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Abstract

High-temperature geothermal wells are drilled in stages and constructed of sev-
eral concentric steel casings that are cemented over their entire external sur-
face for sealing and structural support purposes. The structural integrity of such
casings is essential during drilling and for safe operation after the construction
phase. High pressures can in some cases cause casing failures but the most pow-
erful mechanical force is driven by large temperature changes from an initially
cooled to a hot operating well. Thermal expansion generates large stresses in
the casings which are constrained by cement and therefore, in conventional high-
temperature wells, permanent plastic strains are formed as the wells warm-up to
production temperatures. Elevated temperatures cause material strength reduc-
tion, further increasing the risk of failures. Casing failures, e.g. collapse and
axial tensile rupture, can occur during the lifetime of wells and it is important to
analyze the load history of casings thoroughly to evaluate risks of such failures.
With recent increasing interest in drilling deeper geothermal wells, for seeking
higher enthalpy geothermal fluids, the strength of the casing becomes one of
the limiting factors due to higher temperatures, pressures, and difficult corro-
sive conditions. The structural integrity of the casing of otherwise productive
wells can determine if they are a success or not. Nonlinear material properties,
large displacements and connections between multiple contacting surfaces form
a structural system which in this thesis is analyzed numerically with the use of
the nonlinear finite-element method (FEM). The resulting models provide tools
that are used for structural analysis in support to failure analysis, well design and
material selection. This thesis describes problems of casing failures and struc-
tural analysis that provide a platform for better understanding and improvements
of casings in high-temperature geothermal wells.

Keywords: High-temperature geothermal wells, steel casings, thermal expansion,
thermo-mechanical loads, structural analysis, nonlinear finite-element analysis.






Utdrattur

Héhitaborholur eru boradar { 4féngum og f6dradar med stalf6dringum sem eru
steyptar ad utanverdu. Vegna Oryggissjonarmida verdur ad vera hagt ad beisla
jardhitavokva jafnt { borun sem og { vinnslu eftir ad framkvemdum er lokid. I
6llum tilvikum parf burdarpol f6dringa ad vera tryggt. A medan borun stendur
er borholum haldid koldum med hringd®lingu borledju eda ddelingu med vatni.
begar per hitna eftir borun getur hitastigshakkunin ordid umtalsverd. Varma-
pensla veldur spennumyndun { f6dringunum vegna skordunar steypunnar. Pegar
hefdbundnar hihitaholur hitna myndast pvi hdar spennur sem { flestum tilvikum
valda varanlegum formbreytingum. AdJ auki veldur hatt hitastig styrktarveikingu
i stéli og steypu sem leidir til aukinnar hattu 4 skemmdum. F6dringaskemmdir,
s.s. gilpmyndun og togslit, geta ordid & mismunandi stigum 4 liftima borholna
og er pvi mikilvegt ad greina itarlega dlagssdgu f6dringa til ad skilja moguleg
alagstilfelli og hattur sem fylgja. Med auknum dhuga 4 djdpborun til vinnslu
4 orkurikum jar@varmavokva verdur burdarpol fédringa einn af takamarkandi
pattunum vegna herra hitastigs, prystings, og aukinnar efnisaraunar i formi taer-
ingar. Afkastageta borholna redst ekki einungis af pvi ad gjofular &dar séu
rofnar { borun heldur einnig af liftima mannvirkisins. Olinulegir efniseiginleikar,
ferslur og tenging 4 milli yfirborda i borholum mynda burdarpolskerfi sem ekki
er audleysanlegt med einfoldum reikniadferdum. Burdarpolskerfid er pvi leyst
hér med einingaadferdinni (e. nonlinear finite-element method) par sem 6linuleiki
kerfisins er tekinn med i reikninginn. Likonin sem préud hafa verid hér er
hagt er ad nota til burdarpolsgreiningar 4 f6dringum til varnar skemmdum og til
adstodar vid honnun og efnisval. Doktorsritgerdin lysir f6dringaskemmdum og
burdarpolsgreiningum sem byggja grunn til betri skilnings 4 burdarpoli f6dringa
hahitaborholna.

Lykiloro: Hahitaborholur, stdlfédringar, varmapensla, varmadlag, burdarpols-
greining, 6linulega einingaadferdin.
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Nomenclature

pwh
RQ

Area of the distributed surface resistance
Outside area of surface of which pressure is defined normal to
Specific heat (J/kg®°C)

Outer diameter (m)

Young’s modulus (Pa)

Tangent modulus (Pa)

Nodal forces applied to an element
Foundation stiffness

Thermal conductivity coefficient (W/(m°C))
Compressive strength of cement (Pa)
Contact normal pressure (Pa)

Wellhead pressure (Pa)

Coefficient of determination (-)

Thikness (m)

Time
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Xvi

Initial wellhead temperature (°C)
Final wellhead temperature (°C)
Wellhead temperature (°C)
Wellhead displacement (m)
Strain energy (internal work)
Volume

external work

Strain-displacement matrix

Elastic stiffness matrix (stress-strain matrix)

Deformation gradient

acceleration (D’ Alembert) force vector

Element pressure vector

Element thermal load vector

Matrix of shape function derivatives
Identity matrix

Element stiffness matrix

Element foundation stiffness matrix
Element mass matrix

Shape function matrix

Applied pressure vector

Rotation matrix

Acceleration vector

Shape change stretch matrix

NOMENCLATURE



{u}
{w}
{wn}
{Xa}

T0

AT,

Th
Tmax

Tlim

Ovm.pr

Jvm.an

{e}
{0}

Nodal displacement vector
Displacement vector

Motion normal to surface

Current geometry

Subscript for steel

Subscript for cement

Subscript for rock formation
Thermal expansion coefficient (°C™1)
Wellhead temperature change (°C)
Coefficient of friction (-)

Possion’s ratio (-)

Density (kg/m?)

Contact cohesion (Pa)

Maximum shear stress (Pa)

Limit shear stress (Pa)

Equivalent shear stress (Pa)

Yield strength (Pa)

Von Mises stress in the production casing (Pa)
Von Mises stress in the anchor casing (Pa)
Standard deviation (-)

Strain vector

Stress vector

Matrix of Cauchy (true) stresses
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Glossary

Annulus

API

BC (1)

BC (2)

Blow-out

BPD

Burst

Casing

CBL

The void between the drill pipe and the casing, two
casings or a casing and the formation.

American Petroleum Institute.

API buttress thread casing, also referred to as
BTC, widely used in geothermal wells.

Boundary conditions.

Uncontrolled flow of fluid (steam) out of the well
into the formation or to the surface.

Boiling-point depth curve.

Deformation because of too high net internal pres-
sure, that can ultimately result in loss of pressure.

Steel pipe that is used to seal off unwanted feed
zones, for well control and blow-out prevention
during drilling and to be a conduit for formation
Sfluids.

Cement bond log, sonic log used to assess cement
quality behind casing.
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XX

Cement

Collapse

CSS

Dope

EOB

Free water

Huff and puff

KOP

Kill-line

Killing wells

Load history

MD

Multi-stage cementing

GLOSSARY

Well cement blends are often referred to as cement
only. This applies both to wet cement grout as well
as hardened cement.

Deformation in a pipe or casing because of too
high net external pressure.

Cyclic steam stimulation also known as huff and
puff, where thermal stimulation is used to reduce
viscosity of heavy oil in order to induce flow.

Grease for threaded connections.

End of build, the depth in a directionally drilled
well where deviation stops.

Free water is the residual water that is not required
for cement hydration.

Refer to CSS.

Kick-off point, the depth in the well where devia-
tion initiates in directional drilling.

Flow line in the blow-out prevention (BOP) stack
intended for injecting fluids, e.g. heavy mud, for
well control.

The procedure of pumping water or other injection
fluids into wells to control/stop flow.

Sequence of loads, e.g. pressure, temperature,
gravity or other forces, of a structure.

Measured depth.
Multi-stage tools are used to cement a casing in

two or more stages in order to achieve a good ce-
ment coverage.



OCTG
Plastic strain

(plastic deformation)

Premium connections

RCC

Running casing

SAGD

Shutting-in

Stab-in

Stand-off

Strain
(elastic deformation)

Tensile rupture

TVD

Yield strength

XX

Oil country tubular goods.
Permanent (nonrecoverable) deformation
occurring at stresses beyond the yield strength of

metallic materials.

Proprietary connections that have superior fea-
tures such as increased strength and sealing ca-

pacity.

Reverse circulation cementing, a cementing
method where cement is pumped into the annulus.

Casing is run in hole, e.g. put into the well.

Steam assisted gravity drainage, where steam is
used to recover heavy oil in horizontal wells.

Closing of wellhead valves.

A tool for allowing cementing through the casing
shoe.

The distance of a drillstring, tool or casing to an
external casing or the wellbore.

Recoverable deformation of materials occurring
at stresses below the yield strength of metallic ma-

terials

Failure in connection or casing caused by exces-
sive tensile loading.

Total vertical depth.

Tensile or compressive stress that results in first
vielding of the material.



XXii GLOSSARY
Wellbore A drilled hole.

Work-over Wells may need to be worked over, e.g. by drilling

out obstacles such as scaling buildup in the well
with a work-over rig.
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Introduction

In geothermal power production, the energy from deep heat sources within the
earth is extracted from its crust, with water as the main energy carrier. Wells
are drilled into hydrothermal reservoirs to transfer the geothermal fluid up to
the surface. Such wells are located in high-temperature geothermal fields which
are defined as such if the temperature at 1000 m depth reaches beyond 200°C
(Bodvarsson, 1961; Palmason, 2005; Axelsson et al., 2006). As the energy rich
geothermal fluid flows upwards it boils and in most cases a mixture of steam and
water is present at the wellhead (Palmason, 1980; Sveinbjornsson and Thorhalls-
son, 2014). In hot areas or where production has caused pressure drawdown in
the system, pure steam with very little moisture is extracted. Closer to the heat
source, the steam can be in a saturated, superheated or even supercritical state.
The idea of targeting such high-enthalpy sources, is that fewer number of wells
are needed to produce same amount of energy, leading to potentially reduced
investment costs and environmental footprint.

High-temperature geothermal wells are constructed of several concentric steel
casings that are fully cemented externally. The casings are thus bound together
as well as to the surrounding rock formation with a cement sheath which also
acts as a sealant. The structural integrity of these casings is essential for the uti-
lization of high-temperature geothermal wells. Casing collapse can reduce the
cross-section of the well significantly, leading to reduced power output and hin-
dering accessibility, e.g. for work-over or logging tools. In worst case scenarios,
failures can cause risk of steam blow-out in the well and/or to the surface. Dur-
ing the lifetime of a typical well, the casings are subjected to multiple thermo-
mechanical loads that can cause casing failures which could be avoided if careful
measures are taken in well construction and operation during its lifetime. With
recent increasing interest in drilling deeper geothermal wells, the strength of the
casing is one of the limiting factors when compared to conventional wells be-
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cause of increased casing depths, higher pressures and temperatures and more
difficult corrosive environment.

Although high pressures provide numerous design challenges, the most chal-
lenging load in geothermal wells is caused by thermal expansion driven by large
temperature changes and constraints. When wells warm up after being drilled
in cooled conditions, thermal stresses are produced in the casings, eventually
resulting in permanent deformation. Thermal expansion and sudden boiling of
enclosed annular fluids can also generate high pressures that can lead to failures.
Large wellbore temperature changes and fast heating/cooling rate, e.g. while
flow testing or killing producing wells with water, result in large axial stresses
in the casing. Radial and hoop stresses are present as well as a result of ther-
mal expansion when casings expand outward into the cemented annulus, while
wells heat up and contract inwards if they are allowed to cool down again. The
mechanical force because of thermal expansion of the casing also materializes in
wellhead displacement, but wellheads are known to rise slightly during discharge
(wellhead growth) and decline when they cool down. Thermal expansion, mate-
rial strength reduction at elevated temperatures, corrosion and cyclic loading are
among the problems that can cause structural conditions that can be detrimental
to casings. Casing failures appear in numerous modes, e.g. structural and chemi-
cal in the form of corrosion. Structural failures occur mainly in the form of axial
tensile rupture, collapse, burst and material yielding. Forms of corrosion such as
environmental cracking, e.g. embrittlement, stress corrosion cracking, corrosion
fatigue, where combination of loads and corrosive environment is required is
regularly seen in geothermal applications. Failures presumably develop due to a
combination of several factors, e.g. the setup of the well, material properties and
impurities, as well as various loads. If one of these failures occur in the casing,
flow could be restricted and logging or workover of the well can become impos-
sible. Additionally, operating the well can become dangerous because of the risk
of well blow-out between casings or out through the formation, or other catas-
trophic well failures. Therefore, it is important to understand comprehensively
the structural system and its response to various loads during well operations.



The objective of the PhD study is to study the structure of high-temperature
geothermal wells, by constructing nonlinear structural models of the cased sec-
tion and to use the models to analyze various load scenarios and casing failures.
The resulting models provide tools which can be used to improve well design by
analyzing casing design, material selections and various expected load scenarios.
The results from the study furthermore provide an insight into the structural re-
sponse of high-temperature geothermal well casings to wellbore temperature and
pressure loads. By including large displacements, nonlinear material properties
and nonlinear connectivity between the surfaces that are in contact, e.g. between
steel and cement, increased knowledge is gained on the structural integrity of
casings in high-temperature geothermal wells.

Calculating the structural response of cemented steel casings, wellhead and sur-
rounding rock formation to loads, e.g. temperature and pressure, is a complicated
task. This is mainly due to the nonlinear behavior of material properties, large
displacements, friction between the numerous contact surfaces that are present
and small diameters compared to depth of wells. Therefore, the structural sys-
tem of the cased well is analyzed numerically with the use of the nonlinear finite-
element method (FEM) with ANSYS. Both thermal and structural FEM models
are used. The purpose of the models is to evaluate the structural integrity of
casings in conventional high-temperature geothermal wells when subjected to
transient temperature and pressure loads.

The scientific contribution of this study can be summarized as:

. Accurate analysis of the structural response of high-temperature geother-
mal wells to transient and non-transient thermo-mechanical loads.

