector β(n) and the state transition matrix H(n) given

by (3.4) and (3.5), the discrete-time received vector at time instant n and at the

baseband of node a is given by

y(n) = H(n)ejβ(n) + w(n). (3.7)

3.2 Joint Channel and PN Estimation

In this section we use the state vector (3.4) and the state transition matrix (3.5),

and present a joint channel and PN estimator based on the concept of extended

Kalman filtering (EKF) [116]. The observation vector of EKF is given by y(n)

in (3.7), which is a non-linear function of the states β(n). The EKF state equation

is given by

β(n) = β(n− 1) + u(n), (3.8)

where u(n) is Gaussian with mean zero and covariance Q , E[β(n)βT (n)], i.e.,

u(n) ∼ N (02NrNt ,Q). The 2NtNr × 2NtNr covariance matrix Q is given by

Q , E
[
β(n)βT (n)

]
=


R1,1 · · · R1,Nr

...
...

...

RNr,1 · · · RNr,Nr

 , (3.9)

where, for m,n ∈ {1, · · · , Nr}, Rm,n is 2NtNt matrix given by (3.10), where σ2
r , σ

2
t ,
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and σ2
SI are PN variances due to receive, transmit, and SI antennas, respectively.

Rm,n =



σ2
r12Nt×2Nt + diag

σ2
t , · · · , σ2

t︸ ︷︷ ︸
2Nt

 , m = n and is odd

σ2
r12Nt×2Nt + diag

σ2
SI, · · · , σ2

SI︸ ︷︷ ︸
2Nt

 , m = n and is even

diag

σ2
t , · · · , σ2

t︸ ︷︷ ︸
2Nt

 , m 6= n and is odd

diag

σ2
SI, · · · , σ2

SI︸ ︷︷ ︸
2Nt

 , m 6= n and is even

(3.10)

The EKF state update equations are given by [116]

β̂(n|n) = β̂(n|n− 1) + <
{

K(n)
(
y(n)−H(n)ejβ̂(n|n−1)

)}
, (3.11)

β̂(n|n− 1) = β̂(n− 1|n− 1), (3.12)

K(n) = M(n|n− 1)D†(n)×
(
σ2INr + D(n)M(n|n− 1)D†(n)

)−1
, (3.13)

M(n|n− 1) = M(n− 1|n− 1) + Q, (3.14)

M(n|n) = <{(INr −K(n)D(n)) M(n|n− 1)} , (3.15)

where, for k ∈ {1, · · · , Nt},

D(n) =
∂H(n)ejβ(n)

∂βT (n)
=


z1 0T2Nt 0T2Nt

0T2Nt
. . .

...

0T2Nt 0T2Nt zNr

 , (3.16)

zi =

{
hi,kxk(n)ejβ̂i,k(n|n−1) k is even

hSI
i,kx

SI
k (n)ejβ̂i,k(n|n−1) k is odd

, (3.17)

and β̂i,k(n|n− 1) is the 2(i− 1)Nt + k element of vector β̂(n|n− 1).

Remark 3.1 We note that the state vector, as given by (3.8), is a real vector. This

is because the state vector only contains the phases, which are real numbers. The



3.2 Joint Channel and PN Estimation 51

1 2 . . . n

Node a transmitting pilots

used for detection at time n

N data time slots after piloting

β(n− 1) is estimated

HD FD Communication

Figure 3.2: Time diagram of modified EKF.

complex channel coefficients are estimated using this estimated real vector and using

the complex exponential function as given by (3.7). Since the states are all real,

when updating the mean of the states in EKF we can safely discard the imaginary

part of the updated mean as in (3.11).

3.2.1 Symbol Detection

The EKF equation (3.17) shows that zi requires the knowledge of the constant

channels hi,k, h
SI
i,k and the transmitted symbols. Note that xSI

k , the SI symbol is

perfectly known at the receiver.

The knowledge of the constant channels can be obtained using pilot based

estimation during the initial half-duplex (HD) phase of the communication. In

addition, the transmitted symbols at time n are detected using the initial channel

estimates and the estimates of the state vector β at time n − 1. This is because

at time n of the EKF algorithm β(n − 1) has been successfully estimated. This

procedure is shown in Fig. 3.2.

3.2.2 Lower Bound of Estimation Error

In this section we derive a lower bound on the estimation error of the estimator

proposed in the previous subsection. We first note that mean square error (MSE)
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Equation No. Complexity

(3.11) O(NtNr)
(3.13) O(N2

t N
3
r )

(3.14) O(N2
t N

2
r )

(3.15) O(N3
t N

3
r )

Table 3.2: Complexity of each step of EKF algorithm.

for estimating the state vector β(n) is given by

MSE = trace

(
E
[(
β(n)− β̂(n)

)(
βn − β̂n

)T])
(3.18)

With above definition of the MSE vector, we present the following proposition.

Proposition 3.1 MSE of the EKF is lower bounded by trace (Q), i.e.,

MSE ≥ trace (Q) , (3.19)

where Q is the state covariance matrix given by (3.9).

Proof

See Appendix B.2.

Remark 3.2 We note that (3.19) shows that the lower bound on the estimation

error increases as the sum of diagonal elements of the covariance matrix of the

states increases. Furthermore, (3.9) indicates that the diagonal elements of the state

covariance matrix are the function of PN variance. Consequently, increasing the

PN variance will result in worse estimation error. Since the residual SI cancellation

is performed using the estimated SI channel, increasing the PN variance will result

in worse SI cancellation performance. It is also worth to note that [130] shows that

the PN variance is a monotonic increasing of function of carrier frequency. This

means that the estimation error increases with increasing the carrier frequency and

vice versa.
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3.2.2.1 Complexity Analysis of EKF

We present the following proposition on the complexity of the proposed EKF esti-

mator

Proposition 3.2 Table 3.2 shows the complexity of each step of EKF algorithm

using O−notation.

Proof

For the complexity analysis of the proposed joint channel and PN estimation tech-

nique, we take the approach used by [104, 131] and count the number of multi-

plications and additions used in each step of EKF algorithm. The corresponding

complexity calculations for this table can be found in Appendix B.1.

Remark 3.3 According to Table (3.2), the EKF has a polynomial complexity as

a function of number of transmit Nt and receive Nr antennas. We can justify

the increased complexity as follows. In [84], the authors propose an algorithm for

channel estimation with linear complexity. However, the algorithm in [84] assumes

a constant PN for a block of data. This could be an acceptable scenario in microwave

communication but does not suit mmWave communication. Hence, the increased

complexity of the proposed algorithm is justified because of fast variation of PN,

i.e., PN variation over symbol time.

3.3 Simulation Results

In this section we present simulation results for MIMO FD systems at 60 GHz

frequency, which corresponds to mmWave frequency band [132]. For each simula-

tion run we assume a communication packet is 40 symbol long, i.e., N = 40. This

communication packet is transmitted after the training packet, which is 2Nt sym-

bols long, and is used for estimating the constant channels for EKF initialization

as described in Section 3.2.1. We then use 10, 000 simulation runs to obtain the

desired simulation results.

Moreover, we use the assumptions presented in Section 3.1 to generate the

random noise and PN. As summarized in [133], there are many mmWave channel

models available for mmWave systems. In this work, similar to a large number
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of existing works in [34, 43, 122, 134, 135], we adopt a general Rician model. Note

that the proposed estimator is independent of the adopted model. A performance

comparison of the different mmWave channel models is outside the scope of this

work.

We generate the random SI and communication channel (HSI/COM) using Rician

distribution as follows

HSI/COM =

√
K

K + 1
HLoS +

√
1

K + 1
HNLoS, (3.20)

where, K is the Rician distribution K-factor, HLoS is the LoS component of the

channel and is generated assuming uniform distribution for angle of arrival, using

the approach presented in [43], HNLoS is the NLoS component of the channel and

for both SI and communication channel is generated assuming Rayleigh fading.

Furthermore, for both the SI and communication channel we set the K-factor to 2

dB.

We note that the SI and communication channels have different power inten-

sities, i.e., E
[
HSIH

†
SI

]
6= E

[
HCOMH†COM

]
. Assuming that the LoS power of the

residual SI (SI signal after the passive and analog cancellation) is the same as the

LoS power of the communication signal, the signal to interference ratio (SIR) is

given by

SIR =
σ2

COM

σ2
SI

, (3.21)

where σ2
COM and σ2

SI are the variances of NLoS components of the communication

and SI channels, respectively.

In addition, SNR is defined as

SNR ,
E[Es]

σ2
, (3.22)

where Es is the symbol energy, E[Es] = 1, and σ2 is the noise variance.

Finally, we use the MSE for the state vector at time N = 40. This MSE is
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different QAM modulations for a 2× 2 FD MIMO system with SIR= 0 dB.

given by rewriting (3.18) in terms of the Euclidean norm of a vector, i.e., || · ||2,

E
[∣∣∣∣∣∣β(N)− β̂(N)

∣∣∣∣∣∣
2

]
. (3.23)

In what follows we first present the MSE results for different FD MIMO com-

munication systems. We then investigate the residual SI power after digital cancel-

lation and the bit error rate (BER) performance of these systems with the proposed

PN estimation technique.

3.3.1 MSE Performance

In this section we investigate the MSE performance of the proposed PN estimation

technique for a 2× 2 FD MIMO system, and assume that SIR = 0 dB, i.e., the SI

signal is as strong as the desired communication signal.

Fig. 3.3 shows the MSE performance of the proposed system against the de-

rived theoretical bound in Section 3.2.2 for different quadrature amplitude mod-
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ulations (QAM) and different PN variances. Firstly, as discussed in Remark 3.2,

with increasing PN variance the estimation performance degrades. Secondly, it

can be observed from this figure that lower order modulations have better per-

formance compared to the higher order modulations. This is because as shown

in Section 3.2.1, the EKF algorithms requires to detect the transmitted symbols.

Hence, the MSE of EKF is affected by the detection error. Finally, Fig. 3.3 shows

that at high SNRs the MSE performance of the proposed estimator approaches the

lower bound.

