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Abstract

Clostridium difficile infections (CDIs) are some of the most common hospital-acquired in-

fections and the most common cause of antibiotic-associated diarrhoea. CDIs lead to great

loss of life, severe health outcomes, and incur very high financial costs through treatment,

extended hospital stays, and readmissions. Despite extensive research and many resources

committed to the prevention and treatment CDIs in hospitalised patients, hospitals con-

tinue to be hotspots for this disease. Meanwhile, there is an emerging awareness of the

burden this disease places on the broader community including patients who have not

recently been hospitalised. In the community approximately 5% of adults and a higher

proportion of infants are asymptomatically colonised. Colonisation is also common in live-

stock and the pathogen has been isolated from meat and vegetables. However, the various

sources of transmission in the community and the consequences for infections within and

beyond hospitals are not well understood.

This thesis develops and employs mathematical models of C. difficile transmission

to explore three themes: improving models to capture the complex epidemiology of

C. difficile, populations that sustain C. difficile transmission, and the classification of

CDIs as hospital or community-acquired. Addressing the first theme, I argue that the

essential epidemiology of C. difficile is captured by modelling the interactions of three key

factors: pathogen, immunity, and gut flora. I argue that modelling transmission in an

integrated model of adults and infants across hospitals and communities provides insights

that hospital-only and adult-only models cannot. By incorporating seasonality into these

models, I argue that seasonal variation of antibiotic prescription rates is more likely to be

the main driver of CDI seasonality than seasonal transmission.

In the second theme, I argue that most hospitals – though hotspots for transmission

– are not disease sustaining populations. Instead, transmission outside hospitals main-

tains the disease in the hospital and community. I argue that reducing transmission in

the hospital cannot eliminate the disease in the broader population, but that reducing

transmission from adults or infants in the community could interrupt transmission in the

human population. Similarly, I argue that C. difficile in the community may be driven by

transmission from animal reservoirs if as few as 3.5-26.0% of human infections are acquired

from animal or food sources.

In the final theme, I argue that an illusion of hospital-driven disease is in part perpetu-

ated by surveillance definitions that systematically misclassify many community-acquired

cases as hospital-acquired. The incubation period for C. difficile infections often exceeds

the two-day or three-day cut-offs commonly used to classify patients recently admitted to

hospital. I argue that many patients who acquire the pathogen prior to admission develop

symptoms after the cut-off and are therefore incorrectly classified as having acquired the

ix



x

infection during their hospital stay. Furthermore, I argue that time since hospital discharge

is a poor indicator of whether a CDI is hospital or community-acquired.
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Chapter 1

Introduction

1.1 Background and Research Motivation

Clostridium difficile infection is one of the most common causes of antibiotic-associated

diarrhoea and hospital-associated infection globally [1–7]. In the USA alone C. difficile

is estimated to cause 450,000 infections, 30,000 deaths, and result in 4.8 billion USD in

excess accute-care costs annually [8, 9]. Historically, most reported infections were in

elderly, hospitalised patients, but there is a growing awareness of infections in the broader

community including children [10, 11]. C. difficile infection (CDI) is characterised by

diarrhoea and nausea, and in more severe cases psuedomembranous colitis, fever, toxic

megacolon, and possible renal failure. A recurrence of symptoms occurs in approximately

20% of infections [12]. Transient asymptomatic carriage is also common. The prevalence of

asymptomatic carriage is approximately 5% in healthy adults but may be higher amongst

hospitalised adults, long-term care facility residents, and infants [13]. Natural gut flora

inhibits the proliferation of C. difficile in exposed individuals [14]. Most CDIs follow the

disruption of the patient’s gut flora by the use of broad-spectrum antibiotics or proton-

pump inhibitors [15, 16].

C. difficile infections are a major health burden, but much remains unknown. Asymp-

tomatically colonised individuals contribute to transmission, but many never develop

symptoms and remain undetected [17, 18]. This makes it difficult to ascertain when

and where transmission occurs and the source of the exposure. Furthermore, strains of

C. difficile that are pathogenic to humans are also common in livestock and pets and have

been isolated on retail meat and other produce [19]. Transmission is known to occur from

many sources and in many settings but the relative contributions and interactions of these

sources and settings remain unclear.

Mathematical models offer a system-level understanding of transmission dynamics by

unifying what is known about individual-level factors for disease (e.g. human behaviour,

host-pathogen interactions) and population-level epidemiology (e.g. incidence, seasonal

trends, differences between settings) [20]. Suitable models can allow investigators to infer

the hidden dynamics of transmission and population-level interactions that would not be

visible with traditional epidemiological tools. Appropriately calibrated models can be

used to assess current practice and possible interventions that could reduce or eliminate

the burden of the disease [20–22]. Relatively few mathematical models of C. difficile have

3



4 Introduction

been published and these have focused mostly on within-hospital transmission. Much

remains to be learnt through mathematical models of C. difficile transmission.

1.2 Research themes

The central chapters of this thesis – which consist of five published or submitted research

articles and their supplementary materials – are ordered so that each chapter extends ideas

or models presented in previous chapters. Three themes run through these chapters:

1. improving mathematical models to capture the complex epidemiology of C. difficile

2. identifying populations that sustain C. difficile transmission and quantifying inter-

actions between populations, and

3. classifying CDIs as hospital or community-acquired.

1.2.1 Theme 1 – Improving mathematical models of C. difficile

I argue that models of C. difficile transmission should capture three main factors or di-

mensions of C. difficile epidemiology: pathogen, gut flora, and immunity. Many existing

models of C. difficile capture only some of these factors or make unrealistic assumptions

about these factors. The main models developed and used in this thesis attempt to com-

bine these three factors in a parsimonious, multi-dimensional framework. I build on this

model to incorporate other neglected aspects of C. difficile epidemiology including sea-

sonality, transmission in the community, animal reservoirs, and the unique interactions of

infants with the pathogen.

1.2.2 Theme 2 – Populations that sustain C. difficile

In an isolated population, the reproduction number for a pathogen – the average or typical

number of secondary cases arising from each primary case in a fully susceptible population

– is a measure of the pathogen’s epidemic or endemic potential in that population. If the

reproduction number exceeds one, upon introduction the pathogen will either quickly die

out due to random effects or spread through the population in an epidemic. The disease

may then persist, becoming endemic in the population. If the reproduction number is

less than one in the population, some onward transmission may occur following the in-

troduction of a small number of infective persons, but the disease will soon die out in

the population. However, a disease can persist in a population even if the reproduction

number is less than one if the pathogen is continually reintroduced from another human

population or from an animal or environmental reservoir. Furthermore, it is possible that

two or more populations, which would not sustain the pathogen alone, sustain the dis-

ease through mutual exposure or movement between populations. Given the continual

admission and discharge of patients to and from hospitals and the possibility of transmis-

sion between animals and humans, it is of great interest to understand the interactions of
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hospital, communities, and animals. I use mathematical models of transmission in hospi-

tals and the community that account for movement between these settings to determine

whether C. difficile would persist in either the hospital or community without continual

reintroductions from the other setting. I also leverage these models to estimate the thresh-

old amount of transmission from animals that, if exceeded, would imply that C. difficile

in the human population is driven by transmission from animal reservoirs.

1.2.3 Theme 3 – Classifying C. difficile infections

It is important to know where CDIs are acquired in a population: whether in one hospital

or another, or in a long-term care facility, or in the broader community. This knowledge

can guide the design of interventions to interrupt or reduce transmission in these loca-

tions. However, CDIs have a latent period of days or weeks [23, 24], so the location of

the onset of symptoms (which is usually known) may not be the same as the location of

acquisition (which is usually unknown), especially if the patient has recently been admit-

ted to, discharged from or transferred between healthcare facilities. Common surveillance

definitions, first introduced in 2007 and later endorsed by the Infectious Diseases Society

of America and the European Centre for Disease Prevention and Control, classify cases as

hospital or community-acquired using arbitrary cut-offs for time between onset of symp-

toms and the most recent hospital admission or discharge [23, 25, 26]. These definitions

and their variants are widely used to inform estimates of the proportion of cases that

are hospital-acquired, compare incidence between regions and hospitals, define infection

control standards, and judge the performance of individual healthcare facilities [6, 8, 27].

However, these definitions have never been tested or verified, so it is not known whether

they adequately distinguish hospital and community-acquired cases. I use mathematical

models to assess the various elements of the surveillance definitions and suggest possible

improvements.

1.3 Thesis structure

This thesis consists of eight chapters including this introduction. Chapter 2 lays out the

background information necessary to understand C. difficile infections and the mathe-

matical tools used to explore the themes. Chapter 3 presents a new model of C. difficile

infections in a hospital population that captures the interaction of pathogen, gut flora and

immunity (Theme 1). This model is the basis of the analyses in Chapters 3 and 4 and

provides the basic framework for the extended models in Chapters 5 and 6. Chapter 3

uses the base model to explore the dynamics of transmission and the role of the admission

and discharge of patients colonised with C. difficile (Theme 2).

Chapter 4 uses the model presented in Chapter 3 to assess standard surveillance defi-

nitions that classify CDIs presenting in hospitals as acquired in the current hospitalisation

or acquired prior to admission (Theme 3). Chapter 5 presents an extension of the model in

Chapter 3 that captures the hospital, the community, the role of infants, and transmission
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from animal reservoirs of C. difficile (Theme 1). The expanded model is used to extend

the assessment of surveillance definitions begun in Chapter 4 to community-onset infec-

tions (Theme 3). The model is used to determine whether hospitals and communities are

populations that sustain C. difficile and identify the conditions under which the persistent

presence of C. difficile in the human population would be dependent on continual expo-

sure to animal reservoirs (Theme 2). Chapter 6 uses the model presented in Chapter 5 to

explore possible mechanisms for seasonality (Theme 1) and estimate the potential effect of

hospital-based and community-based interventions on infections and colonisations in each

of these populations (Theme 2).

Chapter 7 extends the idea of the animal-driven or reservoir-driven threshold employed

in Chapter 5 to general compartmental models. Due to its generality, this chapter can be

read independently from the preceding chapters but corroborates the findings of Chapters 3

and 5 with cases studies focused on C. difficile (Theme 2). The thesis concludes with

Chapter 8 which discusses the key findings in each theme, placing them in the context of

the literature and identifying the key limitations.



Chapter 2

Background

This chapter provides an introduction to the pathobiology, history, and epidemiology of

Clostridium difficile. It then provides a brief introduction to mathematical modelling of

infectious diseases before reviewing the existing literature in the mathematical modelling

of C. difficile transmission, highlighting some of the gaps in the literature that this thesis

addresses.

2.1 Clostridium difficile

2.1.1 Pathogen basics

Clostridium difficile is an anaerobic, spore-forming bacteria that colonises the lower in-

testinal tract of many mammals including humans [19]. The bacteria was first discovered

in 1935 in the intestinal flora of healthy newborn infants [28]. However, many strains

of C. difficile produce toxins (toxin-A, toxin-B and binary toxin) that lead to intestinal

damage and potentially life-threatening diarrhoea in some patients [29]. Approximately

5% (but in some populations up to 15%) of adults are asymptomatically colonised with

toxigenic and non-toxigenic strains of C. difficile [13]. Asymptomatic colonisation is tran-

sient, lasting approximately one month [30]. Colonisation with non-toxigenic strains does

not lead to symptoms and may prevent colonisation of toxigenic strains [31, 32]. However

many (if not most) will remain asymptomatic for the duration of their colonisation, even

if the colonising strain is toxigenic. In particular, nearly all infants will be colonised in the

first year of life [33] – with prevalence peaking at 40% or higher at age 3-6 months [33–35]

– but C. difficile rarely causes disease in infants. Children and adults develop specific

antibody-mediated immune responses to toxins A and B which protect them from symp-

tomatic disease [36]. One study found that seroprevalence for these antibodies increased

with age, reaching 60-70% by adolescence in US participants and 86-97% in Panamanian

participants [37]. Though protective against infection, a serological response to these

toxins is not protective against asymptomatic carriage [15].

Taking antibiotics kills many of the species that make up the human gut flora, disrupt-

ing the balance of the ecosystem for days, weeks, or months and allowing some species to

temporarily proliferate above normal levels [38, 39]. For this reason and because various

strains of C. difficile are resistant to many classes of antibiotics [40], receiving antibiotics

7



8 Background

dramatically increases the risk of developing a C. difficile infection (CDI) [16, 41]. In hos-

pital settings, where antibiotic prescription rates are high, nearly all cases have a recent

history of antibiotic use, though this observation may be due in part to ascertainment bias.

A large study of CDI acquired in the community, where antibiotic prescription rates are

much lower, found that half of CDI cases had antibiotic exposure in the 45 days prior to

infection and that clindamycin and cephalosporins were associated with 32-fold and 15-fold

increases in infection risk [42]. Other factors associated with disruption of intestinal flora,

such as the consumption of proton-pump inhibitors and irritable bowel disease, are also

associated with an increased risk of CDI [43, 44]. The main treatment for CDIs that do

not resolve when any existing antibiotic therapy is discontinued is further antibiotic treat-

ment, usually with vancomycin or metronidazole [12]. These treatments leave gut flora

damaged and so recurrent CDI is common, especially in those without immune responses

to C. difficile toxins [12, 45, 46]. Some alternative therapies, such as faecal transplants and

probiotics, aim to restore infection resistance by replenishing damaged gut flora. Others,

such as C. difficile-specific bacteriocin and bacteriophage therapies, attempt to remove

C. difficile without disrupting the patient’s gut flora [47]. Faecal transplants have been

shown to prevent recurrent CDI [48] and are now a recommended treatment option for

cases with multiple recurrences [49].

2.1.2 The epidemiology of C. difficile infections

The emergence of highly virulent ‘epidemic’ strains of C. difficile in the mid 2000’s was

associated with rapidly increasing incidence and mortality, particularly in North America

and Europe [50]. Incidence has continued to rise in many parts of the world including

Australia [6] and East Asia [7]. National targets to reduce transmission, improve an-

timicrobial stewardship, and increase reporting in the UK were followed by reductions in

fluoroquinolone prescriptions and near elimination of infections caused by the predomi-

nantly fluoroquinolone-resistant epidemic strains [51]. However, the disease continues to

lead to great loss of life and impose a large burden on health-systems around the world.

Today the estimated annual burden of C. difficile in the USA alone is half a million in-

fections, 30 thousand deaths, and direct health-care costs in excess of 4.8-billion USD

[8, 9]. Most reported infections affect patients who are currently in hospital or who have

recently received some form of healthcare. A study from the USA estimated that 94%

of CDIs had either been hospitalised for >72h, resided in a long-term care facility, or

had received inpatient or outpatient care in the past 12 weeks at the time of positive

test for CDI [8]. Other risk factors for infection include age over 65 years, renal disease,

irritable bowel disease, solid-organ transplants, hematopoietic stem cell transplants, and

exposure to antibiotics and proton-pump inhibitors [49]. The incidence of CDI exhibits

moderate seasonality in the Northern Hemisphere, peaking in late winter [52]. Though

one Australian study has identified seasonal differences in colonisation prevalence amongst

hospitalised patients [53], the seasonality of colonisation in the community is unknown.

Time-series analysis has shown that CDI incidence follows antibiotic prescriptions and
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winter respiratory infections such as influenza and respiratory syncytial virus with a lag of

one or two months [54, 55]. The reported incidence of CDI also increases during outbreaks

of other winter gastroenteritis infections such as norovirus [56, 57]. Others have identi-

fied an association between the proportion of positive tests for C. difficile and rainfall in

tropical and subtropical climates [58].

2.1.3 Transmission of C. difficile

C. difficile is transmitted via spores through the faecal-oral route. The spores are very

hardy, resisting many hospital-grade disinfectants [59] and can remain viable on surfaces

for months [60]. Spores in contaminated meat can survive cooking for two hours at rec-

ommended minimum safe food temperatures [61]. Spores can be spread via direct contact

with infected patients or via hands of healthcare workers. Unfortunately, the alcohol-based

hand-washes commonly used in hospitals for routine hand hygiene are much less effective

than soap and water for removing C. difficile [62].

Though the very high rates of infections in hospitalised patients suggests extensive

transmission within hospitals, it is very difficult to identify actual transmission events.

A potentially long period of asymptomatic carriage before the onset of symptoms [63]

obscures when an individual acquired the pathogen, and the large proportion of carriers

that are asymptomatic [15, 27] obscures the source of infection. A landmark study used

whole genome sequencing from all known infections in a defined population to identify

closely related isolates and determined that only a quarter of infections could be reasonably

attributed to ward-based contact with another individual with CDI [64]. The source of

the remaining transmission is highly uncertain. Possible sources include symptomatic

carriers in the community and asymptomatic carriers in any setting [17, 63], especially

residents of aged-care facilities and infants who have particularly high rates of carriage

[13]. Infants are of particular interest not only because of their very high asymptomatic

carriage rates but because the density of spores in their stools is comparable to stool from

symptomatic adults [35]. Animal carriers are also potential sources of human infections,

through direct contact with companion animals [65] and livestock [66] or indirect exposure

via contaminated water and food [19]. Phylogenetic analysis of C. difficile ribotype 078

isolates from humans and livestock suggest frequent transmission between human and

livestock populations [66], while the presence of C. difficile spores on retail meat [67] and

vegetables [68] provides a vehicle for wide-spread exposure to livestock-derived C. difficile.

In the absence of simple means to determine where or from whom a given CDI is ac-

quired, simple surveillance definitions that classify cases as hospital-acquired (or hospital-

associated) and community-acquired (or community-associated) have been recommended

[23]. The definitions use the time from hospital admission or discharge to onset of symp-

toms to distinguish hospital and community-acquired cases. These definitions or minor

variants are widely used (e.g. [6, 8]) but have not been validated with empirical stud-

ies. These definitions underpin estimates of the relative contributions of hospital and

community-based transmission [8] and are used in government-imposed limits for hospital
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acquired infections [27].

2.2 Mathematical models

2.2.1 Introduction to mathematical modelling of infectious diseases

A core task in population health research is to determine and quantify the risk factors

for a disease. For infectious and non-infectious diseases, individual characteristics and

exposures – such as age, sex, smoking status or environmental exposures – are taken into

account when determining the risk or susceptibility of individuals. However, according to

McMichael a complete understanding of a disease must also include social-ecologic interac-

tions [69]. This broader perspective is particularly important for infectious diseases where

each individual’s risk of infection depends not only on themselves but on the prevalence of

infection and carriage in the people around them. The characteristics of each individual in

a population influences the risk of acquiring the disease for each other individual. Treating

infected individuals reduces the prevalence of a disease and thus has benefits for all indi-

viduals in the community. Herd immunity – established naturally or through vaccination

– protects even those who lack immunity. McMichael also highlights the importance of the

dynamic nature of disease and its risk factors. Many infectious diseases cause seasonal epi-

demics or outbreaks, so the prevalence of infectious persons – and hence each individual’s

risk of infection – may vary over the course of a season, epidemic or outbreak. For these

reasons models of infectious diseases must be dynamic, must model whole populations,

and must account for the diversity of individuals. Compartmental mathematical models

– which are employed throughout this thesis – have all these characteristics and thus can

be useful tools to study infectious diseases. I provide a brief introduction to these models.

More detailed treatments of the subject and numerous examples can be found in a growing

number of textbooks (e.g. [70–74]).

The first step in constructing a compartmental model is to divide the population of

interest into groups or compartments relevant to the disease(s) being modelled. Consider

a disease where recovered patients are immune to further reinfection in a population with

two distinct risk categories: high and low. For this disease and population, a simple com-

partmental structure might consist of four compartments: high-risk susceptible patients

(SH), low-risk susceptible patients (SL), infected patients (I) and recovered/immune pa-

tients (R).

The next step is to describe how the number of people in each class changes over

time by considering the frequency of events or the rate at which disease or demographic

processes affect the population in each compartment. These changes might introduce

new individuals (e.g. the birth of a new susceptible patient), remove existing individuals

(e.g. the death of an infected patient), or move an individual from one class to another

(e.g. recovery of infected patient becoming immune). The rates at which these events or

processes occur are defined in terms of the number of people in the various classes at

that time (e.g. SH , SL, I or R) and a rate parameter which is to be estimated (typically
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Figure 2.1: Example diagram summarising classes and transitions. The boxes represent the

classes: high risk susceptible patients (SH), low risk susceptible patients (SL), infected patients

(I) and recovered/immune patients (R). An arrow pointing away from a box represents events

which remove individuals from that class, while arrows pointing towards a box indicate events

which add individuals to that class. The term written by each arrow represents the rate at which

these events occur. Greek letters (e.g. α, µ, and γ) are rate parameters that determine the rate

of movement between classes. Latin upper-case letters indicate the number of people in the class

(e.g. I is the number of people in the infectious (I) class). N is the total population: N =

SH + SL + I + R. The colour coding indicates the kind of transition: blue for births, black for

deaths, red for infections, green for recovery from infection, and orange for some process which

reduces susceptibility, e.g. prophylactic treatment. The transmission parameter for transmission

to high-risk individuals (βH) is higher than for low-risk individuals (βL) so high-risk individuals

are infected more rapidly.

represented with a Greek letter). For instance, the number of people in the population

that recover from an infection in unit time may be Iγ, where I is the number of people

infected and 1/γ is the average duration of the infection. Many transitions or events in

compartmental models will be like this example, depending only on the characteristics of

individuals that are affected. Such events will occur at a rate proportional to the number

people in the class that is being left, but independent of the number of people in other

classes. However, the rate at which people go from susceptible to infected classes (i.e. the

incidence rate) is proportional to the number susceptible (SH , SL) and the proportion

of population that is infected (I/N , where N = SH + SL + I + R). The compartmental

structure, the possible transitions between these compartments, and the rate at which

these transitions happen are often summarised with a diagram like Figure 2.1.

This kind of compartmental structure can be translated into many mathematical frame-

works or equations, each with their own sets of assumptions, strengths, and weaknesses.

Here I will briefly discuss the types that I and others have used to model C. difficile infec-

tions. The analytically simplest approach is to use ordinary differential equations (ODEs).

This framework assumes that the numbers of people in each compartment are continuous,
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deterministic (non-random) functions of time. The rate of change of the number of people

in each compartment (i.e. the derivatives with respect to time) are expressed in terms

of the rate of transitions in and out of each compartment. For the model described by

Figure 2.1 the equations are:

S′H = αN − σSH − βHSHI/N − µSH
S′L = σSH − βLSLI/N − µSL
I ′ = βHSHI/N + βLSLI/N − γI − µI
R′ = γI − µR. (2.1)

This can be written in matrix form

X′ = A(X)X, (2.2)

where

X :=




SH

SL

I

R




(2.3)

and

A(X) :=




−(σ + βHI/N + µ) + α α α α

σ −(βLI/N + µ) 0 0

βHI/N βLI/N −(γ + µ) 0

0 0 γ −µ



. (2.4)

Though there are typically no neat general solutions to these equations, given the num-

ber of people in each compartment at time 0, the number of people in each compartment

over time can be calculated using standard, rapid computational methods (e.g. [75]). The

solutions of many ODE systems will converge to an equilibrium point (X∗), where the rate

that people move in and out of each compartment balances, so the number of people in

each compartment does not change over time (X′ = A(X∗)X∗ = 0). Many other ODE sys-

tems converge to stable, cyclic patterns where the number of people in each compartment

changes over time but repeats the same pattern at fixed time intervals.

The numerical solution and analysis of ODEs is straightforward, but the underlying

assumptions have unrealistic consequences. Because ODE models assume that the number

of people in each compartment is a continuous function of time, rather than leaving or

entering a compartment at a single point in time, people will gradually move in and out

of compartments. Therefore, there will almost always be fractional numbers of people in

each compartment. This is particularly problematic when diseases are dying out. Rather

than being eradicated at a single point in time when the last infected person recovers,

the number of people infected will decrease from one through ever smaller fractions of a

person, only reaching zero asymptotically. Furthermore, since ODEs are deterministic,
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these equations have only one solution and predict only a single epidemic curve for each

initial condition. However, people and diseases are not deterministic – the time taken

to recover from a disease or the number of onward transmission events cannot be known

ahead of time and will be different from person to person, epidemic to epidemic and season

to season.

Stochastic compartmental models address the key shortcomings of ODE models at the

cost of computational and analytic complexity [72]. In the most common formulation,

people move in and out of compartments at random points in time such that the whole

population is represented by a continuous time Markov chain (CTMC) [74]. For each kind

of event in a CTMC model (e.g. births or infections), the number of events or transitions

that occur in a given time interval is governed by a time-heterogeneous Poisson process.

The rates of these Poisson process are functions of the (fixed) parameters and the (variable)

number of people in each compartment with exactly the same form as the equivalent

transition rates in the associated ODE model (Equation (2.1)). These compartmental

CTMC models can be represented by systems of stochastic integral equations; however,

this representation is cumbersome so has typically only been used to explore the general

properties of this class of compartmental model (e.g. [76, 77]). Instead it is common to

represent CTMC models by tabulating all possible model events with the associated state

transitions and probabilities (e.g. Table 2.1).

Event type Transition Probability

Infection SH → I βHSHI/N ∆t+ o(∆t)
SL → I βLSLI/N ∆t+ o(∆t)

Recovery I → R γI ∆t+ o(∆t)

Susceptibility reduction SH → SL σSH ∆t+ o(∆t)

Birth → SH αN ∆t+ o(∆t)

Death SH → µSH ∆t+ o(∆t)
SL → µSL ∆t+ o(∆t)
I → µI ∆t+ o(∆t)
R → µR ∆t+ o(∆t)

Table 2.1: Example CTMC model, listing all possible events with the associated state transitions

and the probability that the event will occur between t and t + ∆t given the number of people

in each compartment at time t (i.e. SH(t), SL(t), I(t) and R(t)). An event with state transition

A → B removes exactly one individual from compartment A and adds exactly one individual to

compartment B. State transition A → removes an individual from compartment A and state

transition → B adds an individual to compartment B.

For sufficiently large numbers of people a stochastic compartmental model and a sys-

tem of ODEs (based on the same model structure, parameters and initial conditions) will

predict approximately the same epidemic curves, with the approximation becoming exact

in the limit of infinite population size [76]. However, stochastic compartmental models are

able to capture the dynamics of a disease even when there are small numbers of people in

any of the compartments, such as when a disease is emerging, dying out or simply if the
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population being studied is small. As with ODEs, there are rarely ever simple analytic

solutions for CTMC models. Because the time of each transition event is random there is

not one but an infinite number of possible epidemic curves and rather than reaching an

equilibrium point (or stable seasonal pattern), these models reach an equilibrium distri-

bution that fluctuates around the mean number of people in each compartment. If the

population size is fixed or bounded it is in theory possible to calculate the full distribution

of the stochastic process exactly. Similar methods can be used to approximate the full dis-

tribution for models with unbounded population sizes [78]. However, both the exact and

the approximate methods involve calculating the exponentials of very large matrices so are

often impractical for even relatively simple models and small populations. Instead, it is

common to use Monte Carlo simulation techniques such as the Gillespie’s exact stochastic

simulation algorithm [79] or approximate tau-leaping algorithm [80] to generate samples

of possible epidemic curves. Many repeated simulations of the same system are required

to sample the range of possibilities, so working with CTMCs can be computationally ex-

pensive. However, if the size of the simulated population or the simulated period of time

is small, simulations can be very rapid.

However some of the assumptions underlying stochastic compartmental models are un-

realistic. Because transitions are modelled with Poisson processes, the amount of time an

individual spends in each compartment is exponentially distributed. This is an unrealistic

distribution for many processes such as the length of infectious period, length of immunity

or length of life. It is possible to subdivide each compartment so that the total time spent

in all of the subdivisions has a more general and realistic gamma distribution [81], but

this greatly increases the complexity of these models especially if more than one process

is given a more general distribution. Moreover both ODE and stochastic compartmental

models assume that all people in each compartment are identical and indistinguishable.

Therefore to take into account the differences in risks associated with different charac-

teristics and exposures (e.g. age, sex, smoking status, underlying conditions, medication

history), every characteristic or exposure group must be modelled with its own compart-

ment (e.g. SH vs. SL). This can lead to a model with very many compartments especially

if different types of exposures and characteristics interact or compound. Finally, CTMC

and ODE models only track the number of people in each compartment and therefore the

histories of individuals are lost.

One way to address the shortcomings of stochastic compartmental and ODE models

is to use an agent-based model (ABM) [82]. Rather than modelling only the numbers of

individuals in each class, an ABM models an ensemble of agents or individuals moving

through the compartments in the model. The transition rates between states for each

agent can be modelled with any desired distribution. This makes ABMs extremely flexible

and capable of handling a large degree of complexity. However ABMs that incorporate

this additional complexity require more data to calibrate or estimate model parameters

and simulating every individual requires even more computational power than stochastic

compartmental models, especially in large populations.
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Another way to simulate individual patient histories is to approximate the behaviour of

individuals using a simple Markov chain model. This framework or perspective is comple-

mentary to the ODE and stochastic compartmental models and therefore shares its other

limitations, however is much simpler than an ABM. In the ODE, stochastic compartmen-

tal or ABM frameworks, nearly all transitions rates leaving compartments are equal to

the number people in the class that is being left multiplied by a fixed rate parameter.

Often only the infection rate is different: proportional to the number of people susceptible

(i.e. the people that could become infected) and the proportion of the population that is

infected. If the population can be assumed to be at equilibrium, then the proportion of

people that are infected at any point in time (I∗/N∗) is fixed and can be treated like the

fixed parameters. The equilibrium proportion infected can be approximated by finding

the equilibrium points of the ODE model (i.e the solution(s) of A(X)X = 0) or taking

an average over the long term behaviour of stochastic compartmental model simulations.

Under this approximation all transition rates depend only on the state of the individual

at the time but not their history or changes affecting other individuals. Therefore the be-

haviour of each individual can be approximated as a continuous time Markov chain with a

state space consisting of the model compartments and an additional state for death, while

the whole population can be modelled as an ensemble of independent individuals. The

transition rates for these Markov chains are determined entirely by the constant parame-

ters and constant equilibrium proportion infected. For the simple example model, if p(t)

is the vector of probabilities that an individual is in the living states SH , SL, I and R at

time t, then p(t) satisfies a set of differential equations very similar to those above:

p′(t) =




−(σ + βHI
∗/N∗ + µ) 0 0 0

σ −(βLI
∗/N∗ + µ) 0 0

βHI
∗/N∗ βLI

∗/N∗ −(γ + µ) 0

0 0 γ −µ




p(t) (2.5)

or

p′(t) = Qp(t), (2.6)

The probability that the individual is dead, m(t), satisfies

m(t) = 1− 1Tp(t) (2.7)

and

m′(t) = −1TQp(t). (2.8)

Note that because the model individual has already been born, the matrix Q lacks the

birth rate terms (α), but is otherwise identical to A(X∗). Because Q is a constant matrix,

unlike other models, there are simple explicit solutions for these equations. Given the

probabilities that an individual is in each state at time s, p(s), the probability that the
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individual is in each state at any future time t is

p(t) = eQ(t−s)p(s). (2.9)

This simple solution and other well known results from Markov chain theory allow us to

calculate the range of possible behaviour of an individual over its lifetime very quickly

without an ABM. I briefly illustrate a few examples using the above example model.

We can calculate the probability that an individual is in a given state at age a. If the

individual is born at time 0, then p(0) = [1, 0, 0, 0]T since in the example model all people

are born into SH . Then the probability that an individual is in a each state at age a is

given by the vector p(a)

p(a) = eQa




1

0

0

0



. (2.10)

We can calculate the probability that someone has died by age a by substituting the above

into Equation (2.7) to yield

m(a) = 1− 1T eQa




1

0

0

0



. (2.11)

One can also calculate the probability that an individual is in a each state at age a given

that they are still alive (i.e. p(a)
m(a)) by combining the above statements. The mean length

of time an individual will spend each state before dying is given by

∫ ∞

0
p(a)da =

∫ ∞

0
eQap(0)da = −Q−1




1

0

0

0



, (2.12)

and consequently the mean life expectancy at birth is

∫ ∞

0
1−m(a)da =

∫ ∞

0
1Tp(a)da = −1TQ−1




1

0

0

0



. (2.13)

It is relatively easy to evaluate the above matrix exponentials and matrix inverses using

symbolic computation software, but the results – even for the simple example model – are

unwieldy and don’t provide clear insights into the model. For this reason, the individual-

level outcomes for the models presented in this thesis (which are more complicated than

the example model considered above) are calculated and reported in numeric form only.
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The methods for calculating the more complex, individual-level outcomes for these models

used in this thesis are described as needed in the chapters in which they are used. One

can generalise the above examples to calculate the probability of entering a state or set

of states and how long an individual spends in each state [83]. This theory is sketched at

Chapter 3 in which it is used to calculate recurrence.

ABMs have been used extensively in the C. difficile modelling literature (which is

reviewed in the next section). However, the models developed for this thesis use a com-

bination of ODE and compartmental stochastic models, relying on the individual Markov

chain perspective to explore the properties of individuals.

The reproduction number, often denoted by R, is an important concept in infectious

disease epidemiology. The reproduction number of a disease in a population is often

defined as the average number of secondary cases arising from a typical primary case in

the population. Generally speaking, the incidence of a disease is increasing over time

if the reproduction number exceeds one, but is decreasing over time if the reproduction

number is less than one. In a population at or near equilibrium, the reproduction number

is approximately one.

The basic reproduction number, often denoted by R0, is the reproduction number in

an almost entirely susceptible population, and describes the growth of a disease that has

just been introduced into a population (or in a population with very low prevalence of

infection and immunity). In general, if the basic reproduction number is less than one,

a newly introduced disease cannot persist in the population without constant reintroduc-

tions. If the basic reproduction number is greater than one, introduction of the disease

will probably lead to an epidemic and/or eventual endemicity of the disease, unless by

chance the first few cases do not infect others. This makes the basic reproduction number

a threshold parameter for disease extinction or persistence in a population [84] (though

this property can be blurred in some cases by backward bifurcations [86, 87]). The term

is sometimes reserved for the reproduction number in situations without any intervention

in place to control the disease (e.g. [85]). However, since diseases nearly always elicit some

response or change in behaviour in the patient and the people around the patient, this

thesis is concerned with the reproduction number one would expect in an entirely suscep-

tible population with current or typical responses and interventions. To avoid confusion

between the different definitions of the basic reproduction number this thesis generally

avoids the term, instead simply using the phrase the reproduction number, accompanied

by a definition or a method of calculation.

The numerical value of the basic reproduction number very much depends on how the

terms average and typical are interpreted in its definition; under some interpretations and

models the basic reproduction number is not guaranteed to be a threshold parameter. The

next-generation matrix (NGM) method is a general method for calculating the basic repro-

duction number in compartmental disease models. The basic reproduction number in the

NGM sense is always a threshold parameter for establishment of endemicity following the

introduction of a small number of infective individuals and is also the threshold for disease
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extinction for isolated populations [84], unless the model displays a backward bifurcation

[86, 87]. Because I wish to identify human populations that are able sustain the trans-

mission of C. difficile without exposure to or introduction from an external source, this

thesis is concerned with reproduction numbers as threshold parameters in a population (or

subpopulation). Therefore this thesis uses the NGM definition for the basic reproduction

number unless stated otherwise.

For the example model above, the basic reproduction number in the NGM sense is

R0 =
βHµ+ βLσ

γ(µ+ σ)
(2.14)

if we assume that births balance deaths in the population (i.e. α = µ). The analytic form

of the reproduction number here provides insight into disease dynamics. For instance,

R0 will decreases if σ increases but other parameters stay the same i.e. if the process

which reduces susceptibility (e.g. prophylactic treatment) occurs more rapidly the basic

reproduction number will decrease, potentially preventing outbreaks. However, for more

complicated models, the analytic form becomes intractable, or too complex to be useful in

generating useful insights. For this reason, the reproduction numbers in Chapters 3 to 6

are calculated and presented in numeric form only.

Type reproduction numbers are complementary measures to the basic reproduction

number for populations and diseases where there is more than one type of host (e.g. adults

vs. infants or humans vs. animals) [88, 89]. The type reproduction number is the number

of secondary cases of a type that arises from a typical case of the same type either through

direct transmission from the index case or a chain of indirect transmission through other

types. The type reproduction number shares the threshold property of the basic repro-

duction number and provides a way to determine whether a given host type (or group of

host types) constitutes a reservoir that sustains the disease [88, 89]. However, the type

reproduction number can only be calculated for host types that are explicitly included

in the model, so cannot be used if there is insufficient information to explicitly model

all hosts (as is the case for C. difficile in animals). Furthermore while type reproduc-

tion numbers can be used to determine whether different host types constitute reservoirs

(e.g. patients colonised in hospitals vs. patients colonised in the community) they cannot

be used to determine whether transmission can be sustained locally in a setting that is

connected with other settings by the exchange of host individuals (e.g. hospital and the

broader community). Therefore this thesis uses and introduces other minor variations of

the basic reproduction number that can be used in these scenarios.

2.2.2 Review of C. difficile modelling literature

To my knowledge, 18 works on mathematical models of C. difficile epidemiology have

been published to date (not including those I have authored), most of these in the last five

years. The two earliest [90, 91] are short pieces which provide outlines of proposed models

and argue the importance of further work. Many of the journal articles published since
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then have proposed their own novel mathematical model or extended an existing model

to account for greater complexity or a new setting. I review these articles considering the

different mathematical modelling frameworks used; the aspects of the disease captured by

these models; and the results, insights and recommendations these models have generated.

I then detail the gaps remaining in the mathematical modelling literature and set out how

this thesis aims to address some of these gaps.

Modelling framework and setting

Almost all existing mathematical models of C. difficile consider only the healthcare set-

ting. Durham et al. modelled CDI across a population with separate sub-populations for

hospitals, aged-care facilities and the broader community [92]. van Kleef et al. focused

on patients in an intensive care unit but modelled their movements to and from other

wards, long-term care facilities, and the community [93]. Only Yakob et al. have mod-

elled C. difficile transmission in a general setting [94]. Most of the remaining, exclusively

hospital-based models consist of a single, well-mixed population; however, some include

multiple wards or rooms within wards, with different modes or rates of intra- and inter-

ward transmission [95–97]. Since hospital populations are small, most authors have used

stochastic compartmental models [92, 94, 95, 98–102] or ABMs [93, 96, 97, 103–105] though

at least one article used an ODE model [106].

Transmission routes

Most authors have not explicitly modelled the mechanism of transmission. Instead they

have assumed that – whatever the mechanism – the frequency of transmission is pro-

portional to the number of infectious individuals in the population or subpopulation of

interest. However, a number of authors have explicitly modelled environmental contami-

nation [104, 105] or incorporated healthcare workers [96, 97, 99, 105] or visitors [97, 105] as

transmission vectors. There are few published studies modelling transmission of C. difficile

via food or from animals. Durham et al. estimated the force of colonisation in the com-

munity, giving this as an upper bound for transmission from food in the community [92].

Kwon et al. used extensive sampling of hospital food and a compartmental model to esti-

mate the number of colonisations per 1,000 hospital admissions due to contaminated food

[107], finding limited evidence for food-borne transmission in the study hospital. However,

the extent of transmission from animal reservoirs in the community has not been estimated

and the consequences for disease control have not been explored. The role of infants in

transmission has also not been captured in any of the articles reviewed.

Gut flora and asymptomatic carriage

Authors have captured the interaction of C. difficile with gut flora in different ways. Some

have assumed that antibiotic-induced gut flora disruption is required to become colonised

with C. difficile [95, 98, 103, 104, 106, 107]. Others have assumed that all patients are
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equally susceptible to colonisation but that patients with disrupted gut flora are more

likely to develop symptomatic CDI and do so more rapidly [92, 99–101]. Rubin et al.

assumed past and present antibiotic exposure increased susceptibility to colonisation, the

rate of development of symptoms and the spore shedding rate (infectiousness) [96]. Some

have modelled the gradual recovery of disrupted gut flora and the associated restoration

of protection against infection [98, 100, 101, 103, 104, 106, 107]. A few authors have not

included the effects of antibiotic exposure or disrupted gut flora in their models [94, 97].

Authors have modelled asymptomatic carriage in many ways. Some have assumed

asymptomatic colonisation with toxigenic strains of C. difficile can only be followed by

development of symptoms, discharge from hospital (leaving the scope of these models) or

death [95, 96, 99, 100, 102]. In these models, asymptomatic carriage of toxigenic strains is

a precursor to symptomatic disease. In other models, asymptomatically colonised patients

can either develop symptomatic disease or clear the colonisation returning to a susceptible

state [94, 97, 101, 105]. In the original model by Lanzas et al. and later variants, patients

remain asymptomatic if they have an immune response, but immune patients cannot clear

colonisation [98, 103, 104, 106, 107]. Rubin et al. allowed for asymptomatic carriage of

non-toxigenic C. difficile that cannot be cleared or progress to symptomatic disease but

prevents infection by toxigenic strains [96].

Immune responses

An early model by Lanzas et al. [98] and subsequent adaptations of this model [103, 104,

106, 107] assume all susceptible patients who become infected have a chance of mount-

ing an immune response that prevents the development of symptomatic disease. Patients

who recover from CDI in these models return to the susceptible state and thus may

be subsequently recolonised, with another chance of mounting an immune response. In

these models a susceptible patient’s history of prior infection neither protects nor predis-

poses patients to subsequent reinfection. Codella et al. [97] and Barker et al. [105] assumed

that patients under 65 and a portion of patients who have recovered from CDI are not

susceptible to colonisation, implying some form of immunity. The simplifying assump-

tions in all these models fail to capture certain aspects of the disease. Seropositivity for

C. difficile toxin antibodies (which implies prior exposure) is protective against future in-

fection [15, 108], so – contrary to the assumptions of some authors – a patient’s history

of infection influences their risk of future infection. Similarly, an immune response to

C. difficile toxins does not prevent colonisation [15] and people of all ages can become

colonised and infected [13, 109].