. Mapping of possible load scenarios and casing failure modes.

. Analysis of heat-transfer, stresses and strains and risks of casing failures
by developing nonlinear FEM models of cased wells.

. Measuring and using wellhead displacement (i.e. wellhead growth) of dis-

charging high-temperature wells to validate FEM models.
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The results can be divided into three categories; data and information acquisition,
wellhead displacement survey and nonlinear finite-element modeling. Some of
the main results of the study are listed here:

Data and information acquisition:

1.

Throughout the PhD project, information on casing failures have been col-

lected and as a result the main failure modes of casings in high-temperature

geothermal wells have been identified as collapse and coupling tensile rup-

ture. The particular shape of casings that have collapsed during warm-up

or operation of wells is of special interest.

The main load scenarios have been determined as;

— Residual stresses from manufacturing,

—  Axial load during installation due to casing self weight,

—  Compressive loads during thermal recovery due to thermal expan-
sion,

—  Intensive compressive loads during discharges due to sharp tempera-
ture changes,

— Radial loads due to pressure from expanding liquids in casing-to-
casing annulus,

— Axial tensile load when wells are closed or quenched with cold water.

The load history of casings and cyclic loads have shown to be important

for accurate structural evaluation of casings.

Wellhead displacement survey:

I.

For wells that are initially cold at the surface, the upward wellhead dis-
placement is very fast in the first minutes of discharge and then slows
down, following exponential decay.

For wells that are initially hot at the surface, some or full wellhead dis-
placement has already taken place and in some cases no displacement is
observed when wells are discharged. In other cases the initial displace-
ment was slower than was observed in initially cold wells.

Items 1. and 2. above indicate that stresses and strains produced as a result
of thermal expansion are less severe in initially warm wells compared to
initially cold wells because of lower thermal gradient between casings due
to a longer warm-up period.

A failed discharge attempt where gas pressure was released without initi-
ating discharge showed a downward displacement that was roughly 2.5%



of the final observed displacement when the well was later discharged suc-
cessfully. This suggests that wellhead displacement (i.e. wellhead growth)
is primarily governed by temperature changes of the casing rather than by
wellhead pressure.

Nonlinear finite-element modeling:

1.

2.

A two-dimensional axi-symmetric model of the cased section of a well is

in good agreement with the wellhead displacement survey.

The two-dimensional axi-symmetric model was adopted to structurally an-

alyze the Iceland Deep Drilling Project well IDDP-1 where several casing

failures were observed in a video log after the well was quenched with cold
water. The main findings of the FEM analysis are:

—  Stress concentrations are seen at the locations of casing shoes and
thickness changes of neighboring casings.

—  The production casing is subjected to thermal shocks during the oper-
ation history and the anchor casing is protected against these shocks,
provided that the thermal insulation of the cement in between is sound.

—  After 8 hours of quenching, large thermal gradients still exist between
casings and that slower cooling would be ideal if possible in such
critical situations.

Three-dimensional collapse analysis in a section of a multiple cased well.

The results show that:

—  Residual stresses, impurities and defects greatly reduce the collapse
resistance of casings.

—  Non-uniform loads are more likely to produce collapses.

—  Structural support of cement increases the stability of casings and
higher pressure is needed for collapse to occur than for casings with-
out cement support. This shows the importance of cement support.

—  The collapse shape of casings with cement support resembles the
ones seen in operating wells, but without cement support casings col-
lapse completely.

Two-dimensional axi-symmetric model of a cemented buttress threaded

coupling. The results show that:

— At the upper and lower regions of the couplings indications of sub-
stantial cement damages are seen, this is expected since the couplings
act as anchors for the casing in the cement.

—  Stress concentration is primarily seen in the first 3-4 threads of the
connections.
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This thesis is structured as a monologue with a collection of papers in appendix.
The intention is to connect together and summarize the content of the papers
and provide additional information that is not included in the papers. Following
the introduction chapter, a background chapter summarizes past knowledge of
structural analysis of casings. High-temperature geothermal wells, casing loads
and casing failure modes are described in the following chapter. The nonlinear
finite-element method is described in chapter four. Chapter five describes models
and field studies. Chapters six and seven summarize the main results. In the
appendix the main conference proceedings papers and journal articles are found.
Papers 1, II, III and V are conference papers and papers IV and VI are journal
articles. The structure of topics related to papers is illustrated in Fig. 1.1.

Topic Paper  Year Published at:
Collapse analysis I 2011 Stanford
>
Probabilistic I 2012 Stanford
design analysis
-
Il f
—Wellhead 2013 Stanford
displacement
L survey IV | 2013  SIMS
 Wellhead
displacement \Y 2015 WGC
L analysis
( Structural VI 2015  Geothermics

modeling & load
_history of IDDP-1

Vs

VII 2016 Geothermics

Coupling/cement
interaction VIl 2017 SIMS

Figure 1.1: Structure of topics related to published papers.

The mentioned papers that are included and discussed in this thesis are:
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Background

In this chapter, a background is given on problems and analyses related to the
subject of this thesis. The finite-element method (FEM) is a numerical method
devised and refined by mathematicians, physicists and engineers for over half a
century. Since the early 1960s a large amount of research has been devoted to
the technique and a large number of publications on the finite-element method is
available (Bathe, 1996). The "nonlinear” finite-element method is used to further
describe and model nonlinear behavior, e.g. large geometrical displacements,
nonlinear material properties and contact behavior between surfaces. The non-
linear finite-element method can be used to perform structural analysis that goes
beyond the elastic range of materials, i.e. in plastic analysis. The method is
therefore practical to use for analyzing structural problems of high-temperature
geothermal wells where plastic strains can be produced in casings if loads are
large enough. The method is also useful for buckling analysis which in this the-
sis is used for analyzing collapse of casings. Furthermore, the method is used for
solving contact problems, e.g. surface connectivity and friction between surfaces
which is also important for analyzing collapse of cement supported steel casings
and for transfer of loads between surfaces, e.g. heat and pressure.

Maximum formation temperatures of hydrothermal geothermal systems are gov-
erned by saturation temperatures, i.e. by the boiling point depth curve (BPD)
(Steingrimsson, 2013). Typical wellhead temperatures in high-temperature geother-
mal wells are in the range of 200-300°C, although higher temperatures are seen in
some cases. For instance, reservoir temperatures in the Krafla high temperature
geothermal area in Iceland typically range from 210°C to 350°C (Ragnarsson,
2003) and the wellhead temperature of the Iceland Deep Drilling Project well
IDDP-1 located in that reservoir reached 450°C and 140 bar-g which is the high-
est recorded operational temperature in a geothermal well (Hauksson et al., 2014;
Hoélmgeirsson et al., 2010; Elders et al., 2012; Pélsson et al., 2014).

9
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Temperatures are normally much lower in oil wells but in some applications, the
temperatures are similar as in high temperature geothermal wells. High Pressure
High Temperature (HPHT) oil wells are defined as such when expected shut-
in pressures exceed 690 bar or static bottom hole temperatures are higher than
150°C (Norsok D-010, 2004). Such high wellhead pressures are however not
expected in hydrothermal reservoirs.In thermal oil wells, such as Steam Assisted
Gravity Drainage (SAGD) and Cyclic Steam Stimulation (CSS) wells, casings
and their connections experience extreme loads due to exposure to temperatures
up to 350°C (Nowinka and Dall’ Acqua, 2011). Due to these high temperatures,
elasto-plastic behavior needs to be considered in casing design. Although seek-
ing different goals, synergies exist between geothermal and oil and gas applica-
tions where similar casing failures are seen.

The finite-element method has been used to generate models of casings in oil
and gas for decades, mostly for premium connection design where features such
as threadform and sealing surfaces are optimized. Limited research has however
been devoted to structural modeling geothermal wells. Partly due to difficult
dimensions, i.e. their diameter to depth ratio, and consequently models are often
confined to solving specific local problems. With ever increasing computing
power, modeling wells in 3D with complex geometry and solving in conjunction
local and global stress and strain state is becoming more viable.

Few FEM analysis of wells have been published where the frictional character-
istics between surfaces in contact are taken into account. Da Silva et al. (1990)
introduced sliding interfaces between cement and formation in order to predict
onset of casing failures due to compaction of high porosity chalk during reservoir
depletion. They conclude that the results are sensitive to assumptions concerning
the sliding along the cement/formation interface. Philippacopoulos and Berndt
(2002) presented a two-dimensional FEM model of a cross section of a double
cased geothermal well with the objective of evaluating the stress field of the ce-
ment. In the study, the need for further general research to focus on the transient
structural response of a geothermal well was emphasized. Gretarsdottir (2007)
presented an elastic two dimensional FEM model of a geothermal well where
surfaces were bound together and no slippage was allowed. A three-dimensional
push-out model was used and push-out test results were obtained in a labora-
tory. This, along with the two dimensional model, was used to estimate the
displacement of the production casing at the surface due to thermal expansion.
Magnusdottir (2009) presented a nonlinear two-dimensional FEM model of a
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geothermal well, where the upward displacement of casings was analyzed with
regards to the bonding characteristics between the production casing and cement,
using contact elements. The results for no-, partial- and full separation between
the surfaces, were compared and demonstrated that the defined contact behavior
greatly affected the results. Ferla et al. (2009) proposed a linear axi-symmetrical
model of a short well section with a casing surrounded by cement and rock, where
thermal-induced stresses around a cased injection well were modeled. The model
included two types of rock which showed that interbedding layers of relatively
soft and stiff rock types have a major effect on the thermal stress distribution
along the casing. They also analyzed casing pre-tension and its potential effect
on the reduction of the thermal compressive stress, but concluded that the amount
of pre-tension needed depends on the rock formation surrounding the casing.

Threaded connections have been specially analyzed with FEM models for eval-
uating their performance to anticipated loads. These have mainly been aimed
at premium connection designs as discussed below. Johnson (1984) presented
a linear FEM model of a threaded tubular connection where elastic loads were
considered and gaps between elements "in connection" were defined. Since then
with increasing computer processing capabilities, the potential has been increas-
ing for solving larger and more detailed models that include nonlinearities, e.g.
plasticity and contact between surfaces. Maruyama et al. (1990) examined phys-
ically the leak resistance of America Petroleum Institute (API) buttress thread
coupling (BTC), API long round-thread couplings (LTC) and premium coupling
for temperatures up to 354°C. The results showed that the seal limit temperatures
of API BTC is 200°C and for API LTC it is 300°C, but the premium connection
showed higher leak resistance where no leakage was seen for testing temperature
of 354°C. They also used a FEM model of premium connections, a regular casing
material grade K55 coupling, a heavy K55 coupling and a regular C95 coupling,
to model the contact pressure of the connections. The conclusion was that in or-
der to increase the contact pressure and thus the coupling sealing capacity, a heav-
ier or higher grade coupling should be used. This was based on the results that
the regular coupling looses its seal due to a greater deformation than in the cou-
plings made of stronger material. Secondly, they recommended the use of grade
C95 material that contained 0.45% molybdenum as it showed less reduction in
seal interference at elevated temperatures than regular C95 material. Hilbert and
Kalil (1992) used FEM models to analyze premium connections and verified the
model results with strain gauge data from full-scale tests, pointing out that using
combination of FEM and full scale testing can reduce cost and time and increase
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confidence in connection use. In the model they used so called slide lines, as an
improvement from previously used gap elements, where search algorithm was
used to determine locations of nodes. Additionally, they used nonlinear stress-
strain curves and large displacements, necessary when modeling response un-
der extreme loads and failure. Dvorkin and Toscano (2003) analyzed, internal
pressure, thermal, jump-out and torque loads on threaded connections with 2D
axisymmetric models. Although pointing out that there is not enough available
knowledge to quantitatively predict the sealing capability of a connection, they
devised sealability indicators for comparing the sealing potential of different seal
designs. They also showed the improvement of match between experimental and
FEM results by the inclusion of dope pressure. Teodoriu and Falcone (2009) de-
vised a FEM model of a threaded connection where a stress concentration factor
was defined in order to analyze low-cycle fatigue (LCF) of the coupling. The
results were then compared to full scale experiments. They showed that under
extreme loads (approximately 200°C temperature variation) the LCF resistance
of a N80 grade, 18 5/8 inch outer diameter casing with buttress threaded con-
nections can be as low as 10 cycles. To ensure that the total number of cycles
to failure remains higher than 100 they showed that a temperature variation of
less than 80°C is required. FEM analyses are regularly used along with full scale
physical testing in connection evaluation and design, e.g. in literature by Hilbert
and Kalil (1992), Schwind et al. (2001) and Dvorkin and Toscano (2003), and
in proprietary connection design that is not published. Guidelines for evaluat-
ing threaded connections was developed by the petroleum industry, API Rec-
ommended Practice 5C5 for Evaluation Procedures for Casing and Tubing Con-
nections (API RP 5C5), where numerous full-scale physical tests are required
to capture variations in performance due to variations in critical dimensions and
material properties (Hilbert and Kalil, 1992). FEM models are progressively re-
placing the use of full-scale tests in the design phase of new connections and
the method has been incorporated in combination with full-scale tests (Dvorkin
and Toscano, 2003). The current evaluation standard (ISO13679/API5CS5) ex-
cludes temperatures above 180°C and loads beyond pipe body yield (Nowinka
and Dall’Acqua, 2011). A new protocol for evaluating casing connections for
thermal well applications, Thermal Well Casing Connection Evaluation Protocol
(TWCCEP), has been developed for wells that reach maximum temperatures of
200-350°C (Nowinka and Dall’ Acqua, 2011), and has now been adopted as inter-
national standard ISO/PAS 12835:2013 Qualification of casing connections for
thermal wells. The standard provides procedures for evaluating threaded casing
connections for service in intermediate or production casing strings of thermal-
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recovery applications, specifically SAGD and CSS, but might also be used for
other extreme-service wells in which casings undergo full-body yielding as oc-
curs in geothermal wells (ISO/PAS 12835:2013, 2013).