In Fig. 3.3, we also plot the MSE result of the state-of-the-art pilot-based phase

noise estimator in [84,86] for microwave frequency. As expected, this estimator does

not perform well compared to our proposed estimator. This is because it assumes

that the PN variations are small, which is not applicable for the case for mmWave

frequency. Note that we only show the MSE result of the estimator in [84, 86] for

64−QAM modulation since the MSE performance is invariant with respect to the

modulation order (the estimator uses pilots and does not require detection).
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3.3.2 Comparison With Unscented Kalman Filter

We compare the performance of the proposed EKF estimator with Unscented

Kalman Filter (UKF). UKF provides an alternative for linearizing the observations.

The detailed implementation of the UKF is provided in Appendix B.3. Fig. 3.4

shows the performance of the EKF and UKF estimators for 8−QAM modulation,

SIR= 0 dB and different PN variances. We can see that the MSE performance of

the proposed EKF estimator is better than the UKF estimator. This is because:

(i) UKF estimator works with the sigma points approximation of the mean of the

state process, while EKF tracks the PN based on the true mean of the linear state

vector, (ii) while the MSE performances of both EKF and UKF are degraded be-

cause of the detection error, this error affects UKF algorithm more than EKF.

This is because the sigma points calculation are affected more by the error due to

the symbol detection (Section 3.2.1), and (iii) UKF is inherently more suitable for

the systems which experience high non-linearities, i.e., both the state and process

models are non-linear and noise is non-linear too. In our case, only the process

model in (3.7) is non-linear.

3.3.3 Residual SI Power

In this section we numerically investigate the remaining SI power after digital

cancellation for a 2 × 2 MIMO FD system with 64−QAM modulation, assuming

the PN variance for all the oscillators is 10−4. This residual power is given by

PSI =
∣∣∣∣∣∣(HSI(n)−H

SI
(n)
)

xSI(n)
∣∣∣∣∣∣

2
, (3.24)

where || · ||2 is the Euclidean norm of a vector, and H
SI

(n) is an estimate of the SI

channel using the proposed EKF estimator. Fig. 3.5 shows the residual SI power for

different SIR values, where a SIR value of 0 dB indicates that passive and analogue

cancellation stages have managed to reduce the SI power to the same level as the

desired signal power.

The numerical result of Fig. 3.5 shows that the performance of digital canceller

depends on the residual SI power after passive and analog cancellation stages. As

the residual SI power after passive and analogue cancellation decreases, so does the
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Figure 3.5: The residual SI power PSI after digital cancellation.

residual SI power after the digital cancellation. The results show that the residual

SI power can be reduced to −25 and −40 dB for SIR of 0 and 15 dB, respectively.

This is important as it shows the effectiveness of digital SI cancellation after passive

and analogue cancellation.

3.3.4 BER Performance

Finally, in this section we present the BER results of a 2 × 2 FD MIMO system

with different QAM modulations, assuming that PN variance for all oscillators is

10−4. Fig. 3.6 shows the BER performance of the system for different values of

SIR. The results are consistent with the results of the residual SI power in Fig. 3.5,

i.e., the higher the SIR the better the BER results. Furthermore, 8−QAM system

performs better than the 64−QAM system, which is consistent with the results of

Fig. 3.6.
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3.4 Conclusions

In this chapter we considered a MIMO FD system for mmWave communication

and proposed a joint channel and PN estimation algorithm2. We also derived a

lower bound on the estimation error and numerically showed that the MSE of

the proposed estimator approaches the error bound. Furthermore, we investigated

the residual SI power after the digital cancellation and showed that the digital

canceller, which uses the estimated SI channel can reduce the SI power to −25 to

−40 dB. These results indicate the effectiveness of digital cancellation after passive

and analogue cancellation stages.

2Indeed, the main focus of this work is to correctly estimate the channel and PN for effective
SI cancellation. In case of inter-node interference [136], the proposed estimator would need to be
modified. However, in the special case, if the inter-node interference can be treated as Gaussian,
then the system model given by (3.1) can capture the effect of the inter-node interference by
including an additional Gaussian noise term due to inter-node interference.





Chapter 4

Data Detection in Full-Duplex

Communication Systems

The corrupted received signal due to the presence of strong SI signal makes data

detection in FD communication challenging. To remove the SI signal and recover

the SI-free signal, the channels are estimated and used to subtract a copy of the

known SI signal from the received signal. Consequently, not only the quality of the

received signal depends on the accuracy of the channel estimates and SI cancella-

tion, but also processing delay is added due to the extra processing stages. Channel

estimation and SI cancellation can be avoided if the statistical properties of the

channels are known. However, detecting the data symbols solely using the statisti-

cal properties of the channels instead of accurate channel estimates, introduces an

ambiguity that needs to be resolved.

This chapter of the thesis investigates the problem of blind data detection,

where detection is based on the statistical properties of the channels. In doing so it

mathematically formulates the ambiguity problem associated with blind detection,

and shows how it can be resolved. The remainder of this chapter is organised as

follows. Section 4.1 presents the system model. Section 4.2 formulates the MAP

detector for data detection in the absence of channel estimates and illustrates the

ambiguity problem associated with the MAP detector. Section 4.3 proposes a

superimposing technique to resolve the detection ambiguity problem. Section 4.4

presents and discusses the simulation results. Finally, Section 4.5 concludes the

61
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chapter.

4.1 System Model

We consider the data detection problem for the single-input single-output (SISO)

FD communication system, as shown in Fig. 4.1. Nodes a and b each have a pair

of antennas, which is used for simultaneously transmit and receive on the same

frequency band. Due to the inherent symmetry of the problem, we only investigate

the data detection problem for node a, as identical results are expected for node b.

The received signal at node a is given by

ya = haaxa + hbaxb + wa, (4.1)

where, ya , [ya1 , · · · , yaN ]T is theN×1 vector of received symbols, xa , [xa1 , · · · , xaN ]T

is the N × 1 vector of self-interference symbols, xb , [xb1 , · · · , xbN ]T is the N × 1

vector of desired communication symbols, wa , [wa1 , · · · , waN ]T is the N×1 vector

of independent identically distributed (i.i.d.) Gaussian noise with zero mean and

variance σ2, i.e., wai ∼ CN (0, σ2).

We make the following assumptions in this thesis:

• Since the digital channels are the channels observed after the passive and
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RF cancellation stages, the direct line-of-sight (LoS) components of these

channels have already been canceled and the residual components are due

to the scatterers [15, 27]. Consequently, similar to [30, 55], we assume haa

and hba are flat-fading and Rayleigh distributed with zero mean and variance

one, i.e., haa, hba ∼ CN (0, 1). Furthermore, we note that the assumption of

same variance for both SI and communication channels corresponds to the

worst case scenario, where the SI channel is as strong as the communication

channel.

• The transmitted symbols are modulated using the modulation set

A = {A1, A2, ..., AM}, with size M . Modulation set A contains all constel-

lation points of any given standard modulation constellation, such as M -ary

phase shift keying (MPSK) modulation, and the transmitter is likely to send

each constellation point with equal probability.

4.2 Blind Data Detection in FD Communication

In this section, we first derive a blind MAP symbol detector for the FD communica-

tion system, which does not require channel estimates and SI cancellation. Then we

show that this blind detector suffers from the detection ambiguity problem because

of the symmetry of conventional modulation constellations around the origin.

4.2.1 MAP Detector

The main results in this section are presented in the following propositions.

Proposition 4.1 The blind MAP symbol detector for the SISO FD communication

system presented in Section 4.1 is given by

x̃bi = max
xbi

f(xbi |ya). (4.2)
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where the marginal probability distribution f(xbi |ya) is proportional to

f(xbi |ya) ∝
M∑

jN=1

· · ·
M∑
j1=1︸ ︷︷ ︸

∼ji

1

λ
exp

( |ξ|2
λσ2

)
, (4.3)

where M is the size of modulation set A, N is the length of the transmitted vector,

i.e., number of transmitted symbols in a transmission block, and

λ ,
N∑

n=1,n6=i

|Ajn |2 −
1

γ

∣∣∣∣∣
N∑

n=1,n 6=i

x∗anAjn + x∗aixbi

∣∣∣∣∣
2

+ |xbi |2 + σ2, (4.4)

ξ ,
N∑

n=1,n6=i

yanA
∗
jn + yaix

∗
bi
− 1

γ

N∑
n=1

yanx
∗
an

(
N∑

n=1,n6=i

x∗anAjn + x∗aixbi

)∗
, (4.5)

γ ,
N∑
n=1

|xaj |2 + σ2. (4.6)

Proof : See Appendix C.1.

Note that the proportionality in (4.3) does not depend on the residual self-

interference symbol xbi and, hence, does not affect the decision in (4.2).

Remark 4.1 The posterior PDF f(xbi |ya) is independent of both the SI and com-

munication channels, i.e., haa and hba. Hence, the MAP detector as proposed by

Proposition 4.1 is independent of the channel estimates. In other words, the sym-

bols can be detected without requiring the interference or communication channel to

be estimated. The MAP detector also directly detects the symbols without requiring

a separate SI cancellation stage. Consequently, the proposed MAP detector is a

blind detection technique that only uses the statistical properties of the channels,

i.e., the Rayleigh fading assumption in Section 4.1.

Proposition 4.2 We call A a symmetric modulation set, if and only if for xk ∈ A,

there exists −xk ∈ A, ∀k. The posterior PDF f(xbi |ya) does not have a unique

maximum if and only if xbi in (4.3) comes from a symmetric modulation set A.

Proof : See Appendix C.2.
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Corollary 4.2.1 Since conventional modulation constellations are symmetric around

the origin, data detection in FD communication with no channel estimation will

result in ambiguity.

4.3 Superimposed Signaling for Resolving the Am-

biguity of Blind Data Detection

In this section we present a superimposed signalling technique to tackle the inherent

ambiguity problem in data detection with no available channel estimates.