Multiple strains

Most authors have not distinguished the many strains of C. difficile in their models. Lan-

zas et al. [103] and Yakob et al. [94] each considered two groups of strains: ‘epidemic’

ribotype 027 strain and other, lower virulence strains. Yakob et al. modelled different

mechanisms of competition between the two groups of strains, exploring which could ac-



§2.2 Mathematical models 21

count for the dominance of the epidemic strain in some settings. Rubin et al. modelled

a range of toxigenic and non-toxigenic strains with different antibiotic susceptibilities,

capturing strain interactions by assuming that colonisation and infection with one strain

prevents colonisation and infection from other strains [96].

Model Outcomes

The most common purpose of the models reviewed here has been to assess or predict

the efficacy of hospital-based interventions for preventing C. difficile infection and coloni-

sation. Though they did not explicitly model interventions, Starr et al. suggested that

reducing the susceptibility of patients to colonisation with C. difficile (by reducing an-

tibiotic prescription rates) is more effective than comparable reductions in all forms of

within-hospital transmission (environment and person to person) [95]. Lanzas et al. eval-

uated screening hospital admissions to detect and isolate asymptomatic carriers using

tests with a range of sensitivities and turnaround times. They assumed that identified

C. difficile carriers were treated with contact precautions that reduced transmission from

these patients by 75% and estimated this intervention would reduce the number of hospital

acquired colonisations by 40-52% depending on the sensitivity and speed of the screening

test [103]. Grigoras et al. modelled a similar intervention, predicting smaller reductions

in colonisations (36%), but estimated that the addition of an antimicrobial stewardship

program to this intervention would further reduce colonisations (total reduction: 56.6%).

Lofgren et al. assessed the efficacy of routine bolstering of gut flora with faecal transplants,

finding that faecal transplants for patients who had received high-risk medications such

as antibiotics and PPIs would decrease CDI incidence, while faecal transplants for those

recovering from CDI would reduce recurrent cases of CDI [99].

Some authors modelled the effect of bundles of control measures implemented in hos-

pitals [96, 97, 101, 102, 104]. Rubin et al. considered the effects of improved hand hygiene

amongst healthcare workers, improved adherence to contact precautions for C. difficile pa-

tients, improved environmental cleaning, and faster testing for CDI [96]. While they found

that the combination of all measures had the greatest effect, the single most effective inter-

vention was increased general hand hygiene. Yakob et al. considered the effect of four types

of interventions: increasing the recovery rate of gut flora in patients who have received

antibiotics using probiotics; reduction of antibiotic prescription; reducing person-to-person

transmission by improved hygiene; and decreasing the average length of stay [101]. They

found that reducing transmission was much more effective than other control measures in

reducing CDI incidence, while antimicrobial stewardship and reducing transmission were

most effective at reducing new colonisations in hospital. Rather than model the effect of

improved intervention strategies, Codella et al. estimated the efficacy of four commonly

used interventions implemented singly or as a bundle. They found that the combination

of all interventions was better than each individually but found that environmental clean-

ing and treatment of symptomatic patients resulted in the largest improvements when

implemented singly [97]. Barker et al. expanded on this model to analyse the potential
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effectiveness of additional interventions, such as screening for asymptomatic carriage on

admission, improved patient hand hygiene, and improved environmental cleaning, finding

that interventions that prevented transmission from the large number of patients colonised

at admission were better than improved contact precautions for symptomatic inpatients

[105].

Vaccination has received little attention in the C. difficile modelling literature. van

Kleef et al. used their model of an intensive care unit to identify the subset of patients

that, if vaccinated, would prevent the most number of cases with the fewest number of

vaccinations [93]. They found that vaccinating elective surgery patients prevented the

most number of cases, but required many vaccinations. Since 70% of infections were

acquired outside the ICU in their model, the most efficient strategy was to vaccinate

patients with a high risk of colonisation at admission, such as residents of long-term care

facilities. Stephenson et al. used their model to determine optimal vaccination strategies

to reduce infection and colonisation while minimising vaccine-associated costs [106].

Yakob et al. used their multi-strain model to understand the rapid emergence and dom-

inance of epidemic strains of C. difficile, considering three possible mechanisms: higher

infectiousness of epidemic strains, higher likelihood of patients colonised with epidemic

strains developing symptomatic disease, and a within-gut competitive advantage of epi-

demic strains against non-epidemic strains. They concluded that all three mechanisms

would allow epidemic strains to replace endemic strains, but that only the first two mech-

anisms could do so as rapidly as has been observed in North America and Europe [94].

Even though most models have focused on healthcare settings, many have demon-

strated the importance of importation of symptomatic and asymptomatic carriers of

C. difficile from the community [92, 93, 95, 100, 101, 103, 105]. Starr et al. found that

a simulated 50% reduction of within hospital transmission only reduced CDI cases by

15% suggesting that many (if not most) cases are imported from outside the hospital [95].

Yakob et al. quantified the effect of exposed but uncolonised patients entering the hospi-

tal, demonstrating their importance for hospital-onset infections [100]. Lanzas et al. found

that the basic reproduction number for C. difficile in hospital settings was less than one

for nearly half of all plausible parameter values, indicating that C. difficile is often not

self-sustaining in hospitals but sustained by importation [98]. The only article to explicitly

model transmission in the hospital and broader community found that reducing transmis-

sion in the community could lead to significant reductions in both community-onset and

hospital-onset CDIs [92].

Gaps in the modelling literature

The C. difficile mathematical modelling literature summarised above is relatively limited

and leaves important questions unanswered. Key areas for improvement are: better models

of immunity and asymptomatic carriage; understanding the interplay between hospital and

community; modelling transmission in the community and its effect on hospitals; incorpo-

rating transmission from known, but neglected reservoirs of the pathogen – particularly
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infants, and animals; and capturing the mechanisms that lead to seasonality.

The existing mathematical modelling literature has simplified models of the inter-

actions of C. difficile, gut-flora, and immune responses and therefore does not capture

the essential complexity of CDI and asymptomatic carriage. For instance as highlighted

above, many models assume that asymptomatic carriage is only a precursor to infection,

while others omit the role of immune responses. In Chapter 3 I argue that it is pos-

sible to capture the essential complexity of C. difficile parsimoniously by modelling the

interaction of three factors: C. difficile status, gut-flora health, and immune responses

to C. difficile toxins. The compartmental structure developed in Chapter 3 and used

throughout the thesis, models the many possible combinations of these factors or dimen-

sions to produce the phenomena of asymptomatic colonisation, infection and recurrence.

This bottom-up, multi-dimensional approach differs from many existing models that only

consider some combinations of these factors or consist of a loose organisation of compart-

ments and transitions designed to suit the available data or the specific interventions being

studied (e.g. [97, 98, 105, 106]). Some authors have used a multi-dimensional model struc-

ture, but these have only considered the interaction of C. difficile and gut flora, omitting

immune responses [92, 100, 101].

Even though many of the mathematical models reviewed above have highlighted the im-

portance of community-acquired colonisations and infections in hospitals, the interaction

between hospitals and communities has not been extensively studied. While Lanzas et al.

found that the reproduction number may often be less than one in hospitals [98], this

at first seems to be at odds with other models [100, 101] and empirical studies [13] that

report higher prevalence of colonisation among discharged patients than among admitted

patients or the general population. In Chapter 3 I demonstrate that both can be (and

probably usually are) true of the same hospital.

If it is the case that the reproduction number for within-hospital transmission is less

than one and disease in hospitals is sustained by admissions of colonised patients, this raises

a question: what sustains the continual inflow of colonised admissions from the commu-

nity? It could be that patients discharged from hospitals sustain the presence of C. difficile

in the community with minimal community-based transmission, or it could be that ex-

tensive transmission in the community maintains a pool of colonised patients. Though

Durham et al. found that small reductions of transmission in the community would reduce

the incidence of hospital-onset CDIs, they did not calculate reproduction numbers for the

hospital or community and did not explore whether larger interventions in one setting

could disrupt transmission in one or both [92]. I address these questions in Chapter 5.

The potentially significant role of infants – who have very high colonisation rates and

therefore constitute a large portion of colonised individuals outside hospitals – has not been

quantified. I also explore this in Chapter 5. Similarly, transmission via food and animals

has received very little attention in the modelling literature. In Chapters 5 and 7 I model

person-to-person and animal-to-person transmission, providing conditions under which it

would be reasonable to believe that transmission from animals sustains the pathogen in
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the human population.

I have not identified any mathematical modelling articles that consider the seasonality

of C. difficile. However, mathematical models are often used to study the seasonality of

infectious diseases [110, 111] and could be used to explore which – if any – of the proposed

mechanisms could account for the seasonal patterns of C. difficile infections.

A number of the models I have reviewed use national, regional or hospital-specific

estimates of the incidence of hospital-acquired CDIs and/or community-acquired CDIs

to fit or verify their models. These estimates are based on surveillance definitions that

use arbitrary and un-validated cut-offs to distinguish hospital and community-acquired

infections [23]. Though the authors of one mathematical modelling article have identified

this issue [93], I have not found any mathematical models which assess these definitions

or account for misclassification that may arise from these definitions.

This thesis begins to fill these key gaps in the modelling literature. I begin by intro-

ducing an improved model of C. difficile transmission in a hospital setting that is the basis

of the next four chapters.



Chapter 3

Healthcare-Associated

Clostridium difficile Infections are

Sustained by Disease from the

Community

3.1 Introduction

This chapter consists of an article published in the Bulletin of Mathematical Biology and

the accompanying supplementary materials. In this article I introduce a novel compart-

mental model of C. difficile transmission that captures the interaction of three factors

that lead to infection or asymptomatic carriage: C. difficile status, gut-flora health, and

immune responses to C. difficile toxins. I use the framework to simulate transmission

amongst hospitalised patients. I primarily use a stochastic compartmental framework but

use the individual Markov chain approximation to calculate individual-level outcomes. The

main outcome of this article is that, for most hospitals or hospital wards, there is enough

transmission to create a net export of colonised individuals to the broader community but

not enough within-hospital transmission to sustain the disease in the hospital without the

regular admission of colonised patients. This is, to my knowledge, the first time the two

seemingly contradictory halves of this result have appeared together and been reconciled

in the modelling literature. The article uses extensive sensitivity analysis to determine the

robustness of the main result and demonstrate how different factors differentially affect

transmission, infection prevalence and recurrence. The supplementary materials provide

additional information on the model structure, parameterisation and sensitivity analysis.

The model presented in this chapter is the basis of the analysis for the article in Chap-

ter 4. The model framework is extended in Chapters 5 and 6 to capture the community,

infants, animal reservoirs, and seasonality.
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3.2 Article and supplementary material

Angus McLure, Archie C. A. Clements, Martyn Kirk and Kathryn Glass. Healthcare-

associated Clostridium difficile infections are sustained by disease from the community.

Bulletin of Mathematical Biology, 79(10):2242-2257, 2017.
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Abstract Clostridium difficile infections (CDIs) are some of the most common
hospital-associated infections worldwide. Approximately 5% of the general popu-
lation is colonised with the pathogen, but most are protected from disease by normal
intestinal flora or immune responses to toxins. We developed a stochastic compart-
mental model of CDI in hospitals that captures the condition of the host’s gut flora
and the role of adaptive immune responses. A novel, derivative-based method for
sensitivity analysis of individual-level outcomes was developed and applied to the
model. The model reproduced the observed incidence and recurrence rates for hos-
pitals with high and moderate incidence of hospital-acquired CDI. In both scenarios,
the reproduction number for within-hospital transmission was less than 1 (0.67 and
0.44, respectively), but the proportion colonised with C. difficile at discharge (7.3
and 6.1%, respectively) exceeded the proportion colonised at admission (5%). The
transmission and prevalence of CDI were most sensitive to the average length of stay
and the transmission rate of the pathogen. Recurrent infections were most strongly
affected by the treatment success rate and the immune profile of patients. Transmis-
sion within hospitals is substantial and leads to a net export of colonised individuals to
the broader community. However, within-hospital transmission alone is insufficient to
sustain endemic conditions in hospitals without the constant importation of colonised
individuals. Improved hygiene practices to reduce transmission from symptomatic
and asymptomatic individuals and reduced length of stay are most likely to reduce
within-hospital transmission and infections; however, these interventions are likely to

Electronic supplementary material The online version of this article (doi:10.1007/s11538-017-0328-8)
contains supplementary material, which is available to authorized users.

B Angus McLure
angus.mclure@anu.edu.au

1 Research School of Population Health, Australian National University, Canberra, Australia
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have a smaller effect on the probability of recurrence. Immunising inpatients against
the toxins produced by C. difficile will reduce the incidence of CDI but may increase
transmission.

Keywords Clostridium difficile · Mathematical model · Sensitivity analysis ·
Nosocomial infection

1 Introduction

Clostridium difficile is a spore-forming anaerobic bacteria that colonises the large
intestine causing mild to severe diarrhoea and inflammation of the colon. Since the
emergence ofmore virulent strains in the early 2000s, the burden ofC. difficile has been
increasing [6,23,38,49]. Although there are no global estimates, the CDC estimate
that in 2011 there were 453,000 C. difficile infections (CDIs) and 29,300 associated
deaths in the USA alone [33]. The primary healthcare costs of treating C. difficile in
the USA are estimated to be up to USD 4.5 billion per annum [12] or USD 10,000 per
infection [39]. Themajority of reported CDIs are among hospitalised patients admitted
for unrelated conditions [33]. Historically, most hospital-onset CDI has been attributed
to transmission from other CDI patients in hospitals. More recent studies suggest that
many hospital-onset infections are acquired prior to admission and that much of the
transmission within hospitals is from asymptomatic carriers [35,48,52]. Up to 15% of
healthy adults in the community and 4–29% of inpatients are colonised in developed
countries [19], but most carriers are asymptomatic, making the pattern of transmission
difficult to discern. Mathematical models of transmission attempt to reveal this unseen
pattern by capturing the key biological mechanisms of the disease and reproducing the
incidence observed in real communities. Specific biological mechanisms that play an
important role in transmission of CDI are gut flora and immunity as they can prevent
or delay the development of symptoms in asymptomatic carriers.

Natural gut flora compete with the pathogen preventing infection [5] but not coloni-
sation [36]. Disruption of the gut flora allows the proliferation and overgrowth of
vegetative C. difficile and increases spore shedding [9,17,18,30]. In one study, mice
receiving antibiotics shed up to a million-fold more C. difficile spores than asymp-
tomatic carriers who did not receive antibiotics [30]. Treatment of acute CDI is often
with broad-spectrum antibiotics, which suppress C. difficile but also damage other gut
flora, leaving patients susceptible to recurrent disease from the recrudescence of the
original strain or a new infection [32]. Twenty to thirty percent of patients recovering
from a primary CDI will have a recurrent infection [32,36].

The symptoms of CDI are not caused by colonisation directly but by the A, B [51]
and binary [20] toxins produced by many strains of C. difficile. Even in patients with
disrupted gut flora, adaptive immune responses to these toxins also protect against
CDI. High levels of serum antibodies for toxins A and B are protective against initial
[25,27] and recurrent [31] CDI, while the risk of infection increases with advancing
age [36]. Passive immunisation with antibodies has been shown to prevent initial [3]
and recurrent [37] CDI. Phase I and II trials for a C. difficile toxoid vaccine have been
completed successfully [10,16], and phase III trials are under way.
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A number of mathematical models of C. difficile transmission have been reported
[4,7,13,28,29,34,46,50,54,55], but only Lanzas et al. [29] have incorporated immune
responses in their models, and these immune responses were not adaptive. We present
a mathematical model of C. difficile that incorporates adaptive immune responses to
toxins and the role of antibiotic consumption in triggering spore shedding. It is crucial
to understand the effect of these factors on asymptomatic carriage, recurrence and
transmission. This requires a more complex model with more parameters. Systematic
sensitivity analysis of stochastic disease models is rarely performed but is especially
important when there are many parameters. We translate Anderson’s coupled finite
differences approach [1] to the epidemiological setting and propose a novel method to
estimate the sensitivity of individual-level outcomes such as the probability of disease
recurrence.

The main aim of this study was to make a mathematical model of C. difficile
transmission that parsimoniously captures the role of adaptive immune responses,
healthy and disturbed gut flora and asymptomatic colonisation.We aimed to reproduce
the range and relative proportions of initial and recurrent CDIs and the incidence of
hospital and community-acquired asymptomatic colonisation observed in developed
countries. We then used the model to determine the key drivers of CDI in hospitals.

2 Methods

2.1 Model Structure

Individuals are distributed between compartments based on three attributes: immune
status, C. difficile status and commensal gut flora status. There are three immune
statuses: able to mount an effective immune response to C. difficile toxins conferring
resistance or immunity to symptoms but not colonisation (R); naive to C. difficile
toxins but with a healthy immune system (H ); and unable to mount an effective
immune response to C. difficile toxins because of a suppressed, locally dysfunctional
or unhealthy immune system (U ).

There are two possible commensal gut flora statuses: disrupted (denoted with a sub-
script ‘a’) and not disrupted (without additional subscripts). There are three possible
C. difficile statuses: C. difficile overgrowth (subscript ‘o’), colonised (subscript ‘c’),
and free of C. difficile (without additional subscripts). An individual may have almost
any combination of these attributes; however, we assumed that C. difficile overgrowth
can only occur in individuals with disturbed gut flora (Fig. 1).

If C. difficile overgrowth is accompanied by a robust immune response to tox-
ins, the individual will not exhibit symptoms (Rao), but otherwise individuals with
overgrowth exhibit symptoms (Hao and Uao). All individuals with overgrowth shed
significant numbers of spores and so are infectious. Spore shedding has been observed
to increase before toxin production [17,18], but be subsequently reduced (but not
eliminated) during C. difficile treatment [48]. Therefore, individuals with C. difficile
colonisation and disrupted gut flora who are currently asymptomatic (Hac, Uac and
Rac) and individuals with overgrowth (Hao, Uao and Rao) are equally infectious in
our model. All other individuals are neither infectious nor symptomatic for CDI.
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Fig. 1 Model diagramwith boxes representing compartments.Arrows indicate possible transitions between
compartments with rate parameter given by the associated Greek letter in parentheses. Admissions and
discharges are not pictured. †The rate of colonisation—the force of colonisation—depends on the number
of infectious individuals, the size of the hospital (Nbed), the transmission rate parameter (β) and the efficacy
and coverage of contact precautions (q) as: [(Hao +Uao)q + Rao + Hac +Uac + Rac]β/Nbed (Color
figure online)

2.2 Model Parameterisation

Parameters were chosen to reflect hospitals based on the available literature (Table 1).
Loo et al. [36] reported an exceptionally complete picture of C. difficile in a hospi-
tal setting: they measured serum levels to toxin antibodies and colonisation status on
admission and used extensive stool sampling to estimate the cumulative risk of asymp-
tomatic colonisation and CDI post-admission. We fitted a number of key parameters
to these detailed observations; however, as the study represents a high-incidence set-
ting, we chose two parameterisations: a high hospital-acquiredCDI incidence hospital,
emulating the conditions reported by Loo et al. [36], and a moderate hospital-acquired
CDI incidence setting. The moderate-incidence setting differs only in the parameters
for which there is significant variation between Loo et al. and the broader literature
(length of stay; proportion of patients immunocompromised; and proportion of patients
positive for C. difficile toxin antibodies at admission).

2.3 Reproduction Number

The reproduction number (R) was calculated using the next-generation method [11].
The two parameterisations of the model we used have no disease-free equilibria
because new colonised patients are admitted constantly. Therefore, the reproduction
number was calculated for each parameterisation assuming all admitted patients are
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C. difficile negative (pc, po = 0). As the model only captures transmission within the
hospital, the reproduction number does not include transmission arising from primary
cases after they have been discharged to the community.

For comparison, we calculated the reproduction number assuming that colonised
patients are not discharged. This model has the same disease-free equilibrium as the
main model, but the average infectious period in hospital is longer.

2.4 Patients Discharged with Asymptomatic Colonisation

To complement the reproduction numbers, we calculated the proportion of patients that
are colonised at discharge for the high and moderate-incidence settings. We found that
this proportion was sensitive to the average length of stay (1/κ) and the transmission
parameter (β) and so also calculated this proportion for average lengths of stay between
4 and 30 days and transmission parameter values between 0 and 0.18 (double the
estimated value).

2.5 Sensitivity Analysis Using Coupled Finite Differences

Anderson’s coupled finite differences approach to sensitivity analysis [1] uses coupled
pairs of model simulations where the parameter of interest differs by a small quantity.
The mean difference in model outcomes between the paired simulations for many
(psuedo)randomly generated pairs of simulations is a Monte Carlo estimate of the
derivative of the model outcome with respect to the varied parameter. By coupling the
pairs of simulations to move ‘in step’, it is possible to reduce the variance without
introducing further bias (see [1] for further details).

Parameter sensitivity was estimated using the derivative of each outcome with
respect to each parameter divided by the outcome multiplied by the parameter. For
small changes in parameter value, the sensitivity was approximately the proportion
change in outcome per proportion change in the parameter, allowing comparison of the
sensitivities for different outcomes and parameters. We used this approach to estimate
the sensitivity of hospital-level outcomes (CDI prevalence, prevalence of all infectious
individuals and the force of colonisation).

2.6 Sensitivity Analysis for Individual-Level Outcomes

Many outcomes of interest, such as the probability of recurrence, depend on the histo-
ries of individuals. We developed a method for estimating individual-level outcomes
and thus the sensitivity of these outcomes to parameter values. If the force of coloni-
sation (FOC) is constant, then each individual in the hospital acts as an independent
continuous-time Markov chain with transition rates described in Fig. 1. This is true in
general formany SIR-type compartmentalmodelswhere the onlymodelled interaction
between individuals is transmission. Although the FOC is a non-constant stochas-
tic process, for endemic diseases it fluctuates around an equilibrium value and the
behaviour of each individual in the model can be approximated by an independent
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Table 2 Comparison of reported (Loo et al. 2011) and simulated values of key outcomes in a high-incidence
and moderate-incidence setting.

High incidence Moderate incidence
Outcome Reported [95% CI] Simulated Simulated

Incidence of HA colonisationb 57.6 [50.5, 65.4] 60.4 42.6

Symptomatic (CDI)b 28.1 [23.2, 33.7] 27.1 9.9

Asymptomaticb 29.5 [24.5, 35.2] 33.3 32.7

CDI < 72h after admissionb 14.4 [11.0, 18.5] 11.5 11.9

Force of colonisationa 0.007 [0.004, 0.011] 0.007 0.005

Prob of ≥ 1 CDI recurrence 0.248 [0.170, 0.326] 0.199 0.180

Prob of ≥ 2 CDI recurrences 0.068 [0.022, 0.114] 0.058 0.041

a Incidence is per 10,000 patient-days
b Units of per day

Markov chain. Assuming a constant FOC, we used the theory ofMarkov chain sojourn
times and hitting probabilities [47] to calculate the probability and the mean time to
onset of recurrent CDI. We used a simple central difference scheme to estimate the
parameter sensitivity of individual-level outcomes and the reproduction number.

3 Results

The model reproduced the incidence of hospital-acquired colonisation, hospital-
acquired CDI and recurrence rates observed in both high- and moderate-incidence
settings (Table 2). The moderate-incidence parameterisation—which had shorter
lengths of stay, more patients with immunity to C. difficile toxins and fewer immuno-
compromised patients—had much lower CDI incidence (11.8 per 10,000 patient-days
compared with 28.7 per 10,000 patient-days). Of this reduction in incidence about
half was attributable to reduced length of stay and half to the changed immune profile
of admitted patients: simulations where only the immune profile was altered reduced
incidence to 19 per 10,000 patient-days. The incidence of asymptomatic colonisation
and the probability of recurrence was similar in the high- and moderate-incidence
settings.

3.1 Reproduction Number and Proportion Colonised at Discharge

The reproduction number was 0.67 in the high-incidence setting compared to 0.44
in the moderate-incidence setting. The lower value in the moderate-incidence set-
ting was due to the difference in the length of stay; using the moderate-incidence
parameterisation with mean length of stay equal to that of the high-incidence set-
ting, the reproduction number was 0.69—slightly larger than the high-incidence
parameterisation. Similarly, though the mean force of colonisation was lower in
the moderate-incidence setting (0.0047day−1) than in the high-incidence setting
(0.0070day−1), it was highest in a setting with long mean length of stay but many
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Fig. 2 Critical values of the transmission parameter (β) and mean LOS (1/κ) such that the reproduction
number is 1 (solid curves) and such that that proportion colonised at admission (pc) and at discharge is
equal (dashed curves), where black shows the high-incidence setting, and light blue shows the moderate-
incidence setting. The triangle and circle show the values of β and 1/κ for the high-incidence setting
(R = 0.67; proportion colonised at discharge = 7.3%) and the moderate-incidence setting (R = 0.44;
proportion colonised at discharge = 6.1%), respectively. In both settings, transmission is insufficient to
sustain endemic disease in the absence of importation (R < 1) but does result in a net ‘export’ of C.
difficile colonised individuals (proportion colonised at discharge > pc = 5.0%) (Color figure online)

immune patients (0.0073day−1). The reproduction numbers calculated assuming
colonised patients were not discharged were 11.7 and 16.7 for the high- and moderate-
incidence settings.

The reproduction number was most sensitive to the transmission parameter (β) and
the average length of stay (1/κ). Figure 2 shows the combinations of these two param-
eters for whichR is equal to one for the moderate- (light blue curves) and high- (black
curves) incidence settings. For R to be greater than 1 under the moderate-incidence
setting, the mean length of stay would have to bemore than 15 days (double the OECD
average [42]) or the transmission parameter would have to be more than double the
estimated value. The reproduction number was not sensitive to the proportion of indi-
viduals with toxin antibodies or the proportion unable to mount an immune response
(Fig. 3). Moreover, the difference in immune profile between the two parameterisa-
tions only had a small effect on the threshold values of transmission and length of stay
(Fig. 2).
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Simulations of the model found that 7.3 and 6.1% of discharged patients are
colonised in the high- and moderate-incidence settings, respectively, compared to
only 5.0% at admission in both settings. The reduction in the proportion colonised at
discharge in themoderate-incidence settingwas entirely due to the shortermean length
of stay. In a setting with long lengths of stay like the high-incidence setting, but more
immune patients like the moderate-incidence setting, 8.4% of patients were colonised
at discharge. The proportion colonised at discharge was found to be sensitive to the
length of stay and the transmission parameter. Figure 2 presents threshold values of
these quantities above which the proportion colonised at discharge exceeds the propor-
tion colonised at admission. To reduce the proportion colonised at discharge to less than
the proportion colonised at admission, within-hospital transmission would have to be
reduced by≥39% in the high-incidence setting or by≥41% in themoderate-incidence
setting. In a setting with longmean length of stay like the high-incidence setting but an
improved immune profile like the moderate-incidence setting, the required reduction
would be ≥54%.

3.2 Sensitivity Analysis

Figures 3, A.1 and A.2 present the sensitivity of model outcomes to parameter values
using the high-incidence setting. Model parameters were divided into four groups:
those related to hospital protocol and environment; those describing treatment; those
describing the patients; and those describing intestinal processes, as defined in Table 1.
The prevalence of CDI, the prevalence of asymptomatic carriage and the reproduction
number were all most sensitive to the hospital protocol parameters (Fig. 3). Notably,
all of these outcomes were much more sensitive to rate of transmission (β) than to
the effectiveness and coverage of special contact precautions for symptomatic patients
(q).

CDI prevalence was sensitive to treatment length (τ ), but asymptomatic carriage
and the reproduction number were not. This suggests that the decreased incidence
associated with increased rate of treatment was due primarily to the reduction in
the mean duration of infection rather than reduced transmission and incidence. The
force of colonisation and R had a very similar pattern of sensitivity, but the force of
colonisation was consistently more sensitive (Fig. A.2).

The probability of recurrence was sensitive to the probability that treatment will
remove all C. difficile (pt ), average length of stay (1/κ), the proportion of admit-
ted patients that are immunocompromised (pu) and was somewhat sensitive to the
rate at which C. difficile overgrowth develops (ω) and the transmission rate (β) (Fig.
A.1). The model only captures recurrences that occur within a single hospitalisation,
and thus, reducing the mean length of stay or the rate at which overgrowth devel-
ops increases the chance that patients are discharged before they have a recurrence.
Increasing the rate of patient discharge also reduces the opportunity for reinfection in
hospital. However, this effect is small because in our model most (93%—high inci-
dence; 97%—moderate incidence) recurrent cases are due to the recrudescence of
the initial infection not reinfection. Similarly recurrence was much less sensitive than
prevalence or the reproduction number to the factors that affect transmission (β and

123



Healthcare-Associated Clostridium difficile Infections… 2251

Sensitivity ±1.96× s.d

−1 −0.5 0 0.5 1

immun ty acquisition rate (δ)

overgrowth rate (ω)

C. diff clearance rate (γ)

gut flora recovery rate (λ)

colonised prop (p
c
)

antibiotics prop (p
a
)

overgrowth prop (p
o
)

immunodeficient prop (p
u
)

C.diff immune prop (p
AB

)

treatment success prob (p
t
)

CDI mortality rate (μ)

quarantine effectiveness (q

antibiotic prescription rate (α)

discharge rate (κ)

transmission rate (β)

Prevalence of Asymptomatic Colonisation
Prevalence of CDI
Reproduction Number

Fig. 3 Sensitivity of the prevalence of asymptomatic colonisation, the prevalence of CDI and the reproduc-
tion number model parameters. The bars are the approximate 95% confidence intervals for the Anderson’s
coupled finite differences estimates of sensitivity. The sensitivity of the reproduction number was calculated
using the next-generation method and finite differences. Neither of these are Monte Carlo methods, and so
there are no confidence intervals for these estimates

123



2252 A. McLure et al.

q), but wasmore sensitive to the probability that allC. difficile is removed by treatment
(pt ).

Allmodel outcomeswere robust parameters forwhich there are limited data (the rate
of acquisition of immunity (δ); the rate at whichC. difficile colonisation is cleared (γ );
and the rate of gut flora recovery (λ)). Although we acknowledge that the sensitivity
analysis is local, it is reassuring that these parameters were not highly influential in
our analysis.

4 Discussion

The reproduction number for within-hospital transmission is less than one for both the
moderate- and high-incidence settings in our model. Since the high-incidence setting
was calibrated to reports from the Quebec epidemic period, this suggests that even
in epidemic conditions, within-hospital transmission is not sufficient to ensure CDI
persists in the hospital without the admission of colonised patients from the broader
community. The reproduction number is low because the typical length of stay is
short compared to the typical duration of colonisation and infectiousness. The average
length of stay would need to be over 15 days or the transmission rate more than
doubled to increase the reproduction number above one. Nevertheless, we found that
a greater proportion of patients are asymptomatically colonised at discharge than at
admission. This finding is in agreement with studies that indicate that colonisation
and infection are associated with recent hospitalisation [8,36] and highlights the fact
that the reproduction number is calculated for transmission within the hospital only.
Some patients colonised in hospital continue to transmit in the community, and so
the total reproduction number is higher. If colonised patients spent the duration of
their infectious period in hospital, the within-hospital reproduction number would be
much larger, suggesting that management and prevention of outbreaks should include
a focus on minimising average length of stay of hospital patients.

The immune responses in our model prevent disease but not colonisation or onward
transmission. Therefore, colonised and immune individuals are asymptomatic and so
are not treatedwith additional precautions to prevent transmission.Ourmodel suggests
that increasing only the proportion of patients that are immune would increase within-
hospital transmission, increase the proportion of patients colonised at discharge and
require greater reductions in transmission if fewer patients are to be colonised at
discharge than at admission. Therefore, our model suggests that antitoxin vaccination
programmes for hospitalised patients would reduce the incidence of CDI but increase
transmission. This is at oddswith amathematicalmodelling study byDurhamet al. that
found that vaccination would reduce the incidence of CDI and transmission [13]. This
contradictory result arose because, in contrast to our model, they did not explicitly
model immunity, but instead assumed that all asymptomatic individuals—whether
protected by immune responses to toxins or protected by commensal gut flora—are
less infectious than those with symptoms.

Our novel method of sensitivity analysis allows the assessment of individual-level
outcomes, such as recurrence, within the framework of compartmental models, rather
than the framework of complex and computationally intensive individual-based mod-
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els. However, by performing all calculations assuming the force of colonisation is fixed
at its mean value, our method does not represent the full stochasticity of the model.
More of the stochasticity could be accounted for by calculating individual-level out-
comes for many values of the force of colonisation sampled from the equilibrium
distribution of the force of colonisation.

The sensitivity analysis revealed that CDI recurrence and CDI prevalence are influ-
enced by different factors. The probability of recurrent CDI was most sensitive to
the probability that treatment successfully removes all C. difficile (the key factor for
recrudescence) but much less sensitive to the rate of within-hospital transmission (the
key factor for reinfection), because most recurrences in our model are due to recrude-
scence not reinfection, in agreement with recent studies [14,15]. The prevalence of
CDI is most sensitive to hospital protocols, which suggests differences in hygiene and
patient interactions, contact precautions for symptomatic individuals, mean length of
stay and antibiotic stewardship may account for much of the difference in asymp-
tomatic carriage and CDI between hospitals. All model outcomes are more sensitive
to the transmission rate than to quarantine effectiveness. Therefore, interventions that
reduce transmission from all carriers—such as increased use of soap and water [22] or
extending special contact precautions to those with a recent history of CDI and other
patients likely to be asymptomatic carriers [35]—are likely to be more effective than
improving only the existing contact precautions for symptomatic patients.

Wehave assumed that all patientswithCDI commence treatment and special contact
precautions as soon as they start exhibiting symptoms. A delay in response could be
captured by increasing the average time taken for patients to commence treatment. Our
sensitivity analysis for this parameter suggests short delays in identification would not
greatly increase total transmission.

Our model of C. difficile transmission is the first to include adaptive immune
responses to toxins and to model the effect of gut flora disruption in triggering spore
shedding. The balance between biological realism and parsimony gives the model the
flexibility to simulate settings with high and moderate incidence of hospital-acquired
CDI, with the moderate-incidence setting differing only in the average length of stay,
and the age and immune profile of patients. By modelling the protective effect of
intestinal flora, we can capture community-acquired CDI cases who are colonised at
admission to hospital and develop CDI after use of antibiotics. By modelling immu-
nity to toxins, we can capture colonised patients who remain asymptomatic despite
the disruption of their gut flora. Models lacking one or both of these features have
either considered only high-incidence settings [4,53] or used other means to account
for the large proportion of colonised individuals that are asymptomatic. Durham et al.
assumed that the progression to C. difficile overgrowth was very slow for the majority
of colonised patients [13]. Others have limited the susceptible population by assuming
disrupted gut flora is required for colonisation to occur [4,29].

Our findings are corroborated by othermathematicalmodels. Yakob et al. found that
halving either the length of stay or the transmission parameter halved the incidence
of infections, with greater improvements with a combined strategy [54]. They also
found that the proportion colonised at discharge exceeded the proportion colonised at
admission, but by greater margins than in our study. Lanzas et al. [29] simulated their
model for wide range of parameters and found that the reproduction number was as
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low as 0.52 but>1 for just over half the parameterisations (median 1.04), with modest
differences in transmission and length of stay accounting for 95% of the variation.
By contrast, our model is the first to show that the reproduction number is less than
1 under nearly all reasonable conditions, including ‘epidemic’ conditions. Rubin et
al. found that modest improvement in healthcare worker hand hygiene had a greater
potential impact than any other intervention including improved quarantine measures
for those with CDI or rapid detection and treatment of CDI [46].

Our model does not explicitly model CDI in the community, and so it does not
capture readmissions for recurrent infections, or the mechanisms of transmission in
the community. We have found that disease importation from the community drives
CDI in the hospital. In future work, we will extend our model to the community to
determine whether transmission within the hospital sustains endemic conditions in the
community, or if the community has self-sustaining endemic disease.
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A Supplementary Materials

A.1 Further details of model structure

A.1.1 Transitions within the Population

In our model the rate of transmission is proportional to the number of infectious individuals and inversely proportional
to the size of the hospital Nbed. Infectiousness of individuals with C. difficile overgrowth is governed by the parameter β.
Contact precautions reduce transmission from symptomatic individuals by a factor q. Therefore the rate of transmission
to each susceptible person is [(Hao + Uao)q +Rao +Hac + Uac +Rac]β/Nbed.

Exposure to C. difficile spores moves individuals free of C. difficile to the associated colonised compartment
(e.g. Ua → Uac or H → Hc). There is no evidence that immune responses to toxins [10,14] or commensal gut flora
undisturbed by antibiotics [14] prevents initial colonisation with C. difficile. Therefore, in our model all C. difficile free
individuals are equally susceptible to colonisation.

Almost all CDI cases in hospitals had recently received antimicrobial treatment [14,9,2]. The disruption of com-
mensal gut flora and C. difficile susceptibility have been shown to be associated with other chemical agents such as
proton pump inhibitors [19,4] and conditions such as irritable bowel disease [15,7,5]. However, we use antimicrobial
consumption as a proxy measure of gut flora disruption and associated susceptibility to CDI. Consumption of an-
timicrobials – administered at rate α – moves individuals with healthy gut flora to the associated compartment with
disrupted gut flora (e.g. Rc → Rac or U → Ua). Only C. difficile in colonised individuals with disturbed gut flora can
overgrow – at rate ω – moving to the associated overgrowth compartment (e.g. Uac → Uao or Rac → Rao).

Individuals with symptomatic CDI (Hao and Uao) receive treatment. Treatment occurs at rate τ for all such
individuals; however, only a proportion pt of treatments are fully successful and the remaining proportion 1 − pt
are partially successful. Fully successful treatment removes all vegetative C. difficile and spores. Partially successful
treatment removes sufficient vegetative C. difficile to stop symptoms but leaves viable spores that may germinate
and overgrow, potentially causing a recurrence of symptoms. A robust immune response to C. difficile toxins has
been shown to reduce the probability of recurrence [11,12]. Therefore fully and partially successful treatment moves
immunocompetent Hao individuals to the immune Ra and Rac compartments respectively but immunocompromised
Uao individuals to the Ua and Uac compartments respectively. Individuals in the Hc and Hac classes also acquire
immunity to toxins – at rate δ – moving to the Rc and Rac compartments respectively.

The recommended treatment for CDI is with antimicrobials such as vancomycin or metronidazole [13] which
prevent the natural recovery of gut flora. Individuals with C. difficile overgrowth but no symptoms (Rao) and other
asymptomatically colonised individuals do not receive treatment for CDI in our model. Therefore their gut flora recovers
– at rate λ – moving them to the associated healthy gut flora compartment (e.g. Rao → Rc, Ua → U , Hac → Hc). The
commensal gut flora of individuals colonised without C. difficile overgrowth competitively exclude C. difficile – at rate
γ – moving the individual to the associated C. difficile free compartment (e.g. Rc → R or Hc → H).

A.1.2 Admissions and Discharges

In addition to transitions between compartments, patients are discharged and new patients admitted. All patients
without CDI are discharged from hospital at rate κ. Patients with CDI are not discharged but may die at rate µ.
To approximately balance discharges, admissions occur at rate κNbed. New admissions are distributed between the 15
compartments according the probabilities of having the associated combination of characteristics. A proportion pu are
immune suppressed and so are admitted in one of the U compartments. Of the remaining 1−pu proportion of admissions,
a proportion pAB have serum antibodies for C. difficile toxins and are therefore in one of the R compartments. The
remainder are in one of the H compartments. A proportion pa of admissions have recently received antimicrobials or
immediately begin treatment with antimicrobials on admission. A proportion pc of admissions are colonised or have
overgrowth on admission. A proportion po (< papc) of admissions will have C. difficile overgrowth on admission. Table
A.1 summarises how these 5 parameters (po, pAB , pu, pa and pc) are used to determine the proportion entering each
compartment in the model.

A.2 Model Parameterisation

Most of the model parameters have readily measurable, physical interpretations and were chosen to reflect the available
literature (Table 1). Parameter choice was less straightforward for some parameters due to limited research in these
areas. Little is known about the time to onset of adaptive immune responses for C. difficile toxins. Phase I and II vaccine

Immune status Gut flora and C. difficile status
Hx Ux Rx X Xa Xc Xac Xao

(1− pu)(1− pAB) pu (1− pu)pAB (1− pa)(1− pc) pa(1− pc) (1− pa)pc papc − po po

Table A.1: The proportion of new admissions that arrive with each of the 3 immune statuses and
5 gut flora and C. difficile statuses. We assume that immune status is independent of gut flora and
C. difficile status so the proportion arriving in a particular compartment is the product of the two
proportions.
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studies [6,3] reported the proportion of study subjects that seroconverted over time. The latest study reported 42%
and 56% seroconversion for toxin A and B antibodies 14 days after an initial dose and 100% and 90% seroconversion
after 2 further doses. However it is probable that the development of a robust immune response to toxins may happen
more rapidly in individuals colonised with C. difficile than in vaccine recipients, so we assumed 1/δ is ten days.

The effect of contact precautions on transmission (q) has not been directly measured. Adherence to special contact
precautions for CDI patients has been reported to range from 40% to 80% by setting and precaution, corresponding to
q in the range 0.2− 0.6 as q is a multiplicative parameter. As contact precautions are unlikely to be perfectly effective
we have assumed a value for q in the upper half of this range.

The mean length of stay (1/κ) and the proportion of patients with serum antibodies to C. difficile toxins at
admission (pAB) reported by Loo et al were both significantly different to the values reported more broadly in the
literature. Since the model proved sensitive to the associated parameters, the high hospital-acquired CDI incidence
setting used these (smaller) values of the parameters. The parameters β, pt, pu and po were estimated by fitting to
Loo et al (Table 2). We inferred the daily hazard of asymptomatic colonisation or infection – which is approximately
equal to the mean force of colonisation – from the reported cumulative risk by assuming that the daily hazard does
not change over the duration of a hospital stay. In our model the transmission parameter β was chosen to reproduce
this force of colonisation.