FEM modeling has also been used to study the effects of defects on collapse
pressure of pipes, e.g. by Assanelli et al. (1998), Dvorkin and Toscano (2003),
Pattillo et al. (2004), Sakakibara et al. (2008) and Netto (2009). Collapse of ce-
mented casings that occurs during operations of wells is a different case because
of the lateral and radial support the external cement sheath provides. This is to
some extent comparable to horizontal soil supported pipes that have greater ca-
pacity to withstand net external pressures than pipes without support, e.g. a study
by Watkins and Anderson (1999). In compact soil the cross section remains sen-
sibly circular, until failure by wall-buckling takes place (Bulson, 1982). Likewise
for burst design, the support of external cement sheath increases burst resistance
of casings (Kalil and McSpadden, 2011). W. J. Rodriguez (2003) presented a
plain strain model with casing and cement sheath bonded together. They varied
the cement material properties of the casing-cement sheath system to analyze
which cement type is best able to reduce radial and von Mises stresses in the
casing. One of their result was that cement with high Young’s modulus and
high Poisson’s ratio have the capability to compensate more stress internally in
its structure and pass less stress to the surrounding media, pointing out that this
would be an ideal system to reduce collapse-loading conditions to the casing,
but they also note that such cement properties can be difficult to achieve. Berger
et al. (2004) analyzed collapse resistance of eccentrically centered casings, voids
in cement and formation, channels in the cement and declining pore pressure in
voids with a 2D FEM model of a cross-section of a well with casing and cement
sheath fully bonded together. The results showed that for a completely cemented
annulus, eccentricity has little effect on casing collapse resistance. Voids in the
formation up to 60-80° wide showed increase in von Mises stresses in the casing,
depending on if soft or hard cement properties were used. They analyzed effect
of pore pressure decline in the void on casing collapse resistance, resulting in
more unstable casing which in turn generated higher stresses as the pore pres-
sure declined. A void in the cement annulus showed similar results as for voids
in the formation and they concluded that the location of voids is not important,
they only generate unstable conditions which increase the possibility of casing
collapse. Yuan et al. (2012) also analyzed the effects of voids in cement and ec-
centricity on stresses in the production casing and cement with a 2D FEM model
of a horizontal cross-section of a well with casing, cement sheath and formation
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bonded together. They similarly analyzed the elasticity of cement by comparing
results from using elastic cement versus brittle cement material properties. Their
main results include that alone, the casing eccentricity did not have much effect
on the casing and cement under the modeling loads and geometry, and adding
voids in the cement generated the worst geometric conditions. Hidayat et al.
(2016) used a FEM model to analyze structural integrity of casings in thermal
environment of steam injection wells where collapse of casings due to external
formation pressure and thermal cycles were analyzed. The results show that the
capability of casings to withstand external pressures decreases as the number of
thermal cycles increase and that casings may fail under external pressure below
its specified collapse strength. Casing failure as a result of expansion of trapped
fluid in the annulus between casings have been discussed as a suspected cause of
casing collapse (Bjornsson et al., 1978; Magneschi et al., 1995; Southon, 2005).
Some examples of casing collapse where the deformation (pucker or bulge) was
drilled out however, show good cement behind the casing which indicates that
other factors, e.g. impurities, defects, material properties and axial loads, could
have greater impact than previously suspected. An examples of such casing fail-
ure is shown in section 3.4 in this thesis.

Maruyama et al. (1990) analyzed the bi-axial collapse resistance of casings under
axial tensile stresses. They found that by using quenched and tempered, a perfect
elastic/plastic material, e.g. L80, C95 and P110, the biaxial collapse pressure
is adequately predicted by API collapse equation based on the von Mises yield
criterion. They, however, showed that for work hardening material such as K55
the API collapse equation applies only for small axial tensile stresses and that the
measured collapse resistance is significantly higher than those predicted by the
API equation. They also showed that due to the work-hardening characteristics
of a grade K55 casing, it may be superior to higher-grade casing for thermal well
service where high residual axial tensile stresses may be present. Wu et al. (2008)
discuss the possibility of biaxial casing collapse where thermal axial compressive
stress is present during steam injection and the increased risk due to reduced col-
lapse resistance where the casing could easily collapse by a small external pres-
sure. Dall’ Acqua et al. (2012) discuss and analyze collapse responses of casings
in thermal well applications, where stresses and strains go beyond yield. One of
their conclusions is that collapse behavior is clearly dependent on the assumed
loading path, i.e. the sequence of temperature and external pressure. They show
that low net external pressures can lead to ovalization (representing collapse)
when combined with thermally-induced axial strain if the cement sheath does
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not offer adequate radial support. They also show that after full-section yielding
of a casing with initial external pressure, the rate of ovalization is actually lower
if it is cooled from 350°C (resulting in axial tension) than in heating (resulting in
axial compression). They also emphasize the importance of considering material
response at a particular strain level rather than referring to a stress level. Material
post-yield stiffness is also discussed and two examples are shown. Both materials
share identical yield strengths which is reached at the same strain level. How-
ever, one material has a flat yield plateau and a rounded stress-strain response at
higher strain levels and the other has a smaller elastic range followed by a gradual
departure from the elastic curve. The former is representative of some materials
at ambient or low-temperatures and the latter is typical of OCTG (Oil Country
Tubular Goods) materials at elevated temperature. Therefore, they conclude that
yield strength alone, listed by material grade, must not be used as a sole base for
material selection.

Further discussion on geothermal well design, casing loads and failures follows
in the next chapter.
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Geothermal wells
3.1 Geothermal energy utilization

Geothermal activity is primarily found near tectonic plate boundaries of the earth.
Iceland’s location on an intersection between the Mid-Atlantic Ridge and the Ice-
land hot spot hosts favorable conditions for geothermal activity (Agustsson and
Flovenz, 2005). The ridge crosses the country from southwest to northeast, as
shown in Fig. 3.1, and a large number of volcanoes and associated geother-
mal activity is found within the zone (Ragnarsson, 2015). Geothermal energy
provides about 68% of the primal energy consumption in Iceland (Orkustofnun,
2014; Ragnarsson, 2015). It is used for production of electricity and hot water
for consumption and space heating. The utilization of geothermal energy di-
vides into space heating 43%, electricity generation 41%, swimming pools 4%,
snow melting 4%, and the rest is used for various industries, fish farming and
greenhouses (Orkustofnun, 2014; Ragnarsson, 2015). Geothermal energy pro-
vides about 90% of space heating in Iceland (Orkustofnun, 2014) and the rest is
from electricity and oil. Direct use in Iceland amounts to 26,700 TJ/year and the
installed thermal power capacity is 2,035 MWt (Ragnarsson, 2015). Iceland’s
proportion is about 4.5% of the global thermal energy production and 3% of
the global installed power capacity, but if heat pumps are excluded the propor-
tion is 10% in energy production and 10% of the power capacity, the total being
587,000 TJ/year and 72,000 MWt, 262,000 TJ/year and 20,000 MWt excluding
heat pumps (Lund and Boyd, 2015).

Geothermal power plants which are located in high-temperature geothermal areas
produce electricity from steam and in some cases hot water for district heating.
High-temperature areas which are found in the geothermal active zone in Ice-
land associated with the Mid-Atlantic Ridge. In Iceland, eight geothermal power
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Figure 3.1: The geothermal areas in Iceland (ISOR - Iceland GeoSurvey).

plants have been built since the first one, Bjarnaflag, which was put into operation
in 1969. The installed electric power capacity of the power plants is; Bjarnaflag
(1969) 3 MWe, Svartsengi (1977) 74.4 MWe, Krafla (1978) 60 MWe, Nesjavellir
(1998) 120 MWe, Husavik (2000) 2 MWe (binary), Reykjanes (2006) 100 MWe
and Hellisheidi (2006) 303 MWe (Ragnarsson, 2015). Construction for a new 90
MWe powerplant at Theistareykir N-Iceland began in 2015 with planned com-

missioning of two 45 MWe phases in late 2017 and spring 2018 (Landsvirkjun,
2016).

In 2014, electricity generation from high-temperature geothermal power plants
was 5239 GWh or 29% of the total electricity generation in Iceland and the total
electricity power capacity of geothermal power plants was 665 MWe or 25% of
the total (Orkustofnun, 2014). Iceland provides about 7% of the global geother-
mal electricity generation and the installed electricity power capacity is about 5%
of the global installed power capacity (Bertani, 2015).
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3.2 High-temperature geothermal wells

The main purpose of high-temperature geothermal wells is to provide steam for
electricity production. Thermal energy that is otherwise discarded is in some
cases used to produce hot water for consumption and space heating. Condensers
and heat exchangers are used to heat up cold water for this purpose. Several
wells are drilled for each power plant, the number depends on the power capac-
ity of each well and the size of the power plant. Make-up wells also need to be
drilled throughout the lifetime of power plants in order to provide enough steam
to keep up the power production because well productivity tends to decline with
time. Geothermal power plants operate on a number of different power cycles.
Single or double flash steam cycle power plants are common, but back pres-
sure and binary plants are also found. Site-selection and targeting of geothermal
wells is based on surface explorations, reservoir engineering and knowledge of
the formation from past drilling. The design phase of a typical geothermal well
includes several tasks, including: determining design temperatures and pressures
at static and dynamic flowing conditions, minimum casing depth selections, cas-
ing diameters and clearances, minimum thickness selections, drilling program
and well completion, and after completion, plan for warm-up and flow-testing.
For well design purposes, the formation lithology and its conditions provide vital
information on targeting, drilling procedures and wellbore integrity.

A typical casing program for a high-temperature geothermal well is displayed in
Fig. 3.2. High-temperature geothermal wells are constructed of several concen-
tric steel casings which are fully cemented externally from the casing shoe up
to the surface, forming a layered structure of steel and cement sheaths, Fig. 3.3.
The cement sheaths provide pressure sealing as well as structural support for the
casings. The purpose of casings is to prevent collapse of the well, to seal off un-
wanted aquifers, for well control and blow-out prevention during drilling and to
be a conduit for the geothermal fluid to flow up the well (Bjornsson et al., 1978).
Two main designs, specified by the outer diameter of the production casing, are
used in Iceland, a regular 95/3” or larger diameter 133/8”, both having their pros
and cons. The larger type has larger wellbore cross-section allowing for higher
production rates and is less affected by scaling but large diameter casings have
less collapse resistance than smaller diameter casings if similar thicknesses are
selected. On the other hand increase in cross-section is roughly proportional
to the steam flow output, therefore the value per well can potentially be almost
doubled provided that the structural integrity is ensured.
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Figure 3.2: A diagram of a typical casing program for high-temperature geother-
mal wells in Iceland.
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Figure 3.3: Cross-section of cemented casings that were excavated from a high-
temperature geothermal well in Reykjanes, Iceland, showing the layered struc-
ture of casings and insulating cement sheaths (figure by Sigriin Nanna Karlsdot-
tir).

Depending on the setup and purpose of wells, 2-5 casing strings are used; con-
ductor casing, surface casing, intermediate casings which are sometimes needed,
anchor casing and production casing (Thorhallsson, 2008). When drilling is
done, well completion involves installing a perforated liner, to prevent the forma-
tion collapsing into the well, and a wellhead of sufficient pressure class. The liner
is normally installed with a hanger from the bottom of the production casing, but
is in some cases skipped if the wellbore is considered strong enough. The anchor
casing is defined as the casing on which the permanent wellhead is mounted but
in some cases this may be the same as the production casing (NZS 2403:2015,
2015). The production casing sits inside an expansion spool below the master
valve of the wellhead, or in some cases the wellhead is directly mounted onto the
production casing.

The drilling process of high-temperature geothermal wells consists of several
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stages. First a drilling platform is prepared for the rig and a shallow large di-
ameter conductor casing is installed. A large diameter hole is then drilled for
the surface casing which provides a platform for further drilling. The circulation
fluid consists of drilling mud that is used to bring back cuttings to the surface
and to cool and control the well against kicks. When the cuttings reach the sur-
face, they are filtered out of the mud before the it is recirculated. When total
circulation loss occurs and cement jobs attempting to seal the loss zone do not
work, the drilling fluid is changed to water, and in most cases a large portion the
well is drilled blind with no returns to the surface. Such zones when drilling for
casings can later cause problems in casing integrity for example if the cement
is washed away. The surface casing components, normally made of line pipes,
are welded together when the casing is run in hole. Then the casing is cemented
externally to the formation. Next a smaller diameter drill bit is used to drill from
the bottom of the surface casing for the next casing, which in most cases is the
anchor casing. Depending on depth and formation pressures, intermediate cas-
ings are in some cases needed. When the casing has been placed it is cemented.
The drilling procedure is repeated until the last casing, the production casing,
has been placed and cemented. For directionally drilled wells, the kick-off point
(KOP) is typically located slightly below the shoe of the anchor casing and the
dogleg severity in the build section is typically 1-3°/30m and end of build (EOB)
when inclination reaches about 30°from vertical. In the final drilling phase, the
production section of the well is drilled down to total depth (TD).

3.3 Casing design

In general, casing design is based on (i) axial tension, (ii) burst and (iii) collapse
pressures. In casing design for oil and gas wells, the most important parameters
are fluid pressure, casing weight, and tensile loading (Hole, 2008). In geother-
mal wells, however, high-temperature loading is generally the most severe (Hole,
2008). Each casing must withstand the expected loads that are likely to occur
during drilling and the lifetime of the well. Standard ISO/TR 10400:2007(E)
(API/TR 5C3), developed for the oil and gas industry, provides equations and
calculation guidelines for the structural properties of casings, e.g. burst strength
to yield, burst strength to failure, collapse strength, axial tensile strength and bi-
axial strength. Well design and the definition of anticipated loads is currently
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outside the scope of standardization for the petroleum and natural gas industries
(ISO/TR 10400:2007(E), 2007). New Zealand standard NZS 2403:2015 "Code
of practice for deep geothermal wells" proposes a well design process with par-
ticular application to geothermal conditions (NZS 2403:2015, 2015). The stan-
dard includes anticipated load cases during drilling and after well completion,
and provides design methodology constrained by design factors for developing
proper casing programs that incorporate minimum casing shoe depths, pressure
containment, well control and structural integrity design for casings. To account
for strength reduction at elevated temperatures it includes design curves up to
350°C. The standard supersedes its 1991 version and major revisions include
minimum depth selections according to pressure containment by assessing the
fracture pressure of the formation instead of solely using the overburden pres-
sure. It also acknowledges that casing design for axial compressive stresses due
to thermal expansion needs design practices that involve plastic strain design and
do therefore not include a design factor for that specific case as was done in the
older version.