4.3.1 Why Superimposed Signalling?

The rationale for using superimposed signalling is as follows. From Proposition 4.2,

the data detection ambiguity in FD communication in the absence of channel esti-

mates, arises because of the symmetry of the modulation constellation around the

origin. Consequently, an obvious approach to resolve the data detection ambiguity

is to alter the symmetry of the modulation constellation around the origin and

create a suitable asymmetric modulation constellation.

One simple way to achieve an asymmetric modulation constellation around the

origin is to add (superimpose) a constant known signal to the transmitted signal.1

We call this approach superimposed signalling. For illustration, Fig. 4.2 shows

the effect of superimposed signalling with constant P on the constellation of an

M = 4-PSK modulation set. Once the M -PSK constellation is shifted, then the

new constellation is asymmetric around the origin and can be used for ambiguity-

free MAP detection with no need for channel estimation.

1The design of optimum asymmetric modulation constellations is outside the scope of this
thesis and is the subject of future work [104].
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4.3.2 Modified System Model

If both nodes a and b superimpose a common constant and known signal P to the

transmitted symbols, then (4.1) can be written as:

ya = haa(xa + P ) + hba(xb + P ) + wa. (4.7)

It is again clear from (4.7) that the effect of superimposed signalling with con-

stant signal P is the same as shifting the modulation constellation by P along the

horizontal axis.

4.3.3 Power Normalization

As illustrated above, superimposed signalling increases the average energy per sym-

bol of the modulation constellation. Conventional (symmetric) modulations oper-

ate under an average transmit power constraint, which places limits on the average

energy per symbol. A fundamental question regarding superimposed signaling is,

therefore, how to choose a fair value of the extra power which is required to super-

impose a known signal on the data symbols to shift the modulation constellation.

If the channels were perfectly known there would be no need to allocate power

for channel estimation. However, in reality the channels are unknown and hence it

is inevitable to expand extra power for channel estimation. The proposed superim-

posed signalling approach is similar in spirit to superimposed training in the liter-

ature, which has been extensively used as a bandwidth-efficient channel estimation

technique in half-duplex (HD) communication systems [137,138]. In superimposed

training, the extra power in the superimposed pilots is used for channel estimation.

In our case, we do not use the extra power for channel estimation. Rather, we

use it only for achieving an asymmetric modulation constellation. Consequently,

to ensure that the proposed method does not exceed the average transmit power

constraint, we shift the modulation by P ,
√
Ep, where Ep is the average energy

used for channel estimation in conventional pilot based channel estimation systems.
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Figure 4.2: Effect of superimposed signalling on the modulation constellation of
M = 4-PSK.

4.4 Simulation Results

In this section, we present the simulation results. First we demonstrate that de-

tection without channel estimation, using symmetric modulation constellation can

result in ambiguity. Then we show that this ambiguity is resolved once the modu-

lation set is shifted to a asymmetric modulation set, i.e., a known signal is superim-

posed on the data signal. We find the minimum power required for superimposed

signaling to resolve the ambiguity problem. Finally, we investigate the BER per-

formance of the proposed detector. Throughout this section we make the following

assumptions:

• Channel and noise: For each run of the simulation, the random channels haa

and hba are generated according to a Rayleigh distribution and are assumed

constant for blocks of N symbols, i.e. block fading. We assume independent

block fading for simulation purposes which means channels are independent

from block to block, i.e., quasi-static.

• Modulation: For the sake of simplicity, we only present the result for binary

shift keying (BPSK) modulation. Consequently, the modulation set A has

two elements.
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Figure 4.3: Posterior function f(xbi|ya) at Eb

No
= 15 dB.

• Noise and shift powers : We assume the average bit energy of the modulation

is Eb and noise power is N0 = 1.

4.4.1 Symmetric Modulation Set

In this section we highlight the result of Proposition 4.2 through simulations.

For symmetric BPSK modulation the posterior function f(xbi |ya) takes two

discrete values. Fig. 4.3(a) shows the posterior function at Eb

No
= 15 dB when

symmetric BPSK modulation is used. It is clear from Fig. 4.3(a) that when this

modulation constellation is used the posterior function does not have a unique max-

imum and hence the MAP detector of (4.2) results in ambiguity. This ambiguity

is seen as equal probability for the elements of modulation set A in Fig. 4.3(a).

Fig. 4.3(b) shows the posterior function at Eb

No
= 15 dB when the modulation con-

stellation is shifted by P ,
√
Eb. It is clear that in this case, the posterior function

has only one maximum and consequently the MAP detector as proposed by Propo-

sition 4.1 results in no ambiguity. This is because now the elements of modulation

set A have different probabilities, hence, the detector can determine which element

is more likely to be transmitted given the received data.
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Figure 4.4: Posterior function f(xbi |ya) for different values of β

4.4.2 Minimum Required Energy for Superimposed Sig-

nalling

Although Fig. 4.3(b) shows that the ambiguity of the MAP detector is resolved

by shifting the modulation constellation, this comes at the cost of increasing the

transmit power by the shift power (|P |2 , Eb). We are interested in the minimum

required power for ambiguity-free MAP detector. Consequently, for 0 < β < 1, we

set the shift to P ,
√
βEb and numerically investigate the minimum value for β.

Fig. 4.4 shows the posterior function f(xbi |ya) for different values of β. Clearly,

as β decreases, the difference between the maximum and minimum value of the

posterior function increases, such that for β = 0.00001, the posterior function does

not have a unique maximum. Fig. 4.4(b) shows that β = 0.001 is sufficient enough

for ambiguity-free MAP detection. However, our simulation results show that for

the FD system under consideration to have a stable detection performance for
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Figure 4.5: BER performance of FD communication system with different avail-
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different channel realizations, the minimum value for β is 0.1.

4.4.3 BER Performance

In this section we investigate the BER performance of the proposed detector. For

simplicity, we only present the results for BPSK modulation in the presence of a

self-interference signal which is as strong as the desired signal. We also set the

shift to P ,
√

0.1Eb. The BPSK BER with perfect channel knowledge is plot-

ted as a reference. The performance of the proposed detector is compared with

a conventional channel estimation-based detection method, assuming the channel

estimation uses the same extra power as the superimposed signal for channel esti-

mation. In the channel estimation-based detection method, the channels are first

estimated using the same extra energy as the superimposed signal and then these

estimates are used for data detection.

Fig. 4.5 shows that when the modulation constellation is symmetric around
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the origin and no channel estimates are available, then the detector fails to detect

the symbols, i.e., all the possible outcomes are equally likely for the transmitted

symbols (c.f. Fig. 4.3(a)). However, shifting the modulation set to an asymmet-

ric modulation set resolves the ambiguity. In addition, the performance of the

proposed detection method is better than the conventional pilot-based detection

method.

4.5 Conclusion

In this thesis, we demonstrated that the detection of symbols in FD communication

systems with no channel estimation results in ambiguity. We proposed a solution to

this ambiguity problem using superimposed signaling, which involves shifted mod-

ulation constellations. We proposed a MAP detector to be used with the shifted

modulation constellation in FD communication system for data detection without

channel estimation. Our results showed that the proposed detection method has

better BER performance, compared to conventional channel estimation-based de-

tection method. The proposed method is bandwidth efficient and can be used in

any system model where the self-interference signal is known, such as in two-way

relay networks and multi-hop one way relay networks [76,139].





Chapter 5

Self-Interference Suppression in

Full-Duplex Massive MIMO

Communication

FD enabled massive MIMO BS can be more bandwidth efficient compared to its

HD counterpart, if the strong SI signal associated with FD communication is sup-

pressed. This can be done by exploiting the extra degree of freedom provided by

the antenna array in the spatial domain. One way of exploiting this degree of

freedom is to spatially suppress the SI signal using transmit precoder. However,

the challenge in designing transmit precoders is to simultaneously suppress both

SI in uplink and MUI in downlink. Hence, this problem first requires a rigorous

mathematical foundation to show that transmit precoders can be designed that can

suppress both SI and MUI. If this problem has a solution then transmit precoders

can be designed to suppress SI and MUI simultaneously.

This chapter of thesis first mathematically formulates the SI and MUI suppression

problem, and discusses the existence of a solution for it. It then considers a massive

MIMO BS with particular antenna array configuration, and proposes a precoder to

suppress both SI and MUI. The remainder of this chapters is organised as follows.

In Section 5.1 we present the system model. Then in Section 5.2 the problem of

SI and MUI suppression for FD enabled massive MIMO is formulated and its so-

lution is discussed. In this same section, we also propose a precoder matrix for FD

73
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massive MIMO system when the number of transmit antennas is the same as the

sum of the number of receiver antennas and the number of uplink users. Finally,

Section 5.4 concludes the chapter.

5.1 System Model

We consider a single-cell multi-user scenario, as illustrated in Fig. 5.1, where a single

FD massive MIMO BS with NT transmit and NR receive antennas, simultaneously

serves K single-antenna HD users in the UL, and U single-antenna HD users in the

DL1. For this system model, the received and transmitted vectors by the BS in the

UL and the DL are given by

yUL = PRHULxUL︸ ︷︷ ︸
Desired signal

+ PRHSIPTxDL︸ ︷︷ ︸
SI

+nDL, (5.1a)

yDL = HDLPTxDL︸ ︷︷ ︸
Desired signal

+nDL, (5.1b)

respectively, where, yUL is the K × 1 received vector by the BS in the UL, yDL is

the U × 1 received vector sent to user equipments (UEs) in the DL, xUL is K × 1

vector of UL symbols, xDL is U×1 vector of DL symbols, PR is the K×NR receive

beamforming matrix, PT is the NT × U transmit beamforming (precoder) matrix,

nDL is U×1 Gaussian noise vector of DL UEs, i.e., nDL ∼ CN (0U , σ
2
DLIU), and nUL

is K×1 Gaussian noise vector at BS, i.e., nUL ∼ CN (0K , σ
2
ULIU), where, IU and IK

are U×U and K×K identity matrices, respectively, HUL is NR×K channel matrix

between the NR receive antennas of the BS and the K UL users, HSI is NR×NT SI

channel matrix between the transmit and the receive antennas of the BS, HDL is

the U ×NT DL channel matrix. Furthermore, we make the following assumptions

about the statistical properties of the channels. The UL, and DL channels are

Rayleigh fading channels with their entries drawn from CN (0, 1) [100,101]. On the

other hand, because of the strong line of sight component (LoS), the SI channel

1We note that considering two sets of different users for UL and DL allows for the problem
to be formulated in its most general form. This system model has also been considered in [102],
however, the authors of [100,140] consider a special case where there is only one set of users being
served in DL or UL.
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Figure 5.1: A FD massive MIMO BS serving U UL and K DL users.

is Rician fading with the entries drawn from CN (µ, σ2) [100, 101]. We ignore the

large-scale fading as it does not impact the main analysis in this work. Finally, we

assume there are no hardware imperfections at the FD massive MIMO BS [141].