For the moderate-incidence setting the mean length of stay and the proportion of patients with serum antibodies
to C. difficile toxins at admission were set to the typical values found in the literature: pAB = 0.7 [8] and κ = 1/6
day−1 [17]. The mean age of patients in the study by Loo et al was 67.4 years. Assuming patients aged over 65 years
have weakened immune systems, this was consistent with the fitted value of the proportion of admitted patients that
were immunocompromised (pu = 0.55), but significantly more than the mean age from a survey of 130 US hospitals
[18] (57.6 years). Therefore, the estimate of the proportion of admissions unable to mount a sufficient immune response
(pu) based on Loo et al. was likely to be an overestimate for a moderate-incidence setting. Therefore pu is reduced for
the moderate-incidence setting to 0.46 – approximately the average proportion of patient-days attributable to persons
over 65 years of age (48% in Australia [1]; 44% USA [16]).

A.3 Further Details of Sensitivity Analysis

Cross-covariance plots of long simulations of the model showed that temporal dependence was indistinguishable from
noise after 20 days. Therefore when estimating sensitivity using coupled finite differences each simulation was run for
40 days with the prevalence and force of colonisation (FOC) calculated at the end of each simulation.

To calculate individual-level outcomes at a given set of parameters (θ) we first estimated the mean FOC (φ(θ)) by
simulating the full model. Individual-level outcomes (O) estimated using the individual Markov chain approximation
depend on the mean FOC and parameter values:

(1)O = O(θ, φ(θ)) .

To estimate sensitivity of individual-level outcomes we used the individual Markov chain approximation and finite
differences to calculate the derivative of the individual-level outcomes with respect to the mean FOC ( ∂O

∂φ
) and the

parameters ( ∂O
∂θ

). Using the total derivative rule we combined these with the derivative of the mean FOC obtained

using coupled finite differences ( dφ
dθ

) to get the derivative of the individual-level outcomes with respect to parameters
at the mean FOC:

(2)
dO

dθ
=
∂O

∂φ

dφ

dθ
+
∂O

∂θ
.

A.4 Additional Figures
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Fig. A.1: The sensitivity of the probability of at least one recurrence of CDI (while hospitalised)
given an initial infection and the mean time between the end of the first CDI and the onset of the
first CDI recurrence. The sensitivities are calculated using our novel individual Markov chain method
at the simulated mean force of colonisation.
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Fig. A.2: The sensitivity of the mean force of colonisation and the reproduction number to parameter
values. The sensitivity of mean force of colonisation is calculated using Anderson’s coupled finite
differences, and the sensitivity of the reproduction number is estimated using the next generation
method and numerical derivative estimation (second order central difference).
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3.3 Model Equations

This section provides an explicit description of the stochastic compartmental model used

in this chapter and Chapter 4. Though this section does not provide any information that

cannot be inferred from the preceding sections in this chapter, the equations are written

out in full for the convenience of the interested reader.Table 3.1 lists the events, transitions

and probabilities that define the full CTMC model.

Event type Transition Probability

Disruption of gut flora X → Xa αX ∆t+ o(∆t)
Xc → Xac αXc ∆t+ o(∆t)

Recovery of gut flora Xa → X λXa ∆t+ o(∆t)
Xac → Xc λXac ∆t+ o(∆t)
Rao → Rc λRao ∆t+ o(∆t)

Colonisation X → Xc fX ∆t+ o(∆t)
Xa → Xac fXa ∆t+ o(∆t)

Clearing of colonisation Xc → X γXc ∆t+ o(∆t)

C. difficile overgrowth Xac → Xao ωXac ∆t+ o(∆t)

Treatment Hao → Ra τptHao ∆t+ o(∆t)
Hao → Rac τ(1− pt)Hao ∆t+ o(∆t)
Uao → Ua τptUao ∆t+ o(∆t)
Uao → Uac τ(1− pt)Uao ∆t+ o(∆t)

Development of immunity Hc → Rc δHc ∆t+ o(∆t)
Hac → Rac δHac ∆t+ o(∆t)

Hospital admission → X 1BκpX(1− pa)(1− pc)Nbed ∆t+ o(∆t)
→ Xa 1BκpX(pa)(1− pc)Nbed ∆t+ o(∆t)
→ Xc 1BκpX(1− pa)(pc)Nbed ∆t+ o(∆t)
→ Xac 1BκpX(papc − po)Nbed ∆t+ o(∆t)
→ Xao 1BκpX(po)Nbed ∆t+ o(∆t)

Hospital discharge X → κX ∆t+ o(∆t)
Xa → κXa ∆t+ o(∆t)
Xc → κXc ∆t+ o(∆t)
Xac → κXac ∆t+ o(∆t)
Rao → κRao ∆t+ o(∆t)

Death of CDI cases Hao → µHao ∆t+ o(∆t)
Uao → µUao ∆t+ o(∆t)

Table 3.1: The CTMC model for C. difficile in a hospital population. Parameters and compart-

ment names are as they appear in Figure 1 and Table 1 of the published article. However for

brevity X is used instead of H, U , or R when an event occurs for persons of any immune status

and does not alter immune status. Similarly, pX represents the proportion of admissions with each

immune status: pU , pR = pAB(1− pU ), and pH = 1− pU − pR. Admission only occurred if there

were empty beds; 1B is an indicator variable such that 1B = 1 if N < Nbed and 0 otherwise.

Where the individual Markov chain approximation was used for individual-

level outcomes, an individual was modelled as a CTMC on state-space
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{H,Ha, Hc, Hac, Hao, U, Ua, Uc, Uac, Uao, R,Ra, Rc, Rac, Rao} with dynamics given by

the Kolmogorov forward equation

p′ =



QHH 0 0

0 QUU 0

QRH 0 QRR


p (3.1)

where

QHH =




−(α+ f∗ + κ) λ γ 0 0

α −(λ+ f∗ + κ) 0 0 0

f∗ 0 −(α+ γ + δ + κ) λ 0

0 f∗ α −(λ+ ω + δ + κ) 0

0 0 0 ω −(τ + µ)



, (3.2)

QUU =




−(α+ f∗ + κ) λ γ 0 0

α −(λ+ f∗ + κ) 0 0 τpt

f∗ 0 −(α+ γ + κ) λ 0

0 f∗ α −(λ+ ω + κ) τ(1− pt)

0 0 0 ω −(τ + µ)



, (3.3)

QRR =




−(α+ f∗ + κ) λ γ 0 0

α −(λ+ f∗ + κ) 0 0 0

f∗ 0 −(α+ γ + κ) λ λ

0 f∗ α −(λ+ ω + κ) 0

0 0 0 ω −(λ+ κ)



, (3.4)

QRH =




0 0 0 0 0

0 0 0 0 τpt

0 0 δ 0 0

0 0 0 δ τ(1− pt)

0 0 0 0 0



, (3.5)

and f∗ is the mean force of colonisation at equilibrium, i.e.

f∗ = [(H∗ao + U∗ao)q +R∗ao +H∗ac + U∗ac +R∗ac]β/Nbed, (3.6)

where H∗ao, U
∗
ao etc. are the means (across the equilibrium distribution) of the number

of persons in each infectious class. When calculating individual-level outcomes averaged

across all admission types, the initial condition, p(0), (i.e. the probability of being in each
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compartment on admission) was

p(0) =




pH(1− pa)(1− pc)
pHpa(1− pc)
pH(1− pa)pc

pH(papc − po)
pHpo

pU (1− pa)(1− pc)
pUpa(1− pc)
pU (1− pa)pc

pU (papc − po)
pUpo

pR(1− pa)(1− pc)
pRpa(1− pc)
pR(1− pa)pc

pR(papc − po)
pRpo




(3.7)

where pR = pAB(1− pU ), and pH = 1− pU − pR.

In the following sections I briefly sketch some of the theory of sojourn times and hitting

probabilities as is relevant to calculating the individual-level quantities in this chapter:

recurrence probabilities, expected time to recurrence and the probability of developing

symptomatic infection within the first 72 hours after admission. These sections assumes

some of the basic properties of Markov processes which are discussed in detail in many

excellent books (e.g. [76, 112]).

3.3.1 Probability of entering a set of states

Let X be a continuous time Markov chain with state space S and rate matrix A. For

our model the state space is the set of model compartments plus a seperate compartment

for leaving the hospital (death and discharge). The rate matrix A expands the above Q

matrix to add the death and discharge transitions:

A =

[
Q 0

D 0

]
(3.8)

where D is the set of transitions rates from each state to the discharge/death state:

D =
[
κ κ κ κ µ κ κ κ κ µ κ κ κ κ κ

]
. (3.9)

Our first task is to calculate the probability that the Markov chain visits any one of a

subset of the states Σ ⊂ S at least once. Let TΣ
1 be the first time X visits any of the states

in Σ i.e. TΣ
1 = inf{t : X(t) ∈ Σ}. Then the probability of ever visiting Σ is P (TΣ

1 < ∞).
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To calculate this value consider the associated process

XΣ(t):=




X(t), t < TΣ

1

X(TΣ
1 ), t ≥ TΣ

1

(3.10)

which acts as X until it visits one of the states in Σ, after which it remains there. Therefore

for each s ∈ Σ

P (XΣ(t) = s) = P (X(TΣ
1 ) = s, TΣ

1 < t) (3.11)

and

lim
t→∞

P (XΣ(t) = s) = P (X(TΣ
1 ) = s, TΣ

1 <∞). (3.12)

Since X(TΣ
1 ) must be in Σ

P (XΣ(t) ∈ Σ) = P (TΣ
1 < t) (3.13)

and

lim
t→∞

P (XΣ(t) ∈ Σ) = P (TΣ
1 <∞). (3.14)

Fortunately XΣ is also a continuous-time Markov chain so this limit is simple to calculate

from its rate matrix. XΣ differs from X only in that the states in Σ are absorbing and so

its rate matrix AΣ satisfies

AΣ
s2,s1

=




As2,s1 , s1 /∈ Σ

0, s1 ∈ Σ
. (3.15)

We can also write AΣ using sub-matrix notation. For any subsets of states U, V ⊂ S let

AV,U be the sub-matrix of transitions rates from states in U to states in V and for brevity

let AU,U = AU , AV,V = AV etc. If we partition the states into three sets – Σ, transient

but not in Σ (which we call U) and absorbing but not in Σ (which we call V ) – we can

use this notation to write AΣ (up to a permutation of rows and columns so that the states

are ordered U, V,Σ) in terms of sub-matrices of A:

AΣ =



AU 0 0

AV,U 0 0

AΣ,U 0 0


 . (3.16)

In our case if we are interested in the probability of developing symptoms while in hospital,

Σ will be the set of symptomatic states, V a singleton set with the dead/discharged state

and U all the set of remaining states. If p(t) is the vector of probabilities that X will be

in a given state in S at time t, the solution to the Kolmogorov forward equation for X is

p(t) = eAtp(0). (3.17)

Similarly if pΣ(t) is the vector of probabilities that XΣ will be in a given state in S at
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time t, noting that by definition pΣ(0) = p(0) and using sub-matrix notation we can write

the solution to the Kolmogorov forward equation for XΣ

pΣ(t) = eA
Σtp(0) (3.18)

as

pΣ(t) =




pΣ
U (t)

pΣ
V (t)

pΣ
Σ(t)




= exp


t



AU 0 0

AV,U 0 0

AΣ,U 0 0










pU (0)

pV (0)

pΣ(0)




=






I 0 0

0 I 0

0 0 I


+



AU t 0 0

AV,U t 0 0

AΣ,U t 0 0


+

1

2




AU
2t2 0 0

AV,UAU t
2 0 0

AΣ,UAU t
2 0 0


+ . . .







pU (0)

pV (0)

pΣ(0)




=




eAU t 0 0

AV,UAU
−1(eAU t − I) I 0

AΣ,UAU
−1(eAU t − I) 0 I







pU (0)

pV (0)

pΣ(0)




=




eAU tpU (0)

AV,UAU
−1(eAU t − I)pU (0) + pV (0)

AΣ,UAU
−1(eAU t − I)pU (0) + pΣ(0)


 . (3.19)

Taking limits we get

lim
t→∞

pΣ(t) = lim
t→∞




pΣ
U (t)

pΣ
V (t)

pΣ
Σ(t)




=




0

−AV,UAU
−1pU (0) + pV (0)

−AΣ,UAU
−1pU (0) + pΣ(0)


 . (3.20)

Therefore the probability that X visits Σ at least once is given by the sum

P (TΣ
1 <∞) = lim

t→∞
P (XΣ(t) ∈ Σ)

= 1T lim
t→∞

pΣ
Σ(t)

= 1T
(
−AΣ,UAU

−1pU (0) + pΣ(0)
)
. (3.21)
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Furthermore we can characterise the state of X at TΣ
1 by

[
P (X(TΣ

1 ) = s|TΣ
1 <∞)

]
s∈Σ

=
limt→∞ pΣ

Σ(t)

1T limt→∞ pΣ
Σ(t)

=
AΣ,UAU

−1pU (0) + pΣ(0)

1T
(
−AΣ,UAU

−1pU (0) + pΣ(0)
) . (3.22)

3.3.2 Recurrence

We also wish to calculate the probability of a first recurrence – the probability that X

will enter a state in Σ from a state outside of Σ at least twice given it has done so at least

once. Let LΣ
1 be the first time that X leaves Σ; in other words the first time X enters

Σc after TΣ
1 : LΣ

1 = inf{t > TΣ
1 : X(t) ∈ Σc}. Let TΣ

2 be the second time X enters Σ; in

other words the first time X enters Σ after LΣ
1 : TΣ

2 = inf{t > LΣ
1 : X(t) ∈ Σ}. Then the

probability of a first recurrence is

P (TΣ
2 <∞|TΣ

1 <∞) =
P (TΣ

2 <∞)

P (TΣ
1 <∞)

. (3.23)

Because X is a Markov process and TΣ
1 , L

Σ
1 , T

Σ
2 , . . . are successive stopping times defined

by entry to a set (either Σ or its complement) we can iteratively calculate the probability

that they occur (i.e. are finite) by using the above method but with initial condition reset

to the conditional distribution of X at the previous stopping time. For example

P (LΣ
1 <∞) =

∑

s∈Σ

P (LΣ
1 <∞ | X(TΣ

1 ) = s, TΣ
1 <∞)P (X(TΣ

1 ) = s, TΣ
1 <∞)

=
∑

s∈Σ

P (LΣ
1 <∞ | X(0) = s)P (X(TΣ

1 ) = s, TΣ
1 <∞)

=
∑

s∈Σ

P (TΣc

1 <∞ | X(0) = s)P (X(TΣ
1 ) = s, TΣ

1 <∞). (3.24)

3.3.3 Time to enter a set of states

We also want to calculate the distribution of these stopping times and the times between

them. For instance we may wish to know the distribution of TΣ
1 or TΣ

2 −TΣ
1 . Because X is

Markov if we have a way of characterising TΣ
1 , we can iteratively use the same method to

characterise LΣ
1 , T

Σ
2 , . . . and their differences. We have already calculate enough to define

the distribution of TΣ
1 as

P (TΣ
1 =∞) = 1− P (TΣ

1 <∞)

= 1 + 1T
(
AΣ,UAU

−1pU (0)− pΣ(0)
)

(3.25)

and

P (TΣ
1 < t) = 1T

(
AΣ,UAU

−1(eAU t − I)pU (0) + pΣ(0)
)
. (3.26)
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In general E
[
TΣ

1

]
is not finite since P (TΣ

1 < ∞) 6= 1. However the conditional expected

value is

E
[
TΣ

1 | TΣ
1 <∞

]
=

∫ ∞

0
P (TΣ

1 > t | TΣ
1 <∞)dt

=

∫ ∞

0

1− P (TΣ
1 < t)− P (TΣ

1 =∞)

P (TΣ
1 <∞)

dt

=
1

P (TΣ
1 <∞)

∫ ∞

0
−1TAΣ,UAU

−1eAU tpU (0)dt

=
1TAΣ,UAU

−2pU (0)

P (TΣ
1 <∞)

=
1TAΣ,UAU

−2pU (0)

1T
(
−AΣ,UAU

−1pU (0) + pΣ(0)
) . (3.27)

In the special case where all absorbing states are in Σ (i.e. V = ∅) the unconditioned

expectation does exist since P (TΣ
1 <∞) = 1 . Moreover we can write

AΣ =

[
AU 0

AΣ,U 0

]
. (3.28)

Since AΣ is a rate matrix it satisfies 1TAΣ = 0T and therefore 1TAU = −1TAΣ,U . Thus

eq. (3.27) becomes

E
[
TΣ

1

]
= E

[
TΣ

1 | TΣ
1 <∞

]

=
1TAΣ,UAU

−2pU (0)

1T
(
−AΣ,UAU

−1pU (0) + pΣ(0)
)

=
−1TAU

−1pU (0)

1TpU (0) + 1TpΣ(0)

= −1TAU
−1pU (0). (3.29)

The last equality holds since U and Σ partition S and therefore

1TpU (0) + 1TpΣ(0) = P (X(0) ∈ U) + P (X(0) ∈ Σ) = 1. (3.30)

We may be interested not only in how long it takes to arrive in Σ, but how long X spends

in each of the transient states prior to entering Σ. For each s ∈ U this quantity is the

expected value

E
[∫ ∞

0
1{X(t)=s} 1{t<TΣ

1 }dt

∣∣∣∣TΣ
1 <∞

]
. (3.31)
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Because XΣ(t) = s ∈ Σ if and only if X(t) = s ∈ Σ and t < TΣ
1 this is the same as

E
[∫ ∞

0
1{XΣ(t)=s}dt

∣∣∣∣TΣ
1 <∞

]
=

E
[∫∞

0 1{XΣ(t)=s} 1{TΣ
1 <∞}dt

]

P (TΣ
1 <∞)

=

∫∞
0 P (XΣ(t) = s, TΣ

1 <∞)dt

P (TΣ
1 <∞)

=

∫∞
0 P (TΣ

1 <∞ | XΣ(t) = s)P (XΣ(t) = s)dt

P (TΣ
1 <∞)

. (3.32)

XΣ is time-homogeneous and memoryless so

P
(
TΣ

1 <∞ | XΣ(t) = s
)

= P
(
TΣ

1 <∞ | XΣ(0) = s
)

(3.33)

and so the expected value is equal to

P (TΣ
1 <∞ | XΣ(0) = s)

∫∞
0 P (XΣ(t) = s)dt

P (TΣ
1 <∞)

. (3.34)

The vector of these expected values for each s ∈ U can be written in matrix notation

E
[∫ ∞

0
1{X(t)=s} 1{t<TΣ

1 }dt

∣∣∣∣TΣ
1 <∞

]

s∈U

=
1

P (TΣ
1 <∞)

[
P (TΣ

1 <∞ | XΣ(0) = s)

∫ ∞

0
P (XΣ(t) = s)dt

]

s∈U

=
1

P (TΣ
1 <∞)

[
P (TΣ

1 <∞ | XΣ(0) = s)
]
s∈U �

[∫ ∞

0
P (XΣ(t) = s)dt

]

s∈U

=
1

P (TΣ
1 <∞)

[
−1TAΣ,UA

−1
U es

]
s∈U �

∫ ∞

0
pΣ
U (t)dt, (3.35)

where � is the Hadamard product (element-wise multiplication) and es is the fundamental

basis vector with a 1 in the s position and 0 elsewhere. Since concatenating es for each

s ∈ U is just the identity matrix

[
−1TAΣ,UA

−1
U es

]
s∈U =

(
−1TAΣ,UA

−1
U

)T
. (3.36)

Also from eq. (3.19) we have

∫ ∞

0
pΣ
U (t)dt =

∫ ∞

0
eAU tpU (0)dt = A−1

U pU (0). (3.37)

Putting this all together

E
[∫ ∞

0
1{X(t)=s} 1{t<TΣ

1 }dt

∣∣∣∣TΣ
1 <∞

]

s∈U
=

(1TAΣ,UA
−1
U )T �A−1

U pU (0)

1T
(
−AΣ,UA

−1
U pU (0) + pΣ(0)

) . (3.38)

In special case where all absorbing states are in Σ (i.e. V = ∅) the unconditioned

expectation exists because P (TΣ
1 < ∞) = 1. Moreover we can use the two identities
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1TAU = −1TAΣ,U and 1TpU (0) + 1TpΣ(0) = 1 again to simplify the expected value:

E
[∫ ∞

0
1{X(t)=s} 1{t<TΣ

1 }dt
]

s∈U
= E

[∫ ∞

0
1{X(t)=s} 1{t<TΣ

1 }dt

∣∣∣∣TΣ
1 <∞

]

s∈U

=
−1�A−1

U pU (0)

1TpU (0) + 1TpΣ(0)

= −A−1
U pU (0). (3.39)



Chapter 4

Clostridium difficile classification

overestimates hospital-acquired

infections

4.1 Introduction

This chapter consists of an article published in the Journal of Hospital Infection and

the accompanying supplementary materials. In this article I use the model of C. difficile

transmission introduced in Chapter 3 to assess commonly used surveillance definitions that

are used to classify C. difficile infections that present in hospitals. Since the classification

system being assessed relies on knowledge of the time from admission to onset of symptoms

for individual cases, the individual Markov chain approximation is used in this article. The

main outcome of this paper is that commonly used surveillance definitions recommended by

numerous infection disease organisations overestimate the proportion of CDIs presenting

in hospitals that are acquired during the immediate period of hospitalisation. The article

provides definitions that improve the classification of C. difficile infections and thus may

help correct existing classification biases. The supplementary materials provide a table of

model parameters and two additional figures that provide additional detail on classification

performance under various scenarios and model assumptions. The article is included as

it appears in print. The supplementary materials are as they appear online with the

exception of a typographical error that has been corrected in the caption to supplementary

figure 2.

Chapter 5 extends the analysis in this chapter, using an expanded model that includes

both hospital and community to assess the recommended surveillance definitions of all

CDIs (i.e. including those that do not present at hospitals) as hospital or community-

acquired.

4.2 Article and supplementary materials

Angus McLure, Archie C. A. Clements, Martyn Kirk and Kathryn Glass. Clostridium

difficile classification overestimates hospital-acquired infections. Journal of Hospital In-

fection, 99(4):453-460, 2018.
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S U M M A R Y

Background: Clostridium difficile infections occur frequently among hospitalized pa-
tients, with some infections acquired in hospital and others in the community. Inter-
national guidelines classify cases as hospital-acquired if symptom onset occurs more than
two days after admission. This classification informs surveillance and infection control, but
has not been verified by empirical or modelling studies.
Aim: To assess current classification of C. difficile acquisition using a simulation model as a
reference standard.
Methods: C. difficile transmission was simulated in a range of hospital scenarios. The
sensitivity, specificity and precision of classifications that use cut-offs ranging from 0.25 h
to 40 days were calculated. The optimal cut-off that correctly estimated the proportion of
cases that were hospital acquired and the balanced cut-off that had equal sensitivity and
specificity were identified.
Findings: The recommended two-day cut-off overestimated the incidence of hospital-
acquired cases in all scenarios and by >100% in the base scenario. The two-day cut-off
had good sensitivity (96%) but poor specificity (48%) and precision (52%) to identify cases
acquired during the current hospitalization. A five-day cut-off was balanced, and a six-day
cut-off was optimal in the base scenario. The optimal and balanced cut-offs were more
than two days for nearly all scenarios considered (ranges: four to nine days and two to
eight days, respectively).
Conclusion: Current guidelines for classifying C. difficile infections overestimate the
proportion of cases acquired in hospital in all model scenarios. To reduce misclassification
bias, an infection should be classified as being acquired prior to admission if symptoms
begin within five days of admission.
ª 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

Introduction

Since Clostridium difficile was identified as the causative
agent for pseudomembranous colitis in the late 1970s, aware-
ness of the pathogen has grown, as has the burden of disease

[1,2]. In 2011, there were an estimated 453,000 C. difficile
infections (CDIs) and 29,300 deaths in the USA alone [3].
Currently C. difficile is implicated as the cause of 71% of
hospital-associated gastrointestinal infections [4].

Most CDI cases are observed in healthcare facilities, but
there is increasing recognition of community-acquired cases
[5]. Symptomatic individuals have mild to severe diarrhoea but
patients may also carry the pathogen asymptomatically for
weeks or months [6,7]. Because of the potentially long

* Corresponding author. Address: 62 Mills Road, 2601, ACT, Australia.
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incubation period, patients displaying symptoms for the first
time in a healthcare facility may have acquired the pathogen
prior to admission, obscuring the source of transmission [8].

The Society for Healthcare Epidemiology of America (SHEA)
and the Infectious Diseases Society of America (IDSA) have
published recommendations for classification of CDIs [9]
(Figure 1). They recommend that CDIs with onset of symp-
toms more than two days after admission to a healthcare
facility but prior to discharge be classified as healthcare
facility-onset, healthcare facility-associated infections. The
recommendation is not evidence-based, but intended to be
used as a standard for comparison between healthcare
facilities and systems. The classification (or a minor variant) is
used to estimate the relative contributions of hospital- and
community-based transmission, report temporal changes in
incidence, compare the incidence of hospital-acquired cases
before and after interventions, and as a case definition for
studies comparing hospital-acquired and community-acquired
cases [3,10e12]. Therefore, it is important that the classifi-
cation is fit for purpose, i.e. correctly estimates the number of
cases that are hospital- or community-acquired and/or suffi-
ciently discriminates between the two groups. Individuals may
be colonized with C. difficile for longer than two days before
showing symptoms. One study found that the median incu-
bation period was 19 days [13]. Another found that the first
quartile and median delays from admission to onset of
symptoms were eight days and 17 days, respectively [10]. We
hypothesized that increasing the cut-off beyond two days will

reduce sensitivity, but greatly improve specificity to identify
hospital-onset, healthcare facility-associated CDI.

The aim of this study was to model C. difficile transmission
in a healthcare setting to simulate the interaction of pathogen
and patient from admission through to discharge. The model
has been previously shown to reproduce hospital-level out-
comes such as the proportions of infections occurring within
72 h of admission [14]. We use this model to assess the current
guidance for CDI and to identify potential improvements to the
method of classification.

Methods

Mathematical model

A detailed description of the model has been published
[14]. Briefly, a stochastic compartmental model of C. difficile
transmission in a hospital was used. The model divides
admitted patients into 15 compartments based on immune
responses to C. difficile toxins (immune, naı̈ve or immuno-
compromised), C. difficile colonization status (negative,
colonized, or overgrowth with substantial toxin load), and the
status of commensal gut flora (normal or disturbed). This
model simulates the time-course of hospitalized individuals,
capturing their state from admission to discharge, including
exposure to antimicrobials, colonization with C. difficile,
onset of CDI, treatment and development of immune re-
sponses (Figure 2). Settings where mean incidence of CDI is

Q1
Was symptom onset in
hospital and >2 days

after admission?

Recommended SHEA and IDSA classification

Definition for reference model

No

No

Yes

No No

Yes YesYes

Hospital-onset,
healthcare facility-

associated

Was the patient 
continuously colonized

from admission to 
onset of symptoms?

Community-onset,
healthcare facility-

associated
Indeterminate

Q2
Was the patient discharged

from a hospital in the 
previous 4 weeks?

Q3
Was the patient discharged

from a hospital in the 
previous 12 weeks?

Community-acquired

Previously acquired
(PA)

Hospital acquired, 
current hospitalization

(HACH)

Figure 1. Classification of Clostridium difficile infections recommended by the Society for Healthcare Epidemiology of America (SHEA)
and the Infectious Diseases Society of America (IDSA) compared with the definitions of previously acquired (red boxes) and hospital-
acquired in current hospitalization (blue boxes) used in the model.
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constant were considered and therefore a constant force of
colonization was assumed, allowing use of the individual
Markov chain approximation described in previous work to
classify CDI origin [14]. This enabled estimation of the prob-
ability distribution of patient outcomes at the individual level
(e.g. probability that a patient colonized at admission did not
develop symptoms within two days of admission, but did
develop symptoms prior to discharge) without running
individual-based simulations.

Case definitions for origin of infection

Though our model simulates recurrent CDI, only the first
period of CDI experienced by patients during their hospitali-
zation was considered. All estimates of incidence and classi-
fication were performed for this first CDI episode only. The
scope of the model was limited to hospitalized patients, so we
could not consider any periods of CDI preceding or following
the simulated hospitalization. We therefore were unable to
assess the classification of patients by history of recent
hospitalization and instead focused on events occurring during
a single hospitalization. An infection was considered previously
acquired (PA-CDI) if the patient was colonized at admission and
was continuously colonized until the onset of symptoms,
including where patients had symptoms on admission. This
definition necessarily included all community-acquired cases,
but also included cases where the infection was acquired
during a previous hospitalization. All other CDIs were
considered ‘hospital-acquired in the current hospitalization’
(HACH-CDI). This included CDIs where the patient was not
colonized at admission and CDIs where the patient cleared the
initial colonization and was re-colonized in hospital prior to the
onset of symptoms. These definitions and the model were used
to calculate the distribution of time between admission and
onset of symptoms for HACH-CDI and PA-CDI.

Assessing the classification of origin of infection by
time since admission

The classification of cases was assessed using the time
between admission and onset of symptoms, emulating the first
step in the IDSA and SHEA recommendations (Figure 1). For a
two-day cut-off, all CDIs with onset of symptoms before the
cut-off were classified as PA-CDI, with all remaining CDIs
classified as HACH-CDI. The incidence of CDIs classified as
HACH-CDI or PA-CDI was calculated, and the proportions of
these that were correctly and incorrectly classified by com-
parison with the true history of individuals in the model were
recorded. To identify potential improvements to the classifi-
cation, this process was repeated for different cut-off times
from 0.01 to 40 days.

It is usual to design binary classification systems so that they
balance sensitivity (the proportion of ‘positives’ correctly
classified) and specificity (the proportion of ‘negatives’
correctly classified). The cut-off that achieves this was
identified and called the ‘balanced’ cut-off. However, such
classifications misclassify larger numbers of individuals from
the majority class than from the minority class, overestimating
the incidence of the latter. Therefore, the ‘optimal’ cut-off
time that balanced sensitivity with precision (the proportion
of individuals classified ‘positive’ that are actually ‘positive’)
was also determined. Using this cut-off there was one incor-
rectly classified PA-CDI for each incorrectly classified HACH-
CDI, and the total numbers of cases classified as either HACH-
CDI or PA-CDI were equal to the true numbers of HACH-CDI or
PA-CDI cases.

To determine whether PA-CDI and HACH-CDI cases could be
differentiated by the time from admission to onset of symp-
toms, the concordance probability was calculated, namely the
probability that the time since admission to onset of symptoms
would be greater in a randomly chosen HACH-CDI than a
randomly chosen PA-CDI.
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Sensitivity analysis

The parameter values for the base scenario, which reflected
a moderate CDI incidence setting, were chosen based on pre-
vious work [14]. Sensitivity analysis has shown that the two
most influential parameters are those governing the person-to-
person transmission rate and the mean length of stay for
patients admitted overnight. In addition, the proportion colo-
nized at admission and the mean time for C. difficile over-
growth to occur in colonized patients with disturbed gut flora
were identified as factors likely to have a significant impact on
incidence or the time-course of infection and therefore affect
the classification of CDIs. The balanced and optimal cut-off
times and the concordance probability were calculated, vary-
ing each of these parameters independently.

Results

In the base scenario, the recommended two-day cut-off had
good sensitivity but poor specificity to identify CDI acquired in
the current hospitalization (Figure 3), overestimating the
proportion of CDIs acquired in the current hospitalization by

nearly 100% (Figure 4). Longer cut-offs decreased the sensi-
tivity but increased specificity to identify CDI acquired in the
current hospitalization. A five-day cut-off was balanced, and a
six-day cut-off was optimal (Figure 3). Symptom onset for
previously acquired cases was generally closer to the time of
admission than cases acquired during the current hospitaliza-
tion. The concordance probability e the probability that the
time from admission to onset of symptoms was shorter in a
random previously acquired CDI than in a random CDI acquired
in the current hospitalization e was 0.842 in the base scenario.
This result was insensitive to the assumptions about the hos-
pital setting, falling between 0.83 and 0.88 for all parameter
values considered in the sensitivity analysis (Supplementary
Figure 1, Appendix A).

The optimal and balanced cut-off times depended on the
characteristics of the hospital setting and our assumption
about the rate at which C. difficile overgrowth occurs in
colonized patients (Figure 5). In our sensitivity analysis, the
optimal cut-off time was most sensitive to the person-to-
person transmission rate, whereas the balanced cut-off time
was most sensitive to the mean length of stay. Both the optimal
and balanced cut-offs were somewhat sensitive to the mean
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Figure 3. Sensitivity, specificity, and precision of identifying CDIs acquired in the current hospitalization by time since admission. Results
are shown for the base scenario only. Sensitivity and specificity are equal with a five-day cut-off. The optimal cut-off (equal sensitivity
and precision) is longer at 5.9 days.
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time to C. difficile overgrowth. The optimal cut-off was longest
in settings with low person-to-person transmission, whereas
the balanced cut-off was longest in settings with longer mean
length of stay. Both the optimal and balanced cut-offs were
longer when C. difficile overgrowth was assumed to develop
more slowly.

A two-day cut-off was not optimal for any of the scenarios
considered. No cut-off time was optimal for all scenarios;
however, some cut-offs resulted in only moderate over- or
underestimation for a wide range of parameters (Figure 5). A
cut-off of w5.5 days did not over- or underestimate incidence
of hospital-acquired or previously acquired CDI by more than
20% for a wide range of mean times to C. difficile overgrowth
(1e9 days), proportion colonized at admission (0.1e15%),
mean length of stay (3e16 days), and rate of person-to-person
transmission (0.075e0.14). In our sensitivity analysis, the
scenario with the shortest optimal cut-off (3.6 days) was the
scenario with very high person-to-person transmission (0.18).
This extreme scenario had double the person-to-person trans-
mission of the base scenario, and resulted in 45 hospital-
acquired CDIs per 10,000 patient-days.

The classification error of a two-day cut-off was much
higher in settings with less person-to-person transmission and
substantially higher in settings with shorter mean length
of stay (Supplementary Figure 2, Appendix A). If trans-
mission was set to 33% of the base rate, a two-day cut-off

overestimated the incidence of CDI acquired in the current
hospitalization by more than 350%. Even a six-day cut-off
overestimated the incidence by 100% in this low-transmission
setting. However, the balanced cut-off was only slightly
higher in a low-incidence setting (5.0 days) than in a high-
incidence setting (4.9 days).

Discussion

Time from admission to onset of symptoms is a reasonable
measure for discriminating CDIs acquired in the current hos-
pitalization from previously acquired CDIs. IDSA and SHEA
recommend a cut-off of two days for the classification of
hospital-onset CDIs as community- or hospital-acquired. This
cut-off systematically overestimates the proportion of CDIs
that are acquired in the current hospitalization and under-
estimates the proportion that is acquired prior to admission.
Since all community-acquired CDIs observed in healthcare
settings must be acquired prior to admission, the current
guidelines may also systematically underestimate the propor-
tion of cases that are community-acquired. Moreover, the low
specificity of the two-day cut-off for identifying hospital-
acquired cases may cause significant misclassification bias in
studies that compare hospital and community-acquired cases,
reducing apparent differences between the two groups.

Since this model did not differentiate strains of C. difficile,
our definition of previously acquired CDI does not exclude pa-
tients who were colonized at admission but subsequently ac-
quired an additional strain of C. difficile prior to the onset of
symptoms. This is unlikely to represent a significant portion of
previously acquired CDIs and so is unlikely to affect our recom-
mendations [15]. The structure and parameter values in our
model synthesize the peer review literature on hospital-
associated CDIs, and is not fitted to a single data set. However,
our key finding, that the standard classification of CDIs over-
estimates the proportion of cases acquired in the current hos-
pitalization, is robust to very large variations in all parameters
[14].

There is a large variation in mean hospital length-of-stay
worldwide. Within the OECD, mean lengths of stay range be-
tween 3.9 days (Turkey) and 17.2 days (Japan) [16]. Our rec-
ommended optimal cut-off is sensitive to the mean length of
stay but a cut-off of five days performs well over this entire
range. By contrast, a cut-off of two days consistently over-
estimates the incidence of CDI acquired in the current
hospitalization and overestimates the incidence of CDI ac-
quired in the current hospitalization by more than 100% when
the mean length of stay is less than six days.

The rate of person-to-person transmission is difficult to
measure directly and is likely to vary significantly between
settings due to differences in hygiene protocols and adherence
to these protocols. The degree of person-to-person trans-
mission in our base scenario was estimated from hospitals with
high incidence of CDI (28.1 cases per 10,000 patient days), and
therefore may lie in the upper end of the plausible range
[14,17]. The optimal cut-off is longer in settings with less
person-to-person transmission. Therefore, in many settings e
especially those that have effective infection control pro-
grammes e an even longer cut-off may be required to avoid
overestimating the incidence of CDI acquired in the current
hospitalization. Since it is not usually possible to estimate the
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rate of person-to-person transmission without knowing the
incidence of hospital-acquired infection and colonization, and
since most estimates of the incidence of hospital-acquired
cases are based on the very classification scheme we are
assessing, in practice we cannot calculate the optimal cut-off
for a given setting. However, a five-day cut-off balances
sensitivity and specificity independent of the rate of person-to-

person transmission and is approximately optimal for a range of
transmission rates.

IDSA and SHEA also recommend that only those cases arising
>84 days (12 weeks) after the most recent hospital discharge
should be classified as community acquired [9]. This recom-
mendation may also lead to systematic misclassification, with
the extent of misclassification determined by the choice of
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cut-off. However, the scope of our model was limited to hos-
pitalized patients, so we could not consider any periods of CDI
or asymptomatic colonization preceding or following simulated
hospitalizations. Therefore we are unable to make recom-
mendations for the optimal use of a patient’s history of
hospitalization to classify the origin of CDI for either commu-
nity- or hospital-onset CDI. This classification should also be
assessed with empirical studies or models that simulate pa-
tients in communities and hospitals.

It is difficult to determine the source of transmission for CDI
cases, and therefore to assess classification by time since
admission empirically. Since the same strains of C. difficile
circulate in hospitals and communities, cases cannot be
distinguished by strain type alone [18,19]. Whole genome
sequencing can identify transmission events, but the most
comprehensive studies have not sequenced isolates from many
asymptomatic carriers, and have not been able to identify a
transmission source for �75% of all infections [8,18]. Screening
all admissions for asymptomatic colonization, coupled with
contact precautions and antimicrobial stewardship for colo-
nized patients, may reduce the incidence of CDI [12,20].
Consequently, studies where screening has occurred may not
be representative and may thus be unsuitable for assessing
classification of the origin of infections in settings without
screening. Therefore, modelling-based approaches may be the
best means for assessing the classification of CDIs.

Our findings add to a growing body of evidence suggesting
that transmission and reservoirs of C. difficile outside hospitals
are as least as important as within-hospital transmission.
Detailed surveillance has found the same strains circulating in
communities and hospitals, demonstrating the interconnec-
tedness of the two populations [18,19]. Further, modelling
studies have shown that the reproduction number (the number
of secondary colonizations arising from a typical primary
colonization in a population of susceptible individuals) is less
than one in many healthcare settings, suggesting that CDI is
sustained primarily by the admission of colonized individuals,
not within-hospital transmission [14,21]. Moreover, only 19% of
all CDIs and 25% of CDIs in hospitals can be reasonably attri-
buted to transmission from symptomatic inpatients, with the
remainder acquired from asymptomatic carriers or sources in
the community [8,18]. Whereas hospital-onset CDIs are care-
fully monitored and reported, community-onset CDIs are likely
to be underreportede especially in patients who have not been
hospitalized recently [22,23].

Standardized definitions and reporting of hospital-acquired
C. difficile infections have value, but the current two-day
cut-off is not based on strong evidence and overestimates the
proportion of cases acquired during the current hospitali-
zation. Though it may be difficult to change reporting stan-
dards, adopting a five- or six-day cut-off will improve the
classification of potential sources of infection for C. difficile,
recognizing the key role of CDI acquired prior to hospital
admission, including community-acquired cases.
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Supplementary Appendix A 

Model parameterization 

The details of the model we have used to assess the classification of Clostridium difficile 

transmission in hospitals have been published elsewhere [1]. The parameter values and the 

ranges used for sensitivity analysis in our article, together with references, are shown in 

Supplementary Table I. 

 

Supplementary Table I 

Definitions, values of all parameters used in the model (all rates are in units of per day) 

Parameter Description Value (range for 

sensitivity 

analysis) 

References 

β Transmission rate coefficient 0.09 (0.03–0.18)a  [1,2]b 

1/κ Mean length of stay (days) for patients without 

CDI 

6 (2–16)c [3] 

α Rate at which patients begin new antimicrobial 

treatment (proxy for rate of gut flora disruption) 

0.24 [2,4] 

q Efficacy and coverage of special contact 

precautions (0: total prevention of transmission; 

1: no reduction in transmission) 

0.45 [5,6] 

Nbed Hospital capacity 100  

τ Rate at which the treatment of patients with 

active CDI progresses towards resolution 

0.1 [7,8] 

pt Probability that CDI treatment will remove all 

C. difficile 

0.55 [1,2]d 

µ All-cause mortality rate for patients with CDI 0.0075 [9,10] 

pc Proportion of admissions positive for C. difficile 0.05 (0.001–0.15)e [2,11] 

pa Proportion of admissions with disrupted gut 

flora (due to recent antibiotic exposure) 

0.14 [12] 

po Proportion of admissions with C. difficile 

overgrowth 

0.006 [2] 

pu Proportion of admissions unable to mount a 

sufficient immune response 

0.46 [13,14] 

pAB Proportion of admissions positive for C. difficile 

toxin antibodies 

0.7 [15] 



λ Rate at which damaged commensal gut flora 

recovers 

0.03 [16,17] 

γ Rate at which C. difficile is cleared in those with 

intact gut flora 

0.023 [18] 

1/ω Mean time (days) until C. difficile overgrowth 

for patients with disrupted gut flora 

5 (1–10)a [19,20] 

δ Rate of development of immunity 0.1 [21,22] 

CDI, Clostridium difficile infection. 
aThe range is that reported for the general population. 
bEstimated in [1] from the force of colonization inferred from the risk of colonization and 

infection as a function of length of stay reported in [2]. 
cThe range of length of stay is from the Organisation for Economic Co-operation and 

Development (excluding Japan, which used a different definition). 
dEstimated in [1] from data on the recurrence rate reported in [2]. 
eLimited data are available for this parameter. We have chosen a range we believe to be very 

wide. 