Table 3.1: Specified strength requirements and material composition for com-
mon geothermal casing steel grades (API 5CT).

K55 L8O T95
Minimum Yield Strength (MPa) 379 552 655
Maximum Yield Strength (MPa) 552 655 758
Minimum Ultimate Tensile Strength (MPa) 655 655 724
Total elongation under load (%) 0.5 0.5 0.5
Hardness HRC max - 23 254
Hardness HBW max - 241 255
Carbon (C) - 0.43 (max) 0.35 (max)
Manganese (Mn) - 1.90 (max) 1.20 (max)
Molybdenum (Mo) - - 0.25-0.85
Chrome (Cr) - - 0.40-1.50
Nickel (Ni) - 0.25 (max)  0.99 (max)
Copper (Cu) - 0.35 (max) -
Phosphorus (P) 0.030 (max) 0.030 (max) 0.030 (max)
Sulfur (S) 0.030 (max) 0.030 (max) 0.010 (max)
Silicon (Si) - 0.45 (max) -
Iron (Fe) Balance Balance Balance

Casings are manufactured according to American Petroleum Institute (API) stan-
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dard API 5CT (ISO 11960) Specification for Casing and Tubing and line pipe
standard API SL Specification for Line Pipe. Specification for threading, gaging
and thread inspection for casing, tubing and line pipes is provided in standard
API 5B. API casings are used in high-temperature geothermal wells and lower
strength grades, commonly K55, .80 and T95, are selected according to guide-
lines in standard NACE MRO0175 (ISO 15156-1) to avoid corrosion effects in H,S
environments. X-grades or other lower strength weldable carbon steel is typically
selected for the outer casings, i.e. the surface casing and the conductor. Table
3.1 shows the specified tensile requirements and material composition limits for
commonly selected geothermal casing steel grades. The casings come in approx-
imately 12 m long segments and when run in hole can either be connected with
threaded connections or butt-welded together. The innermost casings are cold
drawn seamless steel pipes that are usually connected with threaded connections
and the outer casings are formed, helically or longitudinally welded line pipes.
API buttress thread casing (BC) are commonly used in geothermal wells. In
some cases where increased performance and sealing properties is desired, pre-
mium connections with metal-to-metal seal and special treads have been used.
Centralizers are placed on the casing, often around couplings or the casing body
at intervals depending on the design of the well.

Generalized casing design steps are as follows:

1. Gather all data on the site and formation conditions, including:
(a) Geological lithology of the formation
(b) Temperature and pressure conditions with depth
(c) Conditions of the formation and anticipated problem zones, such as
lost circulation depths and information on loose formations
2. Define the maximum pressure and temperature profiles with depth
3. Calculate overburden and fracture profiles with depth
4. Calculate the minimum casing shoe depths with the criteria of well control
for each drilling phase
5. Decide the desired open-hole diameter of the well
6. Calculate for all casings, strength against loads during casing installation,
cementing and production
7. Update the design iteratively by revising the design if any changes are
made

Temperature and pressure profiles in nearby wells are used to estimate likely
design conditions for new wells. The expected maximum temperatures can be
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different for wells within the same geothermal area and is determined by the rela-
tionship between the well and the geothermal reservoir, depths of feed zones, the
temperature of the formation and how the well is operated. For high-temperature
geothermal exploration where reservoir temperatures are unknown, design tem-
perature and pressure is assumed to follow the boiling point-depth curve (BPD)
for water (Bjornsson et al., 1978; Thorhallsson et al., 2014). If, however, data
from nearby wells is available and the reservoir temperatures are known, knowl-
edge of the formation, pressure and temperature conditions of those prior wells
are used as basis for design. Pressure logs during the warm-up period of wells are
valuable as a pressure pivot point, where pressure remains constant indicates the
pressure of the reservoir at that specific point and the dominant feed zone. When
drilling deep into hydrothermal reservoirs, the critical point of water will be en-
countered at around 3500 m depth, the depth depending on the pressure balance
in the system and the salinity of the geothermal fluid. Salinity effects the BPD in
such way that pressure and temperature are slightly increased downhole and the
critical point is reached at a greater depth (Ingason et al., 2015). If the critical
point depth will be surpassed, assumptions on the conditions deeper in the system
need to be made. Below the critical point the density of the fluid can for instance
be assumed to be with a fixed gradient or isochor, representing pressure corre-
sponding to changes of temperature of fixed volume of steam (Thorhallsson et al.,
2010). Once maximum pressure and temperature profiles have been defined and
containment pressure for depth calculated, minimum casing shoe depths can be
determined. The minimum casing shoe depths varies depending on a selected
criteria, which needs to be evaluated for each case. Once casing depths have
been selected, structural calculations for each casing string is calculated. The
calculations determine which casing sizes, connections and materials can be se-
lected for the well. Once these design steps are complete, a casing program is
proposed. These calculations include (further described in NZS2403:2015):

1. Axial tensile stress during running and cementing casing
Burst and collapse calculations during cementing

Burst and collapse during production of steam
Compressive thermal loading (strain)

Bi-axial tensile stress due to wellhead pressure

Helical buckling of liner

AR

Using the inner string cementing method, casings are cemented by connecting
the drill string to a stab-in near the bottom of the casing and the cement slurry
is then pumped through the drill string, stab-in and float collar in the casing
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shoe and up the annulus outside of the casing. While cementing deep casings,
the practice in Iceland has been tending towards reverse-circulation cementing
(RCC), where the cement is pumped directly to the annulus on the kill-line. The
benefit of using RCC is that less cement is lost to the formation and lower load
is subjected on the casing allowing for cementing deeper casings. Advantages of
RCC include (Hernandez and Bour, 2010):

1. Reduced hydraulic power as gravitational force is working in favor of the
slurry flow

2. Reduced downhole pressures which reduces the risk of fracturing the for-

mation and puts less load on the casing

Shorter transit and thickening times of the slurry

4. Improved compressive strength development of the cement as most of the
cement will not see the shoe bottomhole temperatures

5. Less cement waste, primarily because no excess cement is pumped back to
the surface

(O8]

Downhole temperature logs are taken after cementing in connection to cement
bond logs (CBL) which indicate the cement integrity behind the casings. CBL
can indicate if good hardened cement or poor cement is present, or if cement
is missing behind casings. Cement blends that are used for high-temperature
geothermal wells require mixing of additives to ensure longevity. API specifica-
tions recommend Portland API Class G cement blending up to 40% by weight
of cement of silica flour to prevent strength retrogression and increased porosity
when exposed to elevated temperatures (Hole, 2008). Special proprietary blends
have been used with good results in geothermal wells. There is room for improve-
ments, both in cement composition and in placement techniques. Innovation in
cement design for high-temperature applications aims for instance at lowering
frictional pressure losses of the slurry, lowering water content and improving
strength characteristics.

3.4 Structural loads and load history

To understand what loads are imposed on a casing it is useful to go through its
load history. It can vary from well to well, but the most critical load cases are sim-
ilar and will be described in the following paragraphs. The load cases considered
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here occur during drilling, installation and in well operations after completion,
e.g. control of wellhead valves during production or shut-ins. Over the operating
life of a geothermal well, the casing is generally subject to external loads that can
be considered static or quasi-static (Teodoriu, 2015). However, during warm-up
or cooling of wells, loads are transient and the resulting structural response of the
well can be sensitive to the time periods of changes. Such wellbore temperature
changes, e.g. during flow-testing or shut-ins, can lead to casing failures, espe-
cially if the casing is repeatedly strained beyond the yield point. The residual
thermal tensile stresses that form during cooling of wells may be large enough to
exceed the coupling joint strength, resulting in casing failure (Maruyama et al.,
1990).

Residual stress is formed in the material during manufacturing, which is one of
the effects that influence collapse resistance of casings (ISO/TR 10400:2007(E),
2007). Acceptable manufacturing processes, heat treatment, material composi-
tion and structural properties are described in API standards API SCT and API
SL. Casings are seamless steel pipes and line pipes are larger diameter pipes that
are manufactured from sheet metal that is formed, either helically or longitudi-
nally and welded with continuous seam by electric resistance welding or other
methods. Although not specifically considered a load, residual stresses are con-
sidered here as an initial condition of the material.

As casings are run in hole, casing components are welded or screwed together
and lowered down into the well. The first load case of the casing consists of
axial tension due to self-weight, see diagram A in Fig. 3.4. While the casing is
installed, the well is kept full of water, which provides a modest counteracting
buoyancy force. Friction between centralizers on the casing and the borehole
wall also lowers the tensile force on top. The tensile force on the top increases
with increasing length of the casing, putting the highest load on the last installed
casing component that holds the whole casing. Cement, when hardened, later
provides support to the casings. For directionally drilled wells, bending loads
add to tensile and compressive axial loads, since one side of the casing cross-
section is in tension and the other in compression. Bending loads, caused by
high dogleg severity of the well, could also result in higher stresses than those
formed at the top. The magnitude of the axial tensile load therefore depends
on several factors, i.e. thickness and diameter of the steel casing, how many
centralizers are used, the diameter of the hole, depth of the KOP, the deviation
of the hole and the density of the mud/water/cement that provides the buoyancy
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force.

Shortly after casings are run in hole they are cemented. Prior to cementing, the
well is cooled by circulating the drilling fluid to allow cement to be pumped and
preventing it being prematurely hardened. After placement of cement no circu-
lation is available and the well slowly heats up while the cement sets. During
cementing, the casing is kept full of water or mud so the differential pressure
of the casing wall does not reach critical levels, i.e. exceeds the collapse resis-
tance or exceeds the burst strength of the casing. The differential pressure is
determined by the hydrostatic pressure difference between the cement slurry and
water, as well as additional cement pumping pressure, see figure B in Fig. 3.4.

The temperature the cement solidifies at is the reference temperature for subse-
quent axial thermal stresses for each casing string. The temperature of the casing
increases gradually during cementing due to warm-up from the surroundings and
exothermic chemical reactions in the cement (heat of hydration). As the cement
sets, wells are typically relatively colder at shallow depths and gradually warmer
with depth, depending on surrounding formation conditions. The largest temper-
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Figure 3.4: Casing load cases. A: casing self-weight, B: differential pressures,

C: thermal expansion and D: tension due to cooling.
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ature change therefore often occurs at shallow depths. However, due less con-
straints near the surface, the casings and the wellhead tend to move up or down
with temperature changes. Smaller strains are therefore likely to form near the
surface and larger below a transition zone deeper in the well where displacements
of the casing are more constrained.

When the drilling is finished the rig is removed from site and the well is allowed
to warm-up for the first time. After well completion the casing loads mainly con-
sist of temperature and pressure changes within the wellbore and the formation.
During this thermal recovery from drilling, the initial tensile stress in the casing
is relieved and subsequent compressive thermal stress builds up, see figure C in
Fig. 3.4. The intensity of stresses in the layered casing and cement structure
as a result of thermal expansion depends on the temperature difference from the
cementing conditions. While drilling into permeable zones in geothermal areas,
using water as circulation fluid, large volumes of cold water is lost to the reser-
voir and full thermal recovery can typically take from 2 weeks up to 3 months
(Birkisson and Hole, 2007). During this recovery period the well is initially full
of water and wellhead pressure slowly builds up as the well warms-up.

During thermal recovery, wellheads can be closed to build pressure by accumu-
lation of non-condensable gases at the top. Pressure then builds up gradually and
pushes the water column in the well down into the reservoir and warms it up, thus
making discharge possible when the well is opened. In some cases the water in
the well prevents wellhead pressure to naturally build up to a sufficient pressure
to discharge the well. Air-compressors are then used to build up wellhead pres-
sure for same purpose as before. The disadvantage of this forced method is that
the well and the wellhead remain cool while air is pumped into the well which
then causes a greater thermal impact when the well is discharged. If possible,
allowing wells to warm-up slowly before discharge should reduce the impact of
thermal expansion. For powerful wells, shut-in conditions can lead to high well-
head pressure that puts tensile load on the wellhead and the anchor casing and
if the wellhead pressure is due to saturated steam rather than gas, the pressure
leads to increased temperature. Therefore, the casings and wellhead are subject
to higher thermal load than in a flowing well where the wellhead pressure is
lower.

Fig. 3.5 shows conceptual temperature and pressure changes during discharge.
Initially the wellhead and uppermost well section is cold and a watertable is
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Initial conditions Pre-discharge Discharge

Figure 3.5: Conceptual wellbore temperature and pressure load cases before
and after discharge.

found somewhere shallow in the well. Below the watertable the pressure in-
creases with depth due to hydrostatic pressure of the water and temperature in-
creases due to formation conditions. If gases accumulate or an air-compressor is
used to build pressure, pre-discharge conditions are such that temperature is rel-
atively low until the water table is reached and the wellhead pressure has pushed
the water table downwards. Typically when wells are discharged, the wellhead
pressure decreases rapidly and the temperature uppermost in the well increases
sharply within few minutes. Wellhead valves need to be opened fast to initiate
boiling and upwards momentum of the fluid in the well which then drives the
discharge. The large temperature change causes thermal expansion of the cas-
ing which causes the wellhead to rise. Table 3.2 shows examples of wellhead
displacements during flow-tests of selected wells in Iceland.