In addition, perfect knowledge of channel state information is available at the BS.

Note that the channel estimation can be carried out using the techniques such

as [142] and it is outside the scope of this work.

5.2 Spatial Suppression of SI and MUI

5.2.1 Problem Formulation

For spatial suppression of the SI and MUI, the transmit precoding matrix should

be designed such that the following two equations hold simultaneously

HDLPTxDL = xDL, (5.2a)

HSIPTxDL = 0. (5.2b)

Note that (5.2a) allows for the DL communication with no MUI, and (5.2b)

completely suppresses SI signal in the UL. Using (5.2), the spatial SI and MUI

suppression can be re-formulated as the following system of equations:

Hu = b, (5.3)
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where, H ,

[
HDL

HSI

]
is a N × NT matrix, u , PTxDL is a NT × 1 vector,

b ,

[
xDL

0(N−U)×1

]
is a N × 1 vector, and N is a design parameter. By designing

a particular value of N , we can transmit zeros to all or subset of receive antennas

and/or UEs.

Existence of Solution: If (5.3) has a solution then the precoding matrix PT can

be designed. However, because of the random channel matrices HDL and HSI, H

in (5.3) is also a random matrix, which cannot simply assumed to be full-rank. This

means the existence of a solution for (5.3) is not always guaranteed. In addition,

since the dimensions of HDL and HSI are determined by the number of transmit

and receive antennas, for (5.3) to have a solution a condition is imposed on the size

of transmit and receive antenna arrays as presented in the following proposition.

Proposition 5.1 For a FD massive MIMO BS with NT transmit antennas and

NR receive antennas, serving K single-antenna HD users in the UL and U single-

antenna HD users in the DL, (5.3) has a solution only if NT ≥ NR + U .

Proof : We prove Proposition 5.1 using the method of forward and backwards

reasoning. With forward reasoning, we show that if there is a solution to the

system of equations given by (5.3) then NT ≥ NR +U . With backwards reasoning,

we show that if NT ≥ NR + U , then (5.3) has a solution. The details are in

Appendix D.1.

Remark 5.1 The result of Proposition 5.1 explains why the number of transmit

and receive antennas cannot be the same in a FD massive MIMO BS. In addition,

it allows us to relate to and validate the assumptions made in the earlier works.

For example, the authors in [102] assume that NT = 3NR and NR � U , and H

in (5.3) has a right inverse. Then, they solve (5.3) for b =

[
xd

0NR×1

]
. Similarly,

the authors of [100] assume that NT ≥ NR + U and H in (5.3) has a right inverse

and solve (5.3) for b =

[
xd

0U×1

]
. Both of these assumptions are special cases

of (5.3).
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5.2.2 General Solution

Remark 5.1 illustrates the importance of finding a solution for the general problem

in (5.3), i.e., solution of the system when the vector b in (5.3) has an arbitrary

dimension of N × 1. We present the solution in the theorem below.

Theorem 5.1 For a FD massive MIMO BS, with the system model as given in

Section 5.1, if NT ≥ NR + U , then the matrix H given by (5.3) is full-rank with

probability (w.p.) 1. Hence, (5.3) has a unique solution w.p. 1, given by

u = (HH∗)−1H∗b, (5.4)

where (HH∗)−1H∗ is the right inverse of H, and b is a N × 1 vector.

Proof : To prove Theorem 5.1, the main contribution is to rigorously show that

HH∗ is full-rank (See Appendix D.2). Once it is established that HH∗ is full-rank,

this implies that H is also full-rank [143]. Thus the right inverse exists and the

unique solution is as given by (5.4).

Special Case: For the special case NT = NR + U , H becomes a square matrix

and (5.4) simplifies to u = H−1b, where, b =

[
xd

0(NR+U)×1

]
.

Then it is easy to see that the precoder matrix that allows for both SI and MUI

suppression is given by,

PT = H−1

[
IU

0(NR+U)×U

]
, (5.5)

i.e., the design parameter N = NR + U in this case.

5.3 Simulation Results

In this section we present simulation results to validate and illustrate the per-

formance of the proposed precoder design. Unless otherwise stated, we set the

parameters as follows: U = K = 5, NT = NR + U , σ2
DL = σ2

UL, transmit power

E[xDLx∗DL] = NT, where, E[·] is the expectation operator, signal-to-noise-ratio

SNR , E[x∗DLxDL]

σ2
UL

, and residual SI power is given by E [HSIPTxDL (HSIPTxDL)∗].
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Figure 5.2: Empirical PDF of eigenvalues of HH∗.

5.3.1 Validation

First we present results to validate Theorem 5.1. According to Theorem 5.1, H is

full-rank w.p. 1. This means that the eigenvalues of HH∗ must be positive [143].

Fig. 5.2 plots the empirical probability density function (PDF) of eigenvalues of

HH∗, where H is given by (5.3), for NT = 100 and 500. The results are generated

using 105 Monte Carlo simulation runs. We can see that the PDFs are all zero for

negative values of Eigenvalues. This agrees with Theorem 5.1.

5.3.2 Comparison with Existing Work

Fig. 5.3 plots the residual SI power versus number of transmit antenna elements,

assuming SNR = 10 dB. We compare the performance of the following schemes:

(i) no SI suppression, (ii) standard massive MIMO transmit beamforming, i.e.,

PT = H∗DL [144], (iii) the precoder matrix based on the right inverse of H as

used in [100–102], i.e., PT = (HH∗)−1H∗

[
IU

0(NR+U)×U

]
, (iv) the precoder matrix
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Figure 5.3: Residual SI power versus number of transmit antennas for a FD massive
MIMO BS.

in (5.5). The receiver noise floor at the assumed SNR is also shown. We can see that

the standard massive MIMO transmit beamforming, which ignores SI suppression,

performs the worst. The schemes based on the right inverse and the proposed

scheme can successfully reduce the residual SI power below the receiver noise floor.

However, the precoder given by (5.5) has better performance. This is because for

square matrix H, (5.5) is the optimum solution to (5.3).

5.3.3 BER Performance

Fig. 5.4 plots the average bit error rate (BER) in the uplink and downlink versus

SNR (dB) assuming 4-quadrature amplitude modulation (4−QAM). The results

for UL with no SI and DL with no MUI are plotted as a benchmark. We can

see that the BER results with the proposed precoder design in (5.5) overlap the

benchmark results.

Fig. 5.4 shows that the BER in the UL is better than the DL. This is explained
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as follows. In the DL, following [46], we do not employ any receive filtering to

keep the processing at the users at minimum. However, in the uplink, the receiver

beamforming matrix PR in (5.1a) is set to 1
NR

H∗UL. This allows us to take advantage

of the spatial diversity in the UL, as stated in [46]. This explains the better

performance in the UL.

Furthermore, although in this work we only consider one type of linear precoder

design (zero-forcing (ZF) precoder) based on the well-cited work of [102], other

linear precoders such a regularised inverse channel (RCI) precoders [145, 146] can

also be considered. However, further performance improvement is not expected.

This is because as shown in Fig. 5.4 the ZF based precoder allows for complete

suppression of SI and MUI.

5.4 Conclusions

In this chapter, we developed a mathematical foundation which allows systematic

design of precoding matrix at the BS to suppress SI and MUI in a single-cell,
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multi-user, FD massive MIMO system. We rigorously derived the condition on the

number of transmit and receive antennas. As a main finding, we proved that the

simultaneous suppression of SI and MUI has a solution with probability 1. Our

results validate previous heuristic assumptions made in the literature.





Chapter 6

Conclusions and Future Research

Directions

In this chapter, we provide a summary of general conclusions that can be drawn

from this thesis. In particular, we focus on the open research problems highlighted

in Section 1.3.1. We also outline some future research directions arising from this

work.

6.1 Conclusions

The open research questions were discussed in Section 1.3.1. The major contribu-

tion of the thesis is addressing those research questions.

Addressing Q1 in Section 2.3:

• We proposed a low complexity EM based estimator to estimate both SI and

communication channels using shifted modulation. The proposed estimation

techniques does not require data-aided piloting for channel estimation.

Addressing Q2 in Section 2.2.1:

• We thoroughly investigated the inherent ambiguity of blind channel estima-

tion for estimating SI and communication channels in FD communication

systems. We also presented Theorem 2.1 to design modulation constellations

for ambiguity-free channel estimation in FD communication.

83
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• Based on the result of Theorem 2.1, we designed a modulation constellation,

which allows for estimating both SI and communication channels without

sending data-aided pilots.

Addressing Q3 in Section 2.3.1:

• We derived a closed-form lower bound for the estimation error for estimating

the SI and communication channels in a FD communication system.

• In Section 2.4, we showed that the MSE performance of the proposed EM-

based estimator reaches the derived lower bound.

Addressing Q4 in Section 3.2:

• We first mathematically formulated the problem in Section 3.1.2. The rig-

orous problem formulation allowed us to proposed an EKF based estimator

in Section 3.2 to jointly estimate the channel and track the fast varying PN

process.