 
Supplementary Figure 1. The effect of four parameters on the concordance probability for 

classification of Clostridium difficile infection origin by time since admission to onset of 

symptoms. 



 
Supplementary Figure 2. The effect of four parameters on the classification of Clostridium 

difficile infection (CDI) origin by time since admission to onset of symptoms. The estimation 

error (as a percentage of actual incidence) for the incidence of previously acquired CDIs and 

CDIs acquired in the current hospitalization is shown using four different classification cut-

offs (two, four, six, and eight days). Positive error is overestimation and negative error is 

underestimation. 
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Chapter 5

Modelling diverse sources of

Clostridium difficile in the

community

5.1 Introduction

This chapter consists of an article published in Epidemiology and Infection and the ac-

companying supplementary materials. In this artcile I extend the model of C. difficile

transmission in a hospital introduced in Chapter 3 to model transmission in a hospital

and the surrounding community. The model also incorporates infants and the possibility

of transmission from non-human reservoirs of C. difficile. In Chapter 4 I assessed com-

monly used surveillance definitions that classify CDIs presenting at hospitals as acquired

during the current hospitalisation or acquired prior to admission. In this chapter I extend

this assessment to the complete surveillance definitions that are used to classify hospital

and community-onset infections as hospital or community-acquired. I use an ODE for-

mulation of the model, assuming the population is at endemic equilibrium, and use the

individual Markov chain approximation to calculate the findings that require a knowledge

of individual patients’ histories. The article has four main outcomes. First, transmission

in the hospital is not necessary to sustain transmission in the community. Second, even

small and plausible amounts of transmission from animal reservoirs are enough to imply

that transmission in the community – though primarily person-to-person – requires an-

imal exposure to be sustained. Third, symptomatic carriers account for less than 10%

of person-to-person transmission in the community, with infants and asymptomatically

colonised adults accounting for the remainder. Fourth, community-onset C. difficile in-

fections are under-reported and current surveillance definitions are unable to adequately

distinguish community-onset hospital-acquired cases from community-onset community-

acquired cases, vastly overestimating the proportion of C. difficile infections that are hos-

pital acquired.

The supplementary materials provide a detailed description of the model structure,

parameters, fitting and verification. The supplementary materials also provide additional

figures showing the impact of model assumptions on the role of infants and asymptomatic
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carriers to transmission. The supplementary materials conclude by outlining the method

used to simulate individual patient histories when emulating surveillance definitions.

Chapter 6 uses the model presented in this chapter as the basis for an analysis of

C. difficile seasonality and interventions. The threshold for transmission from animal

sources (which if exceeded implies C. difficile in the human population is driven by trans-

mission from animals) is extended in Chapter 7 to simple, general models with both local

person-to-person transmission and an external source of colonisation or infection.

5.2 Article and Supplementary materials

Angus McLure, Archie C. A. Clements, Martyn Kirk and Kathryn Glass. Diverse sources

of Clostridium difficile in the community: importance of animals, infants and asymp-

tomatic carriers. Epidemiology and Infection, 147:e152, 2019.
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Abstract

Clostridium difficile infections (CDIs) affect patients in hospitals and in the community, but
the relative importance of transmission in each setting is unknown. We developed a mathem-
atical model of C. difficile transmission in a hospital and surrounding community that
included infants, adults and transmission from animal reservoirs. We assessed the role of
these transmission routes in maintaining disease and evaluated the recommended classifica-
tion system for hospital- and community-acquired CDIs. The reproduction number in the
hospital was <1 (range: 0.16–0.46) for all scenarios. Outside the hospital, the reproduction
number was >1 for nearly all scenarios without transmission from animal reservoirs (range:
1.0–1.34). However, the reproduction number for the human population was <1 if a minority
(>3.5–26.0%) of human exposures originated from animal reservoirs. Symptomatic adults
accounted for <10% transmission in the community. Under conservative assumptions, infants
accounted for 17% of community transmission. An estimated 33–40% of community-acquired
cases were reported but 28–39% of these reported cases were misclassified as hospital-acquired
by recommended definitions. Transmission could be plausibly sustained by asymptomatically
colonised adults and infants in the community or exposure to animal reservoirs, but not
hospital transmission alone. Under-reporting of community-onset cases and systematic
misclassification underplays the role of community transmission.

Introduction

Clostridiodes difficile, more commonly known as Clostridium difficile, is an emerging pathogen
that causes potentially life-threatening diarrhoea and is increasing in burden in many parts of
the world [1–3]. In the USA, it caused an estimated 453 000 infections and contributed to 29
300 deaths in 2011 [3]. C. difficile infections (CDIs) are common in healthcare facilities where
they account for 71% of hospital-associated gastrointestinal infections [4], but there is increas-
ing recognition of community-acquired cases and healthcare-acquired cases with onset of
symptoms in the community [3]. It is likely that many CDIs in the community go unreported,
either because affected people do not seek treatment [5], do not submit a stool sample when
they seek treatment [5] or their stool sample is not tested for C. difficile when submitted [6].
However, the extent of under-reporting has not known.

Colonised infants [7–10], contaminated food [11] and animals reservoirs [12] have been
identified as possible sources of C. difficile outside hospitals, however their contribution to
transmission has not been well quantified. Infants under 12 months have much higher preva-
lence of colonisation than adults [13], can be colonised for over 6 months by a single strain [7]
and rarely develop symptoms but shed the same density of spores in their faeces as adults with
CDI [8]. However, existing models of C. difficile do not capture infant colonisation or their
potential role in transmission. Some strains of toxigenic C. difficile that cause disease in
humans are also isolated from livestock, meat and fresh produce contaminated by animal fae-
ces [11, 12]. However, the proportion of human cases that are acquired from food or animals
and the ramifications for disease control are unknown.

The Infectious Disease Society of America (IDSA) and the Society for Healthcare
Epidemiology of America (SHEA) recommend that CDI cases be classified as community-
acquired or hospital-acquired according to time between onset of symptoms and most recent
hospital admission or discharge [14]. Though the recommended system is not evidence-based
[14], the system and minor variants are widely used to estimate the incidence of hospital- and
community-acquired cases in the USA and many other countries [2, 3, 15, 16]. The recom-
mended classification system has been shown to incorrectly classify many CDIs amongst hos-
pitalised patients, underestimating the proportion of cases acquired prior to hospitalisation
[17]. However, there has been no published assessment of the full classification system as
applied to hospital-onset and community-onset cases.



Despite the importance of the community as both a source of
new infections and the location of onset for some healthcare-
associated infections, there is to date only one published model
of C. difficile transmission that explicitly models patients outside
hospitals [18]. The same model estimates an upper bound to the
transmission from food and animals but does not explore the con-
sequences of animal exposure as a source of C. difficile transmis-
sion. There have been no models that include the potentially
important role of infants. We developed a model of C. difficile
transmission in hospitals and communities to explore the contri-
butions of hospitals, communities, adults, infants, animals and
food to the transmission of toxigenic C. difficile in human popu-
lations. We also estimated the extent of under-reporting in the
community and assessed the commonly used definitions of
hospital- and community-acquired CDI.

Methods

Model structure

We adapted a compartmental model of toxigenic C. difficile trans-
mission in hospitals [19] to model transmission in a hospital and
the surrounding community, adding treatment seeking, compart-
ments for infants under 12 months, demographic processes, wan-
ing immunity and transmission from animal reservoirs. The
model of the non-infant population had the same structure in
both the hospital and community, with non-infants distributed
amongst different compartments according to their immunity
to C. difficile toxins, C. difficile colonisation state and the state
of their gut flora. However, antibiotic prescription rates and
treatment-seeking behaviour differed between the hospital and
community while infants were only modelled in the community.
The structure is summarised in Figure 1 and Figure S1.

Non-infants (whom we call adults from here on) had three
immune statuses: able to mount an effective immune response to
C. difficile toxins conferring resistance or immunity to symptoms
but not colonisation; naive to C. difficile toxins but with a healthy
immune system; and unable to mount an effective immune
response to C. difficile toxins because of advanced age or a sup-
pressed immune system. Immunity could be conferred to any non-
suppressed adult by either extended asymptomatic carriage or
recovery from CDI. Any immune person could have their immun-
ity wane when they are not colonised and any non-suppressed
individual (including infants) could age to become suppressed.

There were two possible commensal gut flora statuses for
adults: disrupted and not disrupted. There were four possible C.
difficile statuses: free of C. difficile, colonised, C. difficile over-
growth without treatment and C. difficile overgrowth with treat-
ment. As we were concerned primarily with strains that can
cause symptomatic disease, we only modelled toxigenic strains
of C. difficile. An individual could have almost any combination
of gut flora and C. difficile statuses, but we assumed that C. diffi-
cile overgrowth could only occur in individuals with disrupted gut
flora. Non-immune adults with C. difficile overgrowth were con-
sidered symptomatic, while all other colonised individuals
(infants, immune adults and adults without C. difficile over-
growth) were considered asymptomatic. Both symptomatic and
asymptomatically colonised individuals shed spores and so were
infectious [20]. Spore shedding has been observed to increase
before toxin production [21], but decrease during C. difficile treat-
ment [22]. Therefore, asymptomatically colonised individuals
with disrupted gut flora and individuals with overgrowth were

equally infectious, patients receiving treatment had reduced infec-
tiousness determined by the effectiveness and coverage of contact
precautions [19] and colonised patients with intact gut flora trans-
mitted at a reduced rate.

Since CDI is only rarely observed in infants under 12 months
and antibiotics do not predispose infants to carriage [10], the
model for infants was much simpler than for adults, consisting
of only three compartments. At birth, infants were not colonised
[8, 9] and did not have immunity [23]. As with adults, colonisa-
tion conferred immunity, but for simplicity we assumed this
occurred immediately so there was no colonised-but-not-immune
class for infants. Infants could clear their colonisation [8, 9].
Infants aged by entering the corresponding adult class with intact
gut flora that shared the same colonisation and immune states.

Model parameterisation

Many of the parameters used in this model were based on our
previous model of C. difficile transmission in hospitals [19]
and/or drawn from the literature (Table S1). Eight parameters
were fitted to data in this study. The likelihood function used to
fit the model was composed from data for the prevalence of col-
onisation [9] and immunity [23] at given ages, longitudinal infant
colonisation [8, 9], the proportion of hospital admissions with
CDI as the primary diagnosis [24] and the incidence of reported
hospital- and community-acquired cases [3]. The reported esti-
mates of the prevalence of toxigenic colonisation in the general
adult population have varied considerably between settings and
studies. These studies have used different detection methods
and often had small sample sizes [13]. Therefore, we considered
multiple scenarios with colonisation prevalence from the range
2–10%, with a default of 5%. We determined the values of the
eight parameters that (A) ensured that a predetermined propor-
tion (in the range 2–10%) of the general adult population was
colonised and (B) maximised the model likelihood. This was
repeated for a range of values of the colonisation prevalence in
the general adult population. See Supplementary materials for
details of all parameters and how they were estimated.

Transmission from infants

Despite their high carriage rates, there has been little research on
the contribution of infants to C. difficile transmission.
Furthermore, the relative infectiousness of infants and adults in
the community cannot be determined using our model and avail-
able data. It has been shown that the mean density of C. difficile
per gram of stool is similar for asymptomatically colonised infants
and adults with CDI [8]. However, many other unquantified fac-
tors (e.g. hygiene practices and the number of social contacts)
contribute to infectiousness, so we considered a wide range of
assumptions in our sensitivity analysis. In a preliminary analysis,
model fit was poor and/or the proportion of transmission from
infants implausibly high in scenarios where infant infectiousness
exceeded that of symptomatic adults. Therefore, we considered
relative infant infectiousness in the range 0–1 for our sensitivity
analysis with 0.5 as conservative default assumption.

Accounting for under-reporting and misclassification of CDIs

To fit our model to incidence estimates for CDI [3], we simulated
the processes of treatment seeking, reporting and the classification
of cases as hospital or community-acquired. We assumed that, as

2 A. McLure et al.



with other diarrhoeal diseases, some patients recover from CDI
without seeking treatment [25], by modelling treatment seeking
in the community and recovery as competing hazards (see
Supplementary materials for details). To account for the low
testing rate for diarrhoea in general [5, 25] and community-onset
CDI in particular [6], we estimated the proportion of cases seek-
ing treatment in the community that were identified, allowing us
to compare model outputs to published estimates of disease bur-
den based on notification data [3].

The IDSA and SHEA recommend surveillance definitions that
classify where a CDI was acquired by location of onset of symp-
toms (healthcare facility or community) and by time since the
most recent hospital discharge or admission [14] (Fig. 2). Lessa
et al. [3] employed a variant of these definitions to estimate the
incidence of initial (i.e. non-recurrent) hospital- and community-
acquired CDIs in the USA (Fig. 2). We therefore emulated this
classification system to fit our model to the incidence of hospital-
and community-acquired CDIs reported by Lessa et al. (see
Supplementary materials for further details).

To determine the true origin of an infection in our model, we
subdivided each C. difficile-positive compartment into hospital-
acquired and community-acquired compartments, allowing us
to track where infection was acquired even if patients moved
between settings once or more between acquisition and onset of
symptoms. For simplicity, we assumed that current hospital-
acquired colonisation prevented community-acquired colonisa-
tion and vice versa. This assumption had no effect on overall
transmission dynamics. Moreover, coinfection with multiple
strains (which may have been acquired from multiple sources)
accounts for only approximately 10% of infections [26], so our
simplifying assumption was unlikely to substantially affect the
classification of infections. For each set of surveillance definitions,
we calculated the sensitivity and precision to identify hospital-
and community-acquired cases amongst both hospital-onset
and reported community-onset cases, using the true origin of
infection in our model as a gold standard. We identified cut-offs
that improved on the existing definitions amongst reported cases,
considering classification systems with a single cut-off for time
since hospital admission and a single cut-off for time since
most recent hospital discharge (i.e. classifying no cases as indeter-
minate). The balanced pair of cut-offs had equal sensitivity to

identify hospital- and community-acquired cases amongst both
hospital-onset cases and community-onset cases. The optimal
pair of cut-offs had equal precision and sensitivity when identify-
ing hospital-acquired cases, amongst both hospital-onset and
community-onset cases.

Reproduction number

Since the extent of human exposure to animal reservoirs of C. dif-
ficile is unknown, we calculated reproduction numbers assuming
that all exposure was due to person-to-person transmission – an
upper bound for the true reproduction number. We calculated the
reproduction number for the whole population. We also calcu-
lated reproduction numbers for the community and the hospital
separately. The latter calculations were identical to standard next-
generation matrix calculations [27], except we only considered the
colonised individuals in the setting of interest to be colonised for
the purposes of the calculation. The reproduction numbers for
hospital and community were the endemic threshold parameters
in each setting assuming no external sources of C. difficile (move-
ment of patients or animal reservoir).

Food- and animal-driven transmission

The extent of zoonotic or foodborne C. difficile exposure is
unknown; however, we considered the implications of differing
amounts transmission from animal reservoirs. For a given force
of colonisation, higher human exposure from food or animals
implies less person-to-person transmission and therefore a smal-
ler reproduction number. If a sufficient proportion of exposure
originates from food or animals, the reproduction number in
the human population is less than one and human disease is sus-
tained by constant exposure to non-human sources of C. difficile.
In this case, we say that C. difficile is animal-driven.

For each set of modelling assumptions, we calculated the
extent of foodborne exposure that implied C. difficile was animal-
driven. We expressed this animal-driven threshold in terms of
exposures leading to colonisation per person per year and as a
proportion of all transmission (i.e. foodborne transmission and
person-to-person transmission).

Fig. 1. Model structure showing including colonisation, gut flora status, symptoms and treatment. Adults in the immune classes do not have symptoms and there-
fore not all individuals with overgrowth seek or receive treatment (dashed arrows and box). The details for infants, immunity, demographics and hospital–com-
munity structure are summarised in Figure S1. The definitions and values of the parameters associated with each transition can be found in Table S1. †The force of
colonisation depends in the number and type of infectious individuals in the same setting (hospital or community).
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Results

Model fit

Themodel fitted the datawell, reproducing the observed age profile
of toxigenic C. difficile colonisation, immunity, reported incidence
of infection and proportion of admissions for CDI (Figure S2). For
most scenarios, infant infectiousness did not affect model fit.
However, the model fit was poor for combinations of low colonisa-
tion prevalence amongst adults and high infant infectiousness, so
these scenarios were not considered further. Themodel was verified
by outcomes not used to fit the model such as recurrence propor-
tion for hospital and community cases, the proportion of hospital-
based transmission attributable to symptomatic carriers, the
duration of colonisation in infants and the greater proportion of
elderly and immune suppressed in hospital-acquired vs.
community-acquired cases (see Supplementary materials for
details). In our model, colonisation prevalence was 17% higher
(range: 4–55%) at hospital discharge than in the general adult
population, agreeing with the common observation that colonisa-
tion is more common amongst those who have been recently
discharged from hospital. However, 78% (range: 60–87%) of colo-
nised discharges had acquired the pathogen in the community
prior to admission and remained colonised for the duration of
their hospital stay. We estimated a mean immune period of 9.4

years (range: 4.0–30.4 years) with the longest immune period
when we assumed adult colonisation prevalence was low (2%).

Reproduction number and food-driven threshold

Under the assumption of no foodborne transmission, the reproduc-
tion number for the whole population was greater than one for all
plausible assumptions (default: 1.11, range: 1.03–1.35) (Fig. 3a).
The reproduction number for the hospital was less than one for
all plausible assumptions (default: 0.28, range: 0.16–0.46), decreas-
ing with increasing colonisation prevalence of adults in the commu-
nity and unaffected by assumptions concerning the infectiousness
of infants (Fig. 3c). The reproduction number for the community
was close to but lower than the reproduction number for the
whole population (default: 1.09, range: 0.999–1.34) (Fig. 3b) and
increased with increasing infant infectiousness. The reproduction
number was less than one in the community only if infants were
not infectious and adult colonisation prevalence was 2%.

The animal-driven threshold (the minimum force of colonisa-
tion attributable to food and animals that implies the reproduc-
tion number in the human population is less than one), was
0.046 exposures per person per year (range: 0.006–0.107) or
10.6% of all transmission in the community (range: 3.5–26.0%)
(Fig. 4). This is equivalent to one foodborne or animal exposure

Fig. 2. The classification of CDI cases based on IDSA and SHEA surveillance recommendations that we assessed with our model. Lessa et al. used a similar clas-
sification scheme to estimate incidence in the USA. *Lessa et al. used a 12-week cut-off and therefore do not classify any cases as ‘indeterminate’. ‡Lessa et al. used
a 3-day cut-off. †We used symptom onset or hospital admission as reference points in our simulations. However, the classification system recommended by IDSA
and SHEA uses onset of symptoms as the reference point for all cut-offs. Our classification is otherwise identical. Lessa et al. used date of positive faecal sample as
reference point.
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leading to colonisation every 21.7 years per person (range 9.4–
175.5 years). The animal-driven threshold was lowest (once
every 175.5 years per person) if infants were not infectious and
adult colonisation prevalence was low (2%). The animal-driven
threshold was highest (once every 9.4 years per person) if infants
were as infectious as adults and adult colonisation prevalence was
high (10%). The model had poor model fit at the animal-driven
threshold when infant infectiousness was high and adult colonisa-
tion prevalence was low.

Transmission from infants and asymptomatic adults with
intact gut flora

In our main analysis, 13–30% of transmission in hospitals was
from patients receiving treatment for CDI, but <10% of all

transmission in the community was attributable to symptomatic
patients or patients with disrupted gut flora. The remaining trans-
mission was attributable to infants or asymptomatically colonised
adults with intact gut flora. The proportion of transmission in the
community attributable to infants was 17.4% for our conservative
default scenario but was highly sensitive to the relative infectious-
ness of infants and colonisation prevalence in adults (Figure S3).
With infants as infectious as symptomatic adults and adult colon-
isation prevalence in the community at ⩽5%, ⩾40% of transmis-
sion in the community was attributable to infants. The proportion
of transmission attributable to asymptomatically colonised indivi-
duals with intact gut flora was also highly sensitive to these
assumptions (Figure S4). Under default assumptions, this group
accounted for 79% of transmission in the community and 25%
of transmission in the hospital, but ⩾90% of transmission in

Fig. 3. The reproduction number at the disease-free equilibrium for various plausible assumptions for the colonisation prevalence in adults and relative infectious-
ness of infants for (a) the whole population, (b) the community only and (c) the hospital only. The model had poorer model fit for the combination of high infant
infectiousness and low adult colonisation prevalence, so these combinations are omitted from the figures.

Fig. 4. The animal-driven threshold under various plausible assumptions for the C. difficile colonisation prevalence in adults, and the relative infectiousness of
infants as (a) a proportion of all transmission in the community and (b) as rate of exposure to adults in the community. The reproduction number is less than
one in the community if transmission from animals exceeds the animal-driven threshold. The model had poorer model fit at the animal-driven threshold for
the combination of high infant infectiousness and low adult colonisation prevalence, so these combinations are omitted from the figures.
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the community if colonisation prevalence was 10% amongst
adults in the community. Patients with CDI and colonised indivi-
duals with disrupted gut flora were 6.6 times more infectious
(range: 2.8–131.8) than colonised individuals with intact gut
flora, but were much less numerous, especially in the community
where the antibiotic prescription rate was low. Infants cleared
their colonisation 9.2–11.5 times more slowly than adults with
intact gut flora. Under most scenarios, infants were also more
exposed or susceptible to colonisation (default: factor of 1.4;
range: 0.6–4.4) and more infectious (default: factor of 3.3;
range: 0–9.8) than asymptomatic adults with intact gut flora
(compare Table 1 and Table S1).

Under-reporting and misclassification of CDIs

Though we estimated that patients with CDI were admitted to
hospital at 59 (range: 53–73) times the rate of the general adult
population (Table 1), only 48% of adults with community-onset
CDIs sought treatment in the community or hospital (Table 2)
and only 63% (range 56–76%) of CDIs treated in the community

were reported (Table 1). Therefore, while we assume that 100% of
symptomatic hospital-onset infections were reported, we estimate
that only 30% (range 27–37%) of all community-onset CDIs were
reported. Considering both hospital- and community-onset CDIs,
only 67% (range 66–70%) of all hospital-acquired CDIs and 35%
(range 33–40%) of all community-acquired cases were reported
(Table 2).

Standard CDI classification schemes misclassified many of the
reported community-acquired cases as hospital-acquired in our
model: 63% (range: 43–76%) of cases classified as hospital-acquired
with the IDSA/SHEA scheme were actually community-acquired
(Table 2). The classification systems were much more precise but
less sensitive for community-acquired cases (Table 2). Though
total incidence was underestimated due to under-reporting, both
classification schemes overestimated the proportion of reported
cases that were hospital-acquired (Fig. 5). We estimate that
only 40% (range: 26.5–60.6%) of hospital-onset and 4.5%
(range: 2.7–8.4%) of reported community-onset infections are
hospital-acquired. In contrast, the classification scheme recom-
mended by IDSA and SHEA classified 89.6% (range: 88.9–90.3%)

Table 1. Definitions, values and references for eight parameters fitted with the model

Parameter Description
Value

(Sensitivity analysis range)

σ Rate at which immunity wanes 2.9 × 10−4 (0.9–6.9 × 10−4)

θ Multiplicative factor for colonisation susceptibility of infants 1.4 (0.6–4.4)

γinfant Rate at which C. difficile is cleared in infants 2.0 × 10−3 (2.0–2.5 × 10−3)

pdisrupt Proportion of antibiotics that disrupt gut flora 0.22 (0.12–0.48)

preport Proportion of all community-treated CDIs that are reported 0.63 (0.57–0.76)

νCDI Hospital admission rate for CDI 1.4 × 10−2 (1.3–1.7 × 10−2)

βDisrupt Transmission rate coefficient for colonised adults with disrupted gut flora (due to recent antibiotic
exposure)

12.8 × 10−2 (7.1–17.4 × 10−2)a

βIntact Transmission rate coefficient for colonised adults with intact gut flora (no recent antibiotic exposure) 1.9 × 10−2 (0.1–2.6 × 10−2)a

βinfant Transmission rate coefficient from infants 6.4 × 10−2 (0–17.4 × 10−2)a

A full list of parameters can be found in Table S1. All rates are in units of day−1.
aOnly these parameters were affected by assumptions around infant infectiousness, being estimated under the assumption that βInfant = k × βDisrupt for k in the range 0–1.

Table 2. Simulated incidence of hospital-acquired (HA) and community-acquired (CA) CDIs, under-reporting of cases and classification errors for two different
simulated classification schemes

Actual Proportion of
all reported cases %

IDSA/SHEA recommendations Lessa et al., classification

Proportion
reported %

Proportion of all
reported cases % b

Precision
%

Sensitivity
%

Proportion of all
reported cases % c

Precision
%

Sensitivity
%

Any HA 67 (66–70) 15 (9–23) 38 (38–39) 37 (24–57) 97 (96–97) 41 34 (22–53) 94 (93–95)

Any CA 35 (33–40) 85 (77–91) 57 (56–57) 99 (99–100) 65 (61–72) 59 99 (97–99) 68 (64–74)

HO-HA 100a 11 (7–17) 25 (25–25) 44 (29–65) 97 (96–97) 23 46 (31–67) 93 (91–94)

HO-CA 100a 17 (11–21) 3 (3–3) 89 (77–94) 15 (14–19) 5 85 (70–92) 27 (25–33)

CO-HA 31 (28–37) 3 (2–6) 13 (13–14) 24 (15–42) 96 (95–97) 18 18 (11–33) 99 (99–99)

CO-CA 30 (27–36) 69 (66–70) 54 (53–54) >99.8 78 (76–81) 53 >99.8 78 (76–81)

HA, hospital-acquired, CA, community-acquired, HO, hospital-onset, CO, community-onset.
The range in parenthesis is the range across all sensitivity analysis scenarios. Classification sensitivity is amongst reported cases only; thus, multiplying by the reported proportion will return
the sensitivity amongst all cases.
aWe assumed that all hospital-onset infections are reported.
bPercentages do not sum to 100% as some cases are classified as ‘indeterminate’ under this system.
cThe model was fit to estimates of CDI incidence that used this scheme to classify the location of acquisition. Consequently, these values change very little across the sensitivity analysis
scenarios.
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of hospital-onset and 19.6% (range: 19.4–20.3%) of reported
community-onset infections as hospital-acquired. A 7.4-day cut-off
(range: 5.0–9.5) for recent hospital admission (in hospital-onset
cases) and a 2.1-day cut-off (range: 1.3–3.9) for prior hospital dis-
charge were the optimal pair of cut-offs. A 6.6-day cut-off (range:
5.8–7.0) for recent hospital admission and a 12.5-day cut-off
(range: 11.8–14.5) for prior hospital discharge were the balanced
pair of cut-offs. The optimal cut-off correctly estimated the propor-
tion of cases that were hospital- or community-acquired, but had
poor precision (≈50%) to identify hospital-acquired cases (Fig. 5).

Discussion

Under all reasonable scenarios and modelling assumptions, trans-
mission between hospitalised adults amplified disease burden
(higher force of colonisation and higher colonisation proportion
in discharged patients than the general population) but was not
the key driver of toxigenic C. difficile transmission in the popula-
tion (hospital reproduction number less than one), in agreement
with previous modelling studies [19, 28]. When we simultaneously
assumed low prevalence of C. difficile colonisation in adults, no
infant infectiousness and no transmission from non-human
sources, the reproduction number in the community was also
less than one. In this unlikely scenario, the movement of colonised
individuals between hospital and community was essential for
persistence of C. difficile in both settings. However, in all other
scenarios without transmission from non-human sources, the
reproduction number was greater than one in the community,
and therefore transmission in the community would persist even
in the absence of transmission in hospitals. This is the first time
reproduction numbers have been estimated for C. difficile in a
model including both the hospital and the community.

Symptomatic carriers ofC. difficile accounted for <10% of trans-
mission in the community in our model. Despite accounting for
<2% of the total population, infants under 12 months accounted
for 17% of transmission in the community for our conservative
default assumptions and ⩾40% of transmission if infants were at
least as infectious as symptomatic adults and colonisation preva-
lence was ⩽5% in the community. However, the exact proportion
was highly sensitive to the relative infectiousness of infants

(which has not been well quantified) and the colonisation preva-
lence in adults in the community (which varies considerably
between studies and settings [13]). Nevertheless, our results indicate
that asymptomatically colonised infants are likely to be a substantial
source of transmission in the community. This is in agreement with
a number of small studies that found CDI was associated with
exposure to infants [29, 30] and a large study that, despite sampling
only 1% of infants in Oxfordshire, was able to determine that 2% of
all known CDIs in Oxfordshire could be reasonably attributed to
recent direct or indirect transmission from these infants [31].

We investigated how transmission from non-human sources
affected estimates of the reproduction number for person-to-
person transmission. We demonstrated that the reproduction
number in the human population was less than one if over 3.5–
26.0% of transmission in the community was from non-human
sources such as food or water contaminated by livestock animals.
If current transmission from animals is above this threshold,
C. difficile could not persist in the human population without
these non-human exposures. This animal-driven threshold in
terms of C. difficile exposures per person per year was remarkably
low: equivalent to one exposure leading to colonisation per adult
every 21.7 years under our default assumptions. For comparison,
it has been estimated that Australians have an episode of food-
borne gastroenteritis (i.e. not counting asymptomatic exposure)
on average once every 5 years [32]. Given the overlap of strains
between animals and humans, the presence of C. difficile spores
on raw meats and fresh vegetables [11], and the high survival
rate of C. difficile spores following cooking at recommended
‘safe’ temperatures [33], it is plausible that exposure exceeds this
low threshold. Though our model has not accounted for multiple
strains of C. difficile, one could apply the animal-driven threshold
to individual strains or types of C. difficile. For instance, it is not
plausible that ribotype 001, which accounts for a substantial pro-
portion of human cases but is not common in food animals [34],
exceeds the animal-driven threshold. On the other hand, it is
plausible that ribotypes 078, 027 and other ribotypes that both
cause human infection and are commonly isolated from animals
[34], exceed the threshold. This is especially true for ribotype 078,
as isolates from humans and food animals appear to be closely
related [12].

Fig. 5. Classification of the origin of reported CDIs by time since hospital discharge or admission, comparing the actual incidence of reported hospital-acquired
(HA) and community-acquired (CA) CDIs vs. the classification recommended by IDSA and SHEA and three variants. Lessa et al. use a 3-day cut-off for recent hospital
admission and a 12-week cut-off for recent hospital discharge. The optimal and balanced classifications we have identified use 7.4- and 6.6-day cut-offs, respect-
ively, for recent hospital admission and 2.1- and 12.5-day cut-offs, respectively, for recent hospital discharge.

Epidemiology and Infection 7



We estimate that approximately 70% of community-onset cases
are not reported, either because the patient does not seek treatment,
or the pathogen remains unidentified. This is in agreement with the
low treatment-seeking rates reported generally for diarrhoea [5, 25]
and low testing rates for C. difficile in primary care [6]. The simu-
lated proportion of community-acquired cases was higher amongst
community-onset cases than hospital-onset cases. Consequently,
we estimate that while two-thirds of hospital-acquired infections
are reported, only one-third of community-acquired infections
are reported. Though we only simulated the under-reporting of
community-onset cases, our findings complement an empirical
study that found that missed cases of CDI in hospital settings
are disproportionately likely to be community-acquired [35].
Existing classification schemes attempt to account for cases that
may acquire the pathogen in one setting and, after an incubation
period, develop symptoms in another; however, these schemes
are highly asymmetric with regards to setting [3, 14]. While only
hospital-onset cases with symptom onset within 2 or 3 days of
hospital admission are considered community-acquired, all
community-onset cases with symptom onset within 4 or 12
weeks of hospital discharge are classified as hospital-acquired.
Empirical estimates of the median incubation period vary consid-
erably from 18 to 33 days [36] but lie between the two extremes of
these cut-offs. Therefore, it is likely that typical cut-offs for classi-
fying hospital-onset cases as community-acquired are too short
and typical cut-offs for classifying community-onset infections as
hospital-acquired are too long. We confirmed this with our
model by demonstrating that, to balance the sensitivity and speci-
ficity of classification, these cut-offs should be approximately 6 and
12 days, respectively. We also demonstrated that any scheme based
on time sincemost recent hospital discharge cannot adequately dis-
tinguish hospital- and community-acquired cases. Even our
balanced scheme had very poor precision for hospital-acquired
cases: half or more of all cases classified as hospital-acquired
were actually community-acquired. This can be understood by not-
ing that the mean length of hospital stay (between 4 and 10 days
in most high-income countries [37]) is short compared with the
duration of colonisation, which may be several weeks [38].
Consequently, more than 60% of patients who were colonised at
hospital discharge in our model were not exposed in the preceding
hospitalisation, but rather in the community prior to admission.
Therefore, even patients who developed CDI very soon after hos-
pital discharge were more likely to be community-acquired than
hospital-acquired. Adjusting the cut-off times cannot correct this
flaw in the existing classification schemes. Alternative schemes,
such as classification based on the total number of days spent in
hospital in the weeks leading up to the onset of symptoms, should
be considered. Our model demonstrates that the classification
scheme recommended by IDSA and SHEA has very high sensitivity
for hospital-acquired cases, and therefore may be useful if all
hospital-acquired cases need to be identified or excluded.
However, the asymmetry and unrealistic timescales in existing clas-
sification schemes inadvertently reinforce the a priori assumptions
upon which they are based: that the colonisation pressure in hospi-
tals far exceeds the colonisation pressure in the community.

Our study has several limitations. The data used to fit the
model were incomplete and were gathered from many different
sources, countries and settings. In particular, the published esti-
mates of colonisation prevalence vary significantly between stud-
ies and it is unclear to what extent this reflects genuine differences
between study populations or variations associated with different
detection methods or small sample sizes [13]. We addressed this

by considering a range of scenarios that reflected the possible
range of colonisation prevalence. The relative infectiousness of
infants and adults is also unknown, so we allowed the relative
infectiousness of infants and adults to vary in our sensitivity ana-
lysis but were therefore unable to provide a precise estimate of the
amount of transmission attributable to infants. However, our
broad sensitivity analysis and wide variety of input data improve
the global applicability of the model. National estimates in the
USA suggest that nearly all people with CDI had received some
form of healthcare soon before onset of symptoms if outpatient
and primary care were included [3]. This does not imply that
most CDIs are healthcare-acquired, since antibiotic exposure is
a causative factor for CDI and antibiotics are prescription-only
medicines in many countries, including the USA. However, we
were unable to model pathogen acquisition from other sources
of healthcare, because the hospital in our model consisted only
of admitted patients, with the community including patients
receiving all other forms of healthcare (including residents of
long-term care facilities). Long-term care facilities contain sub-
populations of individuals at high risk for CDI [3]. As we have
not modelled long-term care facilities separately, we are likely to
have underestimated the heterogeneity and thus the reproduction
number in the community. The model population is well-mixed
and does not capture heterogeneity in hospital admission rates
or heterogeneity in the contact rates of infants, adults and the eld-
erly, which may also affect reproduction number estimates.
Finally, we did not differentiate between the many strains of
C. difficile [39], so it is possible the hospital reproduction
numbers, community reproduction numbers and animal-driven
thresholds differ by strain.

Under-reporting of community-onset CDIs and the misclassi-
fication of many community-acquired infections obscure and
underestimate the extent of transmission in the community. It
seems likely that unreported community-onset cases will be less
severe and that the classification (or misclassification) of individ-
ual cases as hospital-acquired or community-acquired will not
affect the treatment or outcomes of patients. Therefore, at the
level of individual cases, even large-scale under-reporting and
misclassification may not be very harmful if those with severe dis-
ease receive appropriate care. However, to prevent infections, we
must understand when, where and how transmission occurs at
the level of the population. We have demonstrated that most
infections (hospital-onset and community-onset alike) are
acquired outside of hospitals, but only a small fraction are
reported. Therefore, interventions that prevent acquisition outside
hospitals, or prevent patients admitted with asymptomatic
colonisation from developing symptoms should be considered
and assessed. Merely reducing transmission between hospitalised
patients will not be sufficient to prevent the spread of this
important pathogen. Further investigation into the relative infec-
tiousness of infants is required before the proportion of transmis-
sion from infants can be estimated. However, we have
demonstrated that a high degree of transmission from infants is
consistent with available data on spore shedding [8] and colonisa-
tion prevalence [8, 9]. Similarly, though the frequency of food and
animal-to-human transmission is unknown for C. difficile, we
have demonstrated that even very modest and plausible frequen-
cies of exposure may imply that C. difficile is sustained in
human populations by transmission from animals or contami-
nated food. If this is the case, C. difficile can be eradicated from
the human population if and only if animal-to-human transmis-
sion is reduced.

8 A. McLure et al.
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Further details of model structure and parameters 
Demographics 
The demographic structure of the model is summarised in Supp. Figure 1. All individuals are born 
into the infant class without immunity or colonisation. We assume the population is closed without 
immigration or emigration. The birth rate is chosen to balanced deaths such that the equilibrium 
population is NComm (100,000). Infants age to become (non-suppressed) adults at rate ζ (ζ-1 = 1 year). 
Non-suppressed adults and infants age slowly to become suppressed adults at rate ψ such that the 

median time to age is 65 years (𝜓 =
୪୬ ଶ

଺ହ×ଷ଺ହ
dayିଵ). 

There are two death rates: one rate for infants and non-supressed adults (φ) and a much higher rate 
for supressed/elderly adults (φU). The two death rates are chosen so that proportion in the 
suppressed class is 13.7% (the proportion of US population over 65 [1]) and proportion of deaths in 
the suppressed class is 72.4% (proportion of deaths that are in people over 65 in the US [1]): 𝜑௎ =

𝜓
ଵି଴.ଵଷ଻

଴.ଵଷ଻
 and 𝜑 =  𝜓

 ଵି଴.଻ଶସ 

଴.଻ଶସ
. 

Immunity 
The immune structure of the model is summarised in Supp. Figure 1. Non-supressed adults, being 
treated for CDI are conferred immunity upon end of treatment. Colonised, non-supressed, adults not 
receiving treatment develop immunity at rate δ (1/ δ = 10 days) as determined in our previous 
model from sero-conversion rate in response to C. difficile toxoid vaccine trials [2,3]. To simplify the 
model infants develop immunity immediately on colonisation. All immune individuals have their 
immunity wane at rate σ, which is estimated with our model. 

Admissions and discharges 
The hospital and community structure of the model is summarised in Supp. Figure 1. The hospital 
discharge rate for suppressed/elderly and non-supressed individuals is the inverse of the mean 
length of stay in US Hospitals for those over 65 (κU = 1/5.2 days) and those under 65 ( κ = 1/4.15 
days) respectively (2012 data) [4]. However, those receiving treatment for CDI in hospital are not 
discharged. Similarly admission rates are determined from US hospital admission rates which are 
once every 11.4 years for those under 65 (ν) and once every 3.4 years for those over 65 (νU) (2012 
data) [4]. We assume that those who have symptoms of CDI in the community are admitted at a 
much faster rate (νCDI) estimated with our model.  

Colonisation and Gut Flora 
The model structure for gut flora disruption and C. difficile colonisation is summarised in Figure 1 in 
the main text. Gut flora is disturbed at different rates in the hospitals and communities to reproduce 
the reported proportion admissions in hospitals [5] or proportion of adults in the community each 
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year [6] that receive antibiotics. In the community those in the suppressed/elderly received 
antibiotics at a higher rate such that αComm < αU,Comm < αHosp = αU,Hosp. The time take for the recovery 
of gut flora [7], and the duration of heightened risk of C. difficile following antibiotic exposure [8] 
depends on the antibiotic but we chose a single recovery rate λ = 0.03 day-1 which sits in the middle 
of the range. As it has been observed that 20% of hospitalised CDIs recover without specific 
treatment [9], the gut flora recovery rate for those with overgrowth is λ୭  =

ఘಹ೚ೞ೛

ଵ
଴.ଶൗ  ିଵ

. 

The colonisation clearance rate is the same (γ) in all colonised adults and was determined in our 
previous model of C. difficile transmission in a hospital [10] based on the clearance rate in the 
control group in a trial for treating asymptomatic colonisation with vancomycin and metronidazole 
[11]. The clearance rate in infants (γinfant) is estimated in our model to the colonisation profile for 
infants. The rate at which C. difficile overgrows in those with damaged gut flora (ω) is the same in all 
adults and was determined for our previous model from observations of C. difficile overgrowth in a 
chemostat model of gut flora in human gastrointestinal tract [12]. 

Transmission 
Transmission is well mixed within each of the hospital and community but there is no transmission 
between these two locations (only movement of individuals), so there is a separate force of 
colonisation for the community and hospital. Person-to-person transmission comes from colonised 
adults with disrupted gut flora (βDisrupt), colonised adults with intact gut flora (βIntact) and from infants 
(βinfants; community only). The transmission parameters from adults are estimated with our model. 
The base assumption is that infants are half as infectious as disrupted adults (βinfants = 0.5 βDisrupt), but 
we consider βinfants in the range 0 - βDisrupt in our sensitivity analysis. Contact precautions (for patients 
receiving treatment) reduces transmission from these individual by factor q, determined for our 
previous model from contact precaution adherence rates [13]. (We assume no contact precautions 
in community, i.e. qComm = 1). Foodborne transmission adds to the force of colonisation in the 
community. Infants have different susceptibility to colonisation given by the factor θ. Therefore the 
force of colonisation for infants is θ times the force of colonisation in the community. 