When wells are shut-in the wellhead temperature slowly decreases in most cases,
except for powerful wells as discussed earlier. If wells are shut down (killed)
with cold water the casing rapidly contracts, creating tensile forces due to the
constraints of the cement, see figure D in Fig. 3.4. This occurs if stresses in
the casing reach beyond the yield point during hot conditions, and cooling it
down again generates tensile stress which could lead to rupture of the casing
body or couplings. As post-yield permanent (plastic) strains are generated in the
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compressive hot state, high tensile stresses are formed if wells cool down again,
see Fig. 3.6. Thermal stresses generate similar problems in oil wells, such as CSS
and SAGD operations, where steam injection is used. In these situations steam
is used to heat the formation to a temperature sufficient to reduce the viscosity
of the hydrocarbons which then flow back into the heat injection well (Vogel,
1966). CSS wells, in an operation involving a combination of CSS and SAGD
in northwestern Alberta with maximum operating temperatures and pressures of
340°C and 14.5 MPa, see about 8 thermal cycles during their lifetime of 15 to 20
years (Dall’ Acqua et al., 2012). These maximum operation values are similar for
high-temperature geothermal wells, the difference is that they do not need to be
cycled, except for maintenance if a workover is needed.

A !

Axial compression —

Temperature —

\/

«— Axial tension

¥ Yield point

Figure 3.6: Concept diagram describing how axial tension can be generated
if hot wells cool down and have previously formed axial compressive strain.
Adopted from a diagram by Rahman and Chilingarian (1995).
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Table 3.2: Examples of wellhead displacements (u.,,) during discharge of se-
lected wells in Iceland.

Well Year Discharge Uyp ~ Time from
method [mm] discharge
KJ-19 1982 Natural 20 5 hours [1]

45 22 days

KJ-21 1982 Natural 22 2 hours [2]
33 1 day
68 52 days

KJ-22 1983 Natural 27 Missing  [3]
NJ-12 1986 Wire-piston 41 11 days [4]

NJ-13 1985 Natural 9 5 hours [5]
NJ-14 1986  Air-pump 20 1.5 hours [6]
NJ-16 1986 Natural 5 Missing  [7]

PG-1 2004  Air-pump 15 14 days  [8]
IDDP-1 2011 Natural 420 10 weeks  [9]
[1] Krafla, Hola KJ-19 (OS82099/JHD27), Oct. 1982

[2] Krafla, Hola KJ-21 (OS83013/JHDO03), Feb. 1983

[3] Krafla, Hola KJ-22 (OS84008/JHDO02), Feb. 1984

[4] Nesjavellir, Hola NJ-12 (OS85100/JHD56), Nov. 1985

[5] Nesjavellir, Hola NJ-13 (OS85101/JHDS57), Nov. 1985
[
[
[
[

6] Nesjavellir, Hola NJ-14 (OS86031/JHD09), Apr. 1986
7] Nesjavellir, Hola NJ-16 (OS87007/JHD06), Feb. 1987
8] Peistareykir, Hola PG-01 (ISOR-2004/040), Nov. 2004
9] Ingason et al. (2014)

Casing loads have been discussed briefly here. In essence, the main structural
loads on casings are temperature changes and differential pressures. Temperature
loads in the form of thermal stress in constrained conditions and reduced struc-
tural strength of materials at elevated temperatures. Pressure loads in geothermal
wells materialize in high wellhead pressures which puts high tensile load on the
anchor casing, and in differential pressures between the inner and outer casing
wall. Temperature and pressure loads can result in casing failures that are dis-
cussed in the following section.
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3.5 Casing failures

Part of this PhD study as background analysis was to quantify and map the occur-
rence of different casing failures. This study was then further expanded within a
H2020 project GeoWell as discussed below. In the PhD study, the most common
casing failure modes in high-temperature geothermal wells have been established
as collapse, in the form of deformation known as puckers/bulges, and axial ten-
sile ruptures of couplings or the threaded part of the casing. Knowledge of the
number of casing failures is scarce as they are primarily found during downhole
logging campaigns where there is a restriction in the well. Downhole video cam-
eras have been used to document casing failures for greater understanding of the
problem and to plan for repair of the damage. Pictures from such video logging
are shown in this section.

An attempt to quantify casing failures in Iceland that was initiated in this PhD
study was followed through by ISOR (Iceland GeoSurvey) in Horizon 2020
project GeoWell. In the study, 34 known casing failures were found in 235 high-
temperature wells in Iceland. Of the total, 85% were identified as production
wells, 10% as injection wells and 5% as exploration wells. Of the total, 67% of
the wells were productive, 10% were insufficient producers and 11% were not
productive. In 34 wells, 15% of the total, casing failures have been documented.
Of those, 19 wells had casing failures of collapse and/or tensile ruptures and 15
wells had other/unknown failures, e.g. due to logging problems in the casing
section. Of the 19 known failures, collapse/bulges occurred in 7 wells, tensile
ruptures in 8 wells and both failures occurred in 4 wells. All of these failures oc-
curred in production wells, except for two tensile ruptures that occurred in early
exploration wells. The majority (65%) of the failures occurred in wells drilled
in the past 20 years, a period where the well design has remained essentially the
same.

Similar failures are seen in thermal oil wells. In one mature thermal oil project,
with steam injection temperatures of 180-300°C, 35% of the steam injection
wells and 49% of the "huff and puff" wells experienced failures (Maharaj, 1996).
Of the failures, 85% were due to joint pullout or fracture, with offsets between
parted casing ranging between 40-115 mm, and 15% were due to buckling re-
sulting from poorly cemented casing and low cement tops. In the cyclic steam
injection wells, the temperatures were more pronounced and most wells experi-
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enced failure after two or three steam injection cycles (Maharaj, 1996) Another
example, from Chevron’s Bakersfield Cymric 1Y steam injection project, show
casing failure rate of 19%, where 42% of the failures were collapses or buckling
and 46% related to parted casing segments or other types of gaps causing leakage
(Wu et al., 2008).

Magneschi et al. (1995) conducted a statistical research of 85 high-temperature
geothermal wells in Italy. They do not mention number of failure cases, however
they concluded that casing failures occur mostly in the production casing, are
commonly close to the surface (h < 250 mm). This was correlated with high
free water and fluid-loss values in the cement slurry, more frequent in the cas-
ings where multi-stage cementing was used and are usually a consequence of
a production test or of a temperature increase in the well. Chiotis and Vrel-
lis (1995) list casing failures observed in seven high-temperature geothermal
wells in Greece with production temperatures exceeding 300°C. Wellheads of
two wells rose by 0.5 m during production test because of thermal expansion and
inadequate cementing. In one well, 95/8” production casing was severed at the
joints at a depth of 69 m due to thermal stresses. In another well, a 95/s” produc-
tion casing collapsed at 6 different locations. A 7” tieback casing was installed
to repair the damage but later failed due to collapse and possible buckling. They
conclude that the major casing failures observed are caused by thermal stress
while producing or cooling wells that could have been avoided through combi-
nation of slow preheating before production and proper casing design. Addi-
tionally, they conclude that burst and collapse strengths are severely reduced by
axial thermal stress. Torres (2014) shows examples of casing failures observed
in geothermal wells, where the casing has collapsed forming a bulge/pucker, pre-
sumably due to poor cementing at the location of a centralizer. They also name
three common casing connection failures found in geothermal wells; pin com-
pression deformation where the pin end deforms due to compression against the
coupling shoulder, pin jump-in where the threads of the pin disengage and the
pin displaces into the coupling and pin pull-out where previous pin jump-in is
pulled out in subsequent tension. Additionally they show a full-scale test of a
103/4” 180 casing cemented into a 133/s” L80 casing with trapped water in the
annulus. As the specimen was gradually heated up the casing collapsed precisely
at the location of the trapped water.

The most severe and dangerous casing failures can cause blow-out in between
casings or into the formation. Steam blow-out can be very dangerous and can



3.5. Casing failures 35

be difficult to manage. In an example from the year 1975, severe casing fail-
ures of well no. 4 in the Krafla geothermal field in N-Iceland resulted in steam
blow-out which caused an catastrophic explosion and left a large crater at the
well location that later got the name "Sjélfskaparviti" which directly translates
to self-made-hell (Palmason, 2005). As a result of volcanic eruption in the area
the steam had become very acidic (pH of 1.8) which caused high corrosion at
the wellhead, resulting in uncontrollable flow of steam from the main valve, sub-
sequently blowing off the wellhead equipment and leaving nothing but a crater
(Mortensen et al., 2009). In 1976, during drilling of well no. 9 in Krafla a surface
blowout occurred near the rig, spewing mud and rocks over the drilling crew, that
was later found to be caused by shallow casing rupture in nearby well no. 3 that
was then abandoned and filled with gravel and cement (Mortensen et al., 2009).
These rare types of failures are the most critical ones and after these incidents the
casing programs in Krafla were redesigned.

In general, casing collapse occurs if the pressure difference between its external
and internal surface exceeds its collapse resistance. During cementing, collapse
can occur at the bottom where the pressure is highest and the casing collapses
completely because of lack of annular support. However, in a producing well the
collapse shape is controlled by the external support of cement and/or outer cas-
ing, and a bulge/pucker forms on the casing. Video logs of casing failures have
revealed this strange collapse form. In some cases, little or no evidence of cement
behind the collapse is found after it has been milled out and therefore it can be
concluded that the collapse occurred due to thermal expansion of entrapped fluid
behind the casing, see Fig. 3.7. In other cases, see Fig. 3.8, the cement behind
the casing seems to be in good condition. This suggests that the collapse is not
only related to thermal expansion of entrapped fluid but could also be caused by
other factors, e.g. loss of collapse resistance due to axial compression and plastic
straining of the material, both due to thermal expansion of the casing.

If no rupture occurs, collapses are not an immediate risk. The power output of the
well is however proportional to the cross sectional area of the casing, therefore a
collapsed casing could lead to a less productive well. Although these collapses
are not a problem initially, they produce weak spots in the casing which could
lead to subsequent rupture, e.g. during maintenance stops if the casing cools
down and contracts. The impact of casing collapse on well integrity was seen in
its most critical form in the IDDP-1 well, where the collapse of the production
casing presumably caused conditions that lead to failures of two external casings,
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Figure 3.7: Collapsed production casing forming a partial blockage (left). The
bulge has been drilled out and no visible cement is found behind the casing sug-

gesting collapse due to annular pressure due to expansion of entrapped boiling
fluid (right) (Thorhallson, 2016).

most likely due to high-velocity erosion after the collapse took place. This could
have lead to blow out into the formation or through the annulus of the external
casings. The severity of the collapse was only known after the well had been
shut down (killed with water) and the collapse had been milled out. Additionally
to the collapse, the production casing parted at numerous locations where in all
cases the casing (pin) was pulled out of the coupling (box). This occurred when
the well, initially at 450°C at the wellhead, was quenched with water. The op-
eration history and casing failures of this special well are covered separately in
section 6.4.
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Figure 3.8: Downhole video log by Iceland GeoSurvey (ISOR) shows collapsed
production casing forming a partial blockage (top). The bulge has been drilled
out and cement seems to be in good condition behind the casing (bottom) (by
courtesy of ISOR and HS Orka).
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Collapse has been profoundly studied, often in connection to specific failure
modes, e.g. collapse of silos, pipelines and in this case casings in high-temperature
geothermal wells. Such analysis have been performed for the necessity of eco-
nomical design and safety, dating back to the end of the industrial revolution
where collapse resistance of tubes was studied extensively and empirical equa-
tions were devised from numerous experiments, e.g. by (Fairbairn, 1858). Since
then many studies have been performed on the subject to improve empirical
equations describing pipe collapse. Experiments have revealed that collapse
resistance of pipes is controlled by the diameter-to-thickness ratio (D/t), mate-
rial properties and is highly dependent on geometrical imperfections, e.g. aver-
age outside diameter, average wall thickness, ovality and eccentricity, as well as
residual stresses from manufacturing.
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Figure 3.9: Collapse resistance of K55 grade casing according to standard
ISO/TR 10400:2007(E). Two casings are shown as an example.

The approach taken in the ISO/TR 10400:2007(E) standard is to combine theo-
retical, numerical and statistical tools in order to develop collapse equations for
casings (ISO/TR 10400:2007(E), 2007). Collapse resistance of K55 grade cas-
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ing, calculated according to the standard, is shown in Fig. 3.9. Four zones where
different equations are applied are used to calculate the collapse resistance; (i)
yield strength collapse for the casings with the high relative wall thickness (low
D/tratio), (ii) plastic, (iii) transition, and finally (iv) elastic collapse for relatively
thin walled casings (high D/t ratio). This applies for unsupported casings with
uniform differential pressure between the inner and outer casing wall. It is worth
noting that API burst and collapse design equations from the standard do not
address pipe body response when axial stress in the casing exceeds the material
yield strength, as the focus of standardization has been geared towards elastic
designs (Dall’ Acqua et al., 2012).

Figure 3.10: Casing failure mode caused by thermal stresses reaching beyond
vield generating permanent plastic strain in axial compression leading to tensile
ruptures if wells cool down again, e.g. by pumping water into hot wells (see Fig.
3.6).

Shutting down wells during maintenance or other stops can have multiple neg-
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ative effects on the casing. Cooling during such periods generates contraction
in the casing and multiple stops during the lifetime of wells lead to cyclic ther-
mal loading. If some sections of wells cool down, e.g. uppermost in wells, the
compressive forces that were generated during production could be reversed to
tensile forces. If shut-in conditions lead to increase in pressure, temperature can
increase as well, further straining the structure.