Addressing Q5 in Sections 3.1 and 3.3 :

• We derived the lower bound for the estimation error of the EKF-based es-

timator in Section 3.2.2. Proposition 3.1 showed that the error bound is

reciprocal to the covariance matrix of PN random process.

• In Section 3.3 we showed that the MSE performance of the proposed EKF-

based estimator reaches the performance of the bound at high SNR.

Addressing Q6 in Section 4.2:

• We answered this question through the results of Propositions 4.1 and 4.2.

In Proposition 4.1, we first proposed a MAP-based detector to detect the

desired symbols blindly, and then in Proposition 4.2, we showed how to re-

move the ambiguity of blind detection by designing asymmetric modulation

constellations.

Addressing Q7 in Section 5.2:
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• We presented Proposition 5.1 on the number of transmit and receive antennas

for a FD-enabled massive MIMO BS.

• We presented Theorem 5.1 , which stated that for a FD-enabled massive

MIMO BS with the number of transmit antennas greater than or equal to

the sum of the number of receive antennas and the number of UL UEs, there

exits a precoder matrix with probability 1 to suppress both SI and MUI.

In summary the major contributions of the thesis are as follows:

• A novel bandwidth efficient channel estimator for FD communication at mi-

crowave frequency and the derivation of the corresponding lower bound.

• An extended Kalman filter based approach to jointly estimate the channel and

the PN process at mmWave frequency and the derivation of the theoretical

lower bound for the estimation error of the PN.

• A MAP based blind detector to detect data using statistical properties of

communication and SI channel without having the explicit channel state in-

formation.

• A criteria for simultaneous MUI and SI suppression for FD massive MIMO

BS.

6.2 Future Research Directions

A number of future research directions arise from the work presented in this thesis.

• The channel estimation techniques considered in this thesis are applicable to

frequency flat fading channels. A possible extension of these techniques is to

consider frequency-selective channels.

• The analysis of inherent ambiguity problem for channel estimation in Chap-

ter 2 was carried out for classical estimator, when the statistical property

of the channels are unknown. An interesting extension to this work is to



86 Conclusions and Future Research Directions

consider Bayesian estimator such as minimum mean square error (MMSE)

estimator and investigate the effect of different statistical properties on the

ambiguity problem of Bayesian estimators.

• The joint channel and PN estimator in Chapter 3 can also be extended by

applying the design principle outlined in this thesis to MIMO FD communi-

cation systems, where some of the transmit antennas share a single oscillator.

• The result of Proposition 5.1 imposes a condition on the number of transmit

and receive antennas for a FD-enabled massive MIMO BS. An interesting

research question that arises here is the application of antenna selection tech-

niques to these systems.

• This thesis does not consider the impact of mutual coupling [147] or hardware

impairments. This can be considered in future work.



Appendix A

This appendix contains proofs used in Chapter 2.

A.1 Proof of Theorem 2.1

The proof consists of three main steps.

Step 1: We show that if θ′ 6= θ exists such that fYa(ya;θ′) = fYa(ya;θ) ∀ya,
then a bijective function g : K → K exists, such that xk

xg(k)
= c ∀k ∈ K, where c 6= 1

is a constant and |c| = 1. This is done as follows.

If the two joint probability densities fYa(ya;θ′) and fYa(ya;θ) are equal ∀ya,
then it easily follows that the marginal densities fYai (yai ;θ

′) and fYai (yai ;θ) are

also equal ∀yai . From (2.4), fYai (yai ;θ
′) and fYai (yai ;θ) are given by

fYai (yai ;θ) =

(
1

Mπσ2

) M∑
k=1

exp

(−1

σ2
|yai − θ(1)xai − θ(2)xk|2

)
, (A.1a)

fYai (yai ;θ
′) =

(
1

Mπσ2

) M∑
k=1

exp

(−1

σ2
|yai − θ′(1)xai − θ′(2)xk|2

)
. (A.1b)

If fYai (yai ;θ
′) and fYai (yai ;θ) are equal ∀yai , they should also be equal for

yai = θ(1)xai + θ(2)x1. In this case, we have

M∑
k=1

exp

(−1

σ2
|θ(2)(x1 − xk)|2

)
=

87
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M∑
k=1

exp

(−1

σ2
|(θ(1)− θ′(1))xai + θ(2)x1 − θ′(2)xk|2

)
. (A.2)

The left hand side (LHS) of (A.2) is independent of i, while the right hand side

(RHS) of (A.2) depends on i through xai . Consequently, for (A.2) to hold for ∀yai ,
the coefficient of xai should be zero, i.e., θ′(1) = θ(1). Knowing that θ′(1) = θ(1)

and equating (A.1a) and (A.1b), we have

M∑
k=1

exp

(−1

σ2
|yai − θ(1)xai − θ(2)xk|2

)
=

M∑
k=1

exp

(−1

σ2
|yai − θ(1)xai − θ′(2)xk|2

)
. (A.3)

By taking the first and second order derivatives of both sides of (A.3) with

respect to yai , it can be shown that ∀k ∈ K, the points yai = θ(1)xai + θ(2)xk and

yai = θ(1)xai + θ′(2)xk maximize the summations of the M exponential functions

on the LHS and RHS of (A.3), respectively. Consequently, since (A.3) holds ∀yai ,
the points that maximize the summation of M exponential on the LHS of (A.3)

are the same as the points that maximize the summation of M exponentials on the

RHS of (A.3). Hence, for a bijective function g : K → K

θ(1)xai + θ(2)xk = θ(1)xai + θ′(2)xg(k) (A.4)

It can easily be verified that if (A.4) holds ∀yai , then,

θ(2)xk = θ′(2)xg(k), (A.5)

or

θ′(2)

θ(2)
=

xk
xg(k)

. (A.6)

The LHS of (A.6) does not depend on k, consequently, the RHS of (A.6) should

also be independent of k and should be a constant. Hence, for bijective function

g, xk
xg(k)

= c, where c 6= 1 is a constant. We note that if c = 1 then θ(2) = θ′(2)
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and hence θ = θ′, which violates the assumption that fYa(ya;θ′) = fYa(ya;θ) for

θ 6= θ′.

Let us now define permutation Π on the ordered set A = {x1, · · · , xM} as

Π ,

(
x1 x2 · · · xM

Π(x1) = xg(1) Π(x2) = xg(2) · · · Π(xM) = xg(M)

)
. (A.7)

The sequence (xk,Π(xk),Π(Π(xk)), · · · , xk) forms an orbit of the permutation

Π [111]. If xk = cxg(k) ∀k ∈ K, then from the definition of the orbit it is clear that

xk = cmxk ∀k ∈ K, where m is the length of the orbit sequence and c 6= 1 is a

constant. Since, xk = cmxk ∀k ∈ K, we can conclude that cm = 1 and |c| = 1.

Step 2: We show that if the bijective function g: K → K exists, such that
xk
xg(k)

= c ∀k ∈ K, then there exists a θ′ 6= θ for which fYa(ya;θ′) = fYa(ya;θ) ∀ya.
This is done as follows.

Firstly, in Section 2.2.2 we showed that the joint PDF of all the observations is

given by

fYa(ya;θ) =

(
1

Mπσ2

)N N∏
i=1

M∑
k=1

exp

(−1

σ2
|yai − θ(1)xai − θ(2)xk|2

)
, (A.8)

We can see that for a fixed i in (A.8), M different exponential functions corre-

sponding to different values of xk ∈ A are summed together. Since, g : K → K is a

bijective function and consequently replacing xk by xg(x) only affects the order of

the exponential functions, we can rewrite (A.8) as

fYa(ya;θ) =

(
1

Mπσ2

)N N∏
i=1

M∑
k=1

exp

(−1

σ2
|yai − θ(1)xai − θ(2)xg(k)|2

)
, (A.9)

Secondly, for θ′ , [θ(1), θ(2)
c

], fYa(ya;θ′) is given by

fYa(ya;θ′) =

(
1

Mπσ2

)N N∏
i=1

M∑
k=1

exp

(−1

σ2
|yai − θ(1)xai −

θ(2)

c
xk|2

)
, (A.10)
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and since xk
c

= xg(k) ∀k ∈ K, (A.10) can be written as

fYa(ya;θ′) =

(
1

Mπσ2

)N N∏
i=1

M∑
k=1

exp

(−1

σ2
|yai − θ(1)xai − θ(2)xg(k)|2

)
, (A.11)

Comparing (A.11) with (A.9) reveals that for θ′ 6= θ, fYa(ya;θ′) = fYa(ya;θ)

∀ya. Consequently, if bijective function g: K → K exits, such that xk
xg(k)

= c ∀k ∈ K,

then there exists a θ′ 6= θ for which fYa(ya;θ′) = fYa(ya;θ) ∀ya.
Step 3: Thirdly, we show that the condition xk

xg(k)
= c ∀k ∈ K is equivalent to

the modulation constellation being symmetric around the origin. To prove this

equivalency, we need to consider the following two sub-cases:

(i) Firstly, we need to show that if a bijective function g : K → K exists such

that xk
xg(k)

= c, then the modulation constellation is symmetric with respect

to origin. Equivalently, we can show that if a bijective function g : K → K
does not exist such that xk

xg(k)
= c, then the modulation constellation is not

symmetric with respect to origin. To prove this equivalent statement, we

use proof by contradiction. We assume g : K → K does not exist such

that xk
xg(k)

= c, but the modulation constellation is symmetric with respect

to origin. If the modulation is symmetric with respect to the origin then it

satisfies the condition of Definition 2.2 and hence,

f(−xk) = −f(xk). (A.12)

However, since the function f(xk) is defined on set A, (A.12) holds if and only

if both xk and −xk are in the set A. Consequently, set A can be represented

by

A = {x1, x2, · · · , xM
2
,−x1,−x2, · · · ,−xM

2
}. (A.13)

Now if the bijective function g is defined as g(k) = k + M
2

, then xk
xg(k)

= −1.