CDI treatment and outcomes 
The rate at which individuals with CDI seek treatment in the community was inferred from studies 
on treatment seeking behaviour for those with diarrhoea. Van Cauteren et al report that 33% of 
those who have diarrhoea seek treatment, with mean time to treatment seeking being 1.5 days [14]. 
Assuming a competing hazards model of treatment seeking and recovery, this means that the 
treatment seeking rate (ρComm) is 0.33/1.5 = 0.22 day-1. Treatment seeking rate in the hospital is 
much faster (ρHosp = 1 day-1). Treatment rate (τ) is same in hospital and community (mean time is 10 
days) [15]. Treatment success proportion (pt) is the same in hospital and community and was 
estimated in our previous model [10]. We assume that patients do not have a greater hazard of 
death with CDI as death due to CDI is sufficiently infrequent so as not to significantly affect 
population level outcomes. 

Details of parameter estimation 
We used maximum likelihood estimation to determine the value of eight parameters. The likelihood 
function was composed of the product of likelihood functions for the colonisation prevalence in 
infants, the proportion seropositive for C. difficile toxin antibodies by age, the incidence of CDIs in 
hospitals and communities and number of patients admitted to hospital with CDI as a proportion of 
all admissions.  
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Colonisation Prevalence in Infants and Proportion Seropositive by Age  
Kubota et al (2016) collected stool samples from 111 Belgian neonates at approximately one, three, 
eight, 31, 91, 143 and 182 days after birth. Since the exact number of days since birth was not 
reported for each sample and infant, for the purposes of likelihood calculations we assumed that 
each set of samples was taken exactly at exactly one, three, eight, 31, 91 143 and 182 days after 
birth.  Kubota et al. tested each sample for carriage of C. difficile and presence of genes for toxins A 
and B. They reported the sequence of sample results (including missing samples) for the 55 infants 
who had at least one C. difficile positive sample. For the 56 samples that had no positive tests (for 
which the sequence of negative and absent samples were not reported) we assumed that there 
were no missing samples and that all samples were negative. Since we are interested only in 
toxigenic C. difficile, we considered all C. difficile positive without either toxin genes, as negative 
samples. 

Rousseau et al (2012) collected monthly stool samples from ten French infants in their first year of 
life starting at approximately one month. The exact number of days since birth were not given for 
each sample so we assumed that samples were taken (or were missed) at exactly 30-day intervals. 
They performed strain typing on each positive stool sample, typing either one or five colonies. They 
reported the sequence of sample results including typing and missing results. Since we are 
interested only in toxigenic C. difficile, we only considered a sample to be positive if at least one of 
the typed isolates was of a toxigenic strain. 

Rousseau et al also collected a single stool sample from 85 French children aged 1.5-36.2 months 
from two day-care centres. They reported the number of samples positive for C. difficile and 
including the number positive for toxigenic strains of C. difficile. Again, we considered only the 
samples with a toxigenic strain to be positive and samples with non-toxigenic strains or no strain of 
C. difficile to be negative. 

Holst et al. (1981) collected stool samples from 130 infants aged 1-12 months and 88 children aged 
1-15 years (total 218 samples) and tested for C. difficile carriage. All C. difficile positive samples were 
for toxigenic strains. The proportion colonised was reported by monthly age brackets for infants 
under 12 months and larger brackets for older children. For likelihood calculations we assumed that 
the age of all subjects was exactly in the middle of their age bracket (measured in 30-day months). 

Adlerberth et al. (2014) also reported longitudinal C. difficile colonisation data in infants, but did not 
provide denominator data, so their data were not used for fitting the model. However, they did 
demonstrate that infants can be long-term carriers toxigenic strains of C. difficile, finding that a third 
of colonised infants were still colonised by the same strain six months later. 

Viscidi et al. (1983) report the age-related prevalence of antibodies to toxin A and toxin B of C. 
difficile in 98 paediatric in-patients and 242 outpatients from a US hospital. The trends for toxins A 
and B were similar. Since toxin A and B antibodies were measured from the same set of patients, the 
two trends cannot be considered independent, so we considered only the data for toxin-B 
prevalence. 

The probability that an individual would be in each state (i.e. colonised/non-colonised or 
seropositive/seronegative) at a given age was calculated for a given set of parameters using the 
Markov chain approximation for an individual, with the force of colonisation at the equilibrium 
value. For the cross-sectional datasets, the model likelihood was derived from a product of 
binomially distributed random variables with ni trials (the number of samples for age group i), xi 
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successes (i.e. the number of C. difficile positive or seropositive samples) and success probability pi 
(the model predicted probability that an individual of that age group would be C. difficile positive or 
seropositive). For the datasets reporting the longitudinal sequence of sample results, the model 
likelihood a given sequence of results was the model probability that Markov chain of the individual 
would pass through those states at the sample ages. 

The older, cross-sectional study by Holst et al. [16] found much higher prevalence of toxigenic 
colonisation amongst infants than recent studies [17,18], lead to poor model fit when combined 
with the recent studies or when used as the only infant colonisation data set and was therefore 
excluded. 

Incidence of healthcare-associated and community-associated CDI 
Lessa et al. (2015) estimated the incidence of CDIs in the United States based on surveillance data 
from several US counties. They used a three-day cut-off for hospital onset CDIs and a single twelve-
week cut-off for community onset CDIs to differentiate healthcare and community acquired CDIs. In 
their article they further subdivided healthcare associated cases into community-onset healthcare 
acquired, nursing-home onset and hospital-onset hospital-acquired cases. We simulated the 
application of the three-day and twelve-week cut-off to determine the model incidence of hospital-
onset hospital-acquired CDIs, community-onset hospital acquired CDIs and community acquired 
CDIs. However, because our model did not differentiate between nursing home and the general 
community, we included nursing home onset cases in with community acquired cases for the 
construction of the likelihood function. Recurrent cases – defined as any case with a period of 
symptoms in the 8 weeks prior to onset of symptoms (community-onset cases) or hospital admission 
(hospital-onset cases) – were excluded for the purposes of incidence estimation. The likelihood 
functions for the incidence of each category (e.g. community-onset hospital acquired) of CDI were 
normal and independent with mean equal to the reported incidence and standard deviation equal to 
width of the reported confidence interval divided by 2 × 1.96. 

Proportion of Admissions with CDI 
HCUP provide information on hospitalisations in the Unites States stratified by diagnoses. We 
extracted the total number of hospital inpatient discharges and the number of hospital inpatient 
discharged where the principal diagnosis was C. difficile infection (Diagnoses--ICD-9-CM Codes 
(ICD9), Principal Diagnosis: 008.45 Int Inf Clstrdium Dfcile) for the year 2014 (the most recent 
available data at time of extraction) [19]. The likelihood function for the proportion of admissions 
with CDI was normally distributed with mean equal to the proportion of all discharges where CDI 
was the primary diagnosis and standard deviation equal to the reported confidence interval divided 
by 2 × 1.96. 

Alternate fitting assumptions 
We considered multiple sets of assumptions when trying to estimate the transmission rates which 
are best expressed in terms of the transmission parameters giving the transmission rate from each 
type of colonised individual by setting (hospital or community): βComm,Intact, βHosp,Intact, βComm,Disrupt, 
βHosp,Disrupt and βinfant. Throughout we assumed that βinfant was some fraction 0-1 of βComm,Disrupt, 
however we considered multiple relations between the other parameters.  

We tried assuming βComm,Intact,= βHosp,Intact,= 0 and βComm,Disrupt,= βHosp,Disrupt with generally poor results. 
Model fit was reasonable when adult colonisation prevalence was low and infants as infectious as 
adults, however nearly all transmission came from infants in this scenario. For high colonisation 
prevalence and equal infant infectiousness, though the model fit was still good, this could only be 
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achieved with very high transmission rates in the community and very low (~10%) antibiotics 
disruption probability and still nearly all transmission came from infants. With lower infant 
infectiousness in the range 0-0.2 times adult infectiousness, the model had a very poor fit with the 
incidence in the community being very low (<1/3 of data), and infant colonisation rates being high, 
transmission rates from adults being excessive (>3) and probability that antibiotics disrupt being very 
low (<10%). 

We tried assuming a single transmission rate βComm,Intact,= βHosp,Intact,= 0 with βComm,Disrupt, and βHosp,Disrupt 
independent. This allowed for arbitrary and independent forces of colonisation in hospital and 
community and had good model fit for all assumptions. However, in the resulting model nearly all 
transmission in the community came from infants for most assumed values of infant infectiousness 
and adult colonisation prevalence. When infant infectiousness was restricted to lower levels (<0.2 
βComm,Disrupt), βComm,Disrupt was up to 50 times greater than βHosp,Disrupt, which is highly implausible. 

Finally, our default assumptions (βComm,Intact,= βHosp,Intact and βComm,Disrupt,= βHosp,Disrupt) resulted in equally 
good model fit  to the previous set of assumptions, but with much more believable transmission 
rates and proportion of transmission attributable to infants under most combinations of 
assumptions. However, when infant infectiousness was high and adult colonisation prevalence was 
low the estimated value of  βComm,Intact, and βHosp,Intact, were 0, leading to poorer model fit and 
unbelievably high proportion of transmission from infants and so the result from these extremes 
were omitted from our sensitivity analyses in the main text and the supplementary figures. 

Further details of model fit 
The model fit the data well reproducing the observed age profile of colonisation, immunity, reported 
incidence of infection, proportion of admissions for CDI (Supp. Figure 2). The model was also verified 
by outcomes not used to fit the model. The reported recurrence proportion is approximately 20% for 
hospital-acquired cases and approximately 10% of community-acquired cases [20]. We estimated 
that 18% (range 13-30%) of transmission in hospitals was from patients receiving treatment for CDI. 
A study using whole genome sequencing to compare isolates from CDI cases in Oxfordshire hospitals 
estimated that approximately one quarter of cases could be linked to ward-based transmission from 
another identified symptomatic carrier [21]. Using the same reporting and treatment seeking 
assumptions used for initial cases and defining a recurrence as a return to symptomatic colonisation 
within 8 weeks of resolution of symptoms, the model predicted a 19.4% recurrence proportion in 
hospital-acquired cases (range: 18.5-21.5%) and a 14.0% recurrence proportion in community-
acquired cases (range: 13.3-15.8%). Notably, the true recurrence proportions (i.e. without simulating 
underreporting and misclassification) were higher for both hospital-acquired (24.6-26.8%) and 
community-acquired (17.8-18.5%) infections. Adlerberth et al [22] found that a third of all infants 
colonised with C. difficile were colonised by the same strain when sampled at least six months later, 
while the model predicted that 40% (33-42%) of colonised six-month-old infants remain colonised at 
12 months of age. A previous estimate of the force of colonisation in a hospital setting [10] derived 
from the reported risk of colonisation and infection as a function of days of hospital stay [23] was 
0.007 day-1 (95% CI: 0.004-0.011). In this model the estimated force of colonisation was a little 
lower: 0.0033 day-1 (range: 0.0031-0.0035 day-1). However the previous estimate was drawn from a 
hospital during a period high incidence. In our model, a higher proportion (89.6%, range: 87.9-
90.4%) of those classified as hospital-acquired CDI were elderly/immune-supressed compared to 
cases classified as community-acquired CDI (78.4% range: 77.6-78.6%), in agreement with the 
observation that community-acquired cases are younger, with fewer comorbidities [24]. 
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Supplementary Tables and Figures 
Supp. Table 1 Definitions, values and references for all parameters used in the model. All 
rates are in units of day-1. *These parameters were fit to the model, with the range 
indicaƟng values over sensiƟvity analysis. †Only these parameters were affected by 
assumptions around infant infectiousness, being estimated under the assumption that 
βInfant= k × βDisrupt for k in the range 0-1. ‡ These parameter values are the same as our 
previous model of hospital transmission [10]. 

Parameter Description 

Value 
Hospital/ 

Admission 

Value 
Community/

Discharge References 

α 
Rate at which patients begin new 
antimicrobial treatment (proxy for rate 
of gut flora disruption) 

0.33 1.5×10-3 [5,6] 

αU 

Rate at which patients begin new 
antimicrobial treatment (proxy for rate 
of gut flora disruption) for 
elderly/suppressed 

0.33 2.5×10-3 [5,6] 

λ Rate at which damaged commensal gut 
flora recovers 0.03‡ [7,8] 

λo 
Rate at which damaged commensal gut 
flora recovers for those with CDI 
overgrowth 

0.25 [9] 

γ Rate at which C. difficile is cleared in 
those with intact gut flora 0.023‡ [11] 

ω Rate of C. difficile overgrowth in patients 
with disrupted gut flora 0.2‡ [12,25] 

ρ Rate at which treatment for CDI is given 
(hospital) or sought (community) 1 0.22 [14] 

 

τ 
Rate at which the treatment of patients 
with 
CDI progresses towards resolution 

0.1‡ [15,26] 

pt 
Probability that CDI treatment will 
remove all C. difficile 0.55‡ [10] 

q 

Efficacy and coverage of special contact 
precautions (0: total prevention of 
transmission; 1: no reduction in 
transmission) 

0.45‡ 1 [13,27] 

δ Rate of development of immunity in 
adults 0.1‡ [2,3] 

ζ Rate at which infants age to develop 
adult-like gut-flora N/A 1/365 [28] 
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ψ Rate at which people age to 
suppressed/elderly class 

2.92 × 10-5 (Median time: 65 
years) 

 

φ Death rate 1.11 × 10-5 [1] 

φU Death rate for elderly/suppressed 1.84 × 10-4 [1] 

N Overnight Hospital Beds / Community 
Size 150 100,000  

σ Rate at which immunity wanes 2.9 x 10-4 (0.9 x 10-4 – 6.9 x 10-4) * 

θ Multiplicative factor for colonisation 
susceptibility of infants N/A 1.4 (0.6-4.4) * 

γinfant 
Rate at which C. difficile is cleared in 
infants 0.0020 (0.0020-0.0025) * 

pdisturb Proportion of antibiotics that disturb gut 
flora 0.22 (0.12-0.48) * 

preport 
Proportion of all community-treated 
CDIs that are reported  0.63 (0.57-0.76) * 

βDisrupt 
Transmission rate coefficient for 
colonised adults with disrupted gut flora 
(due to recent antibiotic exposure) 

0.128 (0.071-0.174) *† 

βIntact 
Transmission rate coefficient for 
colonised adults with intact gut flora (no 
recent antibiotic exposure) 

0.019 (0.001-0.026) *† 

βinfant 
Transmission rate coefficient from 
infants N/A 0.064 (0-

0.174) *† 

ν / κ Hospital admission/discharge rate 2.40 × 10-4 0.241 [4] 

νU / κU Hospital admission/discharge rate for 
elderly 8.06 × 10-4 0.192 [4] 

νCDI / κt 
Hospital admission rate for CDI / 
discharge rate for those receiving CDI 
treatment 

0.0142 
(0.0128- 
0.0174) 

0 (Not 
discharged) * 



8 
 

 

 

Supp. Figure 1 Model structure, showing immune states, aging, births, deaths, hospital 
admission and discharge and infant classes. *Birth rate matches death rate from whole 
populaƟon. †The force of colonisaƟon depends on the number of infecƟous individuals in 
the populaƟon. Infants are θ Ɵmes more suscepƟble to colonisaƟon than adults. ‡Infants 
retain their immunity and colonisation status when they age to become non-suppressed 
adults. §Only non-colonised individuals can have their immunity wane. ¶Those with active 
CDI develop immunity upon recovery. Asymptomatically colonised individuals develop 
immunity at rate δ. Non-colonised individuals do not develop immunity. **Admission 
discharge rates vary by immunity and CDI status. Patients receiving treatment for CDI are 
not discharged and are admitted at a much higher rate. 
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Supp. Figure 2 Maximum likelihood model fit to infant colonisation data and immunity prevalence 
data, assuming 5% colonisation prevalence in adults. Blue crosses indicate C. difficile toxin B 
antibody sero-prevalence [29], green crosses indicate cross-sectional study infants and toddlers in 
childcare [17]. Red crosses [17] and black crosses [18] indicate longitudinal studies of C. difficile 
colonisation in infants. All error bars are 95% binomial confidence intervals.  
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Supp. Figure 3 C. difficile transmission in the community from infants under various plausible 
assumptions for the C. difficile colonisation prevalence in adults, and the relative infectiousness of 
infants as (A) a proportion of all transmission in the community and (B) as rate of exposure to adults 
in the community. 
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Supp. Figure 4 C. difficile transmission from colonised adults with intact gut flora under various 
assumptions for the C. difficile colonisation prevalence in adults, and the relative infectiousness of 
infants as (A) the proportion of all transmission in the community and (B) the proportion of all 
transmission in the hospital. 
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Details of Classifying Cases as Hospital or Community-Acquired

The simulation of CDI classification is a key component of the current study. The definitions used to
classify CDIs rely on a knowledge of the patient’s history of previous CDI (to rule out recurrent cases)
hospital admission and discharge prior to onset of symptoms (to distinguish hospital and community-
acquired cases). However, standard compartmental epidemiological models are memoryless and do not
explicitly model (or record) the events occurring to individuals, only how an event (i.e. infection or
recovery) affects the total number of individuals of any given compartment. An individual-based model
could be used to simulate these details, but we employ a computationally much simpler approximation
that approximates individual in the population as a simple Markov chain.

To make the individual Markov assumption, the only non-linear interaction term, the force of colonisa-
tion, is fixed as a constant in time (equal to the mean force of colonisation at equilibrium) so the population
can be viewed as a large ensemble of independent Markov chains (individual people). The state space
of each Markov chain is the union of S, the set of living states corresponding to the compartments of
the model and ∆ the death state (which is the only absorbing state). New Markov chains are initialised
(births and immigration) at the jump times of a Poisson process of rate µ(t) (the birth/immigration
rate) which we will assume is independent of the individuals in the model and is homogeneous (i.e. a
constant birth rate). At birth these Markov chains are randomly assigned to one of the living states in
S (the compartments in the model) according to the vector of probabilities π. In our model there is
no immigration (or emigration) and all births are in the same state, so π is the standard basis vector
corresponding to the non-immune, non-colonised infant class. If there was immigration in our model, π
would describe the probability that a new arrival was of any given compartment. These Markov chains
then progress through the transient states in S, before being absorbed into the death state. For each
individual Markov chain, the age a is the time since it was initialised. So if Q is the transition rate matrix
between states in S, then the vector of probabilities that a given individual is in each state at age a is

[P (X(a) = s)]s∈S = eQaπ. (1)

In a whole population of these Markov chains starting with x0 people in each (living) state at time 0,
the expected number of people alive in each state at time t is given by the vector

E[x(t)] = eQtx0 +

∫ t

0

µ(t− a)eQaπda. (2)

If the birthrate µ is constant over time then

E[x(t)] = eQtx0 + µQ−1
(
eQt − I

)
π. (3)

Since Q is the transition matrix for transient states (i.e. there are no immortal states), the limit for large
t when the system approaches its equilibrium distribution is

lim
t→∞

E[x(t)] = −Q−1πµ (4)

which is independent of t and x0. The total population is then sum over the vector, −1TQ−1πµ. Note
that −1TQ−1π is the total of the mean dwelling time in each state (i.e. the total average time each
person spends alive) and so is equal to the mean life expectancy of individuals, L.

We have an expression for the number of individuals of a given type at equilibrium but we need to
know the number individuals at equilibrium which have a given history of CDI and hospitalisation. So
we are interested in the number of people at equilibrium which have (or have not) been in some set of
states S1 ⊂ S, in the past T1 units of time. For instance we may be interested in the population which
haven’t been in the hospital states (S1) in the last 12 weeks (T1). So consider the vector of probabilities
that a individual Markov chain of age a is in each state s but has not been any state in S1 in the past T1
units of time:

[P (X(a) = s and X(τ) /∈ S1 max{0, a− T1} ≤ τ ≤ a})]s∈S . (5)
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To derive an expression for these probabilities we consider a modified Markov chain Xa which until time
max{0, a − T1} behaves as the original Markov chain, but at time max{0, a − T1} individuals in S1 are
moved to the absorbing ‘death’ state, and after max{0, a− T1} all state transitions entering states in S1

are now redirected to the absorbing ‘death’ state. For Xa the transition rate matrix between states in S
after time max{0, a − T1} is Q with the rows and columns corresponding to states in S1 set to zero. If
we assume, without loss of generality, that the states are ordered such that states in S1 are last we can

write this in block matrix form as

[
Q1 0
0 0

]
, where is Q1 is the sub-matrix of Q corresponding to states

in S \ S1. Therefore

[P (X(a) = s and X(τ) /∈ S1 max{0, a− T1} ≤ τ ≤ a)]s∈S = [P (Xa(a) = s)]s∈S (6)

=

{
Pa
1π, a < T1

PT1
1 Pa−T1π, a ≥ T1,

(7)

where P := eQ and P1 :=

[
eQ1 0
0 0

]
= exp

[
Q1 0
0 0

] [
I 0
0 0

]
are matrices the same size as Q.

Therefore the expected number of people at equilibrium which have not been in some set of states
S1 ⊂ S, in the past T1 units of time is the vector

lim
t→∞

∫ t

0

[µ(t− a)[P (Xa(a)=s)]s∈S da = lim
t→∞

[∫ T1

0

µ(t− a)Pa
1πda+

∫ t

T1

µ(t− a)PT
1 Pa−T1πda

]
(8)

If µ is constant then this simplifies to

µ

[∫ T1

0

Pa
1da+

∫ ∞

T1

PT1
1 Pa−T1da

]
π = µ

[∫ T1

0

Pa
1da+

∫ ∞

0

PT1
1 Pada

]
π (9)

= µ
[
Q−11

(
PT1
1 − I

)
− PT1

1 Q−1
]
π (10)

where by an abuse of notation, Q−11 :=

[
Q−11 0

0 0

]
is a square matrix the size of Q.

The same reasoning can be extended to count the individuals at equilibrium which have not been
in the sets of states S1, S2, . . . , Sn in the past T1 > T2 > . . . Tn units of time respectively. The vec-
tor of probabilities that an individual of age a is in each state s and satisfies these requirements is

[
P

(
X(a) = s and

n⋃

i=1

{X(τ) /∈ Si max{0, a− Ti} ≤ τ ≤ a}
)]

s∈S

=





Pa
nπ, a < Tn

PTn
n PTn−1−Tn

n−1 . . .PTi−Ti+1

i Pa−Ti
i−1 π, Ti ≤ a < Ti−1

PTn
n PTn−1−Tn

n−1 . . .PT1−T2
1 Pa−T1π, T1 ≤ a

(11)

and the expected number of each type of individual in the population at equilibrium (assuming constant
birth rate µ) is

µ[Q−1n (PTn
n − I)+PTn

n Q−1n−1(PTn−1

n−1 − I) + PTn
n PTn−1−Tn

n−1 Q−1n−2(PTn−2

n−2 − I) + . . .

+PTn
n PTn−1−Tn

n−1 . . .PT2−T3
2 Q−11 (PT1

1 − I)− PTn
n PTn−1−Tn

n−1 . . .PT1−T2
1 Q−1]π

where Pi :=

[
eQi 0
0 0

]
and Q−1i :=

[
Q−1i 0

0 0

]
are matrices the same size as Q with Qi being the

sub-matrices of Q corresponding to the states in S \ ∪nj=iSj .
Now we have a way to calculate the incidence of (non-recurrent) CDIs which would be classified

as hospital or community-acquired if standard definitions were used. We will briefly illustrate this for
community onset cases for the system recommended by IDSA and SHEA.

First calculate the equilibrium number of people in each class in the community that haven’t been in
symptomatic states (S1) in the past 8 weeks (T1). At this equilibrium point calculate the rate at which the
transitions corresponding to onset of CDIs occur in the community, i.e. the total rate of transitions from
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asymptomatically colonised community states to symptomatic community states. This is the incidence
of non-recurrent community-onset CDI.

The rate of non-recurrent CDI classified as community-acquired is the total rate of transitions cor-
responding to the onset of CDI for the equilibrium number of people who haven’t been in the hospital
states (S1) in the past 12 weeks (T1) or any symptomatic state (S2) in the past 8 weeks (T2).

The rate of non-recurrent CDI classified as indeterminate is the total rate of transitions corresponding
to the onset of CDI for the equilibrium number of people who haven’t been in the hospital states (S2)
in the past 4 weeks (T2) or any symptomatic state (S1) in the past 8 weeks (T1) minus the rate of
non-recurrent CDIs classified as community-acquired.

Finally, the rate of non-recurrent CDI classified as hospital-acquired is the rate of non-recurrent CDI
minus the rate of non-recurrent CDIs classified as community-acquired or indeterminate.

The first steps of classifying of hospital-onset is similar, however the history of recurrence and previous
hospitalisation is considered from the point of hospital admission. In other other words, we determine
the proportion of admissions which have or have not been in a hospital in the past 12 weeks etc. Given
the history of patients at the point of admission, one can simply simulate the course of hospitalisations
going forward and (e.g. how many CDIs occur within the first 2 days) and classify all cases as hospital
or community- acquired according to the history at admission and what occurs during the hospital stay.

To account for possible unreported cases of CDI in the community, once we calculate the incidence
of community-onset CDIs, we then calculate (using standard Markov chain calculations for absorption
probabilities) the number of community-onset cases that seek treatment in the community or in the
hospital. A fraction pReport of patients that seek treatment in the community and all patients that do
not seek treatment in the community but are admitted to hospital are considered ‘reported’ and count
towards the incidence calculation when fitting the model to Lessa et al. A small number patients seek
treatment in the community and then are also admitted to hospital before recovery; for simplicity only
pReport of these are considered reported. Patients that do not seek any form of treatment before recovering
are not counted towards the ‘reported’ incidence calculation. Note that this adjustment for ‘reporting’ is
not made when we determine whether a case is recurrent or not; that is any CDI event in the patient’s
recent history (even if they didn’t seek treatment) excludes the current CDI as recurrent. This close
approximation greatly simplifies the calculations for excluding recurrent cases.

To see the true (not classified) location of acquisition for each CDI, we use a modified model which
splits every C. difficile-positive compartment into separate compartments for hospital and community-
acquired. The incidence of community-acquired CDI is then the equilibrium transition rate from community-
acquired, asymptomatically colonised states to the corresponding community-acquired, infected (symp-
tomatic) states.

To compare the classification system to the true incidence, we used the methods described above on
the modified model. For instance, we could calculate the incidence of community-acquired, community-
onset CDI that are incorrectly classified as hospital-acquired, community-onset CDI: the rate at which
people in community-acquired asymptomatically colonised states (that have been in any of the hospital
states in the past 4 weeks) transition into symptomatic states in the community. Note, we assume that
the time and place of the onset of symptoms is always known accurately, i.e. community-onset cases are
never misclassified as hospital-onset or vice versa.
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100 Modelling diverse sources of C. difficile in the community

5.3 Model Equations

This section provides an explicit description of the models that are used in this chapter

and serve as the starting point for the model in Chapter 6. Though this section does

not provide any information that cannot be inferred from the preceding sections in this

chapter, the equations are written out in full for the convenience of the interested reader.

The set of compartments for the whole-population model in this chapter is larger than

the set of compartments for the hospital-only model in Chapters 3 and 4 for three reasons.

First, the entire set of compartments in the hospital-only population is duplicated for

the community. Second, to explicitly capture different treatment seeking rates between

hospital and community, the symptomatic infection compartments are split off into treated

and non-treated. Finally, three additional compartments are added for infants in the

community. Furthermore, since the current model captures processes at the time-scale of

decades and lifetimes, rather than on the time-scale of hospital admissions, more kinds of

transitions have been included (e.g. , birth, death, aging, waning immunity). Therefore,

while the whole-population model can be seen as consisting of sub-models very similar to

the hospital-only model, there the system of equations contains many more variables and

terms.

Let X be the vector of the number of persons in each compartment ordered as

HH , HH
a , H

H
c , H

H
ac, H

H
ao, H

H
aot, U

H , UH
a , U

H
c , U

H
ac , U

H
ao, U

H
aot, R

H , RH
a , R

H
c , R

H
ac, R

H
ao, H

C , HC
a ,

HC
c , H

C
ac, H

C
ao, H

C
aot, U

C , UC
a , U

C
c , U

C
ac, U

C
ao, U

C
aot, R

C , RC
a , R

C
c , R

C
ac, R

C
ao, H

I , RI
c , R

I , where –

similar to the notation for the model in Chapter 3 – the main symbol indicates immune

status (H healthy, U immune-suppressed/elderly, R resistant/immune), subscript a in-

dicates gut flora disrupted by antibiotics, subscript c and o indicate colonisation and

overgrowth by C. difficile, subscript t indicates treatment, superscripts H and C indicate

adults in hospital and the community and superscript I indicates infants (in the commu-

nity). Then the ODE formulation of the model used to calculate the endemic equilibrium

and reproduction numbers for different model parameters can be stated as

X′ = A(X)X + b, (5.1)

Here b is a vector for the constant birth term which is zero for all (37) entries except for

the entry for healthy non-colonised infants (HI , entry 35) which is NC(φ+ψ)φU/(φU +ψ).

A(X) is a large (37 × 37) matrix which can be written in block matrix form, split up by
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immune status and hospital/community/infant status as




AHHHH 0 AHHRH AHHHC 0 0 0

AUHHH AUHUH AUHRH 0 AUHUC 0 0

ARHHH 0 ARHRH 0 0 ARHRC 0

AHCHH 0 0 AHCHC 0 AHCRC AHCI

0 AUCUH 0 AUCHC AUCUC AUCRC AUCI

0 0 ARCRH ARCHC 0 ARCRC ARCI

0 0 0 0 0 0 AII




(5.2)

The main diagonal sub-matrices – which contain information on gut flora status, colonisa-

tion, overgrowth and treatment – are much the same for adults of the same immune state

in hospital and community and similar to the main diagonal sub-matrices in the hospital-

only model. The main difference here is the addition of the treatment compartments for

U - and H-type persons and and the novel infant classes. For compactness each sub-matrix

is written as the difference of two matrices containing the diagonal and off-diagonal terms:

AHHHH =




0 λ γ 0 0 0

αH 0 0 0 0 0

fH∗ 0 0 λ λo 0

0 fH∗ αH 0 0 0

0 0 0 ω 0 0

0 0 0 0 ρH 0




− diag




αH + fH + κ+ ψ + φ

λ+ fH + κ+ ψ + φ

αH + γ + δ + κ+ ψ + φ

λ+ ω + δ + ψ + κ+ φ

λo + ρH + δ + ψ + κ+ φ

τ + ψ + φ




, (5.3)

AUHUH =




0 λ γ 0 0 0

αH
U 0 0 0 0 −τpt
fH 0 0 λ λo 0

0 fH αH
U 0 0 −τ(1− pt)

0 0 0 ω 0 0

0 0 0 0 ρH 0




− diag




αH
U + fH + κU + φU

λ+ fH + κU + φU

αH
U + γ + κU + φU

λ+ ω + κU + φU

λo + ρH + κU + φU

τ + φU




, (5.4)

ARHRH =




0 λ γ 0 0

αH 0 0 0 0

fH 0 0 λ λo

0 fH αH 0 0

0 0 0 ω 0



− diag




αH + fH + σ + κ+ ψ + φ

λ+ fH + σ + κ+ ψ + φ

αH + γ + κ+ ψ + φ

λ+ ω + κ+ ψ + φ

λo + κ+ ψ + φ



, (5.5)

AHCHC =




0 λ γ 0 0 0

αC 0 0 0 0 0

fC 0 0 λ λo 0

0 fC αC 0 0 0

0 0 0 ω 0 0

0 0 0 0 ρC 0




− diag




αC + fC + ν + φ

λ+ fC + ν + ψ + φ

αC + γ + δ + ν + ψ + φ

λ+ ω + δ + ν + ψ + φ

λo + ρC + δ + νCDI + ψ + φ

τC + νCDI + ψ + φ




, (5.6)
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AUCUC =




0 λ γ 0 0 0

αC
U 0 0 0 0 τpt

fC 0 0 λ λo 0

0 fC αC
U 0 0 τ(1− pt)

0 0 0 ω 0 0

0 0 0 0 ρC 0




− diag




αC
U + fC + νU + φU

λ+ fC + νU + φU

αC
U + γ + νU + φU

λ+ ω + νU + φU

λo + ρC + νCDI + φU

τ + νCDI + φU




, (5.7)

ARCRC =




0 λ γ 0 0

αC 0 0 0 0

fC 0 0 λ λo

0 fC αC 0 0

0 0 0 ω 0



− diag




αC + fC + σ + ν + ψ + φ

λ+ fC + σ + ν + ψ + φ

αC + γ + ν + ψ + φ

λ+ ω + ν + ψ + φ

λo + ν + ψ + φ



, (5.8)

AII =




0 0 σ

fCθ 0 fCθ

0 γinfant 0


− diag




fCθ + ζ + ψ + φ

γinfant + ζ + ψ + φ

fCθ + σ + ζ + ψ + φ


 , (5.9)

where fH and fC are the forces of colonisation in the hospital and community – the only

non-constant terms in the matrix – with definitions

fH =
βDisrupt

NH
(qH(HH

aot + UU
aot) +HH

ac + UH
ac +RH

ac +HH
ao + UH

ao +RH
ao)

+
βIntact
NH

(HH
c + UH

c +RH
c ) (5.10)

and

fC =
βDisrupt

NC
(qC(HC

aot + UU
aot) +HC

ac + UC
ac +RC

ac +HC
ao + UC

ao +RC
ao)

+
βIntact
NC

(HC
c + UC

c +RC
c ) +

βInfant
NC

(RI
c) + rC , (5.11)

where rC is the force of colonisation from animal reservoirs in the community. The off-

diagonal sub-matrices for hospital admission are

AHHHC = AUHUC =




ν 0 0 0 0 0

0 ν 0 0 0 0

0 0 ν 0 0 0

0 0 0 ν 0 0

0 0 0 0 νCDI 0

0 0 0 0 0 νCDI




, (5.12)

ARHRC = νI5×5, (5.13)



§5.3 Model Equations 103

the off-diagonal sub-matrices for hospital discharge are

AHCHH =




κ 0 0 0 0 0

0 κ 0 0 0 0

0 0 κ 0 0 0

0 0 0 κ 0 0

0 0 0 0 κ 0

0 0 0 0 0 0




, (5.14)

AUCUH =




κU 0 0 0 0 0

0 κU 0 0 0 0

0 0 κU 0 0 0

0 0 0 κU 0 0

0 0 0 0 κU 0

0 0 0 0 0 0




, (5.15)

ARCRH = κI5×5, (5.16)

the off-diagonal sub-matrices for gaining of immunity are

ARHHH = ARCHC =




0 0 0 0 0 0

0 0 0 0 0 −τpt
0 0 δ 0 0 0

0 0 0 δ 0 −τ(1− pt)
0 0 0 0 δ 0



, (5.17)

the off-diagonal sub-matrices for waning of immunity are

AHHRH = AHCRC =




σ 0 0 0 0

0 σ 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




, (5.18)

the off-diagonal sub-matrices for aging of adults are

AUHHH = AUCHC = ψI6×6, (5.19)
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AUHRH = AUCRC =




ψ 0 0 0 0

0 ψ 0 0 0

0 0 ψ 0 0

0 0 0 ψ 0

0 0 0 0 ψ

0 0 0 0 0




, (5.20)

and the off-diagonal sub-matrices for aging of infants are

ARHI =




ζ 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0




, (5.21)

AUHI =




ψ 0 ψ

0 0 0

0 ψ 0

0 0 0

0 0 0

0 0 0




, (5.22)

ARHI =




0 0 ζ

0 0 0

0 ζ 0

0 0 0

0 0 0



. (5.23)

When the individual Markov chain approximation was required for individual level

outcomes, an individual was modelled as a CTMC on a state-space of the same 37 com-

partments. The Kolmogorov forward equation for this Markov chain was

p′ = Qp, (5.24)

where Q is A evaluated at the endemic equilibrium point X∗, i.e. Q = A(X∗). Note this

only effects the force of colonisation terms fH and fC in the main diagonal sub-matrices.



Chapter 6

Seasonality and community

interventions in a mathematical

model of Clostridium difficile

transmission

6.1 Introduction

This chapter consists of an article in press at the Journal of Hospital Infection and the

accompanying supplementary materials. In this paper I use the model of C. difficile in-

troduced in Chapter 5 to determine the effect of reducing transmission and antibiotic

prescription rates. I consider various groups within and outside the hospital and the effect

of reducing antibiotic prescriptions to these groups or reducing transmission from these

groups. As in Chapter 5 I use the ODE formulation of the model, assuming the population

is at endemic equilibrium, and use the individual Markov chain approximation to emulate

the classification of infections as hospital and community-acquired. I find that while reduc-

tions of transmission from the historical targets of infection control (hospitalised patients

and those with symptoms) have a relatively small effect, small reductions in transmis-

sion from people residing in the community could completely eliminate the disease in the

absence of reintroduction from outside sources. I extend the model using an ODE formu-

lation with seasonally forced parameters to consider two possible mechanisms that might

explain the observed seasonality of C. difficile infections: seasonal antibiotic prescriptions

and seasonal transmissibility. I argue that the observed degree of seasonal prescription of

antibiotics causes a seasonal pattern in infection incidence similar to the observed pattern.

I argue that seasonal transmissibility could also lead to seasonal infection incidence, but

unlike seasonal antibiotic prescriptions, would result in seasonal variation in community

colonisation prevalence of a similar magnitude to infection incidence seasonality. There is

currently only weak evidence around community colonisation prevalence seasonality but

it suggests that colonisation prevalence is not seasonal, supporting antibiotic seasonality

as the main mechanism driving seasonal C. difficile infections. I estimate the reductions

in CDI incidence that could be achieved by reducing the seasonal excess of antibiotic

105
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prescriptions. The supplementary materials provide a table of model parameters, two

figures that summarise the model structure and two figures that display the full range of

sensitivity analysis.

6.2 Article and Supplementary Materials

Angus McLure, Luis Furuya-Kanamori, Archie C. A. Clements, Martyn Kirk and Kathryn

Glass. Seasonality and community interventions in a mathematical model of Clostridium

difficile transmission. Journal of Hospital Infection, (In Press) 2019.



Seasonality and community interventions in a
mathematical model of Clostridium difficile
transmission

A. McLure a,*, L. Furuya-Kanamori a,b, A.C.A. Clements c, M. Kirk a, K. Glass a

aResearch School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
bDepartment of Population Medicine, College of Medicine, Qatar University, Doha, Qatar
c Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia

A R T I C L E I N F O

Article history:
Received 3 December 2018
Accepted 4 March 2019
Available online xxx

Keywords:
Clostridium difficile
Mathematical model
Seasonal infections
Hospital-acquired infections
Community-acquired infections

S U M M A R Y
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associated diarrhoea with peak incidence in late winter or early autumn. Although CDI
is commonly associated with hospitals, community transmission is important.
Aim: To explore potential drivers of CDI seasonality and the effect of community-based
interventions to reduce transmission.
Methods: A mechanistic compartmental model of C. difficile transmission in a hospital and
surrounding community was used to determine the effect of reducing transmission or
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prescriptions (0.2e1.7% above mean). Reducing transmission from symptomatic or hos-
pitalized patients had little effect on community-acquired CDI, but reducing transmission
in the community by �7% or transmission from infants by �30% eliminated the pathogen.
Reducing antibiotic prescription rates led to approximately proportional reductions in
infections, but limited reductions in the prevalence of colonization.
Conclusion: Seasonal variation in antibiotic prescription rates can account for the
observed magnitude and timing of C. difficile seasonality. Even complete prevention of
transmission from hospitalized patients or symptomatic patients cannot eliminate the
pathogen, but interventions to reduce transmission from community residents or infants
could have a large impact on both hospital- and community-acquired infections.
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Introduction

Clostridium difficile infection (CDI) is among the most
common hospital-associated infections and antibiotic-
associated infections in the world [1e7]. Infection is charac-
terized by mild-to-severe diarrhoea, frequent recurrences and
considerable mortality [8]. However, asymptomatic colo-
nization is also common, especially in infants [9]. C. difficile
transmission occurs both within and outside hospitals [10].
Recent whole-genome sequencing studies suggest that up to
25% of hospital-onset infections and up to 19% of all infections
can be attributed to contact with another symptomatic patient
in hospital [11,12].

Approximately 5% of hospitalized patients are already
asymptomatically colonized at the time of admission [9,13].
Modelling studies have highlighted the importance of these
colonized admissions, with some demonstrating that within-
hospital transmission alone is insufficient to sustain the
presence of the pathogen [14e16]. However, much less is
known about transmission outside hospitals. Nearly all
interventions to reduce transmission have been hospital-
based, and the effect of these interventions on
community-acquired and community-onset cases has only
rarely been studied or modelled [17,18]. Seasonal variation
in antibiotic prescriptions [19] and the reduction of fluo-
roquinolone prescription in the UK [20] have been shown to
correlate with CDI; however, the contributions of pre-
scriptions in the community and hospital have not been
disentangled. Only one other modelling study has considered
the effect of small reductions in prescriptions to trans-
mission outside hospitals [17], but the potential impact of
large reductions is unknown.