High temperature and thermal straining as a result of thermal expansion have
been discussed here as a major structural concern for casings in geothermal
wells. Another great structural concern, of chemical nature, is corrosion. The
subject of corrosion is outside the scope of this thesis, but its major structural
impacts are embrittlement and thickness reduction of casing material. Mate-
rials used in aggressive geothermal environment can be subjected to corrosion
due to dissolved gases such as H,S and CO- and in some cases HCI (Karlsdot-
tir and Thorbjornsson, 2012). Corrosion is also dependent on key parameters,
i.e. temperature, pressure, flow rate and pH level of the fluid (Karlsdottir and
Thorbjornsson, 2012). Corrosion mechanisms in high-temperature geothermal
environment include uniform corrosion, galvanic corrosion due to potential dif-
ference of different materials, localized pitting and crevice corrosion, hydrogen
embrittlement and hydrogen induced cracking (HIC), stress corrosion cracking
(SCC) and sulfide stress cracking (SSC), corrosion fatigue cracking (CFC) and
flow related mechanisms of erosion corrosion and cavitation. Corrosion can in
some cases be measured, one method is to estimate a corrosion rate. In geother-
mal wells as in hydrocarbon wells the acceptable corrosion rate is considered
0.1 mm/year reduction in material thickness (Karlsdottir, 2013; Norsok M-001,
2002). In high-enthalpy wells where the produced steam is superheated single
phase steam, shut-in periods can lead to condensation of the geothermal fluid
which can cause abrupt corrosion due to high concentration of corrosive sub-
stances. Hydrogen damages such as HIC can decrease the ductility and cause
premature fracture of the casing when subjected to tensile stress. Studies on cor-
rosion in geothermal environment have resulted in narrowed material selection as
some materials are good candidates and other are more susceptible to corrosion
and related effects. Thorbjornsson et al. (2015) discuss material selection for
geothermal wells in high temperatures and pressures based on testing in geother-
mal environment in Iceland.
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Nonlinear finite-element method
4.1 General description

The finite-element method (FEM) is a method for solving problems by obtaining
numerical approximate solutions to partial differential equations describing the
problem. The problem domain, a surface or a volume, is discretized by generat-
ing a mesh constructed of elements with nodal points. In this thesis, the method
is used for heat transfer and structural analysis. The nonlinear finite-element
method incorporates nonlinearities, i.e. in large geometrical displacements, ma-
terial properties and due to change of status, for example in contact between
surfaces. ANSYS Parametric Design Language (APDL) is a scripting language
that is used to automate common tasks to build and solve models in terms of
parameters (Ansys, Inc.). Documentation for ANSYS is partly used here to de-
scribe in brief some of the essential mathematical representations of the nonlinear
finite-element method.

Elements are used to convert continuous areas or volumes into discrete counter-
parts known as a mesh. The elements are built of and connected to other elements
by nodes. Specific element types exist for different types of problems for vastly
wide range of applications, e.g. electrical, magnetic, heat transfer and structural
modeling. An element type can be categorized into multiple groups but their
main features is their shape, degree of freedom (DOF) and intended use. Two-
dimensional (2-D) and three-dimensional (3-D) models require different types of
elements and some elements work in both cases. In general, four element shapes
are usually used: point defined by one node such as a mass element, a line ele-
ment typically represented by a line or arc defined with two or three nodes, an
area element with triangular or quadrilateral shape that can be a 2-D solid ele-
ment or a shell and a volume element that has a tetrahedral or brick shape and

41
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is usually a 3-D solid element. 2-D elements used in structural analysis can be
classified as either plane stress or plane strain elements. Plane stress assumes that
the stress state varies only in two directions X and Y and the stress in Z direction
is always zero, as are the XZ and YZ shear stresses. Plane strain is a stress state
also varies in X and Y directions but the strain in Z direction and in XZ and YZ
shear are always zero. Therefore, plane stress elements are ideal for modeling
thin structures and plane strain elements for modeling cross-sections where strain
considerations in Z direction are not necessary. 2-D axisymmetric elements fol-
low neither plane stress nor plane strain limitations, instead they assume that the
structure is a full circle revolution, where radial and axial displacements can be
modeled, and tri-axial stresses and strains can be analyzed. DOF determine the
intended use of elements, i.e. structural, thermal, fluid, electric, magnetic or cou-
pled field. In thermal analysis the DOF is temperature and in structural analysis
DOF is displacements and rotations for some elements.

Two types of thermal analyses are possible. A steady-state analysis where tem-
perature distribution and other thermal quantities are determined under steady-
state loading conditions where heat storage effects varying over a period of time
can be ignored. A transient thermal analysis where temperature distribution and
other thermal quantities vary over a period of time. Structural analysis fall un-
der numerous classifications, e.g. static analysis where displacements, stresses,
etc. are solved under static loading conditions, modal analysis for determining
natural frequencies and mode shapes of a structure, transient dynamic analysis to
determine a structures response to arbitrary time-varying loads, linear buckling
analysis for calculating buckling loads and determining buckling mode shapes,
nonlinear buckling analysis for including nonlinearities, and many more.

The linear finite-element method can be used for modeling small displacements
in structures and stresses that are within the elastic range of materials. Non-
linear behavior, i.e. (i) large geometrical displacements, (ii) nonlinear material
properties and (iii) contact between surfaces/changing status, needs to be solved
with the nonlinear finite-element method, typically using the Newton-Raphson
method. In such models, large displacements/rotations, plastic strain and contact
problems are solved in each load-step with multiple iterations within a defined
number of substeps. Selection of the number of substeps depends on the problem
each time. If surface contact is included, a minimum number of substeps needs
to be used in order to get convergence in the solution.

Linear eigenvalue analysis is useful for initial assessment of buckling and col-
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Figure 4.1: Nonlinear load-deflection curve (left) and linear (eigenvalue) buck-
ling curve illustrating the bifurcation point and limit load from nonlinear buck-

ling analysis (Ansys, Inc.).

lapse loads. The analysis estimates theoretical buckling strength or the bifur-
cation point of an ideal linear elastic structure. Imperfections and nonlinearities
prevent most structures from achieving their theoretical buckling strength. There-
fore, linear eigenvalue buckling analysis overestimates the buckling load in most

cases, see Fig. 4.1.

Figure 4.2: An example of a nonlinear buckling analysis predicting limit load,
post-buckling shape, displacements and stresses of a soda bottle under external

pressure (showing von Mises stress distribution).
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Nonlinear buckling analysis can predict the limit load with better accuracy as
well as the buckling shape, displacements, stresses and strains by incorporating
nonlineatities and imperfections. Post-buckling shapes of structures can be mod-
eled with the method as well. Fig. 4.2 shows an example of a limit load analysis
by using nonlinear structural analysis.

4.2 Derivation of Structural Matrices

The principle of virtual work states that a virtual change of the internal strain
energy must be offset by an indentical change in external work due to the applied
loads,

6U = oW 4.1

where U = U; + Us is strain energy (internal work) and W = W; + W5 + Wi is
external work. The virtual strain energy is,

SU, = /V {6} {o}dVT 4.2)

where {€} is the strain vector, {c} is the stress vector and V' is volume of element.
Combining equations 4.1 and 4.2 gives,

SUL — /V (66" D] e} — (56} (D] {}) av 43)

The strains may be related to nodal displacements by,

{e} = [B]{u} 4.4)



4.2. Derivation of Structural Matrices 45

where [ B] is the strain-displacement matrix based on the element shape functions
and {u} is the nodal displacement vector. Combining 4.2 and 4.3 gives,

5Ty = {5u}” /V (BT (D] [B]dV {u} — {5u}” /V B [D] [M v (4.5)

A different form of virtual strain energy when a surface moves against a dis-
tributed resistance, as in a foundation stiffness, is written as,

oUy = / (6w} {0} dA; (4.6)
Ay

where {w,, } is motion normal to the surface, {c} is stress (or pressure) carried
by the surface and Ay is the area of the distributed resistance. The point-wise
normal displacement is related to the nodal displacements by,

{wn} = [Na] {ou} 4.7)

where [N,,] is a matrix of shape functions for normal motions at the surface and
the stress is,

{o} = k{w,} (4.8)

where k£ is foundation stiffness in units of force per length per unit area. Com-
bining equations 4.6, 4.7 and 4.8 assuming that k is constant over the area gives,

oUy = {0u}™ | [N,)" [No] dAs {u} (4.9)

Ay
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The inertial effects of the external virtual work is,

Wy = — / {ow}” 1L (4.10)
V V

where {w} is a vector of displacements of a general point and { F**} is an accel-
eration (D’ Alembert) force vector. According to Newton’s second law,

Fa 52
Tl w) @.11)

where p is density and ¢ is time. The displacements within the element are related
to the nodal displacements by,

{w} = [N]{u} (4.12)

where [IV] is a matrix of shape functions. Combining equations 4.10, 4.11 and
4.12 and assuming p is constant over the volume,

2

Wy = —{du}" p /V [N]"[N] dv% {u} (4.13)

The pressure force vector formulation is,

Wy = / {ow,}" {P}dA, (4.14)
AP
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where { P} is the applied pressure vector and A, is the outside area of a surface
over which pressure is defined normal to, unless otherwise noted. Combining
equations 4.12 and 4.14 gives,

Wy = {ou}” / (P} dA, @.15)

Nodal forces applied to the element can be accounted for by,

Wy = {ou}’ {Fr} (4.16)

where {F e"d} are nodal forces applied to the element. Finally, combined equia-
tions 4.11, 4.12, 4.13, 4.14, 4.15 and 4.16 give,

@3 [ (B D BV (u} — 63" [ (B D] "] av
A / [N [N g {u}
!
—— 5y [ N7 NV )
+ {ou}” / ["{P} dA, + {6u}" {Fr} (4.17)
Noting that the {5u}T vector is a set of arbitrary virtual displacements common

in all of the above terms, the condition required to satisfy equation Equation 4.17
reduces to,

(K] + [K]]) {u} = {F"} = [M) {a} + {FI"} + {F} (4.18)
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where the element stiffness matrix is,

K] = [ 1B DB
1%
the element foundation stiffness matrix is,
K1) =k [ )T )
Ay
the element thermal load vector is,
(FM = / B]” (D] ["] av
1%
the element mass matrix is,
) =p [ NV (Vv
1%
is the acceleration vector (such as gravity effects) is,
; 52
fii} = = {u}
and the element pressure vector is,

(Fry = / N,JT (P} dA,

4.3 Geometric nonlinearities

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

Nonlinear structural analysis can incorporate nonlinearities that regularly occur
in structures. In small deflection and small strain analyses it is assumed that dis-
placements are small enough resulting in insignificant stiffness changes. When
strains in a material become larger than a few percent, the change in geome-
try due to this deformation can no longer be neglected. Large strain analysis
accounts for stiffness changes that results from changes in shape and orienta-
tion of elements. The theory of large strain computation can be addressed by
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definition of few basic physical quantities, motion and deformation, and the cor-
responding mathematical relationship. The motion derived from of applied loads
acting on a body can be defined by studying a position vector in the deformed
and undeformed configuration (Fig. 4.3 with states represented as {z} and { X},
respectively, then the motion vector {u} is calculated by:

{u} = {z} - {X} (4.25)

X Deformed

Undeformed
Figure 4.3: Position vectors and motion of a deforming body (Ansys, Inc.).

The deformation gradient is defined as:

6 {x}
F| = 4.26
7= 5100 (426
which can be written in terms of displacement of the point via equation 4.25 as:
0 {u}
Fl=|1 4.27

where [[] is the identity matrix. The information contained in the deformation
gradient [F] includes the volume change, rotation and shape change of the de-
forming body, where the volume change at a point is:

5{V}
o {Vo}

Where V; is the original volume and V' is the current volume.

= det [F] (4.28)

The deformation gradient can be separated into rotation and shape change:

[F] = [R][U] (4.29)
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where [R] is the rotation matrix ([R]" [R] = [I] and [U] is the shape change right
stretch matrix.

The element matrices and load vectors are derived using an updated Lagrangian
formulation which produces equations of the form,

(K] {Awy = {F°} = {F]"} (4.30)

where the tangent matrix [K;] has the form,

(K] = [Ki] + [Si] 431)

[K;] is the usual stiffness matrix,

UQ]ZL/fBJTH%HBAdV' 4.32)

where [B;] is the strain-displacement matrix in terms of the current geometry
{X,}, [D;] is the current stress-strain matrix and [S;] is the stress stiffness con-
tribution, written symbolically as,

[Si] = / (Gi]" (7] [Gi] AV (4.33)

where [G;] is a matrix of shape function derivatives and [7;] is a matrix of the
current Cauchy (true) stresses {o; }. The Newton-Raphson restoring force is,

[Hﬂz/wfwmw (4.34)

4.4 Material nonlinearities

Elastic behavior is characterized by linear stress-strain relationship and recov-
erable strain. When surpassing yield point of materials and generating plastic
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nonrecoverable strain, nonlinear material curves need to be incorporated, calling
for nonlinear iterative solution methods. Plasticity theory provides a mathemat-
ical relationship of the elastoplastic response of materials. Three major compo-
nents in the rate-independent plasticity theory, the yield criterion, flow rule and
hardening rule.

The yield criterion determines the stress level at which yielding initiates at. For
multi-component stresses, this is represented as a function of individual compo-
nents, which can be interpreted as an equivalent stress:

oe=f({o}) (4.35)

where {o} is a stress vector. When the equivalent stress is equal to the yield
parameter f ({c}) = {0, } the material will develop plastic strains.

The flow rule determines the direction of plastic straining and is given by:

0Q
de’'} = A¢— 4.36
@y -2 {$] (436)
where A is a plastic multiplier determining the amount of plastic straining, () is a
function of stress termed the plastic potential determining the direction of plastic
straining.

The hardening rule describes the changing of the yield surface so that the stress
state condition for subsequent yielding can be established. Two hardening rules
are available, work hardening (isotropic) and kinematic hardening. In work hard-
ening the yield surface remains centered about its initial centerline and expands
in size as plastic strains develop, but kinematic hardening assumes that the yield
surface remains constant in size and the surface translates in stress space with
progressive yielding, as shown in Fig. 4.4. Multilinear kinematic hardening rule
allows for a multilinear stress-strain curve that exhibits the Bauschinger effect,
as shown in Fig. 4.5.

The Euler backward scheme is used to enforce consistency condition in imple-
mentation of plastic strain increments. The parameter o, is determined for the
time step, the stresses are computed based on the trial strain {e"} which is the
total strain minus the plastic strain from previous time point,

{%}={%}—{#A} 4.37)
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Initial yield surface

Subsequent
yield surface

Initial yield surface

Subsequent
yield surface

Figure 4.4: Types of hardening rules, isotropic work hardening (left) and kine-
matic hardening (right)(Ansys, Inc.).
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Figure 4.5: Stress-strain behavior of different plasticity options(Ansys, Inc.).