However, this contradicts the assumption that bijective function g : K → K
does not exist, such that xk

xg(k)
= c∀k ∈ K. Hence, if g : K → K does not exist

such that xk
xg(k)

= c, then the modulation constellation cannot be symmetric
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with respect to origin.

(ii) Secondly, we need to show that if the modulation is symmetric then a bijec-

tive function g : K → K exists such that xk
xg(k)

= c ∀k ∈ K. This easily follows

from the proof of previous step, where we showed that if the modulation con-

stellation is symmetric then A can be represented by (A.13). Consequently,

a bijective function g : K → K exists such that xk
xg(k)

= −1 ∀k ∈ K, i.e.,

g(k) = k + M
2
∀k ∈ K.

Combining the proofs of the three steps, Theorem 2.1 is proved.

A.2 Proof of Propositions 2.2 and 2.3

Propositions 2.2 and 2.3 correspond to the E and M steps of the EM algorithm.

We assume that both transmitters at nodes a and b use the asymmetric shifted

modulation constellation A defined in Definition 2.4, i.e., xai , xbi ∈ A, and assume

a uniform discrete distribution for the transmitted symbols.

A.2.1 Proof of E-Step

In the E-step of the algorithm function Q(φ|φ(n)) is given by

Q(φ|φ(n)) = EXb|ya,φ
(n) [ln fYa(ya,xb|φ)]. (A.14)

To calculate (A.14), we require ln fYa(ya,xb|φ). Hence, we start with the

following joint PDF

fYai (yai , xbi ;φ) = fYai (yai |Xbi = xbi ;φ)pXbi
(xbi)

=
1

Mπσ2

M∑
k=1

δxk,xbi exp

(−1

σ2
|yai − hbaxk − haaxai |2

)
, (A.15)

where, δxk,xbi is the Kronecker delta function and δxk,xbi = 1 if xbi = xk and 0
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otherwise [110]. Consequently, the log-likelihood of all the observations is given by

ln(fYa(ya,xb;φ)) =
N∑
i=1

ln(fYai (yai , xbi ;φ))

= −N ln(Mπσ2)− 1

σ2

N∑
i=1

M∑
k=1

δxk,xbi |yai − hbaxbi − haaxai |
2. (A.16)

The expectation in (A.14) is conditioned on knowing φ(n) during the nth iter-

ation of the algorithm, which is obtained from the M -step. Substituting (A.16)

in (A.14), we have

Q(φ|φ(n)) = Exb|ya,φ
(n) [ln fYa(ya,xb;φ)] = −N ln(Mπσ2)

− 1

σ2
Exb|ya,φ

(n)

[
N∑
i=1

M∑
k=1

δxk,xbi |yai − hbaxbi − haaxai |
2

]
. (A.17)

The assumption of independent transmitted symbols allows to rewrite (A.17)

as follows

Q(φ|φ(n)) = −N ln(Mπσ2)− 1

σ2

N∑
i=1

M∑
k=1

Exbi |ya,φ
(n)

[
δxk,xbi |yai − hbaxbi − haaxai|

2
]
,

= −N ln(Mπσ2)− 1

σ2

N∑
i=1

M∑
k=1

P (xbi = xk|ya,φ(n))|yai − hbaxk − haaxai |2.

(A.18)

We define

T
(n)
k,i , P (xbi = xk|ya,φ(n)). (A.19)

Then it can easily be shown that

T
(n)
k,i =

exp
(
−1
σ2 |yai − ĥ(n)

ba xk − ĥ
(n)
aa xai|2

)
∑M

k=1 exp
(
−1
σ2 |yai − ĥ(n)

ba xk − ĥ
(n)
aa xai |2

) . (A.20)
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Finally, substituting (A.20) into (A.18), Q(φ|φ(n)) can be found as in (A.14).

This concludes the proof of Proposition 2.2.

A.2.2 Proof of M-step

The maximization-step of the EM algorithm is given by

φ(n+1) = arg max
φ

Q(φ|φ(n))

= arg min
φ

N∑
i=1

M∑
k=1

T
(n)
k,i |yai − hbaxk − haaxai |2. (A.21)

We define the following function

r(φ) ,
N∑
i=1

M∑
k=1

T
(n)
k,i |yai − hbaxk − haaxai |2, (A.22)

The minimum of function φ (the maximum of the likelihood function), which

corresponds to the solution of the M− step of the EM algorithm during the nth

iteration, happens at the critical point φ(n+1) for which the Jacobian is zero, i.e.,

J = 0 [148]. To find this critical point the Jacobian matrix should be constructed

and set equal to zero. This is done by taking the derivative of r(φ) with respect to

the four elements of vector φ, as defined by (2.9), to construct the Jacobian matrix

and then set it equal to zero. Then, it can be easily shown that the critical point

φ(n+1) is given by

φ(n+1) = S−1v, (A.23)

where

S ,


s1 0 s2 s3

0 s1 −s3 s2

s2 −s3 s4 0

s3 s2 0 s4

 , v ,


v1

v2

v3

v4

 , (A.24)
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where the elements of S and v are given by (2.14b)-(2.14d).

However, to ensure that the critical point φ(n+1) is the minimum of function

r(φ), the Hessian matrix H should be positive semi-definite [148]. By taking the

second derivatives of r(φ) with respect to the four elements of vector φ, we can

show that H = 2S. Then, according to Sylvester’s criterion [148], H is positive

semi-definite if and only if all the following are positive

s1, det

([
s1 0

0 s1

])
, det


 s1 0 s2

0 s1 −s3

s2 −s3 s4


 , det(S). (A.25)

It can easily be shown that det(S) = (s1s4 − s2
2 − s2

3)2, and is always positive.

According to (2.14b), s1 is always positive, and it is clear that the second deter-

minant is always positive. However, the positivity of the third determinant, i.e.,

s1s4 − s2
2 − s2

3, directly depends on the initialization. This is evident from defini-

tions in (2.14b)-(2.14d), which link s1, s2, s3 and s4 to the function T
(n)
k,i and the

derivation of function T
(n)
k,i in (A.20), which is a function of ĥ

(n)
aa and ĥ

(n)
ba , i.e., the

estimates from the nth iteration. Our numerical investigation shows that for the

initialization vector φ(0) , [0, 0, 0, 0], the Hessian matrix H is always positive and

hence the critical point φ(n+1) is indeed the minimum of function r(φ). Conse-

quently, the EM algorithm with initialization vector φ(0) , [0, 0, 0, 0] converges to

the maximum of the likelihood function.

This concludes the proof of Proposition 2.3.

A.3 Proof of Proposition 2.4

It is shown in [149] that for any random variables X and Y and any parameter

θ, if the probability distribution of X is independent of the parameter θ, then

I[fY (y; θ)] < I[fY (y|x; θ)], where I[·] is the FIM and f(·; θ) is the probability den-

sity function parameterized by θ. Consequently, the performance of the proposed

estimator is lower bounded by the inverse of I[fYa(ya|xb;φ)], i.e.,

EΦ̂l
[|φ̂l − φl|2] ≥

[
I−1 [fYa(ya|xb;φ)]

]
l,l
∀l ∈ {1, 2, 3, 4}, (A.26)
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where φl is the lth element of the parameter vector φ, φ̂l is an estimate of φl, and

[·]l,l is the lth diagonal element of matrix. This is because (i) the performance of

the proposed estimator is lower bounded by I[fYa(ya;φ)] according to (2.15), and

(ii) pXb
(xb) is independent of φ. Furthermore, since (A.26) holds ∀xa,xb, then

the variance is also lower-bounded by

EΦ̂l
[|φ̂l − φl|2] ≥

[
I−1
avg [fYa(ya|xb;φ)]

]
l,l
∀l ∈ {1, 2, 3, 4}, (A.27)

where Iavg = EXb,Xa
[I[fYa(ya|xb;φ)]]. The value of I[fYa(ya|xb;φ)], needed to

evaluate Iavg, is presented in the Lemma below.

Lemma A.3.1 I[f(ya|xb;φ)] is a 4× 4 matrix with its elements given by

i1,1 = i2,2 =
2

σ2

N∑
i=1

|xai |2, i3,3 = i4,4 =
2

σ2

N∑
i=1

|xbi |2, (A.28a)

i2,4 = i4,2 = i1,3 = i3,1 =
2

σ2

N∑
i=1

(<{xai}<{xbi}+ ={xai}={xbi}) , (A.28b)

i2,3 = i3,2 = −i1,4 = −i4,1 =
2

σ2

N∑
i=1

(<{xbi}={xai} − <{xai}={xbi}) . (A.28c)

Proof : It can be easily seen from (2.5) that fYa(ya|xb;haa, hba) is given by

fYa(ya|xb;haa, hba) =

(
1

πσ2

)N
exp

N∑
i=1

(−|yai − haaxai − hbaxbi |2
σ2

)
. (A.29)

Then, for l, l′ ∈ {1, 2, 3, 4}, I[fYa(ya|xb;haa, hba)] is [116]

Il,l′ = −EYa

[
∂2

∂φm∂φn
ln fYa(ya|xb;haa, hba)

]
, (A.30)

where m,n ∈ {1, 2, 3, 4}, φm and φn are the mth and nth elements of

φ = [<{haa},={haa},<{hba},={hba}]. By evaluating (A.30), using the joint PDF

given by (A.29), the non-zero elements of I[fYa(ya|xb;haa, hba)] can be found and

are given by (A.28b)-(A.28c).