CDI is moderately seasonal, with incidence peaking in
late winter or early autumn [21]. The seasonality of CDI
correlates with seasonal antibiotic prescription rates [20],
seasonal rainfall and temperature [22], seasonal incidence
of influenza [20,23] and seasonal incidence of respiratory
syncytial virus (RSV) [20]. However, like other seasonal
infections such as RSV and influenza, the mechanisms driv-
ing C. difficile seasonality are not well understood [24].
Many mechanisms have been proposed for seasonal respi-
ratory infections, including seasonal transmissibility (through
seasonal contact rates or pathogen survival) and seasonal
host susceptibility (through seasonal changes in immunity)
[25]. Similar biological or behavioural factors may contribute
to the seasonality of C. difficile, but this has not been
demonstrated. Prior use of antibiotics is a key risk factor for
developing CDI [13,26]. As antibiotic prescriptions rates are
seasonal, they are likely to contribute to the observed
seasonality of CDI [27].

This study used an existing mathematical model of
C. difficile transmission in a population that includes a
hospital and the surrounding community [28] to explore two
inter-related gaps in the C. difficile literature. The seasonal
patterns in C. difficile colonization and infections produced
by seasonal antibiotic prescription rates and seasonal
transmissibility or susceptibility of the pathogen were
explored. In addition, the potential impact on the incidence
of CDI and the prevalence of colonization of reducing the
transmission of C. difficile from various subpopulations or

reducing antibiotic prescriptions to various subpopulations
within and outside of hospitals were evaluated.

Methods

Description of the model

The existing mathematical model is described in detail
elsewhere [28] and summarized diagrammatically in
Figures A.1 and A.2 (see Appendix A, online supplementary
material). Briefly, the model has a compartmental structure
with compartments differentiating patient setting (hospital or
community), C. difficile status (negative, colonized or infec-
ted), gut flora status (disrupted or intact) and immune
response to toxins (naı̈ve, immune or immune suppressed/
elderly). The model also includes separate compartments to
represent infants in the community. All C. difficile-positive
people in each model setting (hospital or community) can
infect those in the same setting. Disruption of gut flora allows
the overgrowth of C. difficile, and therefore increases infec-
tiousness and leads to the development of symptoms in non-
immune patients in the model. Hospitalized patients with
symptoms are assumed to be treated with additional contact
precautions that reduce their infectiousness. Colonized infants
do not develop symptoms but are infectious.

Parameters and sensitivity analyses

The parameters for the base scenario for the intervention
analyses and the seasonal average parameters in the season-
ality analyses were estimated in a previous paper [28], and are
summarized in Table A.1 (see Appendix A, online supple-
mentary material). As the parameters were estimated using
Western European infant colonization prevalence data [29,30],
nationwide estimates for the incidence of CDI in the USA [31]
and CDI hospital admissions data from the USA [32], they
reflect the current epidemiology in high-income countries as
closely as possible. In the sensitivity analysis (SA), estimated
model parameters were refit for different assumptions of the
prevalence of colonization and infant infectiousness. Estimates
of the prevalence of colonization in the general community are
highly variable [9]. The base assumption was that general
prevalence of colonization in adults was 5%, but a range of
2e10% was considered in the SA. The relative infectiousness of
infants and adults has not been well quantified, although
asymptomatically colonized infants may be as infectious as
adults with CDI [30]. For the base scenario in this article, it was
assumed that infants were 0.5 times as infectious as sympto-
matic adults (SA 0.1e1 times as infectious), which is equivalent
to infants being 3.3 times as infectious as asymptomatically
colonized adults with intact gut flora (SA 0.5e9.8 times as
infectious). Higher infant infectiousness, especially when the
prevalence of colonization in adults was low, led to poor model
fit and an implausibly high proportion of infections attributable
to infants, and so was excluded.

Modelling the seasonality of C. difficile

Two mechanisms that may account for seasonal CDI rates
were modelled: seasonal antibiotic prescription rates and
seasonal transmissibility. The transmission rate parameter
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combined human and pathogen factors that influence trans-
missibility and susceptibility, and may be affected by seasonal
changes in the environment and human behaviour: spore
shedding rate, contact rates, pathogen survival, and human
susceptibility to colonization. Therefore, increasing the
transmissibility of the pathogen from all carriers and increasing
the susceptibility of the whole population were mathemati-
cally equivalent in the model. The amplitude of antibiotic
prescription seasonality was extracted from seasonal pre-
scription data for different classes of antimicrobials in the USA
[27]. In the absence of data on seasonal transmissibility/sus-
ceptibility, and to make fair comparisons between the mech-
anisms, the same amplitude was applied to both seasonal
antibiotic prescription and transmission rate parameters. Each
mechanism was simulated independently. Under the assump-
tion that current seasonal CDI is entirely due to the estimated
amplitude of seasonal antibiotic prescriptions, estimates were
made of the reduction in the annual incidence of CDI, peak
incidence of CDI and mean prevalence of colonization that
would be achieved if antibiotic prescription rates were reduced
to their seasonal low levels all year round.

Modelling the reduction of transmission or antibiotic
prescriptions

The remainder of the intervention analyses considered the
effect of reducing the transmission and antibiotic prescription
rate parameters in a non-seasonal version of the model. Five
overlapping target groups/populations were considered for
reducing transmission: hospitalized patients, community resi-
dents (including infants), symptomatic carriers, recipients of
antibiotics, and infants. Four overlapping target groups were

considered for reducing events that disrupt gut flora: hospi-
talized patients, community residents, the elderly or immu-
nosuppressed population who are at high risk of developing
CDI, and adults who are not in the high-risk group. For each
scenario, reductions of 0e100% in the relevant rate parame-
ter(s) were considered, and the reduction in the incidence of
CDI or the prevalence of colonization was calculated as a
percentage of the base incidence or prevalence of
colonization.

The prevalence of colonization in the hospital and com-
munity subpopulations was calculated, and the incidence of
CDI was separated into hospital-acquired and community-
acquired cases in two ways: (1) the actual location of colo-
nization simulated in the model; and (2) the apparent source of
acquisition as classified by surveillance definitions similar to
those recommended by the Society for Healthcare Epidemiol-
ogy of America and the Infectious Diseases Society of America
[34]. It has been shown previously that the recommended
definitions misclassify many community-acquired cases as
hospital-acquired [35], so this enabled comparison of the
apparent effect on interventions with the actual effect. The
model used a minor variant of recommended definitions
employed by Lessa et al. [31], and accounted for under-
reporting of community-onset cases, as implemented in the
authors’ previous paper [28].

Results

Seasonal variation in antibiotic prescription rates and sea-
sonal transmissibility/susceptibility produced different pat-
terns of C. difficile seasonality (Figure 1). The estimated
amplitude of the variation in antibiotic prescriptions was 16.2%
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Figure 1. Comparison of seasonal patterns in the incidence of Clostridium difficile infection (CDI) and the prevalence of colonization
produced by (a) seasonal antibiotic prescription rates and (b) seasonal transmissibility or susceptibility. Incidence, prevalence of colo-
nization and seasonal rate parameters have been rescaled so that the annual mean is 1. The base assumptions for infant infectiousness
(half as infectious as adults with CDI or 3.3 times as infectious as asymptomatically colonized adults with intact gut flora) and general
prevalence of colonization in adults (5% in the community) were used for this figure.
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(i.e. the seasonal high and seasonal low were 116.2% and 83.8%
of the annual mean). Both seasonal antibiotics and seasonal
transmissibility/susceptibility led to large, annually repeating
variation in the total incidence of infection, with peak inci-
dence 14% (SA 13.9e15.1%) and 23% (SA 18.2e25.3%) above
annual mean incidence, respectively. The timing and magni-
tude of infection seasonality were similar for hospital-onset
and community-onset infections. The annual peak in total
(i.e. hospital and community combined) incidence of infection
was 2.0 months (SA 1.4e2.3 months) after peak transmissibility
in the seasonal transmissibility model, and 0.8 months (SA
0.7e1.0 months) after peak prescriptions in the seasonal
antibiotics model.

Seasonal transmissibility/susceptibility led to large seasonal
variations in the prevalence of colonization in both the hospital
(peak 22.0% above mean; SA 20.3e25.1%) and the community
(peak 20.8% above mean; SA 14.8e22.1%), with timing similar
to the seasonality of the incidence of infection (Figure 1B). In
contrast, seasonal antibiotic prescriptions led to seasonal
variation in the prevalence of colonization in hospitals with
similar timing (peak prevalence 1.2 months after peak pre-
scriptions; SA 1.1e1.4 months), but less than half the ampli-
tude (peak prevalence 4.8% above mean; SA 2.2e10.1%) of
hospital-onset CDI seasonality. Seasonal antibiotic pre-
scriptions led to very little seasonal variation in the prevalence
of colonization in the community (0.6% above mean; SA
0.2e1.7%), which peaked 3.2 months (SA 2.4e3.6 months) after

peak prescriptions (Figure 1A). In a sensitivity analysis for the
amplitude of antibiotic prescription seasonality, the timing of
peaks was independent of amplitude (results not shown).

Reducing antibiotic prescription rates to the seasonal low
reduced peak incidence of CDI by 30% (SA 27e41%), annual
incidence by 20% (SA 16e32%), and mean prevalence of colo-
nization by 6% (SA 1e21%). These reductions were approx-
imately linear, so halving seasonal excess prescriptions led to
approximately half the above reductions in incidence and
prevalence.

The effect of reducing transmission in the non-seasonal
model is summarized in Figure 2, and further explored in
Figures B.1 and B.2 (see Appendix B, online supplementary
material). Modest reductions in transmission from community
residents (10%, SA 7e27%) eliminated all CDI in the hospital and
the community. For the base assumption, a 47.5% reduction in
transmission from infants eliminated all CDI in the population.
However, this finding was very sensitive to the parameter
assumptions. At one extreme e with infants one tenth as
symptomatic as adults and the prevalence of colonization in
adults at 10% e preventing all transmission from infants only
reduced the incidence of CDI by 5%. At the other extreme e
with infants as infectious as symptomatic adults and the
prevalence of colonization in adults at 2% e a 30% reduction in
transmission from infants eliminated C. difficile from the
population. Reducing hospital-based transmission led to
approximately proportional reductions in hospital-acquired
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Figure 2. Comparison of the effect in the hospital (top row) and community (bottom row) of reducing Clostridium difficile transmission
from various overlapping target populations (columns). Each figure compares the actual reductions (red) and the apparent reductions
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CDI, but only modest reductions in community-acquired cases.
Reducing transmission from symptomatic carriers alone was
much less effective than reducing transmission from all those
who had taken antibiotics recently; however, neither could
eliminate hospital- or community-acquired infections.

In the non-seasonal model, reducing the disruption of gut
flora reduced the prevalence of colonization (due to reduced
transmission from those colonized without disruption of gut
flora), but this reduction was not sufficient to interrupt trans-
mission in the population (Figure 3). Reducing the disruption of
gut flora led to reductions in incidence through the combina-
tion of reduced transmission (and hence prevalence of colo-
nization) and reduced risk of developing symptoms (Figure 3).
Reducing the disruption of gut flora in either setting (hospital
or community) led to reduced infections and colonization in
both the hospital and the community. Comparing the reduction
of prescriptions for the high-risk elderly population and the
remaining low-risk population, the former led to approximately
twice the reduction in incidence and a comparable reduction in
the prevalence of colonization.

When reducing transmission or antibiotic prescriptions, the
apparent and actual reductions in incidence were similar for
community-acquired cases (Figures 2 and 3). However, when
transmission was reduced in hospital residents alone, sympto-
matic carriers alone or recent recipients of antibiotics alone,
the apparent intervention effect was much smaller than the

true effect. For instance, even the complete prevention of all
hospital-based transmission appeared to prevent <40% of
hospital-acquired cases due to the misclassification of
community-acquired cases.

Discussion

Modelling the observed seasonal variation in antibiotic
prescription rates reproduced the observed seasonal pattern of
CDI, including a delay of approximately one month between
peak antibiotic prescription rates and peak incidence of CDI (in
agreement with correlative time-series analysis studies
[20,23]) and the size of the peak in the incidence of CDI [21].
According to the model, if biological and behavioural mecha-
nisms influencing transmissibility or susceptibility are the
major factors driving seasonal incidence of CDI, one should also
expect to see large seasonal variation in the prevalence of
colonization in both the hospital and the community. On the
other hand, if seasonal antibiotic prescription rates are the
primary or only mechanism, one should expect to see little to
no seasonal variation in the prevalence of colonization in the
community and only moderate seasonality in hospitals. Con-
sistent with either mechanism, a study in two Australian hos-
pitals found that the prevalence of colonization was seasonal
[36]. However, the present authors are not aware of any pub-
lished studies investigating seasonality of the prevalence of
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colonization in the community. Longtin et al. screened hospital
admissions for C. difficile colonization as part of an inter-
vention to reduce transmission from asymptomatically colon-
ized patients [37]. Their unpublished results suggest that the
prevalence of colonization on admission is not significantly
seasonal (personal communication). Although hospital admis-
sions may not be entirely representative of the community, this
observation suggests that seasonal variation in transmissibility
and susceptibility is minor, and that C. difficile seasonality is
largely driven by antibiotics. However, seasonal mechanisms
affecting transmissibility or susceptibility cannot be ruled out
without further study into seasonality of the prevalence of
colonization in the community.

Many antibiotic prescriptions for seasonal respiratory tract
infections are clinically inappropriate [38], so some of the
excess prescriptions in winter months could be avoided with
improved prescribing practices. The model suggests that
halving excess seasonal prescriptions would decrease the
annual incidence of CDI by 8e16%, which is equivalent to
approximately 36,000e72,000 infections per year in the USA
alone [31].

In the model, reducing hospital-based transmission alone
had a small effect on the incidence of community-acquired
cases. Moreover, the systematic misclassification of
community-acquired cases as hospital-acquired cases meant
that only a fraction of those cases classified as hospital-
acquired could be prevented by reducing hospital-based
transmission. Consequently, the true proportion of hospital-
acquired cases prevented by reducing a given amount of
hospital-based transmission was approximately twice the
apparent reduction. Importantly, even if the complete pre-
vention of transmission within hospitals could be achieved,
misclassification would maintain the appearance of continuing
within-hospital transmission.

On the other hand, modest reductions in transmission in the
community were found to reduce incidence dramatically, and
could even interrupt transmission. This is in agreement with
the only other modelling article to address this topic, which
found that the incidence of CDI was more responsive to changes
in community-based transmission than hospital-based trans-
mission [17]. In practice, targeted interventions may be more
achievable than community-wide improvements in hygiene.
This study found that reducing transmission from symptomatic
patients in hospitals and communities would only lead to small
reductions in incidence. On the other hand, it was estimated
that halving transmission from recent recipients of antibiotics
would reduce the incidence of hospital- and community-
acquired CDI by half (SA 24e86%) and one-sixth (SA 4e66%),
respectively. Encouraging patients taking antibiotics (who are
mostly unaware of the association between antibiotics and CDI
[46]) to adopt improved hygiene has the potential to reduce the
transmission of C. difficile and other pathogens to and from
these patients, so this may underestimate the true effect.
Remarkably, this study found that reducing transmission from
asymptomatically colonized infants by as little as 30% could be
sufficient to eliminate infections and colonization from the
entire population. However, the required reduction was highly
sensitive to the uncertain relative infectiousness of infants and
adults. Although a high prevalence of colonization in infants is
well established [29,30,40], there has been little research
investigating transmission from infants [41e45], and the pro-
portion of transmission attributable to infants is unknown. A

greater understanding of the contribution of infants should be
a research priority.

The study model suggested that year-round reductions in
antibiotic prescriptions in the hospital or in the community
would lead to approximately proportional reductions in infec-
tions in the same setting. In agreement with a recent meta-
analysis, most of the improvement was attributable to the
reduction of prescriptions to elderly or immunosuppressed
individuals [47]. However, no plausible reduction in antibiotic
consumption was enough to interrupt transmission in the hos-
pital or community. Therefore, antimicrobial stewardship
should be combined with interventions to reduce transmission
in the community.

There is evidence of C. difficile transmission between
human and livestock populations [48], and that con-
tamination of meat products with C. difficile may be sea-
sonal [49]. It has been shown previously that if the
proportion of infections attributable to animals is sufficiently
high (>3.5e26.0%), preventing transmission from animals
could eliminate all CDI in humans [28,50]. However, the
proportion of human infections that are attributable to
direct or indirect transmission from livestock is unknown.
Therefore, the model does not account for this source of
transmission or capture its seasonality. This omission may
mean that the model overestimated the impact of reducing
person-to-person transmission.

Another limitation of this study is that the model does not
distinguish between strains of C. difficile [51] or differentiate
between antibiotics with different risk profiles for CDI [26].
This may influence the analysis of C. difficile seasonality and
the effect of reducing prescription rates. A 40% reduction in
fluoroquinolone prescriptions in the UK coincided with near
elimination of CDI caused by fluoroquinolone-resistant strains
[19]. This non-linear effect contrasts with the authors’ pre-
diction of proportional reduction, but could be due to con-
current improvements in transmission control [52], other
strain-specific factors, or strain competition factors that
were not captured in the model.

This analysis supports the hypothesis that seasonal pre-
scription of antibiotics is the main driver of seasonal CDI.
Further research into seasonality of the prevalence of colo-
nization in the community and the extent of transmission from
animals could clarify the role of seasonal transmissibility, sus-
ceptibility or exposure to livestock reservoirs. The authors
have provided an estimate of the potential gains for C. difficile
control that could be achieved by reducing inappropriate sea-
sonal antibiotic prescriptions. The model supports the use of
antimicrobial stewardship to reduce infections, but highlights
the need to explore interventions to reduce transmission from
the large population of asymptomatically colonized individuals
in the community.
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Appendix A: Model Description 

Angus Mclure, Luis Furuya-Kanamori, Archie C. A. Clements, Martyn Kirk and Kathryn Glass 

This supplementary file contains an additional table (Table A.1) and two additional figures 

(A.1 and A.2) that summarise the model structure, parameter definitions and parameter 

values used in the main article. These have been adapted from a previous article which first 

presented the baseline, non-seasonal version of the model [l]. It also contains some 

additional details of how seasonality was modelled. 

Details of seasonality 

We modelled two mechanisms that may account for seasonal COi rates - seasonal antibiotic 

prescription rates and seasonal transmissibility - by making the rate parameter associated 

with each mechanism oscillate sinusoidally with an annually repeating pattern of the form 

( 
2rr(d - p)) 

Parameter(d) = AnnualMeanParameter x 1 + Amplitude X cos
365 

where d is the day of the year and p is the day of peak parameter value (counting from 

January ist). Though the transmission rate parameters in our model depend on the age, 

disease status and gut flora status of the carrier, we assumed the transmission rate 

parameter peaked at the same time of year with the same amplitude for all groups. 

Similarly, though the prescription rates in our model depend on the age and location 

(hospital vs. community) of the recipient, we assumed prescriptions peaked at the same 

time of year with the same amplitude for all groups. The seasonal patterns that would be 

expected from each mechanism was determined by numerically solving the ordinary 

differential equation form of the model forward in time until the annual seasonal patterns 

converged to stable annual patterns. 

The amplitude of antibiotic prescription seasonality was extracted from seasonal 

prescription data for different classes of antimicrobials in the USA [27), using the open 

source tool WebPlotDigitizer [33). Combining all classes of antibiotics, we determined the 

amplitude of the best-fit sinusoidal curve to the prescription data, using simple least 

squares. 
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This supplementary file contains Figures B.1 and B.2 that complement Figures 2 and 3 from the main 

text depicting the results under the assumption of higher or lower colonisation prevalence in the 

adult population in the community. 
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6.3 Model Equations

This section provides some more explicit details on the equations used in this chapter.

The structure of the non-seasonal models used to assess the impact of possible reductions

in transmission and antibiotic prescriptions in this chapter are identical to those presented

in Section 5.3 – only the parameter values were varied. The two seasonal models for sea-

sonal antibiotic prescriptions and seasonal transmission adapt the time-invariant ordinary

differential equations to produce systems with direct time-dependence, i.e. a system of the

form

X(t)′ = A∗(X(t), t)X(t) + b, (6.1)

where, as before, X is the vector of number of persons in each compartment and b is the

birth term. The matrices A∗ in the two seasonal models differ from the non-seasonal A

matrix in Section 5.3 only in the seasonal parameters αC , αC
U , αH and αH

U in the seasonal

antibiotic prescription model and βIntact, βDisrupt and βInfant in the seasonal transmission

model. The seasonal parameters are sinusoidal functions of time with a period of one year

as described in the methods section of the above journal article.
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Chapter 7

Some simple rules for estimating

reproduction numbers in the

presence of reservoir exposure or

imported cases

7.1 Introduction

This chapter consists of an article currently under review at Theoretical Population Biology

that develops the notion of an animal-driven threshold introduced in Chapter 5. The article

considers how a general source of new infected cases – either exposure to a reservoir or

importation via travel or migration – can drive transmission in a population even if the

reproduction number in that population is less than one. Considering a wide range of

generic ordinary differential equation models, the article provides simple rules to determine

whether a disease could be sustained by local, person-to-person transmission alone or if

reservoir-exposure or importation drives transmission. The article applies these rules to

two case studies in C. difficile to come up with estimates of the local person-to-person

reproduction number or the reservoir-driven threshold. The first case study estimates

the reproduction number for within-hospital transmission of C. difficile, corroborating

the findings of Chapters 3 and 5. The second case study calculates the plausible range

for the animal-driven threshold using only C. difficile colonisation prevalence estimates,

corroborating Chapter 5.

7.2 Article

Angus McLure and Kathryn Glass. Simple rules for estimating reproduction numbers in

the presence of reservoir exposure or imported cases. Submitted to Theoretical Population

Biology (under review), 2018.
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Abstract 

The basic reproduction number (𝑅଴) is a threshold parameter for disease extinction or survival in 
isolated populations. However no human population is fully isolated from other human or animal 
populations. We use compartmental models to derive simple rules for the basic reproduction number 
in populations where an endemic disease is sustained by a combination of local person-to-person 
transmission and exposure from some other source: either a reservoir exposure or imported cases. 
We introduce the idea of a reservoir-driven or importation-driven disease: diseases that would become 
extinct in the population of interest without reservoir exposure or imported cases (since 𝑅଴ < 1), but 
nevertheless may be sufficiently transmissible that many or most infections are acquired from humans 
in that population. We show that in the simplest case, 𝑅଴ < 1 if and only if the proportion of infections 
acquired from the external source exceeds the disease prevalence and explore how population 
heterogeneity and the interactions of multiple strains affect this rule. We apply these rules in two 
cases studies of Clostridium difficile infection and colonisation: C. difficile in the hospital setting 
accounting for imported cases, and C. difficile in the general human population accounting for 
exposure to animal reservoirs. We demonstrate that even the hospital-adapted, highly-transmissible 
NAP1/RT027 strain of C. difficile had a reproduction number <1 in a landmark study of hospitalised 
patients and therefore was sustained by colonised and infected admissions to the study hospital. We 
argue that C. difficile should be considered reservoir-driven if as little as 13.0% of transmission can be 
attributed to animal reservoirs.  

1 Introduction 

Many pathogens affecting humans circulate between humans and animals through contact, food or 
indirectly through common disease vectors in the environment. Other pathogens move across 
population boundaries due to the movement of people. In the absence of transmission from other 
populations or reservoirs, the basic reproduction number – the average number of secondary cases 
arising from each primary case in a susceptible population – determines whether a disease will die out 
or persist through ongoing person-to-person transmission. Effective interventions can interrupt 
transmission by reducing the basic reproduction number below 1 causing the disease to die out in that 
population. However, any reservoir exposure or imported cases will continue to replenish the infected 
population, and so a disease will die out in a population if and only if the basic reproduction number 
is <1 and all reservoir exposure and importation are avoided. There is a rich literature in meta-
population models that capture the interactions of populations that introduce or reintroduce 
pathogens to one another (e.g. [1–4]). However, one often only has data or interest in a single 
population but needs to account for external sources of infections. It is in this context that we wish to 
generate some simple principles or rules for estimating the reproduction number.  

Methods have been developed to estimate the human reproduction numbers of emerging zoonoses 
with limited person-to-person spread [5,6]. Others have developed methods to account for the often 
large proportion of imported cases at the beginning of new epidemics, which if excluded or treated as 
if locally acquired would overestimate the reproduction number [7]. Though the term ‘elimination’ 
has been defined in many different ways [8], reducing the local reproduction number below one is 
one measure of this progress [9], and is a necessary step towards global eradication. Methods have 
been developed to estimate the reproduction number that account for the potentially large 
proportion of imported cases in settings where progress is being made towards elimination [9]. 
However none of these methods account for susceptible depletion and so are restricted to diseases 
with very low prevalence [5,6,9] or calculate the effective reproduction number [7], which is not a 
threshold parameter for disease persistence. Starting with simple models and incorporating 
heterogeneity or multiple strains, we have derived simple rules for estimating the reproduction 
number in a population where the disease is at endemic equilibrium due to a combination of local 
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person-to-person transmission and reservoir exposure or imported cases. Many of these rules only 
require knowledge of disease prevalence and the proportion of infections attributable to the external 
source. We have applied these rules in two case studies of C. difficile infections. 

2 The SIS Model 

We begin by adapting the simplest possible compartmental model: the standard SIS model with a 
homogeneous, well-mixed population without demographics. We include two sources of infection: (1) 
person-to-person transmission which is proportional to the number of people infected (rate: 𝛽𝑖) and 
(2) constant transmission from some reservoir that does not depend on the number of people infected 
(rate: 𝑓). Person-to-person transmission could be through direct contact, or mediated via fomites, 
airborne droplets, water or food provided this transmission scales with the infectious population. For 
our purposes a reservoir is anywhere where the pathogen persists apart from the human population, 
for instance a population of wild animals or livestock animals that carry the disease. The disease in the 
human population can be described by a system of ODEs for the proportion of the population that is 
susceptible (𝑠) and infected (𝑖): 

𝒔′ = −𝝀(𝒕)𝒔 + 𝜸𝒊

𝒊′ = 𝝀(𝒕)𝒔 − 𝜸𝒊
, 

1 
where 𝜆(𝑡) = 𝛽𝑖 + 𝑓 is the force of infection and 𝛾 is the rate at which infected individuals recover.  

Diseases that are acquired entirely from food or animals and diseases that are spread entirely by 
person-to-person transmission, are extreme cases of this model with 𝑓 = 0 and 𝛽 = 0 respectively. 
Many diseases lie between these two extremes. Almost all human cases of H7N9 avian influenza have 
been acquired from birds, but there has been some person-to-person transmission which is not 
enough to maintain endemic disease [10]. Meanwhile human-adapted seasonal influenza (H1N1, 
H3N2) are mainly transmitted to humans by other humans, though there are low frequency 
transmission events from animal reservoirs (e.g. [11]). Middle-eastern respiratory syndrome 
coronavirus sits somewhere in the middle of the spectrum with significant human-to-human and 
animal-to-human transmission [12]. 

The reproduction number for this simple model in the next-generation sense [13] is the same as for 
the standard SIS model (𝛽/𝛾) but is a threshold parameter for extinction of the disease only when 
there is no transmission from the reservoir (𝑓 = 0), i.e. when the model reduces to the standard SIS 
model. Otherwise, the reservoir will continually replenish the infected population whatever the value 
of 𝑅଴. If there is no transmission from the reservoir we have the well-known relationship between the 
basic reproduction number (𝑅଴) and the proportion of the population susceptible at equilibrium (𝑆): 
𝑅଴ = 1/𝑆.  The model parameters are difficult to measure directly and so we wish to estimate 𝑅଴ 
through observable quantities by generalising this rule. Let 𝐼, 𝑆 and 𝛬 = 𝛽𝐼 + 𝑓 be the non-trivial (i.e. 
𝐼, 𝛬 ≠ 0) equilibrium values of 𝑖, 𝑠 and 𝜆. As equilibrium points of 1 they satisfy 

𝛬𝑆 = 𝛾𝐼 

or equivalently 

𝛾 = 𝑆
𝛬

𝐼
. 

Now the proportion of transmission that is from the reservoir at equilibrium, 𝜋, is 
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𝜋 =
𝑓

𝛬
= 1 −

𝛽𝐼

𝛬
, 

which re-arranged for 𝛽 gives 

𝛽 = (1 − 𝜋)
𝛬

𝐼
. 

Substituting these expressions for 𝛽 and 𝛾 into the expression for the reproduction number we get 

𝑅଴ ≡
β

γ
=

1 − 𝜋

𝑆
. 

  2 
We can also write this in terms of the proportion infected (which is usually what is reported rather 
than the proportion susceptible). 

𝑅଴ =
1 − 𝜋

1 − 𝐼
. 

  3 

These expressions simplify to 𝑅଴ = 0 if the disease is only acquired from the reservoir (𝛽 = 0, 𝜋 = 1) 
or to 𝑅଴ =

ଵ

ௌ
=

ଵ

ଵିூ
 when all transmission is person-to-person (𝑓 = 0, 𝜋 = 0). The general cases of 

these expressions lead to a simple rule for the reproduction number: 𝑅଴ > 1 if and only if 𝐼 > 𝜋. The 
disease can be maintained by person-to-person transmission in the absence of reservoir exposure if 
and only if the prevalence exceeds the proportion of transmission from the reservoir. 

This simple rule has surprising implications. For diseases with low prevalence (e.g. 2%), if a small but 
larger portion (e.g. 3%) of transmission is from the reservoir, then the disease cannot be sustained in 
the population by person-to-person transmission alone (since 𝑅଴ =

ଵି଴.଴ଷ

ଵି଴.଴ଶ
< 1). Preventing the small 

proportion of transmission from the reservoir (reducing 𝑓 and 𝜋 to 0) will cause the disease to become 
extinct in the population. Nevertheless, names like ‘food-borne’ or ‘zoonotic’ may be misleading for 
such diseases because the source of transmission is another human in most (e.g. 97%) individual 
infections. Instead we call these diseases reservoir-driven. We define the reservoir-driven threshold as 
the minimum proportion of transmission which must be from the reservoir for the disease to be 
considered reservoir-driven (𝐼 in our simple SIS model). 

The rest of this article will consider variants and extensions of the simple SIS model to demonstrate 
which assumptions do and do not affect the above expressions for the reproduction number and 
reservoir-driven threshold. We will also show that an equivalent rule of thumb and threshold exists 
when a disease is driven by imported cases due to travel or immigration. We will however not relax 
the key assumptions that the disease is at endemic equilibrium in the population, so the rules we 
derive are at best only approximately valid for diseases where the prevalence varies substantially over 
time. We will then consider how this rule of thumb can be applied to case studies of real diseases.  
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3 Simple Extensions of the SIS Model 

3.1 Births and Deaths 

Simple demographics does not change our rule for the reproduction number. A modified model 
including deaths from both classes at rate 𝛿 and births that balance deaths is described by the 
equations 

𝑠′ = −𝜆(𝑡)𝑠 + 𝛾𝑖 − 𝛿𝑠 + 𝛿

𝑖′ = 𝜆(𝑡)𝑠 − 𝛾𝑖 − 𝛿𝑖
, 

where 𝜆(𝑡) = 𝛽𝑖 + 𝑓 is the force of infection. In this model 𝑅଴ =
ఉ

ఊାఋ
. Let 𝐼, 𝑆 and 𝛬 = 𝛽𝐼 + 𝑓 be the 

non-trivial (i.e. 𝐼, 𝛬 ≠ 0) equilibrium values of 𝑖, 𝑠 and 𝜆. Then 

𝛬𝑆 = (𝛾 + 𝛿)𝐼, 

or equivalently 

𝛾 + 𝛿 = 𝑆
𝛬

𝐼
. 

The force of infection terms are the same as for our original model so again we have 𝛽 = (1 − 𝜋)
௸

ூ
. 

Substituting this into the expression for the reproduction number we get the same result as 2 and 3: 

𝑅଴ ≡
𝛽

𝛾 + 𝛿
=

1 − 𝜋

𝑆
=

1 − 𝜋

1 − 𝐼
  

and the reservoir-driven threshold is still 𝐼. We have assumed that the death rates are the same for 
infected and susceptible persons, but it is simple to show that a higher (or lower) death rate for 
infected individuals does not affect the reasoning. 

3.2 Recovered Classes and Other Common Extensions 

The simplest SIR model without birth and deaths or waning immunity does not have an endemic 
equilibrium point so our method for estimating the reproduction number is not applicable to these 
models. Instead, consider the SIR model with births and deaths: 

𝑠′ = −𝜆(𝑡)𝑠 − 𝛿𝑠 + 𝛿

𝑖′ = 𝜆(𝑡)𝑠 − 𝛾𝑖 − 𝛿𝑖

𝑟′ = 𝛾𝑖 − 𝛿𝑟

, 

where 𝜆(𝑡) = 𝛽𝑖 + 𝑓 the force of infection. Note that adding the recovered class to the SIS model 
with births and deaths does not change the reproduction number, the equation governing the number 
of infected individuals or the force of infection and so the reasoning is identical to that in the previous 
section. However, since there are more than two classes, 𝑆 + 𝐼 ≠ 1. Therefore 3 does not hold but 
instead, 

𝑅଴ =
1 − 𝜋

S
=

1 − 𝜋

1 − (𝐼 + 𝑅)
. 
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The reservoir-driven threshold here is 𝐼 + 𝑅, i.e. the disease can be sustained by person-to-person 
transmission in the absence of reservoir exposure if and only if the proportion of transmission which 
is due to reservoir exposure is less than the total proportion of people infected or immune/recovered.  

The same reasoning can be used for models with waning immunity, vaccination, or latent/exposed 
classes. Since these modifications do not affect the equations governing the number of infected 
individuals or the force of infection, equation 2 still holds and therefore the reservoir-driven threshold 
is 1 − 𝑆 in all these cases. For diseases with comprehensive vaccination programs (or common 
diseases with lifelong immunity), almost all the population can be immune (e.g. 95%) and the 
proportion susceptible very low. If reservoir exposure accounts for nearly all cases but is still less than 
the reservoir-driven threshold (e.g. 90%), the disease could be sustained by person-to-person 
transmission alone if reservoir exposure was eliminated (since 𝑅଴ =

ଵି଴.ଽ଴

ଵି଴.ଽହ
> 1) and so eliminating 

exposure to the reservoir would not eliminate the disease from the human population. 

3.3 Imported Cases 

Analogous rules can be derived for settings where some infections are acquired locally and others are 
imported through immigration or those returning from travel. We assume that susceptible and 
infected individuals emigrate/leave at the same rate 𝛿, that immigration balances emigration and that 
a proportion 𝑝 of those entering the population are infected. The governing equations are 

𝑠′ = −𝜆(𝑡)𝑠 + 𝛾𝑖 − 𝛿𝑠 + (1 − 𝑝)𝛿

𝑖′ = 𝜆(𝑡)𝑠 − 𝛾𝑖 − 𝛿𝑖 + 𝑝𝛿
 

where 𝜆(𝑡) = 𝛽𝑖 is the force of infection. Again, 𝑅଴ = 𝛽/(𝛾 + 𝛿) but 𝑅଴ is not by itself a threshold 
parameter for disease extinction because the continuous immigration of new infected individuals will 
sustain the disease (unless 𝑝𝛿 = 0). The equilibrium proportion infected (𝐼), proportion susceptible 
(𝑆) and force of colonisation (𝛬 = 𝛽𝐼) satisfy 

𝛬𝑆 + 𝑝𝛿 = (𝛾 + 𝛿)𝐼, 

or equivalently 

𝛾 + 𝛿 =
𝛬𝑆 + 𝑝𝛿

𝐼
 . 

Meanwhile the proportion of new cases that are imported, 𝑞, is 

𝑞 =
𝑝𝛿

𝛬𝑆 + 𝑝𝛿
= 1 −

𝛬𝑆

𝛬𝑆 + 𝑝𝛿
=  1 −

𝛽𝐼𝑆

𝛬𝑆 + 𝑝𝛿
 

which we can rearrange for the transmission parameter giving 

𝛽 =
(1 − 𝑞)(𝛬𝑆 + 𝑝𝛿)

𝐼𝑆
. 

Therefore, we can write the reproduction number as 

𝑅଴ ≡
𝛽

𝛾 + 𝛿
=

1 − 𝑞

𝑆
=

1 − 𝑞

1 − 𝐼
. 
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These expressions lead to simple rules for the reproduction number analogous to those derived for 
diseased reservoir exposure. 𝑅଴ > 1 if and only if 𝐼 > 𝑞. That is, in this simple model, the disease can 
be sustained without importation by local transmission if and only if the prevalence exceeds the 
proportion of new cases that are imported through migration or travel. By analogy to the reservoir 
exposure model, we call this threshold the importation-driven threshold. This analogy still holds when 
heterogeneity or multiple strains are incorporated into these models – extensions we consider in 
sections 4 and 5.  

4 Heterogeneity 

It is known that accounting for population heterogeneity tends to increase estimates of reproduction 
numbers [14]. Therefore, we might expect that introducing heterogeneity into models with reservoir 
exposure will increase the reservoir-driven threshold. Consider a general SIS model with separable 
mixing in a heterogeneous population consisting of people of different 𝑥-types with susceptibility 
𝛼(𝑥), transmission parameter 𝛽(𝑥) and mean infectious period 1/𝛾(𝑥), distributed according to the 
probability density function 𝑔(𝑥). Then 

𝑠௧(𝑥, 𝑡) = −𝜆(𝑡)𝛼(𝑥)𝑠(𝑥, 𝑡) + 𝛾(𝑥)𝑖(𝑥, 𝑡)

𝑖௧(𝑥, 𝑡) = 𝜆(𝑡)𝛼(𝑥)𝑠(𝑥, 𝑡) − 𝛾(𝑥)𝑖(𝑥, 𝑡)
 

and 

𝑠(𝑥, 𝑡) + 𝑖(𝑥, 𝑡) = 𝑔(𝑥), 

where 𝜆(𝑡) = 𝑓 + ∫ 𝛽(𝑥)𝑖(𝑥, 𝑡)𝑑𝑥. For this model, 𝑅଴ = ∫ 𝛽(𝑥)/𝛾(𝑥)𝛼(𝑥)𝑔(𝑥)𝑑𝑥 [15], but as before 
𝑅଴ is only a threshold parameter for disease extinction if 𝑓 = 0. Let 𝐼 and 𝑆 be the non-trivial 
equilibrium distributions of 𝑖, 𝑠 and 𝛬 = ∫ 𝛽(𝑥)𝐼(𝑥)𝑑𝑥 + 𝑓 the equilibrium value of 𝜆. As equilibrium 
points they satisfy 

𝛬𝑆(𝑥)𝛼(𝑥) = 𝛾(𝑥)𝐼(𝑥), 

or equivalently, 

𝑆(𝑥)𝛼(𝑥)

𝛾(𝑥)
=

𝐼(𝑥)

𝛬
. 

  4 
At equilibrium, the proportion of infections acquired from the reservoir, which is the proportion of 
force of infection attributable to the reservoir, is 

𝜋 =
𝑓

𝛬
= 1 − න

𝛽(𝑥)𝐼(𝑥)

𝛬
𝑑𝑥. 

Substituting 4 into the above gives 

𝜋 = 1 − න
𝛽(𝑥)𝛼(𝑥)𝑆(𝑥)

𝛾(𝑥)
𝑑𝑥. 

If we let 𝜌 = 𝛽𝛼/𝛾 we can write the reproduction number and the proportion of infections from the 
reservoir in simpler terms 

𝑅଴ =  ∫ 𝜌(𝑥)𝑔(𝑥)𝑑𝑥

=  𝜌
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where 𝜌 is the mean value of 𝜌 across the population and 

𝜋 =  1 − න 𝜌(𝑥)𝑆(𝑥)𝑑𝑥

= 1 −  𝑺 න 𝜌(𝑥)
𝑆(𝑥)

𝑺
𝑑𝑥

=  1 − 𝑺 𝜌ௌ

 

where 𝑺: = ∫ 𝑆(𝑥)𝑑𝑥 is the total susceptible population and 𝜌ௌ is the mean value of 𝜌 across the 
susceptible population. Therefore  

𝑅଴ =
1 − 𝜋

𝑺 
𝜌ௌ

𝜌

. 

 By similar reasoning one can show that 

𝑅଴ =
1 − 𝜋

1 − 𝑰
∫ 𝜌(𝑥)

𝐼(𝑥)
𝑰

𝑑𝑥

∫ 𝜌(𝑥)𝑔(𝑥)𝑑𝑥

=
1 − 𝜋

1 − 𝑰 
𝜌ூ

𝜌

 

  5 
where 𝑰: = ∫ 𝐼(𝑥)𝑑𝑥 is the proportion of the whole population that is infected and  𝜌ூ is the mean 
value of 𝜌 across the infected population. The quantity we want to estimate, 𝑅଴, appears as 𝜌 in the 
right-hand sides of each equation and the quantities 𝜌ூ and 𝜌ௌ are unlikely to be known, so this does 
not provide a practical way to estimate the reproduction number. However, these statements provide 
some insight into how heterogeneity can affect our estimates of the reproduction number or 
reservoir-driven threshold.  The rule of thumb is similar to the rule for a homogenous population: 
𝑅଴ > 1 if and only if 𝑰 𝜌ூ/𝜌 > 𝜋, i.e. the reservoir-driven threshold is 𝑰 𝜌ூ/𝜌. If those who are infected 
have higher-than-average (or lower-than-average) 𝜌, then accounting for this heterogeneity increases 
(or decreases) the reservoir-driven threshold. We derive simple expressions for the value of 𝜌ூ/𝜌 
under some specific assumptions. 