The trial stress is then,
{o"} = [D] {"} (4.38)

The equivalent stress is evaluated by equation 4.35. If stress exceeds the material
yield, the plastic multiplier A is determined by a local Newton-Raphson iteration
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procedure. The plastic strain increment is calculated by,

iy =\ {09
{de"} = A { 50} (4.39)

The current plastic strain is updated,

(o = {a )+ {ae) (440)
and the elastic strain computed,
fet} = () - {ae) @41)
The stress vector is,
{7} = (D) {e) 442)

4.5 Surface contact

Surface contact is defined by contact-target element pairs meshed onto each sur-
face. Their main purpose is to prevent surfaces from intersecting each other
while still allowing gaps to form and tangential displacement. They also serve
to transfer temperature and structural loads between the surfaces. A conductive
heat transfer between two contacting surfaces is defined by:

q=TCC(T; - T,) (4.43)

where ¢ is the heat flux per area, 7’C'C' is the thermal contact conductance coeffi-
cient and 7; and 7. are the temperatures of the target and contact surfaces. Other
heat transfer mechanisms, i.e. convection, radiation and heat generation due to
friction, between surfaces are also supported but are not used in this study.

Using the Coulomb friction model, friction is described with a friction coeffi-
cient, i, cohesion shear stress 7,. The surfaces can withstand shear stresses up to
a certain magnitude across its interface before relative sliding initiates, once the
equivalent shear stress 7 exceeds 7;,,,, relative sliding begins.

Tiim = WP + 7 (4.44)
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Additionally, a maximum shear stress 7,,,,, independent of the normal stress can
be defined as:

T:{,uP—i-Tb if 7 < Thaw (4.45)

Tmazx if 7 Z Tmaz

where 7 is the equivalent shear stress, 7,,,,, 1S the maximum shear stress, p is the
isotropic coefficient of friction, 73 is the contact cohesion and P is the contact
normal pressure. Fig. 4.6 shows the graphical interpretation of the Coulomb
friction model.

max =

Tb—

»
>

P

Figure 4.6: The Coulomb friction model in Ansys (Ansys, Inc.).

4.6 Solution procedure

The finite-element discretization process yields a set of simultaneous equations,
[K]{Au} = {F*} (4.46)

where [K] is a coefficient matrix, {u} is a vector of unknown DOF values { F'*}
is a vector of applied loads. If [K] is itself a function of unknown DOF values,
equation 4.46 becomes a nonlinear equation that needs to be solved iteratively.
The Newton-Raphson method solves nonlinear equations in an iterative process
and can be written as follows:

[K]] {Aw} = {F*} — {F"} (4.47)
{uig} = {ui} + {Aug} (4.48)
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where in a structural analysis [KlT ] is the tangent stiffness matrix, {u;} is the
displacement vector and { F""} is the restoring force vector calculated from the
element stresses, and in thermal analysis [K I } is the conductivity matrix, {u;}
is the temperature vector and { F/*"} is the resisting load vector calculated from
the element heat flows. {F*} denotes a vector of applied loads i is a subscript
representing the current equilibrium iteration.

A number of iterations is taken until a converged solution is found. The algorithm
for the solution procedure is such that first the tangent matrix [K I } is calculated
and updated along with the restoring load { #}"" } from configuration {u; }, { Aw;}
is calculated from equation 4.47 and added to {u;} for the next approximation
{u;y1} with equation 4.48. These steps are repeated until convergence is ob-
tained.

Convergence is obtained when the residual vector, the imbalance of the right
hand side in equation 4.47, is within the force convergence criterion tolerance
and/or the degree of freedom (DOF) increment is within its defined tolerance in
equation 4.50,

I{R}|| < erRyey (4.49)
[{Aw;}H| < €utires (4.50)

where the residual vector is,
{R}y={F"} —{F"} (4.51)

When the load incremental step has converged the next load increment can be
taken. Considering the Newton-Raphson method iteration, the major computa-
tional cost lies generally in the calculation and factorization of the tangent stiff-
ness matrix (Bathe, 1996). If the tangent stiffness matrix is updated in each iter-
ation, then the process is termed the full Newton-Raphson method. The stiffness
matrix can be updated less frequently by using the modified Newton-Raphson
method where during each iteration it can remain constant. Which method is
best suited depends on the problem in question and time consuming calculations
to update the tangent stiffness matrix can in some cases result in better and even
faster convergence. Other method includes initial-stiffness procedure where the
stiffness matrix is prevented from updating which requires higher number of it-
erations but in turn requires fewer matrix reformulations and inversions.
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Figure 4.7: The modified Newton-Raphson method requires fewer updates of the
stiffness matrix than the full method (Bathe, 1996).
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Models and verification

5.1 Models

Model descriptions

In this section, the construction of models of the cased section of high-temperature
geothermal wells is described. The ANSYS Parametric Design Language (APDL)
is used to build and solve the models. Different well setups and load cases are an-
alyzed by defining geometric parameters, material properties, loads and bound-
ary conditions. Two geometries are essentially used to analyze different aspects
of the structural system; (a) a 2-D axisymmetric model of the whole cased well
used to model temperature, displacements, stress and strain distributions of the
global structural system, and (b) a 3-D model of a section of the well which is
used to model non-symmetric phenomena such as collapse. Additionally, a 2-D
axisymmetric model of a buttress thread casing (BC) connection is presented.

When thermal loads are defined, the models are divided into two parts, thermal
and structural, that are run in succession. Identical meshes are used for both
cases using elements with suitable degrees of freedoms (DOFs). After the ther-
mal analysis has been performed the results are used as thermal load in the struc-
tural part of the model where wellbore pressures are defined additionally. This
decoupling of thermal and structural analyses is necessary due to difficulties in
solving surface contact with coupled field elements that have both thermal and
structural DOFs.

Casing collapse is analyzed with 3-D models where the structural support of ce-
ment and instability due to water enclosed in the cemented annulus are analyzed.
The effect of geometrical defects and initial geometrical perturbations are ana-
lyzed with the model. The following cases are considered:

57
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L Eigenvalue collapse analysis
II.  Nonlinear collapse analysis
i.  Effect of initial geometry
a. Mode shape perturbation
b. Ovality of casing
c. External defect in casing
ii.  Effect of cement support
a. Exclusion of cement
b. Enclosed water pocket in the casing-to-casing annulus

Eigenvalue buckling analysis is used to predict the theoretical collapse strength
and the collapse mode shapes of the casing. The eigenvalue analysis is a linear
solution method in which nonlinear properties, i.e. nonlinear material properties
and interaction of contacting surfaces, cannot be taken into account. Nonlinear
buckling analysis is then used to account for such nonlinearities. The limit load
of the casing is obtained and stabilization is used to track the post-buckling shape
of the casing.

The geometry of the casing model is shown in Fig. 5.1. A 12 meter section
of the production casing is modeled. The cement around the production cas-
ing is included in the nonlinear analysis and external casings are not included
for simplification purposes. Instead boundary conditions are defined where no
radial displacements are allowed at the outer boundary of the cement and axial
displacements are constrained at both ends. The casing that is considered in the
analysis has a 133/s inch outer diameter, with thickness of 12.2 mm and made
of K55 grade steel. One half of the casing circumference is modeled, which is
possible due to the symmetry of the casing and its collapse shape. The thickness
of the wall is scaled with an API manufacturing tolerance of -12,5%. Contact el-
ement pairs are used between the casing and the cement surfaces and a Coulomb
friction model is used to define friction between the surfaces.

Due to the perfect geometry of the model, some imperfections or perturbations
need to be introduced to create instability in the structure. Instead of applying
a small radial force, which is a common practice, instability is created with ran-
domly distributed material imperfections in the steel casing. These imperfections
are included in the casing as small variations in material properties. 20% of the
casing elements are randomly selected for this purpose.
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Figure 5.1: The geometry of the innermost casing and cement of the 3D collapse
model.
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Figure 5.2: Size and shape of an external defect in the casing.
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The effect of ovality on collapse strength of the casing is analyzed. Ovality of
pipes is defined as:

Dmaz - Dm'm
mar min (5.1)

Ovality = )

where D, is the maximum outer diameter, D,,;, is the minimum outer diam-
eter and D is the mean outer diameter. The effect of a small local defect on the
outside of the production casing is also analyzed. The size and shape of the de-
fect is controlled by three parameters; thickness, angle size and length as shown
in Fig. 5.2.

The effect of enclosed water in the annulus between casings is analyzed by in-
cluding a small water pocket in the cement. The water pocket is 1.6 m long and
fills up half of the annulus circumference. Imperfections are randomly dispersed
in the pocket, consisting of 80% water and 20% cement, as shown in Fig. 5.3.

A 2-D model that is axially symmetric around the center of the well is used to
analyze the cased section of the geothermal well, i.e. the structure above the
production casing shoe. Axial and radial deformations can therefore be analyzed
with the model but lateral and asymmetrical deformations, e.g. bending, buck-
ling and collapse can not. Although the angular displacements are zero, hoop
strains and stresses can nevertheless be analyzed because of the revolving axial
symmetry. The model, seen in Fig. 5.4, reaches from the wellhead down to the
bottom of the production casing and 20 m further down where the lower bound-
ary is located. The radial boundary of the model is located 100 m from the center
of the well. To account for the anchoring effects of couplings that stick out to
the cement, simplified connections with no threads are included. Additionally, a
simplified wellhead, shown in Fig. 5.5, is included to account for pressure loads
and the interaction between the casings and the wellhead. Sliding of the produc-
tion casing inside the wellhead is therefore included if such wellhead design is
being analyzed.

Geometrical sizes and material properties are easily adjusted so that different
well designs can be analyzed. However, the model quickly grows in element
numbers, specially if long casings are being analyzed. Despite its 2D axial
symmetry and therefore greatly reduced number of elements compared to a 3D
model, the model is heavy in computation time.
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Figure 5.3: The geometry of a model with simplified couplings and water pocket

enclosed in the casing-to-casing annulus (the production casing is transparent).
The water pocket is shown in cyan color and yellow elements are randomly dis-
tributed material imperfections. The water pocket is 1.6 m long and fills up half

of the annulus circumference.
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KN

Figure 5.4: The geometry of the 2D axi-symmetric model of the whole well. The
whole model is displayed on the right and the wellhead and a simplified coupling
are shown in close-ups. The wellhead displacement is monitored at the node
denoted with W.
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Figure 5.5: Symmetry expansion (180°) of the simplified wellhead for the axi-
symmetric model of the cased section of the well. The wellhead is fixed to the
anchor casing and the production casing is allowed to slide inside the wellhead.
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The simplified geometries of couplings in the global model do not capture details
in the cement and the coupling. Another model is therefore constructed to ana-
lyze the coupling and its interaction with the cement in more detail. API buttress
thread casing (BC) connection as used in most geothermal wells in Iceland is
modeled in a two-dimensional axisymmetric model, shown in Fig. 5.6.

Elements and mesh

2-D axisymmetric elements are used in many of the models as the geometry of
the well is challenging to model due to the small diameter to depth ratio and
three-dimensional analysis exceeds the computation capacity fast with increased
modeled depth of wells. As the elements are axisymmetric (with a full circle
revolution), and follow neither plane stress nor plane strain limitations, radial
and axial displacements in the well can be modeled, and tri-axial stresses and
strains can be analyzed. Fig. 5.7 shows plane elements that can be used either in
plane strain, plain stress or axisymmetric formulations.

K
L
® K
K L O @
©) ®
i A
I 1
® ] ege th !
egenerate
Y triangle 0 J
(or axial) KEYOPT(1) = 0 KEYOPT(1) = 1

T—P X (or radial)

Figure 5.7: Plane element used for axi-symmetric models (PLANE183) (Ansys,
Inc.).

Solid elements are used when modeling sections of the well in three dimensions,
see Fig. 5.8. Specific boundary conditions can be defined to apply symmetric
conditions and save computational time, but to capture collapse half of the cir-
cumference of the well is modeled. Contact between surfaces is defined with
contact elements and the frictional characteristics are defined using the Coulomb
friction model.
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Figure 5.8: Solid element used for three dimensional models (SOLID186) (An-
sys, Inc.).

Boundary conditions and loads

In most cases when analizing thermal loads, transient load histories are defined
and in some cases static loads are defined, e.g. in collapse analyses. Fig. 5.9
illustrates how the thermal load is applied to the wellbore (inside the production
casing). Interpolation is used to avoid step changes inside the wellbore, which
could produce false stress intensities in subsequent structural analysis.

Transient thermal load in the axisymmetric model of the cased section of the well
is defined such that the initial formation temperature, a gradient changing with
depth that is estimated from temperature logs, is defined for the whole model.

Then, assumed cooling from drilling is defined and depending on the load his-
tory, warm-up of the well, flow-testing and shut-in conditions. Load steps can
be added depending on what is being studied, but to model the temperature dis-
tribution these initial load steps need to be defined and solved. This is further
described for case studies in the results section. Conductive heat transfer is as-
sumed to be dominant in the formation and therefore the model is defined as such
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Figure 5.9: Themperature change during discharge demonstrating load inter-
polation between sparse data points. (A) No interpolation, (B) 4 interpolation
points, (C) 10 interpolation points and (D) 100 interpolation points. Axisymmet-
ric model 350 m deep and 100 m wide.

and convective phenomena disregarded. The outer boundary of the model, that
is defined as 100 m away from the center of the well remains at the formation
temperature. This distance is sufficient for the analyses, as the main reason for
calculating the temperature distribution is to use it as thermal load for analyzing
the cased well structurally.
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Structural loads that are defined are gravity, temperature and pressure. Tempera-
ture is defined from the results of the thermal model as described above. Pressure
loads are defined within the well at each load step. Depending on the definition
of time for the load steps, the pressure can either be a step or ramp load.