Using the value of I[f(ya|xb;φ)] given by the above lemma, we need to evaluate

the expectations in order to find Iavg. As discussed in Section 2.2.3, we assume
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that both nodes a and b use a real constant s ,
√
βE to shift the modulation

constellation. Since all the constellation points are equally likely to be trans-

mitted, before shifting the modulation constellation we have E={Xai}
[={xai}] =

E={xbi}[={xbi}] = E<{Xai}
[<{xai}] = E<{Xbi

}[<{xbi}] = 0. However, after the shift,

E<{Xai}
[<{xai}] = E<{Xbi

}[<{xbi}] =
√
βE and E={Xai}

[={xai}] = E={Xbi
}[={xbi}] =

0. Furthermore, EXai
[|xai |2] = EXbi

[|xbi |2] = E + βE since the average energy of

the constellation after the shift is increased by the shift energy (|s|2 = βE). Con-

sequently, the average FIM with respect to xa and xb is given by

Iavg =
2NE

σ2


1 + β 0 β 0

0 1 + β 0 β

β 0 1 + β 0

0 β 0 1 + β

 , (A.31)

and I−1
avg is given by

I−1
avg =

σ2

2NE


β+1

(2β+1)
0 − β

(2β+1)
0

0 β+1
(2β+1)

0 − β
(2β+1)

− β
(2β+1)

0 β+1
(2β+1)

0

0 − β
(2β+1)

0 β+1
(2β+1)

 . (A.32)

Using (A.27) and considering the diagonal elements of (A.32), we arrive at the

result in (2.16).



Appendix B

This appendix contains proofs and derivation of Unscented Kalman Filter (UKF)

used in Chapter 3.

B.1 Proof of Proposition 3.2

In this section we provide the complexity analysis of the EKF algorithm by counting

the number of multiplications and additions. However, before we proceed it can

easily be shown that every entry of product of a K × L matrix by a L × M

matrix requires L multiplications and L−1 additions, and hence, the whole matrix

requires KML multiplications and KM(L− 1) additions, where KM is the size of

the resulting matrix. Furthermore, it is known that matrix inversion has the same

complexity in terms of additions and multiplication as the matrix multiplication,

up to a multiplicative constant γ [150]. We can now proceed with calculating the

complexity of EKF algorithm in (B.1) to (B.4).

β̂(n|n) = β̂(n|n− 1)<


K(n)

y(n)− H(n)ejβ̂(n|n−1)︸ ︷︷ ︸
Nr(2NtNr)+Nr(2NtNr−1)


︸ ︷︷ ︸

Nr+Nr(2NtNr)+Nr(2NtNr−1)

︸ ︷︷ ︸
2NtN2

r +2NtNr(Nr−1)+Nr+Nr(2NtNr)+Nr(2NtNr−1)︸ ︷︷ ︸
2NtNr + 2NtN

2
r +2NtNr(Nr − 1) +Nr +Nr(2NtNr) +Nr(2NtNr − 1)

,

(B.1)

97
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K(n) = M(n|n− 1)D†(n)(
σ2INr + D(n)M(n|n− 1)D†(n)

)−1︸ ︷︷ ︸
4N2

t N
3
r + 2NtN

2
r (2NtNr − 1) + 2NtN

3
r + 2NtN

2
r (Nr − 1)

+ γN3
r + γN2

r (Nr − 1) +N2
r + 2NtN

2
r +Nr(2NtNr − 1)

+ 4N2
t N

3
r + 2NtN

2
r (2NtNr − 1)

, (B.2)

M(n|n− 1) = M(n− 1|n− 1) + Q︸ ︷︷ ︸
4N2

t N
2
r

, (B.3)

M(n|n) = <


M(n|n− 1)

I2NtNr − K(n)D(n)︸ ︷︷ ︸
2NtN3

r +2NtN2
r (Nr−1)


︸ ︷︷ ︸

4N2
t N

2
r +2NtN3

r +2NtN2
r (Nr−1)︸ ︷︷ ︸

8N3
t N

3
r +4N2

t N
2
r (2NtNr−1)+2NtN3

r +2NtN2
r (Nr−1)


, (B.4)

B.2 Proof of Proposition 3.1

In this section we derive the lower bound of the estimation error. We start the

proof by expanding E
[(
β(n)− β̂(n)

)(
β(n)− β̂(n)

)T]
.

E
[(
β(n)− β̂(n)

)(
β(n)− β̂(n)

)T]
=

E
[
β(n)βT (n)

]
+ E

[
β̂(n)β̂

T
(n)
]
− E

[
β(n)β̂

T
(n)
]
− E

[
β̂(n)βT (n)

]
(B.5)

Next we show that the last two terms of (B.5) are zero. We do this by show-

ing only E
[
β(n)β̂

T
(n)
]

= 0 as a similar approach can be used to show that

E
[
β̂(n)βT (n)

]
= 0.

We first note that β(n) given by (3.8) is a Gaussian autoregressive model (AR)
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with mean zero, i.e., E [β(n)] = 0. Hence,

E
[
β(n)β̂

T
(n)
]

=

∫ ∫
β(n)β̂(n) p(β(n),y(n)) dβ(n) dy(n)

=

∫
β̂(n)

∫
β(n) p(β(n)) dβ(n) p(y(n)|β(n)) dy(n)

=

∫
β̂(n)E [β(n)] p(y(n)|β(n)) dy(n) = 0. (B.6)

Consequently, we can rewrite (B.5) as follow

E
[(
β(n)− β̂(n)

)(
β(n)− β̂(n)

)T]
= E

[
β(n)βT (n)

]
+ E

[
β̂(n)β̂

T
(n)
]

(B.7)

It is easy to show that E
[
β̂(n)β̂

T
(n)
]

is a positive semi-definite matrix and hence

E
[(
β(n)− β̂(n)

)(
β(n)− β̂(n)

)T]
≥ E

[
β(n)βT (n)

]
(B.8)

Furthermore, the properties of Tr(·) allows us to write

Tr

(
E
[(
β(n)− β̂(n)

)(
β(n)− β̂(n)

)T])
≥ Tr

(
E
[
β(n)βT (n)

])
(B.9)

Finally, using (B.9) and the definitions of Q and MSE in (3.9) and (3.18), we can

establish the proof of the proposition.

B.3 Derivation of Unscented Kalman Filter (UKF)

Unscented Kalman Filter (UKF) provides an alternative to EKF for non-linear

state vector estimation. In UKF instead of linearizing the observation vector, the

probability distributions of states and observations are approximated using sigma

points [151]. UKF can solve a very general class of problems, where both state pro-

cess and observations are nonlinear. However, the joint channel and PN estimation

problem, as given by the observation vector (3.7) and the state vector (3.8), has a

linear state process and additive noise. This allows for the use of non-augmented

state vectors for UKF [152]. For the state vector β(n) in (3.8), the sigma points
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B(i, n) are given by

B(0, n|n− 1) = B(0, n− 1), (B.10a)

B(i, n|n− 1) = B(i, n− 1) +
(√
{(L+ λ) Q}

)
i
, i = 1, · · · , L, (B.10b)

B(i, n|n− 1) = B(i, n− 1)−
(√
{(L+ λ) Q}

)
i
, i = L+ 1, · · · , 2L (B.10c)

where,
√
{·} is the matrix square root, (·)i is the ith column of the matrix, L =

4NtNr, λ = α2L− L, where α = 10−3 [151] , and Q is the state covariance matrix

given by (3.9). Subsequently, the mean of the sigma points, which is used as an

approximate to the true mean of the probability distribution of states, is given by

β(n) =
2l∑
i=0

Wm
i B(i, n|n− 1), (B.11)

where,

Wm
0 =

λ

L+ λ
(B.12)

Wm
i =

1

2(L+ λ)
, i = 1, · · · , 2L. (B.13)

Similarly, the covariance of the state vector based on the sigma points approxima-

tion is given by

Pn =
2L∑
i=0

Wm
i

[
B(i, n|n− 1)− β(n)

] [
B(i, n|n− 1)− β(n)

]∗
(B.14)

Moreover, the sigma points for the observations, and the corresponding approxi-

mate mean of probability distribution of observations are given by

Y(n|n− 1) = H(n)ejB(i,n|n−1), (B.15a)

y(n) =
2l∑
i=0

Wc
iY(n|n− 1), (B.15b)

where,Wc
0 =Wm

0 +(1−α2 +β), β = 2, andWc
i =Wm

i for i = 1, · · · , 2L. Once the
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Algorithm 1 UKF for joint channel and PN estimation

1: Initialize:
β̂(0) = 02NtNr×1

P0 = Q
2: for n = 0 to N do
3: Calculate sigma points using (B.10a) to (B.10c).
4: Calculate mean of state β(n) using (B.11).
5: Calculate the covariance matrix of the state vector using (B.14).
6: Calculate the sigma points for observations using (B.15a).
7: Calculate the mean of observation using (B.15b).

8: Update the mean β̂(n) using (B.16).

9: Update the variance P̂n using (B.17).

state and the process models are approximated by the sigma points using (B.10a)-

(B.10c), and (B.15a), respectively, the updated mean β̂(n) and variance P̂n can be

calculated as follow

β̂(n) = β(n) +K (y(n)− y(n)) , (B.16)

P̂n = Pn −KPy,yKT , (B.17)

where,

K = Px,yP
−1
y,y, (B.18)

Px,y =
2L∑
i=0

Wc
i

[
B(i, n|n− 1)− β(n)

]
[Y(n|n− 1)− y(n)]∗ , (B.19)

Py,y =
2L∑
i=0

Wc
i [Y(n|n− 1)− y(n)] [Y(n|n− 1)− y(n)]∗ . (B.20)

Algorithm 1 summarizes the UKF joint channel and PN estimation algorithm.
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Appendix C

This appendix contains proofs used in Chapter 4.

C.1 Proof of Proposition 4.1

We start the proof by deriving the conditional density function f(ya|xb) as follows

f(ya|xb) =

∫
haa

∫
hba

f(ya|xb, haa, hba)f(haa, hba) dhaadhba,

=

∫
haa

∫
hba

f(ya|xb, haa, hba)f(haa)f(hba) dhaadhba. (C.1)

where in (C.1),

f(ya|xb, haa, hba) =
1

(πσ2)N

N∏
i=1

exp

(
−|yai − haaxai − hbaxbi |

2

σ2

)
, (C.2)

f(haa) =
1

π
exp

(
− |haa|2

)
, (C.3)

f(hba) =
1

π
exp

(
− |hba|2

)
. (C.4)

Rewriting (C.1), we arrive at

f(ya|xb) =
1

(πσ2)Nπ2

∫
hba

exp
(
− |hba|2

)
×
∫
haa

exp

(
−

N∑
i=1

|yai − haaxai − hbaxbi|2
σ2

)
exp

(
− |haa|2

)
dhaadhba. (C.5)
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Note that in performing the integration in (C.5), we can use the fact that the total

probability of a complex Gaussian random variable is one.