4.1 Variable Susceptibility or Infectious Period 

If we assume that the infectiousness (𝛽) is fixed but the product of susceptibility and length of 
infectious period (𝜙: = 𝛼/𝛾) is heterogeneous, then the reservoir-driven threshold is always higher 
than for a homogenous population. Consider the ratio 𝜌ூ/𝜌 

𝜌ூ

𝜌
=

∫
𝛽𝛼(𝑥)
𝛾(𝑥)

𝐼(𝑥)
𝑰

𝑑𝑥

∫
𝛽𝛼(𝑥)
𝛾(𝑥)

𝑔(𝑥)𝑑𝑥
=

∫ 𝜙(𝑥)
𝐼(𝑥)

𝑰
𝑑𝑥

∫ 𝜙(𝑥)𝑔(𝑥)𝑑𝑥
=

𝜙ூ

𝜙
, 

where 𝜙 and 𝜙ூ are the mean values of 𝜙 across the whole population and across the infected portion 
of the population respectively. Now we can rearrange 4 in terms of the odds of infection of an 
individual of type 𝑥 

𝐼(𝑥)

𝑆(𝑥)
=  

𝛬𝛼(𝑥)

𝛾(𝑥)
=  𝛬𝜙(𝑥). 

  6 
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Since the odds of infection for an individual of type 𝑥 is proportional to 𝜙(𝑥), individuals with high 𝜙 
(i.e. more susceptible individuals or individuals with longer infectious periods) will be over-
represented in the infected portion of the population at equilibrium. Therefore 𝜙ூ ≥ 𝜙 and so the 
reservoir-driven threshold is at least as high as for a homogenous population. 

If the prevalence is low for people of all 𝑥-types (i.e. 𝑆(𝑥) ≈ 𝑔(𝑥)) there is a simple approximation for 
the reservoir-driven threshold. We can rearrange 4 to get 

𝐼(𝑥) = 𝑆(𝑥)𝛬𝜙(𝑥) ≈ 𝑔(𝑥)𝛬𝜙(𝑥). 

and so 

𝑰 = ∫ 𝐼(𝑥)𝑑𝑥 ≈ 𝛬∫ 𝜙(𝑥)𝑔(𝑥)𝑑𝑥 = 𝛬𝜙 

and 

𝜙ூ = ∫ 𝜙(𝑥)
𝐼(𝑥)

𝑰
𝑑𝑥 ≈

1

𝜙
∫ 𝜙(𝑥)ଶ𝑔(𝑥)𝑑𝑥. 

If the population variance of 𝜙 is 𝜎ଶ: = ∫ (𝜙(𝑥) − 𝜙)ଶ𝑔(𝑥)𝑑𝑥 the ratio can be written approximately 
as 

𝜙ூ

𝜙
≈

1

𝜙
ଶ ∫ 𝜙(𝑥)ଶ𝑔(𝑥)𝑑𝑥 = 1 +

𝜎ଶ

𝜙
ଶ 

and the reproduction number is 

𝑅଴ ≈
1 − 𝜋

1 − 𝑰 ൭1 +
𝜎ଶ

𝜙
ଶ൱

 . 

When there is no heterogeneity in 𝜙 (i.e. when 𝜎ଶ = 0) this simplifies to the result for the 
homogenous SIS model. The larger the variance for a given mean, the greater the basic reproduction 

number and the higher the reservoir driven-threshold, 𝑰(1 + 𝜎ଶ/𝜙
ଶ

). For example if 𝜙(𝑥) and 𝑔(𝑥) 
are such that the distribution of 𝜙 across the population is gamma with mean 𝜇 and shape parameter 
𝑘 (a convenient and often used assumption [14]), then the reservoir-driven threshold is approximately 
𝑰 ቀ1 +

ଵ

௞
ቁ (Figure 1). 

If the 𝑥 type of an individual corresponds to some easily determined risk class – for instance if 𝑥 
denotes gender or smoker status – then the proportion of people in each class, 𝑔(𝑥), and the odds of 
infection within each group, 𝐼(𝑥)/𝑆(𝑥), may be known. Since the odds of infection is proportional to 
𝜙, we can express 𝜙ூ 𝜙ൗ  and 𝑅଴ in terms of these observed quantities: 

𝜙ூ

𝜙
=

∫ 𝜙(𝑥)
𝐼(𝑥)

𝑰
𝑑𝑥

∫ 𝜙(𝑥)𝑔(𝑥)𝑑𝑥
=

∫
𝐼(𝑥)
𝑆(𝑥)

𝐼(𝑥)
𝑰

𝑑𝑥

∫
𝐼(𝑥)
𝑆(𝑥)

𝑔(𝑥)𝑑𝑥
 

and 
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𝑅଴ =
1 − 𝜋

1 − 𝑰
𝜙ூ

𝜙

=
1 − 𝜋

1 − 𝑰
∫

𝐼(𝑥)
𝑆(𝑥)

𝐼(𝑥)
𝑰

𝑑𝑥

∫
𝐼(𝑥)
𝑆(𝑥)

𝑔(𝑥)𝑑𝑥

   . 

  7 

4.2 Variable Infectiousness 

If infectiousness (𝛽) is heterogeneous, but the product of susceptibility and length of the infectious 
period (𝜙: = 𝑎/𝛾) is fixed, then the reservoir-driven threshold is the same as for a homogenous 
population. Consider the ratio 𝜌ூ/𝜌 which can be simplified as 

𝜌ூ

𝜌
=

∫ 𝛽(𝑥)𝜙
𝐼(𝑥)

𝑰
𝑑𝑥

∫ 𝛽(𝑥)𝜙𝑔(𝑥)𝑑𝑥
=

∫ 𝛽(𝑥)
𝐼(𝑥)

𝑰
𝑑𝑥

∫ 𝛽(𝑥)𝑔(𝑥)𝑑𝑥
=

𝛽ூ

𝛽
, 

where 𝛽 and 𝛽ூ are the mean values of 𝛽 across the whole population and across the infected portion 
of the population respectively. Now by 6, if 𝜙 is constant across the population the odds of infection 
at equilibrium is the same for people of every 𝑥-type, i.e. independent of their infectiousness. 
Therefore, the mean infectiousness amongst the infected population is the same as the mean 
infectiousness across the whole population and  𝛽ூ/𝛽 = 𝜌ூ 𝜌⁄ = 1. Equations 5 then simplifies to 

𝑅଴ =
1 − 𝜋

1 − 𝑰 
 

which is the same as the result for a homogenous population. 

Heterogeneous infectiousness will affect the reservoir-driven threshold in a population which is also   
heterogeneous with respect to susceptibility or infectious period. If those who are more likely to be 
in the infected class (high 𝜙) are less infectious (low 𝛽), this will reduce the reservoir-driven threshold 
relative to homogeneous infectiousness but heterogeneous susceptibility and infectious period. As a 
simple example of this, assume that 𝛽(𝑥) = 1/𝜙(𝑥). Then 𝜌(𝑥) = 1, 𝜌 = 𝜌ூ = 1 and the reservoir-
driven threshold is simply 𝑰, less than what it would be if 𝛽 were constant across the population. On 
the other hand, if those who are more likely to be colonised (high 𝜙) are also more infectious (high 
𝛽), the reservoir-driven threshold will increase relative to homogeneous infectiousness but 
heterogeneous susceptibility and infectious period. As another simple example consider the 
proportional mixing assumption, i.e. 𝛽 ∝ 𝜙. In this case 𝜌 ∝ 𝜙ଶ and so 

𝜌ூ

𝜌
=

∫ 𝜙(𝑥)ଶ 𝐼(𝑥)
𝑰

𝑑𝑥

∫ 𝜙(𝑥)ଶ𝑔(𝑥)𝑑𝑥
   . 

When the prevalence is low for people of all 𝑥-types (i.e. 𝑆(𝑥) ≈ 𝑔(𝑥)) we can use the same reasoning 
as in the previous section to approximate this ratio as 

𝜌ூ

𝜌
≈

∫ 𝜙(𝑥)ଷ𝑔(𝑥)𝑑𝑥

𝜙∫ 𝜙(𝑥)ଶ𝑔(𝑥)𝑑𝑥
=

𝜈

𝜙(𝜙
ଶ

+ 𝜎ଶ)
 

and the reproduction number by 
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𝑅଴ ≈
1 − 𝜋

1 − 𝑰 ൭
𝜈

𝜙(𝜙
ଶ

+ 𝜎ଶ)
൱

 . 

where 𝜈 is the third raw moment of 𝜙 across the population. If for example, 𝜙(𝑥) and 𝑔(𝑥) are such 
that 𝜙 is gamma distributed with shape parameter 𝑘 then the reservoir-driven threshold is 
approximately 𝑰(1 +

ଶ

௞
), which is higher than if 𝛽 were homogeneous. Figure 1 summarises how the 

reservoir-driven threshold changes for different types of heterogeneity explored so far. 

4.3 Variable Exposure to Reservoir 

Heterogeneous exposure to the reservoir in an otherwise homogeneous population does not change 
the reservoir-driven threshold. Consider an SIS model where the population consists of people of type 
𝑥 distributed according to 𝑔(𝑥) each with their own level of exposure to reservoir 𝑓(𝑥). Then the 
differential equations governing the system are 

𝑠௧(𝑥, 𝑡) = −𝜆(𝑥, 𝑡)𝑠(𝑥, 𝑡) + 𝛾𝑖(𝑥, 𝑡)
𝑖௧(𝑥, 𝑡) = 𝜆(𝑥, 𝑡)𝑠(𝑥, 𝑡) − 𝛾𝑖(𝑥, 𝑡)

 

and 

𝑠(𝑥, 𝑡) + 𝑖(𝑥, 𝑡) = 𝑔(𝑥), 

where 𝜆(𝑥, 𝑡) = 𝛽∫ 𝑖(𝜉, 𝑡)𝑑𝜉 + 𝑓(𝑥) is the force of infection acting on individuals of type 𝑥. The basic 
reproduction number for this model is 𝛽/𝛾. Let 𝐼 and 𝑆 be the non-trivial equilibrium distributions of 
𝑖, 𝑠 (i.e. 𝐼 ≠ 0), 𝑰 and 𝑺  be the total number of people infected and susceptible at equilibrium and 
𝛬(𝑥) = 𝛽∫ 𝐼(𝑥)𝑑𝑥 + 𝑓(𝑥) = 𝛽𝑰 + 𝑓(𝑥) be the equilibrium force of infection. As equilibrium points 
they satisfy 

𝛬(𝑥)𝑆(𝑥) = 𝛾𝐼(𝑥). 

The proportion of transmission that is acquired from the reservoir is then 

𝜋 =
∫ 𝑓(𝑥)𝑆(𝑥)𝑑𝑥

∫ 𝛬(𝑥)𝑆(𝑥)𝑑𝑥

= 1 −
∫ 𝛽𝑰𝑆(𝑥)𝑑𝑥

∫ 𝛬(𝑥)𝑆(𝑥)𝑑𝑥

= 1 −
∫ 𝛽𝑰𝑆(𝑥)𝑑𝑥

∫ 𝛾𝐼(𝑥)𝑑𝑥

= 1 −
𝛽

𝛾
𝑺 =  1−𝑅଴𝑺

 

and consequently 

𝑅଴ =
1 − 𝜋

𝑺
=

1 − 𝜋

1 − 𝑰
 

leaving the reservoir-driven threshold unchanged. However, interactions with additional 
heterogeneities will affect the reservoir-driven threshold. Consider the case where both reservoir 
exposure (𝑓) and the person-to-person transmission rate (𝛽) depend on the 𝑥-state. In this case the 
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equilibrium force of infection is 𝛬(𝑥) = ∫ 𝛽(𝜉)𝐼(𝜉)𝑑𝜉 + 𝑓(𝑥), the reproduction number is 𝑅଴ =

∫ 𝑔(𝜉) 𝛽(𝜉) 𝛾⁄ 𝑑𝜉 = 𝛽 𝛾ൗ  where 𝛽 is the mean value of 𝛽 in the population. The proportion of 
infections that are acquired from the reservoir is 

𝜋 =
∫ 𝑆(𝑥)𝑓(𝑥)

∫ 𝑆(𝑥)𝛬(𝑥)𝑑𝑥

= 1 −
∫ 𝑆(𝑥)∫ 𝐼(𝜉)𝛽(𝜉)𝑑𝜉𝑑𝑥

∫ 𝑆(𝑥)𝛬(𝑥)𝑑𝑥

= 1 − න 𝐼(𝜉)𝛽(𝜉)𝑑𝜉
∫ 𝑆(𝑥)𝑑𝑥

∫ 𝐼(𝑥)𝛾𝑑𝑥

= 1 − න
𝐼(𝜉)

𝑰
𝛽(𝜉)𝑑𝜉

𝑺

𝛾

= 1 −
𝛽ூ

𝛾
𝑺 =  1 −  𝑅଴

𝛽ூ

𝛽
𝑺,

 

where 𝛽ூ is the mean value of 𝛽 in the infected population. Therefore 

𝑅଴ =
1 − 𝜋

𝑺
𝛽ூ

𝛽

=
1 − 𝜋

(1 − 𝑰)
𝛽ூ

𝛽

  . 

Those that have greater exposure to the reservoir are more likely to be infected and so will have a 
disproportionally large effect on 𝛽ூ. If those with more exposure to the reservoir are also on more 
infectious then 𝛽ூ > 𝛽 and the reservoir-driven exposure is lower, and conversely if those with more 
exposure to the reservoir also less infectious then 𝛽ூ < 𝛽 and the reservoir-driven threshold is higher 
(Figure 2). Note that this is opposite to the relationship for heterogeneous 𝛽 and heterogeneous 𝜙 
(Figure 1). 

5 Multiple Strains 

There is frequently more than one strain of a pathogen co-circulating within human populations and  
the dynamics of multi-strain interactions have been modelled extensively (e.g. [16–20]). In the few 
simple multi-strain models we consider, accounting for host competition increases the reservoir 
driven threshold for each strain compared to the single strain model. Consider a simple competitive 
multi-strain extension of our basic SIS model with reservoir exposure. Each strain has its own 
transmission parameter (𝛽௞), recovery rate (𝛾௞) and reservoir exposure rate (𝑓௞). We assume that 
infection with one strain prevents infection from all other strains for the duration of the infection. 
With 𝑛 strains the 𝑛 + 1 equations governing this system are 

𝑠′ = − ෍ 𝜆௞

௡

௞ୀଵ

(𝑡)𝑠 + ෍ 𝛾௞

௡

௞ୀଵ

𝑖௞

𝑖௞′ = 𝜆௞(𝑡)𝑠 − 𝛾௞𝑖௞,       𝑘 = 1, . . . , 𝑛

 

where 𝜆௞(𝑡) = 𝛽௞𝑖௞(𝑡) + 𝑓௞ is the force of infection for each strain. Each strain has its own basic 
reproduction number in a fully susceptible population: 𝑅଴

௞ = 𝛽௞/𝛾௞. Here, 𝑅଴
௞ are not threshold 

parameters for strain extinction because reservoir exposure will cause the disease to persist and strain 
competition for hosts may cause a strain without reservoir exposure to die out even if that strain’s 
reproduction number exceeds one. Let 𝑆, be the equilibrium number of susceptible people at the non-
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trivial equilibrium where the number of people infected with each strain (𝐼௞) and the force of 
colonisation for each strain (𝛬௞) are non-zero. For each strain we have the following relation 

𝛬௞𝑆 = 𝛾௞𝐼௞, 

or equivalently 

𝛾௞ =
𝛬௞𝑆

𝐼௞
. 

The proportion of transmission of strain 𝑘 that is from the reservoir is 

𝜋௞ =
𝑓௞

𝛬௞
= 1 −

𝛽௞𝐼௞

𝛬௞
. 

Rearranging for 𝛽௞: 

𝛽௞ = (1 − 𝜋௞)
𝛬௞

𝐼௞
. 

We can re-write the basic reproduction number for strain 𝑘 as 

𝑅଴
௞ ≡

𝛽௞

𝛾௞
=

1 − 𝜋௞

𝑆
=

1 − 𝜋௞

1 − ∑ 𝐼௝
௡
௝ୀଵ

. 

Consequently 𝑅଴
௞ < 1 if 𝜋௞ > ∑ 𝐼௝

௡
௝ୀଵ . It follows that a given strain cannot persist without reservoir 

exposure if the proportion of transmission of that strain due to reservoir-exposure is more than the 
total prevalence of all strains. 

We also want to account for strain competition which can lead to the extinction of strains that would 
otherwise persist in a population. Therefore, we consider the invasion reproduction number for each 
strain, i.e. not the reproduction number in a fully susceptible population, but in a population at 
endemic equilibrium with all the other strains. Consider the equilibrium point without any infections 
of strain 𝑘 that exists if there is no reservoir exposure for strain 𝑘 (i.e. 𝑓௞ = 0).  Let 𝑆௞ , 𝐼ଵ

௞, … , 𝐼௡
௞, be 

the equilibrium values of s, 𝑖ଵ, … , 𝑖௡ when 𝑓௞ = 0, such that 𝐼௞
௞ = 0 and  𝐼௝

௞ > 0 if  𝑗 ≠ 𝑘. The invasion 
reproduction number for strain 𝑘 is then 𝑅ூ௡௩௔௦௜௢௡

௞ = 𝑅଴
௞𝑆௞. It is possible to calculate 𝑆௞ in terms of 

𝜋ଵ, … , 𝜋௡ and 𝐼ଵ, … , 𝐼௡ but the exact form is cumbersome (even for the 𝑛 = 2 case) so instead we 
consider a simple bound. Consider that the equilibrium proportion of each strain other than 𝑘 will 
certainly not decrease in the absence of the competition with strain 𝑘, i.e. 𝐼௝

௞ ≥  𝐼௝ for  𝑗 ≠ 𝑘. 
Consequently 𝑆௞  ≤ 𝑆 + 𝐼௞ since 

𝑆௞ = 1 − ෍ 𝐼௝
௞

௡

௝ୀଵ
௝ஷ௞

 ≤  1 − ෍ 𝐼௝ 

௡

௝ୀଵ
௝ஷ௞

= 1 + 𝐼௞ − ෍ 𝐼௝

௡

௝ୀଵ

= 𝑆 + 𝐼௞. 

We can bound the invasion reproduction number for strain 𝑘 by 
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𝑅ூ௡௩௔௦௜௢௡
௞ = 𝑅଴

௞𝑆௞

≤  
1 − 𝜋௞

𝑆
 (𝑆 + 𝐼௞)

=
1 − 𝜋௞

1 −  
𝐼௞

𝑆 + 𝐼௞

.

 

Consequently ூೖ

ௌାூೖ
 is an upper bound for the reservoir-driven threshold in the presence of other strains 

since 𝑅ூ௡௩௔௦௜௢௡
௞ < 1 whenever 𝜋௞ >

ூೖ

ௌାூೖ
.  

Our simple competitive model assumes complete exclusion, but in reality, strains are unlikely to 
completely exclude one another. If one allows for the possibility of coinfections or superinfection, 
assuming that persons infected with strains other than strain 𝑘 (𝐼¬௞) are 𝑎௞ times as susceptible to 
infection with strain 𝑘 as those not infected with any strain (𝑆) and that coinfecting/superinfecting 
strains do not affect infectiousness or infectious period for the infecting strains, then at endemic 
equilibrium 

𝛬௞(𝑆 + 𝑎௞𝐼¬௞) = 𝛾௞𝐼௞ 

where  𝐼௞ is the proportion of people infected with strain 𝑘 (who may also be infected with other 
strains) and 𝛬௞ =  𝛽௞𝐼௞ + 𝑓௞. One can use the same reasoning as above to show that  

𝑅଴
௞ ≡

𝛽௞

𝛾௞
=

1 − 𝜋௞

𝑆 + 𝑎௞𝐼¬௞
=

1 − 𝜋௞

1 − I୩ + (1 − 𝑎௞)𝐼¬௞
 

and 

𝑅ூ௡௩௔௦௜௢௡
௞ ≤

1 − 𝜋௞

1 − 
𝐼௞

𝑆 + 𝑎௞𝐼¬௞+ 𝐼௞

=  
1 − 𝜋௞

1 − 
𝐼௞

1 − (1 − 𝑎௞)𝐼¬௞

. 

and so ூೖ

ௌା௔ೖூ¬ೖା ூೖ
=

ூೖ

ଵି(ଵି௔ೖ)ூ¬ೖ
 is an upper bound for the reservoir-driven threshold. If 𝑎௞ = 0, this 

reduces to the case of complete exclusion we considered above. If 𝑎௞ = 1, that is if infection with 
another strain neither prevents nor predisposes a patient to infection with strain 𝑘, then the reservoir 
driven threshold and reproduction number are the same for as for a model with only a single strain. 
In general, the greater the exclusion against strain 𝑘 (i.e. as 𝑎௞ → 0), the higher the reservoir-driven 
threshold and reproduction number. Consequently the case of complete exclusion is an upper bound 
for these quantities in these simple models. 

6 Case Study: Clostridium difficile 

Clostridium difficile is a bacterium that colonises the intestines of many mammals including humans 
and livestock [21]. Most human hosts do not have symptoms despite being colonised. Colonisation is 
typically transient, lasting approximately one month in adults [22], due to competition and 
interactions with other intestinal flora [23]. Disruption of the gut flora, often caused by consumption 
of antibiotics or proton-pump-inhibitors, allows C. difficile to proliferate in large numbers [23]. 
Toxigenic strains of C. difficile then produce a number of toxins that can cause diarrhoea which is often 
severe and sometimes life-threatening [24]. A robust immune response to these toxins is able to 
neutralise their effect [25] and most of the population have anti-toxin antibodies starting at a young 
age [26]. Immune responses protect against symptoms but not protect against colonisation [27]. 
Asymptomatically colonised carriers are also infectious [28] while animal models have shown that 
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disruption of gut flora, even in the absence of symptoms, increases spore shedding and infectiousness 
[29].  

Since immunity does not prevent colonisation or infectiousness, a simple SIS model is an appropriate 
starting point for C. difficile, provided we identify the I-class with all C. difficile positive individuals (not 
just those with symptoms). We will use variations on the SIS model below to determine whether C. 
difficile is importation-driven in a hospital setting, and calculate the reservoir-driven threshold for C. 
difficile for the human population as a whole (where animals are the reservoir). 

6.1 C. difficile in Hospitals 

Historically, C. difficile has been of most concern and thus most studied in hospitalised patients where 
it complicates the care of many initially hospitalised for other conditions [30]. However, there is 
growing recognition of community-acquired cases that manifest during hospital stay. Since C. difficile 
is consistently present in many hospitals, it has been assumed that C. difficile is endemic in these 
settings and is responsible for many cases in the community. 

If we begin by modelling C. difficile in hospitals as a (homogeneous) SIS model with very high rates of 
migration (hospital admission and discharge) then we can estimate the reproduction number using 
the method outlined in Section 3.3. In words, we will estimate the within-hospital reproduction 
number as 

𝑅଴
ୌ୭ୱ୮୧୲ୟ୪

=
1 − Proportion of colonisations and infections acquired prior to admission

1 − Prevalence of colonisation and infection
. 

One study of colonisation and infections in hospitalised patients found 184 patients colonised at 
admission, and another 240 patients that acquired colonisation or infection after admission [27]. They 
identified an additional 60 or so patients that developed a CDI within 72 hours of admission who were 
therefore deemed to have been exposed prior to admission. Thus, the proportion of C. difficile positive 
patients that acquired the pathogen prior to admission was approximately 50%. 

In the same study 528/5422 patients were colonised or developed an infection for part of their 
hospital stay. Some patients were excluded from their analysis (mostly for missing data) leaving 
424/4143 patients that were colonised or developed an infection for part of the hospital stay. While 
these do not provide an estimate of prevalence (since many of the colonised or infected patients were 
only colonised for part of the hospital stay) these figures provide upper bounds to the prevalence of 
colonisation and infection in the study hospital: 9.7% amongst all study patients and 10.2% after 
exclusions. Putting this into the above formula gives an upper bound for the within-hospital 
reproduction number of approximately 0.55. 

Unlike the study cited above, most studies focus on symptomatic patients and do not test 
asymptomatic patients at admission. However, the proportion of patients diagnosed with a C. difficile 
infection that were admitted for a C. difficile infection (principal diagnosis) is routinely reported. As 
patients admitted with asymptomatic colonisation who subsequently develop symptoms will not have 
C. difficile infection as their principal diagnosis, this proportion is a lower bound for the total 
proportion of infections that are due to exposure prior to admission and thus let us estimate an upper 
bound for the reproduction number. In the USA in the years 1993-2014, 20-34% of admissions who 
had a C. difficile infection had it as their primary diagnosis [31]. This is in excess of typical prevalence 
of colonisation and infection amongst hospitalised patients: a review of colonisation prevalence 
reported a range of 4-29% [32]. Therefore, our upper bound for the reproduction number lies in the 
range 0.69-1.1. 
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So far, we have assumed hospitalised patients are homogeneous, but this is not the case. Patients who 
have recently been administered antibiotics are not more susceptible to colonisation but are more 
likely to develop symptoms and be more infectious [27]. Thus, an SIS model with heterogeneous 
infectiousness is perhaps more appropriate. However, heterogeneity in infectiousness alone does not 
affect the estimate of the reproduction number (Section 4.2). Factors affecting susceptibility to 
colonisation exist and adjusting for these will increase our estimate of the reproduction number 
(Section 4.1), but this is unfortunately beyond the scope of this case study. However, our simple 
estimates of 𝑅଴ are in agreement with more sophisticated models of C. difficile transmission in 
hospitals that have found that the reproduction number is likely to be less than one in many or most 
hospital settings [33,34]. 

There are many strains and types of C. difficile and it has been suggested that certain strains or types, 
such as NAP1/RT027, are particularly hospital-adapted [35,36]. It is possible that these strains have 
significantly higher reproduction numbers in the hospital than we have estimated above and thus may 
be self-sustaining in hospitals. Unfortunately, we do not have strain-level or type-level data for all 
strains or types. However, the article used to calculate our first estimate of the reproduction number 
report the proportion of infections and colonisations typed as NAP1/RT027 [27]. As the authors did 
not type all isolates, we assume that un-typed isolates were equally likely to be NAP1/RT027 as the 
isolates from similar patients that were typed, and that the proportion of NAP1/RT027 infections in 
those with onset <72h after admission (not reported) was similar to patients with colonisation at 
admission (13%). Under these assumptions, approximately 32 out of 150 (21%) colonisations or 
infections with NAP1/RT027 were present at admission. Of the approximately 10% of cases that were 
colonised or infected for some part of their hospital stay, approximately 3% were with NAP1/RT027 
and the remaining 7% were with other types. Though colonisation with non-toxigenic strains appears 
to be protective against infection with toxigenic strains [37], we do not have good information about 
the interaction of C. difficile types. Nevertheless, we can use the argument we presented in section 5 
to bound the invasion reproduction number. This becomes 

𝑅୍୬୴ୟୱ୧୭୬
୒୅୔ଵ ≤

1 − Proportion of NAP1 colonisations and infections acquired prior to admission

1 −
Prevalence of NAP1 colonisation and infection

Proportion 𝐶. 𝑑𝑖𝑓𝑓𝑖𝑐𝑖𝑙𝑒 negative + Prevalence of NAP1 colonisation and infection

≈  
1 − 0.21

1 −
0.03

0.9 + 0.03
≈ 0.8.

 

The basic reproduction number (i.e. in a completely susceptible population without competition with 
other types) is slightly greater: 

𝑅଴
୒୅୔ଵ ≤

1 − Proportion of NAP1 colonisations and infections acquired prior to admission

1 − Prevalence of any 𝐶. 𝑑𝑖𝑓𝑓𝑖𝑐𝑖𝑙𝑒 colonisation and infection

≈  
1 − 0.21

1 − 0.1
≈ 0.9.

 

This suggests that even if other strains were eliminated and NAP1/RT027 did not compete for hosts, 
the continual importation of colonised and infected individuals would be required to sustain endemic 
disease in the study hospital. If we perform the same analysis for the pooled non-NAP1/RT027 strains 
in the study (approximately 212 of 334 colonisations and infections were present on admission) the 
equivalent upper bounds for the invasion reproduction number and basic reproduction number are 
both approximately 0.4. Therefore it appears that NAP1/RT027, though importation-driven, was 
better adapted for transmission in the study hospital than other strains. 
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6.2 C. difficile and Animal Reservoirs 

Carriage of C. difficile in the general adult population is less common than in hospitals or aged-care 
facilities, with reported prevalence in the range 0-15%, though ≲ 5% is perhaps most typical [32]. 
C. difficile is also commonly found colonising pets and livestock, while C. difficile spores are frequently 
isolated on meat, fresh produce and in water [21]. Crucially, there is significant overlap in strains 
observed in human and non-human sources [35]. However the proportion of human cases that are 
acquired from a non-human reservoir is unknown. Consequently, we cannot use our methods to 
estimate the reproduction number, but we can calculate the reservoir-driven threshold. If it is 
reasonable to suspect that reservoir exposure accounts for a proportion equal to or exceeding the 
threshold, then C. difficile may be sustained in the human population by exposure to animal reservoirs. 

If we begin with a homogeneous SIS model with reservoir exposure, then our estimate of the reservoir-
driven threshold is simply the prevalence in the community which is typically ≲ 5% for adults (Section 
2). Given the ubiquity of non-human exposure it is plausible that reservoir exposure exceeds this very 
low threshold. Some individuals will have higher exposure to these reservoirs (depending on diet and 
lifestyle factors), but this alone will not affect the reservoir-driven threshold unless those with greater 
exposure are also are more (or less) infectious (Section 4.3). Heterogenous infectiousness due to 
potential differences between patients with and without symptoms, or differences between patients 
with and without recent antimicrobial exposure does not affect the food driven exposure in isolation 
(Section 4.2). However, communities are not homogeneous with regards to C. difficile colonisation 
risk, as demonstrated by the higher rates of colonisation and infection in hospitals, aged-care facilities 
and the very high colonisation rates amongst infants. Accounting for this heterogeneity will increase 
our estimate of the reservoir-driven threshold (Section 4.1). 

If we split our population into four risk categories – (A) hospitalised patients, (B) aged-care residents, 
(C) infants under 12 months and (D) the rest of the population – we can begin to account for some of 
this heterogeneity. If we assume separable mixing with heterogeneous susceptibility and infectious 
period, we need only the prevalence in each group and the proportion of the population that is in 
each group to estimate the reservoir-driven threshold (equation 7). The reported range of colonisation 
prevalence in each of these groups is (A) 0-29%, (B) 0-51%, (C) 18-90% and (D) 0-15% respectively [32], 
while the total proportion of the population in each of these groups in a developed country like 
Australia is (A) <0.5% [38], (B) <1% [39], (C) <1.5% [40] and (D) >97% respectively. 

If we use the upper end of the prevalence range for each risk group, though only 16.6% of the 
population is colonised, the reservoir-driven threshold is 48.0%. Assuming a lower colonisation 
prevalence in the majority population (D) decreases overall prevalence but increases heterogeneity 
and can increase the reservoir-driven threshold. If only 1% of the healthy adult population is colonised, 
then overall prevalence is 3.0% but the reservoir-driven threshold is much higher at 81.1%. These 
extreme values taken from across the literature are not typical and are unlikely to coincide in a single 
population. If we consider more typical values of colonisation prevalence, the picture is quite different. 
With prevalence half of the maximum reported values (i.e. (A) 14.5%, (B) 25.5%, (C) 45% and (D) 7.5%), 
which is still probably much higher than typical for infants in particular [41], the reservoir-driven 
threshold is only 13.0%. The reservoir-driven threshold is lower still if prevalence is lower in any of the 
high-risk minority groups (A-C). Figure 3 explores the effect of different prevalence assumptions on 
the reservoir-driven threshold. 

This model and estimate of the reservoir-driven threshold is of course very rough. Transmission is not 
well mixed between or within the four risk-categories. Furthermore, the pathogen’s interactions with 
medications, gut-flora and host immunity leads to greater complexity than can be captured with a 
simple SIS model. The risk-categories of individuals change over time as patients age or move in and 
out of hospitals and so a multi-patch with age structure would provide better estimates. Nevertheless, 
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this very simple calculation serves as a back-of-the-envelope estimate for the plausible range of the 
reservoir-driven threshold, demonstrating that under a range of reasonable assumptions a relatively 
small amount of transmission from animals could be sustaining endemic disease in human 
populations. Our simple calculations with figures from the middle of the reported prevalence range 
agree with a detailed, model of hospitals and communities that found the reservoir-driven threshold 
was between 3.5% and 26.0% for a wide range of plausible assumptions. 

There are many strains or types of C. difficile that circulate in human populations and the arguments 
set out in section 5 could be used to determine whether individual types are reservoir-driven. It could 
be the case that some strains are sustained by exposure to animals, while other strains – though also 
present in animal populations – are sufficiently transmissible between humans to persist without 
transmission from animals. C. difficile PCR ribotype 078 (RT078) is a particularly good candidate to 
consider as a reservoir-driven strain. Though it is not known what proportion of human RT078 cases 
can be attributed to transmission from an animal source, whole-genome sequencing of isolates of this 
strain from livestock and humans strongly suggest frequent transmission between these groups [42]. 
On the other hand NAP1/RT027 which is found in livestock but appears to be more transmissible 
between people than other strains, might have some human cases attributable to animal sources but 
is less likely to be animal-driven [43]. Finally RT001, which accounts for many human infections in 
European settings, appears to be uncommon in livestock [43]. 

7 Conclusion 

We have outlined the theory and application of very simple rules to estimate reproduction numbers 
in the presence of reservoir-exposure or imported cases. The rules require minimal information about 
the population and the pathogen of interest and could be a useful starting point or alternative to more 
complex models tailored to a population or pathogen. Churcher et al. have developed a statistical test 
using branching process theory to infer whether 𝑅଴ < 1 in a population nearing disease elimination 
but with many imported cases [9]. Cauchemez et. al use a similar approach that accounts for 
incomplete case detection and the overrepresentation of larger outbreaks to estimate the 
reproduction number for emerging zoonoses [5]. However, their models assume almost all the 
population is susceptible and so are not suitable for situations where the prevalence of infection or 
immunity is far from zero. Moreover, the latter method assumes that the reproduction is less than 
one so is not appropriate in settings where is there is genuine uncertainty as to whether the 
reproduction number is above or below one [5]. Our model accounts for susceptible depletion and 
works for infections where the reproduction number is above or below one, but relies on estimates 
of prevalence to do so. This can pose a potential difficulty as incidence rather than prevalence is 
usually reported. Reliable estimates of prevalence either requires near-perfect case acquisition or 
surveys with large sample sizes especially when prevalence is low. Indeed a good deal of the variability 
in colonisation prevalence reported for C. difficile outside hospitals might be attributed to the 
relatively small sample sizes involved [32]. 

Some caution is required when using the reservoir-driven and importation-driven thresholds. It does 
not follow that if a disease is reservoir-driven or importation driven, then interventions targeting the 
external source and transmission from the external source will be most effective or ‘best’. The ‘best’ 
control strategy will depend on the relative effort required to prevent each kind of exposure, the 
impact of these interventions and metric used to compare these. If it is equally feasible and desirable 
to eliminate all (or most) exposure from either source, eliminating transmission from the reservoir or 
importation is clearly the better choice for a reservoir-driven or importation disease as this will 
prevent all local human cases, while preventing all person-to-person transmission will prevent only 
the proportion of human cases spread locally by humans. However, if only modest reductions are 
feasible, then targeting local human transmission may be more effective. One can calculate the 
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normalised derivatives of equilibrium prevalence to estimate the reduction in prevalence achieved by 
a small reduction in person-to-person transmission or exposure to the external source. For example, 
in the homogenous SIS model with reservoir-exposure, a greater reduction in prevalence is achieved 
by reducing person-to-person transmission whenever less than half of cases are acquired from the 
reservoir 1. This is true whether or not the disease is reservoir-driven. A similar rule can be derived for 
the SIS model with imported cases. 

The major limitation of our method is the assumption that the disease and population are at 
equilibrium. Many diseases, including our case study disease C. difficile, exhibit seasonal variation [44]. 
It is possible that an infection is sufficiently transmissible to be locally sustained in high-transmission 
seasons, but reservoir-driven or importation-driven in low-transmission seasons [9]. Similarly, it 
possible that exposure to the reservoir is seasonal [45]. It is possible that an epidemic in one setting 
is driven by exposure to a population or reservoir where an epidemic is ongoing. Our model does not 
account for these kinds of temporal variability when estimating reproduction numbers and reservoir-
driven thresholds. 

The simplicity, minimal data requirements, generality and extensibility of the method we have 
presented here make it useful starting point for understanding the impact and interaction of 
transmission sources both internal and external to a population. 
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Figures 

 

Figure 1 The reservoir-driven threshold (RDT) – the minimum proportion of transmission 
attributable to the reservoir above which the basic reproduction number is <1 – as a function 
of disease prevalence. Each curve indicates the RDT for different population heterogeneity 
assumptions for infectiousness (𝜷) and the product of susceptibility and infectious period 
(𝝓 ≔ 𝒂/𝜸). The RDT for a homogenous population is equal to the disease prevalence (black 
line). Heterogeneous  𝜷 alone does not change the RDT (black line). The RDT is higher if 𝝓 
heterogeneous and 𝜷 homogenous (solid curves). The size of the effect increases with 
increasing heterogeneity (green curves: 𝝓~𝜞(𝟑, 𝝁), blue curves: 𝝓~𝜞(𝟏, 𝝁)). Heterogeneity 
in 𝜷 interacts with heterogeneity in 𝝓, further increasing the RDT if 𝜷 ∝ 𝝓  (dashed curves) 
but decreasing the RDT if 𝜷 ∝ 𝟏/𝝓 (black line). 
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Figure 2 The reservoir-driven threshold (RDT) for different assumptions for heterogeneity of 
reservoir exposure (𝒇) and person-to-person transmission (𝜷) across the population. The RDT 
for a homogenous population is equal to the disease prevalence (black line). The RDT does 
not change if only 𝒇 or only 𝜷 is heterogeneous (black line). The RDT is lower if both are 
heterogeneous and 𝛃 ∝ 𝐟 (dashed curves). The RDT is higher if 𝜷 decreases with increasing 𝒇 
(solid curves: 𝜷 ∝  𝒆ି𝒇). The size of the effect increases with increasing heterogeneity (green 
curves: 𝒇~𝜞(𝟑, 𝝁), blue curves: 𝒇~𝜞(𝟏, 𝝁)). 
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Figure 3 Estimates of the reservoir-driven threshold for C. difficile in human populations and 
its dependence on the prevalence of each of four risk groups. In each subfigure, the 
prevalence in one risk group is varied across the reported range [32] (x-axes) while the other 
three prevalences are fixed at the values indicated by the vertical lines in the other subfigures. 
We consider two scenarios; one where each of the fixed prevalences is assumed to be in the 
middle of the reported range (solid lines and curves); the other the same except the 
prevalence in infants is only 25% (dotted lines and curves). We assume that 0.5%, 1%, 1.5% 
and 97% of the population are in the hospital, aged-care, infant and ‘other’ risk groups 
respectively.   

 

 



Chapter 8

Discussion

The aim of this research was to use mathematical models to further the understanding of

the transmission and epidemiology of C. difficile in hospitals and communities. I began by

developing a compartmental model of C. difficile carriage and infection in a hospitalised

population (Chapter 3). This model was used to assess common definitions for the clas-

sification of hospital-onset infections as hospital or previously-acquired (Chapter 4). The

modelling framework was extended to a two-patch model of hospital and community and

adapted to include infants, demographics, and the potential for transmission from animals

(Chapter 5). This extended model became the basis of an investigation into the seasonality

of C. difficile and hospital and community-based interventions that could reduce disease

burden (Chapter 6). Finally, I developed an independent method to estimate the local

reproduction number in settings with both local transmission and infections acquired from

an external source or imported into the population. This method corroborated the findings

of Chapters 3 to 6 using simple arguments to demonstrate that transmission within hospi-

tals is insufficient to sustain endemic disease and that transmission from animal reservoirs

may sustain disease in humans if it exceeds a low threshold.

This discussion chapter summarises the contributions of this thesis to the C. difficile

and mathematical modelling literature; considers some of the key strengths, weaknesses,

and implications of my work; and highlights areas which require further research. The

discussion begins with three sections that survey the key research themes that extend

throughout the thesis.

8.1 Theme 1 – Improving mathematical models of C. difficile

Chapters 3 to 6 of this thesis present bottom-up, multi-dimensional models of C. difficile

transmission. The models in this thesis are multi-dimensional in that they capture the

possible combinations and interactions of many factors: C. difficile, gut flora status, im-

munity, age (infant vs. adult vs. elderly), and setting (hospital vs. community). This con-

trasts with many existing models, which omit key factors (e.g. immunity [96, 97, 99],

host gut flora [97] or community [93–106]) or consider only limited combinations of

these factors (e.g. many models assume that only those with disrupted gut flora can be

colonised [98, 104, 106]). The models are bottom-up in that the important epidemiological

states and phenomena (e.g. infection, asymptomatic colonisation, and recurrent infection)
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are emergent from the underlying physiological factors (immunity, gut flora, and pathogen)

or demographic attributes (age and setting) encoded into the model. This contrasts with

many of the existing models of C. difficile where the population is divided into compart-

ments to correspond directly with the epidemiological states or phenomena (e.g. infection,

recurrence, and asymptomatic carriage). I will demonstrate some of the advantages of my

approach by way of comparison to other published models.

In contrast to to my bottom-up approach, Durham et al. modelled the recurrence of

CDI by including a series of six classes differentiating those patients currently having an ini-

tial CDI, a first recurrence or an additional recurrence of CDI and those patients who have

just recovered from an initial CDI, a first recurrence of a CDI or an additional recurrence

of CDI [92]. Using these additional compartments the authors were able to accurately

reproduce the observation that the probability of recurrence is high and increases with

subsequent recurrences [113]. However, the base model presented in Chapter 3 captured

the same phenomena by accounting for the underlying physiological factors: incomplete

clearance of C. difficile following treatment and the development of immunity to toxins

following exposure. Moreover, when I extended the model to the community, the model

reproduced the observed difference in recurrence probability between hospital-onset and

community-onset CDIs without additional fitting to this outcome (Chapter 5).

Another example of the bottom-up approach can be seen in the different outcomes

that can follow asymptomatic carriage. Because the models in Chapters 3 to 6 are multi-

dimensional, there are many combinations of factors that manifest as asymptomatic car-

riage. For instance, an individual could be asymptomatic in these models because they

have intact gut flora or are immune to the toxins. These individuals will eventually

clear their colonisation and will not develop symptoms unless the relevant protective fac-

tors are removed. In the same models, patients that have recently been exposed but

lack protection from either immunity or intact gut flora will develop symptoms after

an asymptomatic (latent) period. In contrast, in many existing models, asymptomatic

carriage is only ever a precursor to symptomatic disease (e.g. [95, 96, 99, 100, 102]).

Some models do not model the protective effect of intact gut flora in asymptomatically

colonised patients because they assume that only those with disrupted gut-flora can be

colonised [95, 98, 103, 104, 106, 107]. Many models that do capture the protective effect

of immunity do not have compartments for immune, C. difficile negative individuals so

assume immune and asymptomatically colonised individuals do not clear their colonisa-

tion [98, 103, 104, 106, 107].

One contribution of this thesis to the C. difficile modelling literature is the inclusion

of dynamic and persistent immunity. Chapter 3 introduced immunity that can develop

following exposure to C. difficile, in agreement with the much reduced likelihood of initial

and recurrent infection in those with robust immune response to toxins A and B [36, 45].

This addition improved the biological realism of the model and reproduced the observed

epidemiology of recurrent infections. Moreover, accounting for the large proportion of in-

dividuals immune to infection but not C. difficile colonisation, reduced the population at
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risk of infection and helped reconcile the relatively high prevalence of colonisation and low

prevalence of infection. Other authors have accounted for this by assuming that patients

colonised before hospital admission develop symptomatic disease much more slowly than

those exposed in hospitals [96, 102] or that CDI develops from colonisation at different

rates depending on age, comorbidities or setting (hospital vs. community) [92]. Others

reduced the population at risk by assuming all patients under 65 years of age are com-

pletely immune to colonisation and infection [97]. Chapter 5 introduces two processes that

can remove immunity: gradual waning of immunity in healthy individuals and immunose-

nesence associated with ageing. Using a bottom-up approach, these dynamic processes

reproduced the age profile of seroprevalence which increases with age amongst children

but levels off below 100% for adults. The dynamic nature of immunity has been omitted

from hospital-based models because the time-scale of hospital stays (days or weeks) is short

compared to demographic processes and the probable duration of immunity (decades) [98].

The few existing hospital models that have incorporated some aspects of immunity only

track immunity amongst colonised or vaccinated individuals and therefore cannot be easily

translated to a whole-population model.

The model framework presented in Chapter 3 was extended to include adults in

hospitals and the community. The required changes were minimal because the multi-

dimensional, bottom-up approach used in the base model captured the main factors of

C. difficile epidemiology relevant to both settings. Consistent with this approach, the dif-

ferences between hospital and community emerged by emulating hospital admission and

discharge rates for elderly and non-elderly adults [114] (which led to an over-representation

of elderly or immune suppressed individuals in hospitals) and the antibiotic prescription

rates in each setting [115, 116] (which led to a high proportion of patients with gut flora

disruption in hospitals). Though it was assumed that advanced contact precautions for

patients with CDI only occurred in the hospital, the per-person transmission rates were

otherwise assumed to be the same in the hospital and the community. Nevertheless, the

above emergent differences between settings led the model to reproduce the incidence of

hospital and community-acquired CDIs once differences in treatment seeking, reporting

and misclassification of cases were taken into account. This approach contrasts with the

only other explicit model of hospital and community, where the transmission rates and

the rate of progression from asymptomatic to symptomatic colonisation had to be much

higher in hospital than in the community to account for the differences between the two

settings [92]. Though the incidence of hospital and community-acquired infections was

used to fit model parameters, other epidemiological phenomena arose naturally from the

model. The recurrence proportion, colonisation prevalence and proportion of infections

amongst elderly patients were all higher for hospitalised individuals, in agreement with

empirical studies [13, 32, 117]. The extension of the model to the community allowed an

assessment of hospital and community-based interventions on hospital and community-

acquired infections. The whole-population model demonstrated that C. difficile infections

in hospitals are more strongly dependent on transmission in the community than previ-
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ously thought, a theme which is discussed at further in the next section.

The models in this thesis are the first to capture the role of infants. This is a ma-

jor omission of the modelling literature as infants have colonisation prevalence that far

exceeds that of adults whether in the hospital, long-term-care facility or the broader com-

munity [13, 33, 35]. Modelling the role of infants has been hampered by the paucity of

studies assessing infants as a source of transmission. Though the spore shedding rate of

infants has been shown to be high [35], there are very few studies that consider exposure

to asymptomatically colonised infants as a risk factor for colonisation or infection amongst

adults or older children [118–121]. Using conservative assumptions and broad sensitivity

analysis for the infectiousness of asymptomatically colonised infants, I demonstrated that

infants could reasonably account for a large portion – perhaps even the majority – of trans-

mission in the community (Chapter 5). Consequently, under default assumptions, reducing

transmission from infants by 50% or more would be sufficient to interrupt person-to-person

transmission in the community in the absence of external sources (Chapter 6).

To my knowledge, the models in this thesis are the first mechanistic models of

C. difficile transmission to incorporate seasonality. C. difficile infections are moderately

seasonal, peaking in late winter in temperate northern-hemisphere countries [52]. Though

CDI incidence has been shown to correlate with seasonal antibiotic prescription rates,

rainfall, and the incidence of influenza, respiratory syncytial virus, and norovirus infec-

tions, the mechanisms that cause C. difficile seasonality are uncertain [54–58]. The model

in Chapter 6 suggests that seasonal variation in antibiotic prescriptions would cause a

different pattern of C. difficile seasonality than seasonal variation in pathogen transmis-

sibility or host susceptibility. Both mechanisms could explain the seasonal variation in

infection incidence, but seasonal antibiotic prescriptions would create much less variation

in colonisation prevalence, especially in the community. Therefore studying colonisation

prevalence seasonality in the community could help determine whether transmissibility or

susceptibility are seasonal and help identify potential environmental, social or biological

mechanisms.

8.2 Theme 2 – Populations that sustain C. difficile

Hospitals cannot sustain C. difficile on their own, but require importation from the com-

munity to sustain disease. This fact was demonstrated using different models and argu-

ments in Chapters 3, 5 and 7. In Chapter 3 a broad sensitivity analysis of a model of a

hospital population with admissions and discharges showed that the reproduction number

was significantly less than one for nearly all reasonable scenarios. Only hospitals or wards

with exceptionally long mean length of stay and/or very high transmission rates could have

a reproduction number in excess of one. In Chapter 5 an integrated model of hospital and

community again found that the reproduction number in the hospital was less than one (in

fact < 0.5) for a broad sensitivity analysis in which the colonisation prevalence in the com-

munity and the relative infectiousness of adults and infants were varied. The general rules
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developed in Chapter 7 to estimate reproduction numbers in populations with both locally

acquired and imported cases was applied to the case of C. difficile in hospitals. Though

the simple rules did not account for the complex interactions of immunity, gut flora, and

pathogen that were incorporated into the models in Chapters 3 and 5, the simple rules

came to the same conclusion. An extension of these rules derived to account for multi-

strain competition were applied to the ‘epidemic’ C. difficile strain NAP1/RT027. This

demonstrated that the within-hospital reproduction number was higher for NAP1/RT027

than for other strains, but still less than one. It must be noted that the latter calculations

did not account for heterogeneity in colonisation and infection risk and therefore may have

underestimated the reproduction numbers.

Chapter 6 argues that reducing transmission in the community by as little as 7-27%

could be sufficient to eliminate the disease in the entire population including the hospi-

tal. This again demonstrates that hospitals are unable to sustain C. difficile transmission

without the admission of patients colonised in the community – within-hospital transmis-

sion and the readmission of patients previously colonised in the hospital are not enough to

sustain transmission in hospitals. On the other hand, communities do not require transmis-

sion in hospitals to sustain C. difficile. When reservoirs external to the human population

were assumed not to contribute to human colonisation and infection, the community-only

reproduction number was greater than one for nearly all scenarios considered in a broad

sensitivity analysis (Chapter 5). In the interventions analysis of Chapter 6, even com-

plete elimination of transmission in the hospital reduced the incidence of infections in the

community by less than 20%.

It is important to note that I argue that hospitals are probably not disease sustaining

populations, but maintain that hospitals nevertheless amplify the burden of C. difficile in

the general population. The models in Chapters 3 and 5 found that the high antibiotic

prescription rate and transmission rate in hospitals create an environment with a high

force of colonisation, such that the prevalence of colonisation is higher at discharge than at

admission, and higher amongst hospitalised patients than adults in the general population.

In other words, the models presented in this thesis do not contradict the empirical evidence

that those who are currently or have recently been hospitalised are at higher risk of

colonisation and infection [13, 42]. Instead this thesis challenges the prevailing paradigm

of C. difficile as a predominantly or essentially hospital-acquired pathogen.

There is good reason to believe that zoonotic transmission plays an important role in

the epidemiology of C. difficile. Others have shown that there is significant overlap in the

types of C. difficile colonising humans and animals and that these types of C. difficile are

also present on retail meats and vegetables [19, 122]. Moreover whole genome sequenc-

ing of RT078 C. difficile from animals and humans suggest frequent transmission between

the two populations including the transfer of antibiotic resistance traits [66]. The lack of

any estimate of the proportion of human cases attributable to animal reservoirs or even

confirmed cases of C. difficile acquired from animals has hampered an accurate modelling

assessment of zoonotic transmission in this thesis. However, it has been possible to es-
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timate threshold proportions of transmission that, if exceeded, imply that C. difficile in

the human population is driven by exposure to an animal reservoir (i.e. requires continual

transmission from animals to be sustained). Chapter 7 uses arguments analogous to those

used to estimate the within-hospital reproduction number to estimate the animal-driven

threshold to be approximately 13% of human infections. Though the model used to derive

this estimate is simple and general, it begins to account for some of the heterogeneity in

colonisation prevalence observed in infants, long-term care facilities, and hospitals. The

model in Chapter 5 is a much more sophisticated model of C. difficile transmission but

arrived at a similar estimate of the animal-driven threshold that ranged from 3.5% to

26% across scenarios. This was equivalent to, on average, one exposure to C. difficile

from an animal source leading to colonisation per person every 9.4-175.5 years. In com-

parison, Australians have on average an episode of food-borne gastroenteritis (i.e. not

counting asymptomatic exposure) once every five years [123]. Given the relatively high

prevalence of C. difficile in meat and produce [124], it is plausible that these thresholds

are exceeded. More research is required to determine with confidence whether particu-

lar strains of C. difficile (e.g. RT078) are animal-driven. If so, eliminating these strains in

animals or preventing transmission from animals to humans would eradicate these animal-

driven strains in the human population.

These findings from Chapters 3, 5, 6 and 7 show that we must look beyond the hospi-

tal if we are to understand and control the spread of C. difficile. They demonstrate that

interventions to reduce within-hospital transmission will never be enough to prevent all

hospital-onset CDIs let alone community-onset CDI. Since colonised admissions are essen-

tial for the continued presence of CDI in hospitals, these finding support interventions that

reduce transmission from those colonised prior to hospital admission and the use of novel

interventions to reduce transmission in the community. Longtin and colleagues screened

all hospital admissions to identify asymptomatically colonised patients, who were then

treated with additional contact precautions [27]. The incidence of hospital-onset infections

decreased dramatically following this intervention. It is difficult to determine whether this

reduction was due to reduced transmission from patients admitted with colonisation or

because identifying asymptomatically colonised patients reduced the probability of pro-

gressing to symptomatic infection. Either way, this intervention demonstrated the efficacy

of interventions that address the large proportion of patients colonised prior to admission.

The UK saw a dramatic 80% decrease in hospital and community-onset CDI incidence

following the introduction of national interventions [51]. It has been argued that the

reduction was due primarily to falling fluoroquinolone prescriptions in the hospital and

the community rather than reduced within-hospital transmission [51], again supporting

interventions which go beyond reducing hospital-based transmission.

The methods used and developed in this thesis have broad applications for determin-

ing disease-sustaining populations for infections other than CDI. Chiefly, the simple rules

developed in Chapter 7 could be used to estimate the within-hospital reproduction num-

bers for other hospital-acquired infections with significant importation of cases such as
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methicillin-resistant Staphylococcus aureus [125]. Similarly, in the context of disease elim-

ination programs, a significant proportion of infections in a country or region are often

imported from other countries or regions, and this proportion is often monitored and re-

ported. If coupled with estimates of infection prevalence, these could be used to estimate

the local reproduction number and establish whether local transmission would persist in

the absence of imported infections.

8.3 Theme 3 – Classifying C. difficile infections

Classification of C. difficile infections as hospital or community-acquired typically uses a

variant of surveillance definitions endorsed by the Infectious Diseases Society of America

(IDSA) and the Society for Hospital Epidemiology of America (SHEA) [23], which are

based on interim definitions proposed in 2007 [25]. The most up-to-date recommendations

by IDSA and SHEA have not updated the classification schemes [49]. The authors recom-

mending the surveillance definitions acknowledged that they were not based on evidence

but hoped standardised definitions would make for consistent comparisons over time and

between hospitals [23]. To my knowledge, the articles contained in this thesis are the first

to assess this system of classification.

In Chapters 4 and 5, I assessed two of the three components of the classification system.

I did not assess the third component, the recommended definition of a recurrent infection

(a positive assay in the eight weeks prior to infection). The remaining components of the

recommended definitions (and its variants) classify non-recurrent infections as hospital or

community-acquired using a cut-off for time since hospital admission and a much longer

cut-off for time since hospital discharge (summarised in Figure 2, Chapter 5). I have

demonstrated that the commonly used cut-offs for recent hospital admission lead to gross

overestimation of the proportion of cases that are hospital acquired (Chapters 4 and 5).

Many patients that acquire C. difficile prior to hospital admission only begin to have

symptoms after the cut-off (usually two or three days after admission [6, 8, 23]). Though

a small proportion of these patients will have acquired the pathogen in a different health-

care setting, the majority have not and are thus incorrectly classified as hospital-acquired.

On the other hand, the same cut-off misclassifies very few community-acquired cases as

hospital-acquired. A longer cut-off of approximately five or six days better balances the

sensitivity, specificity, and precision, reducing both the number of cases misclassified and

the overestimation of the proportion of cases that are hospital-acquired.

The cut-off for recent hospital discharge is unable to adequately discriminate between

hospital and community-acquired cases for any choice of cut-off. The problem lies in

the fact that any hospital exposure in the cut-off period prior to onset of symptoms,

whatever the duration, results in a classification as hospital-acquired. However, in my

model that captured movement between hospital and community (Chapter 5), the majority

of patients colonised at discharge had acquired the colonisation prior to hospital admission

and had remained colonised for the duration of their hospital stay. This is possible as the
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proportion of patients colonised at admission is high and the mean hospital length of stay

is approximately five days in many high-income countries [126] – much shorter than the

duration of colonisation of approximately one month [30]. Consequently, even infections

that develop immediately after admission are more likely to be community-acquired than

hospital-acquired.

The overall effect of the recommended classification system and its variants is to sys-

tematically overestimate the proportion of cases that are hospital-acquired and overem-

phasise the importance of transmission within hospitals (Chapters 4 and 5). When as-

sessing interventions to reduce hospital-based transmission, the classification system may

lead researchers to underestimate the proportion of hospital-acquired infections averted,

since many of the cases thought to be preventable with better hospital hygiene (i.e. cases

classified as hospital-acquired) may in fact have been community-acquired (Chapter 6).

Adjusting the classification cut-off for recent hospital admission to five or six days will

improve classification of hospital-onset cases. Though the specificity of a given cut-off to

identify hospital-acquired infections is largely independent of the extent of within-hospital

transmission, a given cut-off will have worse precision in hospitals with less within-hospital

transmission and thus further over-estimate the proportion of cases that are hospital-

acquired when compared with hospitals with more within-hospital transmission (Chap-

ter 4). This is particularly problematic if classification systems of this type are used to

compare hospitals, as the misclassification error will be most acute for hospitals with lower

within-hospital transmission (Chapter 4).

No simple adjustment of the cut-off for recent hospital discharge adequately fixes the

deficiencies of the classification system as long as brief healthcare exposures within the

cut-off period results in a classification as hospital-acquired (Chapter 5). Though this

thesis has not evaluated such a system, a classification system that accounts for the total

duration of hospital or healthcare exposures in the weeks leading up to onset of symptoms

may be able to better distinguish hospital and community-acquired cases. Determining

a classification scheme that is simple, easy to implement, robust to differences in setting,

and adequately distinguishes hospital and community-acquired cases remains an open

challenge requiring further research from epidemiologists and mathematical modellers.

The models in this thesis accounted for classification error by emulating the classifi-

cation system during the model-fitting process (Chapters 3 and 5). Some authors have

not accounted for misclassification and therefore have used inflated estimates of hospital-

acquired CDIs to fit or validate their models (e.g. [93, 99]). This may have lead to po-

tentially significant distortions in model outcomes. Other authors have circumvented this

issue by fitting their models to the incidence of hospital-onset infections (e.g. [102]) or to

the incidence of infections stratified by location of onset (e.g. [92]) rather than the puta-

tive location of acquisition. Since symptom onset is more easily observed than pathogen

acquisition, these data are likely to be more accurate. However, the reporting of location

of acquisition may also be compromised. IDSA and SHEA recommend that CDI cases

with onset of symptoms up to 48 hours after hospital admission who have had a hospital
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discharge in the previous 4 weeks should be classified as ‘community-onset, healthcare-

facility associated disease’ [23]. That is, it is recommended that some cases who were in

hospital at the time of symptom onset should be classified as community-onset infections.

Many common hospital-associated infections such as methicillin-resistant Staphylococ-

cus aureus and vancomycin-resistant enterococci [125, 127, 128] are classified as hospital

or community-acquired with classification schemes similar to those commonly used for

C. difficile. Like C. difficile, carriage of these pathogens is often asymptomatic and oc-

curs both in hospitals and in the community. It is plausible that the cut-offs used for

these infections also lead to systematic misclassification of the place of acquisition. Math-

ematical models may be appropriate tools for informing classification schemes for these

pathogens.

8.4 Limitations

The main difficulties and limitations of the research in this thesis stemmed from a lack

of data. The complex, mechanistic models in Chapters 3 to 6 required information on

many individual-level, hospital-level or community-level variables and outcomes, includ-

ing asymptomatic colonisation, symptomatic infections, recurrences, hospital length of

stay, antibiotic prescription rates, and immunity to toxins. I did not have access to a

dataset with all these variables for a single population let alone for individuals within a

single population – such a dataset may not exist for any community. Instead my approach,

common in mathematical modelling, has been to draw on the best available research to

identify the value of parameters that are likely to be similar across all populations (such

as mean time to C. difficile overgrowth or to development of immunity), infer the typical

value of other parameters from population-level data (such as hospital length of stay and

antibiotic prescription rates), and fit remaining parameters (e.g. transmission parameters)

indirectly to other observations such as incidence and prevalence estimates. When pa-

rameter values or assumptions were particularly uncertain, influential or variable between

settings, extensive sensitivity analysis was used to explore the effect of these parameters

and assumptions. Therefore, while the models in Chapters 3 to 6 are unlikely to be accu-

rate representations of any single population, they are expected to reflect general trends

and the breadth of epidemiology. The much simpler modelling framework in Chapter 7

avoided these problems by omitting much of the complexity of CDI, limiting its usefulness

the estimation of the reproduction number and animal-driven thresholds.

It was difficult to obtain accurate estimates of the incidence or prevalence of hospi-

tal and community-acquired infections and colonisations, which were essential to estimate

the contributions of hospital-based and community-based transmission. The available esti-

mates of hospital-acquired and community-acquired infection incidence use indirect means

to classify infections as hospital or community-acquired (e.g. [6, 8]). Moreover, it is likely

that community-onset C. difficile infections – like other gastrointestinal diseases – go un-

reported and so the incidence of community-onset infections is underestimated [129–132].
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Accounting for the bias introduced by indirect classification of the location of acquisition

is a major theme of this thesis (Theme 3). However, the ability of the models to account

for this bias is dependent on the accuracy with which the model captures movement be-

tween healthcare facilities and community and the timing of infections relative to these

events. While extensive sensitivity analysis was used to assess the robustness of these

findings (Chapter 4), inaccuracies in these parts of the models may have introduced their

own biases. In particular, the model of hospital admissions and discharges was highly sim-

plified. Though the hospital admission rates differed by patient type (dependent on CDI

status, age and immune state), the model did not account for transfers between hospitals,

the higher rate of hospital admission amongst recently discharged patients and other het-

erogeneities [133–135] which would tend to recirculate some patients through the hospital

system much more frequently than others. This may have affected the assessment of the

classification system and underestimated the ability of C. difficile to persist in hospitals.

A lack of data that could be used to infer the role of infants in the transmission of

C. difficile was another limitation of the thesis. In the absence of firm estimates of infant

infectiousness, Chapters 5 and 6 used broad sensitivity analysis for the relative infectious-

ness of infants and adults. Though these chapters demonstrated that infants are likely

to be an important source of transmission in the community, the lack of data around

infant infectiousness introduced a great deal of uncertainty into a number of model out-

comes including the proportion of transmission in the community that is from infants or

asymptomatic adults (Chapter 5), the effect of reducing transmission from infants (Chap-

ter 6), and the value of the food-driven threshold (Chapter 5). Infants and transmission

from infants were only modelled in the community. This is a reasonable simplification,

as hospitalised infants often receive treatment in dedicated wards and so probably do not

constitute a substantial transmission risk for hospitalised adults. Moreover, C. difficile

rarely causes disease in infants, with recommended surveillance definitions specifically ex-

cluding infants [23, 49]. Therefore the omission of infants from the hospital sub-model is

unlikely to have interfered with the comparison of the simulated and reported incidence

of hospital and community-acquired infections.

C. difficile is common in livestock and pets and has been isolated in produce and wa-

ter [19]. However, because the minimum infectious dose (or minimum colonising dose)

is unknown [10], it is difficult to determine how often these sources lead to infection (or

colonisation). This in turn has made it difficult to develop models that account for trans-

mission from both humans and animals. For this reason, many of the results in this thesis

– such as the impact of reducing person-to-person transmission rates (Chapter 6) or the

estimates of reproduction number Chapter 5 – had to be calculated assuming no transmis-

sion from animals. Consequently, the estimates of the reproduction numbers in Chapter 5

are really estimates of upper bounds for person-to-person reproduction numbers. Argu-

ments introduced in Chapter 5 and further developed in Chapter 7 were used to estimate

the minimum frequency of transmission from animal sources that would imply that trans-

mission from animal reservoirs drives human disease. Though it is not implausible that
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transmission from animals exceeds this threshold, this thesis does not provide a way to

determine whether it is probable, nor does it estimate the effect of preventing transmission

from animals.

The initial model of C. difficile in this thesis captured only events inside hospitals

(Chapters 3 and 4). Subsequent models incorporated transmission in the community

but did not explicitly model transmission in long-term care facilities or the potential for

exposure through outpatient care (Chapters 5 and 6). The two settings in the latter models

(hospital and community) were assumed to be homogenous and well-mixed. However, since

the elderly are at higher risk of infection and infants have very high colonisation rates,

age-dependent mixing is likely to have a significant impact in the community [136]. Other

authors have modelled multiple wards within hospitals or the contact networks of patients

and healthcare workers [95–97]. In general, accounting for population heterogeneity and

non-random mixing increases estimates of the reproduction number. Consequently, the

estimates of the reproduction number and the effort required to interrupt transmission

may have been somewhat underestimated in this thesis.

C. difficile has numerous strains with different toxin profiles, antibiotic susceptibili-

ties, and epidemiology [137]. However, most of the models in this thesis (and most models

in the literature) are single-strain models. There is some evidence that strains differ in

their relative frequency of isolation between adults and infants [18], hospitals and com-

munities [138], and humans and animals [122]. Whole genome sequencing of European

C. difficile has identified two distinct transmission patterns, with genetically related iso-

lates of some (predominantly fluoroquinolone-resistant) strains clustering locally or region-

ally, but isolates from other (predominantly fluoroquinolone-susceptible) strains sharing

close genetic relationships across long distances [139]. By pooling all toxigenic strains, the

models in Chapters 3 to 6 have overlooked this variability. Thus some of the key findings in

this thesis – such as estimates of hospital and community reproduction numbers, animal-

driven thresholds and the efficacy of hospital and community-based interventions – may

have quantitatively and qualitatively different true values for individual strains. This is

demonstrated in Chapter 7 where the simple framework was extended to a strain-by-strain

analysis. Using this extension I concluded that in the study hospital ([15]) ribotype 027

had a higher reproduction number than other types.

This thesis relies on the threshold property of the basic reproduction number to ar-

gue that transmission in hospitals is insufficient to maintain endemicity in hospitals and

calculate the animal-driven threshold. However, the threshold property of the basic repro-

duction number can be blurred by a backward bifurcation if the depletion of susceptibles

is balanced by a mechanism that increases population susceptibility or pathogen trans-

missibility with increasing prevalence [86, 87]. When a mechanism of this kind exists,

certain parameter combinations allow both the disease-free equilibrium and the endemic

equilibrium to be locally stable if the reproduction number is less than but close to one.

In such a scenario, the introduction of a small number invectives is unlikely to lead to

endemic disease, but reducing the reproduction number to less than one is not a sufficient
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criterion for eliminating endemicity in the absence of importation [86, 87]. C. difficile has

a potential mechanism that may lead to a backward bifurcation; namely, the antibiotic

treatment of symptomatic patients increases the number of people in the population who

have disrupted gut flora and who are therefore at higher risk of subsequent infection and

long-lasting colonisation. However, formal bifurcation analyses were not performed for

any of the models in this thesis, so the basic reproduction numbers and animal-driven

thresholds may not be true thresholds for disease endemicity. However, I believe this is

unlikely for two reasons. First, even in populations with very high incidence of C. difficile

infections, the antibiotic treatment of these infections only accounts for a small minority

of antibiotic prescriptions. Second, if a backward bifurcation was operating for the pa-

rameter values used, one would expect to observe an abrupt (discontinuous) decrease in

prevalence and incidence once the bifurcation parameter was reduced to below a critical

threshold. This was not observed for either the transmission parameters or the antibiotic

prescription rate parameters in the analyses in Chapter 6.

8.5 Conclusion

Clostridium difficile infections are a major concern and their burden may continue to

grow as the global population ages. In this thesis I argue that we need to adopt a holistic,

integrated view of C. difficile transmission that considers people of all ages in healthcare

facilities and the community and the role of animals. Though many shortcomings and

limitations remain, this thesis advances the mathematical modelling of C. difficile trans-

mission. The findings from these models have applications for the design of improved stan-

dards for the classification of C. difficile infections as hospital or community-acquired, the

design of interventions to reduce C. difficile infection and colonisation, and the identifica-

tion of settings where C. difficile is sustained by transmission within the local population.

The identified differences between antibiotic-driven and transmission-driven seasonality

provide means to discern which mechanism is responsible for CDI seasonality. The meth-

ods I have developed and advanced have applications not only for C. difficile but many

hospital-acquired, zoonotic, and travel-associated infections.
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[34] E. Holst, I. Helin, and P A Mårdh. Recovery of Clostridium difficile from children.

Scandinavian Journal of Infectious Diseases, 13(1):41–5, 1981.

[35] Hiroyuki Kubota, Hiroshi Makino, Agata Gawad, et al. Longitudinal Investigation

of Carriage Rates, Counts, and Genotypes of Toxigenic Clostridium difficile in Early

Infancy. Applied and Environmental Microbiology, 82(19):5806–14, 2016.

[36] Ciarán P Kelly and Lorraine Kyne. The host immune response to Clostridium

difficile. Journal of medical microbiology, 60(Pt 8):1070–9, 2011.

[37] R Viscidi, B E Laughon, R Yolken, et al. Serum Antibody Response to Toxins A

and B of Clostridium difficile. Journal of Infectious Diseases, 148(1):93–100, 1983.

[38] Mary C Rea, Alleson Dobson, Orla O’Sullivan, et al. Effect of broad- and narrow-

spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of

the distal colon. Proceedings of the National Academy of Sciences, 108(S1):4639–44,

2011.

[39] Fatemeh Rafii, John B Sutherland, and Carl E Cerniglia. Effects of treatment with

antimicrobial agents on the human colonic microflora. Therapeutics and Clinical

Risk Management, 4(6):1343–58, 2008.

[40] Patrizia Spigaglia. Recent advances in the understanding of antibiotic resistance in

Clostridium difficile infection. Therapeutic advances in infectious disease, 3(1):23–

42, 2016.

[41] Claudia Slimings and Thomas V. Riley. Antibiotics and hospital-acquired Clostrid-

ium difficile infection: update of systematic review and meta-analysis. The Journal

of Antimicrobial Chemotherapy, 69(4):881–91, 2014.

[42] Sandra Dial, Abbas Kezouh, Andre Dascal, Alan Barkun, and Samy Suissa. Pat-

terns of antibiotic use and risk of hospital admission because of Clostridium difficile

infection. Canadian Medical Association Journal, 179(8):767–772, 2008.

[43] Joseph F. Rodemann, Erik R. Dubberke, Kimberly A. Reske, Da Hea Seo, and

Christian D. Stone. Incidence of Clostridium difficile Infection in Inflammatory

Bowel Disease. Clinical Gastroenterology and Hepatology, 5(3):339–344, 2007.

[44] Abhishek Deshpande, Chaitanya Pant, Vinay Pasupuleti, et al. Association Be-

tween Proton Pump Inhibitor Therapy and Clostridium difficile Infection in a Meta-

Analysis. Clinical Gastroenterology and Hepatology, 10(3):225–233, 2012.

[45] Lorraine Kyne, Michel Warny, Amir Qamar, and Ciarán P. Kelly. Association be-

tween antibody response to toxin A and protection against recurrent Clostridium

difficile diarrhoea. The Lancet, 357(9251):189–193, 2001.



BIBLIOGRAPHY 169

[46] Brett A Leav, Barbra Blair, Mark Leney, et al. Serum anti-toxin B antibody corre-

lates with protection from recurrent Clostridium difficile infection (CDI). Vaccine,

28(4):965–9, 2010.

[47] Niloufar Roshan, Katherine A. Hammer, and Thomas V. Riley. Non-conventional

antimicrobial and alternative therapies for the treatment of Clostridium difficile

infection. Anaerobe, 49:103–111, 2018.

[48] Paul Moayyedi, Yuhong Yuan, Harith Baharith, and Alexander C Ford. Faecal mi-

crobiota transplantation for Clostridium difficile-associated diarrhoea: a systematic

review of randomised controlled trials. The Medical journal of Australia, 207(4):166–

172, 2017.

[49] L Clifford McDonald, Dale N Gerding, Stuart Johnson, et al. Clinical Practice

Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update

by the Infectious Diseases Society of America (IDSA) and Society for Healthcare

Epidemiology of America (SHEA). Clinical Infectious Diseases, 66(7):e1–e48, 2018.

[50] Dale N Gerding, Thomas Meyer, Christine Lee, et al. Administration of Spores of

Nontoxigenic Clostridium difficile Strain M3 for Prevention of Recurrent C difficile

Infection. JAMA, 313(17):1719, 2015.

[51] Kate E. Dingle, Xavier Didelot, T. Phuong Quan, et al. Effects of control inter-

ventions on Clostridium difficile infection in England: an observational study. The

Lancet Infectious Diseases, 17(4):411–421, 2017.

[52] Luis Furuya-Kanamori, Samantha J. McKenzie, Laith Yakob, et al. Clostridium

difficile infection seasonality: patterns across hemispheres and continents - a sys-

tematic review. PloS one, 10(3):e0120730, 2015.

[53] L. Furuya-Kanamori, A.C.A. Clements, N.F. Foster, et al. Asymptomatic Clostrid-

ium difficile colonization in two Australian tertiary hospitals, 2012–2014: prospec-

tive, repeated cross-sectional study. Clinical Microbiology and Infection, 23(1):48.e1–

48.e7, 2017.

[54] Philip M. Polgreen, Ming Yang, Lucas C. Bohnett, and Joseph E. Cavanaugh. A

Time-Series Analysis of Clostridium difficile and Its Seasonal Association with In-

fluenza. Infection Control & Hospital Epidemiology, 31(04):382–387, 2010.

[55] Rodica Gilca, Elise Fortin, Charles Frenette, Yves Longtin, and Marie Gourdeau.

Seasonal variations in Clostridium difficile infections are associated with influenza

and respiratory syncytial virus activity independently of antibiotic prescriptions: a

time series analysis in Quebec, Canada. Antimicrobial agents and chemotherapy,

56(2):639–46, 2012.



170 BIBLIOGRAPHY

[56] S.P. Barrett, A.H. Holmes, W.A. Newsholme, and M. Richards. Increased detection

of Clostridium difficile during a norovirus outbreak. Journal of Hospital Infection,

66(4):394–395, 2007.

[57] M. Wilcox and W. Fawley. Viral gastroenteritis increases the reports of Clostridium

difficile infection. Journal of Hospital Infection, 66(4):395–396, 2007.

[58] Luis Furuya-Kanamori, Jenny Robson, Ricardo J Soares Magalhães, et al. A
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Model for Clostridium difficile Transmission in Healthcare Settings. Infection Control

and Hospital Epidemiology, 32(06):553–561, 2011.

[99] Eric T Lofgren, Rebekah W Moehring, Deverick J Anderson, David J Weber, and

Nina H Fefferman. A mathematical model to evaluate the routine use of fecal mi-

crobiota transplantation to prevent incident and recurrent Clostridium difficile in-

fection. Infection control and hospital epidemiology, 35(1):18–27, 2014.

[100] Laith Yakob, Thomas V. Riley, David L. Paterson, and Archie C A Clements.

Clostridium difficile exposure as an insidious source of infection in healthcare set-

tings: an epidemiological model. BMC infectious diseases, 13(1):376, 2013.

[101] Laith Yakob, Thomas V. Riley, David L. Paterson, John Marquess, and Archie CA

Clements. Assessing control bundles for Clostridium difficile: a review and mathe-

matical model. Emerging Microbes & Infections, 3(6):e43–e43, 2014.

[102] Christos A. Grigoras, Fainareti N. Zervou, Ioannis M. Zacharioudakis, Constanti-

nos I. Siettos, and Eleftherios Mylonakis. Isolation of C. difficile Carriers Alone

and as Part of a Bundle Approach for the Prevention of Clostridium difficile In-

fection (CDI): A Mathematical Model Based on Clinical Study Data. PLOS ONE,

11(6):e0156577, 2016.

[103] Cristina Lanzas and Erik R Dubberke. Effectiveness of screening hospital admis-

sions to detect asymptomatic carriers of Clostridium difficile: a modeling evaluation.

Infection control and hospital epidemiology, 35(8):1043–50, 2014.

[104] Jason Bintz, Suzanne Lenhart, and Cristina Lanzas. Antimicrobial Stewardship and

Environmental Decontamination for the Control of Clostridium difficile Transmission

in Healthcare Settings. Bulletin of Mathematical Biology, 79(1):36–62, 2017.

[105] Anna K. Barker, Oguzhan Alagoz, and Nasia Safdar. Interventions to Reduce the

Incidence of Hospital-Onset Clostridium difficile Infection: An Agent-Based Mod-

eling Approach to Evaluate Clinical Effectiveness in Adult Acute Care Hospitals.

Clinical Infectious Diseases, 66(8):1192–1203, 2018.



174 BIBLIOGRAPHY

[106] Brittany Stephenson, Cristina Lanzas, Suzanne Lenhart, and Judy Day. Optimal

control of vaccination rate in an epidemiological model of Clostridium difficile trans-

mission. Journal of Mathematical Biology, 75(6-7):1693–1713, 2017.

[107] Jennie H. Kwon, Cristina Lanzas, Kimberly A. Reske, et al. An Evaluation of Food

as a Potential Source for Clostridium difficile Acquisition in Hospitalized Patients.

Infection control and hospital epidemiology, 37(12):1401–1407, 2016.

[108] Lorraine Kyne, Michel Warny, Amir Qamar, and Ciarán P Kelly. Asymptomatic

Carriage of Clostridium difficile and Serum Levels of IgG Antibody against Toxin

A. New England Journal of Medicine, 342(6):390–397, 2000.

[109] Fernanda C Lessa, Carolyn V Gould, and L Clifford McDonald. Current Sta-

tus of Clostridium difficile Infection Epidemiology. Clinical Infectious Diseases,

55(S2):S65–S70, 2012.

[110] Alexandra B Hogan. Mathematical models for respiratory syncytial virus ( RSV )

transmission. Phd, Australian National University, 2017.

[111] Sonia Altizer, Andrew Dobson, Parviez Hosseini, et al. Seasonality and the dynamics

of infectious diseases. Ecology Letters, 9(4):467–484, 2006.

[112] Thomas Liggett. Continuous Time Markov Processes, volume 113 of Graduate Stud-

ies in Mathematics. American Mathematical Society, Providence, Rhode Island,

2010.

[113] Iris Figueroa, Stuart Johnson, Susan P. Sambol, et al. Relapse Versus Reinfection:

Recurrent Clostridium difficile Infection Following Treatment With Fidaxomicin or

Vancomycin. Clinical Infectious Diseases, 55(suppl 2):S104–S109, 2012.

[114] Audrey J Weiss (Truven Health Analytics) and Anne Elixhauser (AHRQ). Overview

of Hospital Stays in the United States, 2012: Statistical Brief #180. Agency for

Healthcare Research and Quality, Rockville, MD, 2014.

[115] Conan MacDougall and Ronald E. Polk. Variability in rates of use of antibacterials

among 130 US hospitals and risk-adjustment models for interhospital comparison.

Infection Control and Hospital Epidemiology, 29(3):203–11, 2008.

[116] Australian Commonwealth Department of Health - Drug utilisation sub-committee

(DUSC). Antibiotics : PBS / RPBS utilisation. Technical report, Australian Com-

monwealth Department of Health, Canberra, 2015.

[117] Sahil Khanna, Darrell S Pardi, Scott L Aronson, et al. The Epidemiology of

Community-Acquired Clostridium difficile Infection: A Population-Based Study.

The American Journal of Gastroenterology, 107(1):89–95, 2012.



BIBLIOGRAPHY 175

[118] M. H. Wilcox, L. Mooney, R. Bendall, C. D. Settle, and W. N. Fawley. A case-

control study of community-associated Clostridium difficile infection. The Journal

of Antimicrobial Chemotherapy, 62(2):388–96, 2008.

[119] Amit S Chitnis, Stacy M Holzbauer, Ruth M Belflower, et al. Epidemiology of

community-associated Clostridium difficile infection, 2009 through 2011. JAMA

internal medicine, 173(14):1359–67, 2013.

[120] Wafaa Jamal, Eunice Pauline, and Vincent Rotimi. A prospective study of

community-associated Clostridium difficile infection in Kuwait: Epidemiology and

ribotypes. Anaerobe, 35(PB):28–32, 2015.

[121] Wasef Na’amnih, Amos Adler, Tamar Miller-Roll, Dani Cohen, and Yehuda Carmeli.

Incidence and Risk Factors for Community and Hospital Acquisition of Clostridium

difficile Infection in the Tel Aviv Sourasky Medical Center. Infection control and

hospital epidemiology, 38(8):912–920, 2017.

[122] Alex Rodriguez-Palacios, Stefan Borgmann, Terence R. Kline, and Jeffrey T. LeJe-

une. Clostridium difficile in foods and animals: history and measures to reduce

exposure. Animal Health Research Reviews, 14(1):11–29, 2013.

[123] Martyn Kirk, Laura Ford, Kathryn Glass, and Gillian Hall. Foodborne Illness,

Australia, Circa 2000 and Circa 2010. Emerging Infectious Diseases, 20(11):1857–

1864, 2014.

[124] K. Warriner, C. Xu, M. Habash, S. Sultan, and S. J. Weese. Dissemination of

Clostridium difficile in food and the environment: Significant sources of C. difficile

community-acquired infection? Journal of Applied Microbiology, 122(3):542–553,

2017.

[125] Michael Z. David, Daniel Glikman, Susan E. Crawford, et al. What Is Community-

Associated Methicillin-Resistant Staphylococcus aureus? The Journal of Infectious

Diseases, 197(9):1235–1243, 2008.

[126] OECD. Health at a Glance 2015. Health at a Glance. OECD Publishing, Paris,

2015.

[127] N Deborah Friedman, Keith S Kaye, Jason E Stout, et al. Healthcare-associated

bloodstream infections in adults: a reason to change the accepted definition of

community-acquired infections. Annals of internal medicine, 137(10):791–7, 2002.

[128] Adam L. Cohen, David Calfee, Scott K. Fridkin, et al. Recommendations For Met-

rics For Multidrug-Resistant Organisms In Healthcare Settings: SHEA/HICPAC

Position Paper. Infection Control & Hospital Epidemiology, 29(10):901–913, 2008.

[129] M.P.M. Hensgens, O.M. Dekkers, A. Demeulemeester, et al. Diarrhoea in general

practice: when should a Clostridium difficile infection be considered? Results of a



176 BIBLIOGRAPHY

nested case-control study. Clinical Microbiology and Infection, 20(12):O1067–O1074,

2014.

[130] D Van Cauteren, H De Valk, S Vaux, Y Le Strat, and V Vaillant. Burden of

acute gastroenteritis and healthcare-seeking behaviour in France: a population-based

study. Epidemiology and Infection, 140(4):697–705, 2012.

[131] Elaine Scallan, Timothy F Jones, Alicia Cronquist, et al. Factors associated with

seeking medical care and submitting a stool sample in estimating the burden of

foodborne illness. Foodborne Pathogens and Disease, 3(4):432–8, 2006.
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