Using the Bayes’ rule

f(xb|ya) =
f(ya|xb)f(xb)

f(ya)
, (C.6)

where f(xb) =
(

1
M

)N
since the transmitted symbols come from a equiprobable

modulation set, i.e., f(xbi) = 1
M

and f(ya|xb) is given in (C.5). Substituting and

simplifying, we can obtain the result in (4.3).

C.2 Proof of Proposition 4.2

To prove Proposition 4.2, we first define permutation Π(·) as a one-to-one and

onto function on the index set of modulation set A, i.e., K , {1, 2, · · · ,M}. If

xk ∈ A, then, xΠ(k) ∈ A′, ∀k ∈ K, where A′ is one possible permutation of original

modulation set A. Without loss of generality, we further assume that both A and

A′ are ordered set and Ak and A′k are the kth elements of A and A′, respectively.

For simplicity of analysis, we show the proof for constant power M -PSK mod-

ulation sets in here. The extension to QAM modulation is straightforward and

omitted here [104].

Lemma C.2.1 For the ith transmitted symbol, the posterior function f(xbi|ya)
does not have a unique maximum if and only if for the modulation set A there

exists a permuted set A′ for which xk
xΠ(k)

= −1, ∀k ∈ K.

Proof : For the first part of the proof we assume that the permutation π(·) that

satisfies the condition of the lemma exists and then for a permuted set A′, for which
xk

xΠ(k)
= −1, ∀k ∈ K, we assume that x′bi = xΠ(k) = A′Π(k) and xbi = Ak maximizes

the posterior density. Then f(xbi |ya) can be rewritten as

f(xbi = Ak|ya) ∝
M∑

jN=1

· · ·
M∑
j1=1︸ ︷︷ ︸

∼ji

1∑N
n=1,n 6=i |Ajn|2 − ϑ+ |Ak|2 + σ2
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× exp

 |ξ|2(∑N
n=1,n6=i |Ajn |2 − ϑ+ |Ak|2 + σ2

)
σ2

 , (C.7)

where,

ϑ ,
|Ak|2
γ

∣∣∣∣∣
N∑

n=1,n6=i

x∗an
Ajn
Ak

+ x∗ai

∣∣∣∣∣
2

. (C.8)

It is easy to see from (C.7) that the posterior PDF of x′bi = A′Π(k) differs from

the posterior PDF of xbi only in the term ϑ as the rest of the terms depend on the

power of the modulation constellation, which is constant for M -PSK modulation

set. We define

ϑ′ ,
|A′Π(k)|2

γ

∣∣∣∣∣
N∑

n=1,n6=i

x∗an
A′Π(jn)

A′Π(k)

+ x∗ai

∣∣∣∣∣
2

. (C.9)

To prove the lemma we need to show that

f(xbi = Ak|ya) = f(x′bi = A′Π(k)|ya), (C.10)

and hence no unique maximum. (C.10) holds true if and only if

ϑ = ϑ′. (C.11)

Finally, (C.11) holds true if and only if

Ajn
Ak

=
A′Π(jn)

A′Π(k)

. (C.12)

Since we know that xk
x′

Π(k)
= Ak

A′
Π(k)

= −1 ∀k, consequently, (C.12) is valid, which

in turn means (C.10) holds true and the posterior function does not have a unique

maximum. For the second part of the proof, it is clear that when no permutation

exists to satisfy the condition of the lemma then ϑ can never be equal to ϑ′ and

consequently, the lemma holds if and only if such a permutation exists.

It is easy to see that the condition of Lemma C.2.1 is met if and only if the
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modulation constellation is symmetric around the origin. This is because with

symmetric modulations around the origin if xk ∈ A so is −xk ∈ A. Consequently,

there always exists a permutation for which the condition of Lemma C.2.1 holds.

Therefore, the posterior function does not have a unique maximum if and only if

the modulation constellation is symmetric around the origin.

This concludes the proof of the proposition.



Appendix D

This appendix contains proofs used in Chapter 5.

D.1 Proof of Proposition 5.1

The proof uses tools from linear algebra, in particular, the rank-null theorem which

relates the dimensions of a linear map’s kernel and image with the dimension of its

domain [143].

Forward reasoning: Assuming (5.3) has a solution, then (5.2b) holds. Since (5.2b)

holds, then the following must hold [143],

dim Im (PT) ≤ dim ker (HSI) . (D.1)

This is because if Im (PT) is not a subspace of ker (HSI), then there can be a

xDL ∈ Im (PT) such that PTxDL /∈ ker (HSI), and hence HSIPTxDL 6= 0, i.e., (5.2b)

does not hold.

Next we use the rank-null theorem and apply it to matrices PT and HSI, to fur-

ther simplify (D.1). Applying the rank-null theorem to PT, we have dim Im (PT)+

dim ker (PT) = U . Now dim ker (PT = 0). This is because, if it is not zero, then

the desired signal term in (5.1b) can be zero for some xDL ∈ ker (PT). Thus,

dim Im (PT) = U . Applying the rank-null theorem to HSI, we have dim Im (HSI) +

dim ker (HSI) = NT. Now dim Im (HSI) = NR. This is because HSI is a linear

transformation from transmit antenna array to the receive antenna array. Thus,

NR +dim ker (HSI) = NT or dim ker (HSI) = NT−NR. Substituting values in (D.1)

we have U ≤ NT −NR =⇒ NT ≥ NR + U .
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Proof by backwards reasoning: Assuming NT ≥ NR + U , we can easily use

the rank-null theorem to show that dim ker (HSI) ≥ U . This means the image

space of PT is a subspace of the ker (HSI). This implies that (5.2b) holds, and

subsequently, (5.3) has a solution.

D.2 Proof of Theorem 5.1

In this appendix we show that HH∗ is full-rank with probability 1. The key result

used in the proof is the following [153]: For a general random matrix G, GG∗

is full-rank w.p. 1, if ∀gi, every hyperplane has probability 0, where gi is the ith

column of the random matrix G. We apply this to our system model in Section 5.1.

Step 1: From (5.3) and the system model channel assumptions, we can see that

the columns of H are independent and identically distributed (i.i.d). We denote the

ith column of H, by hi, which is a complex vector. Since the real and imaginary

parts of hi are independent, the complex vector hi has the same distribution as

the real vector hR
i with independent elements, such that the first 2U elements of

hR
i are drawn from N (0, 1), and the remaining elements are drawn from N (µ, σ2).

Step 2: Based on the distribution of the elements of the real vector R2N , we

can say that the joint probability distribution of hR
i is a Gaussian probability

measure on R2N , where R is the set of real numbers. We denote this Gaussian

probability measure by N2N(µ,Σ), where µ and Σ are the mean and covariance

matrix of the vector hR
i , respectively. Consequently, HH∗ is full-rank if given

the probability Gaussian measure N2N(µ,Σ), the probability of every hyperplane

is 0. The Gaussian measure N2N(µ,Σ) is absolutely continuous (a.c.) with re-

spect to the Lebesgue measure λ2N on
(
R2N ,B(R2N)

)
, if and only if, Σ is posi-

tive definite, where B(R2N) defines Borel σ−algbera on R2N [154]. From Step 1

and knowing that the elements of hR
i are independent, it can be concluded that

det (Σ) = σ4(N−U). Hence, Σ is positive definite and the Gaussian measure given

by N2N(µ,Σ) is (a.c.) with respect to the Lebesgue measure λ2N . This means that

for every measurable set A , if λ2N(A ) = 0, then probability of A is also zero, i.e.,

P (A ) = 0. Consequently, to prove that the probability of every hyperplane is zero

for hR
i , we can show that the Lebesgue measure of every hyperplane is zero, i.e.,

λ2N(every flat hyperplane) = 0.
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Step 3: In order to show λ2N(every flat hyperplane) = 0, we proceed as follows.

Mathematically, hyperplane is defined as [155], A , {hR
i ∈ R2N |aThR

i = b},
where a ∈ R2N and b ∈ R. We also define, A , {hR

i ∈ R2N |aThR
i = 0}, which is

a shifted version of A . Since, a Lebesgue measure is invariant under shift [154],

we can conclude that λ2N(A ) = λ2N(A ). Furthermore, we note that E , {hR
i ∈

R2N |hRi,2N = 0}, where hRi,2N is the 2Nth element of vector hR
i , is a subspace of

R2N , and there exists a linear transformation T such that A = T(E ) [154]. Then

the following relationship holds [154, Theorem 12.1], λ2N(A ) = | det(T)|λ2N(E ).

Consequently, we can show λ2N(A ) = 0, if we can show that λ2N(E ) = 0.

Step 4: In order to show λ2N(E ) = 0, we proceed as follows. According to

the definition of Lebesgue measure given in [154], we can define the box, B ,∏2N
j=1 [aj, bj], where

∏
[·] is the Cartesian product, aj = hRi,j − 1/2, bj = hRi,j + 1/2,

∀j = {1, · · · , 2N−1}, a2N = b2N = 0, and hRi,j is the jth element of hR
i ∈ R2N . It is

clear that ∀hR
i ∈ E , there exists no element of hR

i that lies outside the box. Hence,

B covers E , and the following holds [154], λ2N(E ) = λ2N(B) =
∏2N

j=1(bj − aj) = 0,

where
∏

(·) is the arithmetic product. Consequently,

λ2N(E ) = 0 =⇒ λ2N(A ) = 0
a.c.
=⇒ P (A ) = 0. (D.2)

Step 5: (D.2) shows that the probability of hyperplane is zero for a single column

of H . Since the columns of H are i.i.d. this holds for all the other columns as

well. Consequently, we can conclude that HH∗ is full-rank.
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