Material properties

The material properties and values that are used in the models are listed in Ta-
ble 5.1. Additionally, the default value used for the coefficient of friction be-
tween steel and cement is ;© = 0.45 and the shear stress when sliding initiates
is 7, = 0.46 MPa which is based on two separate shear strength studies of ex-
ternally cemented casings. Shear strength measurements performed by Gretars-
dottir (2007) showed maximum shear strength of 0.26 MPa and 0.64 MPa, for 1
day strength and 28 days strength, respectively. Similar results were obtained
by Wallevik et al. (2009), where the maximum shear strength was 0.21 MPa
and 0.72 MPa, for 1 day strength and 28 days strength, respectively. The steel-
steel coefficient of friction between the production casing and the wellhead is not
known but is chosen to be ji,,;, = 0.7, near the upper limit of the static coefficient
of friction for steel-steel contact which is 0.6+0.11 according to ASM (1992b).

Table 5.1: Material properties and default numerical values used in the model.

Material property Units Steel Cement Rock
Young’s modulus (F) GPa 205 2.40 80.0
Poisson’s ratio (v/) - 0.30 0.15 0.31
Density (p) ke/ms 7850 1600 2650
Th. conductivity (K) W/mec  50.0 0.81 2.00
Specific heat (c) J/wgec 490 880 840
Th. expansion («) lec 12e-6  10e-6  5.4e-6
Compressive strength (fo) MPa - 25e6

Nonlinear material properties of API steel grades K55, L80, T95 and X56 are
implemented in the model by using stress-strain curves, seen in Fig. 5.10, which
were obtained from tensile tests by Karlsdottir and Thorbjornsson (2009). Stress-
strain input to the model is in terms of true stress - true strain. The curves are
therefore converted from engineering stress - engineering strain to true stress-
true strain, shown in Fig. 5.11. The curves are converted with the following
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equations':
€true = In (1 + 6eng) (52)
Otrue = Oeng (1 + eeng) (53)
800

700

600

500

MPal

— 400

Stress

200

—+— K55
—6— L80
——T95

X56
(x 1 1 1 1 T J
0 0.05 0.1 0.15 0.2 0.25 0.3
Strain

100

Figure 5.10: Stress-strain curves (engineering) that are used in the model for
steel grades K55, X56, L8O and T95 (Karlsdottir and Thorbjornsson, 2009).

Since exact stress-strain curves of casing steel at elevated temperatures was not
found in the literature, strength reduction is accounted for by scaling these curves
according to the reduction of the young’s modulus, yield strength and ultimate
strength at elevated temperatures according to Snyder (1979) for papers I-V, but
for paper VI the curves are scaled according to guidelines in the recently updated
New Zealand standard NZS 2403:2015, “Code of Practice for Deep Geother-
mal Wells”. The strength reduction parameters and the scaled true stress-true
strain curves for API grade K55 at elevated temperatures using NZS 2403:2015
is shown in Fig. 5.12.

In the model the thermal expansion coefficient of steel is temperature dependent
as 1s shown in Fig. 5.13. As a reference, the thermal expansion coefficients of
spheroidal graphite (SG) cast iron (with a minimum tensile strength of 600 MPa)

! Ansys, Inc.
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Figure 5.11: Stress-strain curves of K55, L80, T95 and X56 grade casing steel
(Karlsdottir and Thorbjornsson, 2009) converted to true stress - true strain, as is
the input in the model.

and AISI-SAE grade 1040 are shown. The cement is assumed to yield plastically
above its maximum compressive strength. It is however arguable how this should
be defined due to the question of the post-failure compressibility of the cement in
tri-axial stress state. In the model, the Young’s modulus of the cement after it has
reached the maximum compressive strength is reduced by 50%, see Fig. 5.14. A
cement material model that behaves differently in compression and tension is not
defined in the model due to convergence difficulties after the cement has been
impaired, which normally occurs as soon as small thermal expansion occurs.
Using such material model could however give better estimates of stresses and
strains within the cement, but modeling of load histories of wells has proven to be
difficult. The strength reduction of cement at elevated temperatures is accounted
for as 1s shown in Fig. 5.15.
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Figure 5.12: True stress-true strain curves and strength reduction at elevated

temperatures for API grade K55 according to strength reduction guidelines of
New Zealand standard NZS 2403:2015 are used to scale the curves.
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Figure 5.14: Bilinear concrete material model with different tangent moduli Er.
In the model the default values for cement compressive strength fc is 25 MPa
and the tangent modulusis Et is 50%E,,.
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Figure 5.15: Strength reduction of cement Young’s modulus (E) and compressive
strength (o,) at elevated temperatures based on Phan and Carino (2000).
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5.2 Model verification

Parameter sensitivity and convergence studies

Mesh convergence studies are performed on each model. Convergence studies
of the axisymmetric model of the cased section of the well with respect to mesh
density is shown in Fig. 5.16. Changes in axial element mesh density of the
casings and cement result in increase in mesh density of the outer elements which
represent the rock formation. In this case, average element length of 0.25m
proved to be adequate. This is equivalent to 100.000 elements for a test model
with a 285 m deep production casing.

e FEM
Fitted curve |

Wellhead displacement [mm]

75000 100000 125000 150000 175000 200000
Number of elements

Figure 5.16: Convergence studies of the element mesh density of the axisymmet-
ric model of the cased section of the well.

The precision of the solution is explored with respect to the number substeps
used for the solution, see Fig. 5.18. Wellhead displacement is used here to assess
the precision and the precision defined as the absolute value of the displacement
results of the maximum substep solution divided by the displacement result for
a specific number of substeps. The loads applied are solved in one load step.
The load step is divided into substeps where solutions are calculated and the
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Figure 5.17: Individual parameter sensitivity study for wellhead displacement
of the axi-symmetric model of the cased section of the well during simulated
discharge.

substeps are solved with variable number of iterations depending on convergence.
Sufficient number of substeps depends on the model and the precision desired.
From these results 20 substeps are selected as the minimum number of substeps.

The outcome of FEM models depends highly on the accuracy of the input pa-
rameters, e.g. geometrical sizes, material properties and loads. Parameters can
be evaluated individually by changing one parameter at a time as is done in Fig.
5.17. This indicates the sensitivity of parameters from a set point, i.e. all param-
eters share one point and are varied from that point. This method does however
not capture what happens if more than one parameter is changed. However, this
can be achieved by using the probabilistic approach described below.

In Fig. 5.19 thermal FEM results are compared with transient temperature data
collected by Reinsch (2012) during discharge, by using a fiber optic distributed
temperature sensing (DTS) cable that was installed behind the anchor casing of
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Figure 5.18: Solution precision as a function of the number of substeps used for
the solution.

well HE-53 in Hellisheidi, SW-Iceland. By using thermal conductivities of 50
and 1 W/mec and specific heats of 490 and 880 J/kg°c for the steel and cement, re-
spectively, the modeled temperature is a bit lower than the measured values. The
DTS measurements are however the maximum temperatures measured within
the annulus, 229.98°C at 162.87 m depth, but the cable was installed on the out-
side of the anchor casing down to 261.3 m depth (Reinsch, 2012). To explain
the difference, it is likely that the production casing is not centered at that depth
resulting in premature temperature increase. For a casing standoff resulting in
10 mm minimum annular clearance instead of the mean 35.4 mm clearance for
a centralized casing, the results match. The other approach of changing ther-
mal conductivity of the cement is meaningless since the parameter needs to be
quadrupled to get a match. Besides, in both cases, the slope of the temperature
increase matches the measured data suggesting that thermal conductivity of the
model is correct. Therefore, it is probable that the casing is not centralized at this
depth and/or it is at a location of a connection in the production casing providing
increase in heat transfer between the casings.
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Figure 5.19: Transient thermal analysis compared to fiber optic distributed tem-
perature sensing (DTS) data collected at depth of 162 m external to the anchor
casing in well HE-53 (*Reinsch (2012)). Centralized casing with 35,4 mm clear-

ance (above) and offset casing with 10 mm clearance (below).
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To evaluate the accuracy of the results probabilistic design analysis is used. With
it the uncertainties of the model results can be quantified. As opposed to deter-
ministic analysis where input parameters are treated as constants which results
in a single possible solution, a probabilistic approach where selected input pa-
rameters are assumed to contain scatter within a given range gives an estimate of
the model uncertainties. Scatter plots of the input parameters versus the output
results reveal the significance of the input parameters to the results of the FEM
model. Empirical cumulative distribution functions (CDF) of selected results are
obtained and used to estimate the uncertainty of the model.

Table 5.2: Probabilistic design input parameters (selected means and standard
deviations).

Parameter Units Mean Std

1 - 045 0.15
Timax MPa 046 0.13
E. GPa 24 0.6
Ey, GPa 80 20
fe MPa 30 7.5
Pst kg/m3 6125 150
Peo ke/m3 1600 200
gt lec  12e-6  le-6
leo lec  10e-6 1.5e-6
O-€se - 1 0.1

The case shown in section 6.2.1 is used for the following probabilistic design
analysis. These probabilistic results are based on variation in material properties.
The base case, with mean values of material properties, is first run and then
the probabilistic analysis with multiple simulation loops is run employing the
Monte Carlo Simulation method with Latin Hypercube Sampling, which avoids
repeated samples. A reference time for the probabilistic results is 2.5 hours after
the modeled discharge of the well.
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Figure 5.20: Correlation between selected input parameters and results show-
ing friction between casings and cement, maximum shear force before sliding,
Young’s modulus of cement and formation, compressive strength of cement, den-
sities of steel and cement, thermal expansion of steel and cement and lastly scal-
ing of stress-strain curves of the steel.
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Table 5.3: Significant input parameters and correlation with the results with
significance level of 2.5%.

Output Input R*

Wellhead displacement tst  0.02528
Tmaz 0.32987
ag  0.35066

Max. von Mises stress of the production casing ag  0.36826

o-€,. 0.73963
Max. von Mises stress of cement (production casing) 7y,q. 0.62363

E., 0.15270

fo  0.03274

ag  0.09283

o-€5. 0.02940

Max. von Mises stress of the anchor casing pst  0.02701
pPeo  0.21588

ag  0.73663

Max. von Mises stress of cement (anchor casing) E., 0.83435
ag  0.11622

Table 5.4: Statistical summary of the output results from the probabilistic anal-
ysis. Showing mean value, standard deviation, minimum and maximum values.

Mean  Std Min Max
1. 843 152 5.19 18.1
.  335.6 29.73 254.6 426.5
ii. 44.86 19.55 14.11 120.6

v. 159.2 13.69 1223 203.1
v. 9.589 2.163 3.010 17.16

i: Wellhead displacement.

ii: Max. von Mises stress of the production casing.
iii: Max. von Mises stress of the production cement.
iv: Max. von Mises stress of the anchor casing.

v: Max. von Mises stress of the anchor cement.
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400 simulations were used where chosen input parameters are varied within the
specified range. Selected means and standard deviations of the selected param-
eters that are used as input for the probabilistic analysis is listed in Table 5.2.
The standard deviation ¢ provides the sample range for the parameter and 99.7%
of the samples should fall within 30 from the mean provided that the number
of simulation loops is sufficient. Histograms, shown in Fig. 5.21, of the input
parameters show their random distribution that is defined to fall within normal
distribution during the simulation loops. Histograms of the output results in Fig.
5.22 show that some of the results are close to normally distributed while others
are closer to chi-squared distribution, i.e. maximum wellhead displacement and
maximum stress in cement around the production casing.
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Figure 5.21: Histograms of normally distributed input parameters.
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Figure 5.22: Histograms of the selected output results from the probabilistic

analysis.
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CDF plots of selected results are shown in Fig. 5.23 to 5.27. The plots are
useful to discern what the probability is of a certain result, e.g. Fig. 5.23 shows
50% probability that the wellhead displacement will be lower than 8 mm, 95%
probability that it will be lower than 11 mm and 99% probability it will be lower
than 14 mm. Same for maximum stress in the production casing, shown in Fig.
5.24, the CDF plot shows 92% probability that the maximum von Mises stress
will be lower than the yield point of 379 MPa for the K55 grade casing for this
case.

Empirical CDF

5 10 15 20
Wellhead displacement [mm]
Figure 5.23: Empirical cumulative distribution function (CDF) plot of the well-

head displacement, showing 95% probability that wellhead displacement will be
lower than 11 mm.

Fig. 5.25 shows 95% probability of maximum von Mises stress in the cement to
be below 80 MPa. This high value is explained by how the stress-strain curve
of cement is defined in the model by a tanget modulus after the compressive
strength has been reached, see Fig. 5.14. In other perspective, the figure shows
40% probability of the stress being lower than the defined compressive strength
of 25 MPa. Similarly, Fig. 5.27 shows 99% probability that the stress will be
below 15 MPa and therefore below its compressive strength. The maximum von
Mises stress in the anchor casing, shown in Fig. 5.26 is also much lower than in
the production casing, showing 95% probability of the stress in the anchor casing
being below 183 MPa and never reaching yield.
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Figure 5.24: Empirical CDF plot of the maximum von Mises stress in the pro-
duction casing, showing 95% probability that the maximum stress will be lower
than 385 MPa.

Empirical CDF
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Von Mises stress of the production concrete [MPa]
Figure 5.25: Empirical CDF plot of the maximum von Mises stress in cement

around production casing, showing 95% probability that the stress will be below
80 MPa.
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Empirical CDF
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Figure 5.26: Empirical CDF plot of the maximum von Mises stress in the anchor
casing, showing 95% probability that the stress will be below 183 MPa.

Empirical CDF

2 4 6 8 10 122 14 16 18
Von Mises stress of the anchor concrete [MPa)
Figure 5.27: Empirical CDF plot of the maximum von Mises stress in cement

around anchor casing, showing 99% probability that the stress will be below 15
MPa.
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Measurements of wellhead displacement

Wellhead displacement measurements were conducted and compared to results
from the FEM model. A change in wellhead elevation, as a product of thermal
expansion of the casing, during wellbore temperature and pressure changes pro-
vides information on the structural response of the well. Monitoring wellhead
displacement as wells are flow-tested is thus convenient because of the displace-
ment that results form fast temperature and pressure changes in the well.

Figure 5.28: The wellhead of well HE-46. Arrow showing the laser projected on
a ruler on the top flange of the master valve.

Recorded examples of wellhead displacements during flow-testing of wells in
Iceland was shown earlier in the theses in Table 3.2. Such information of well-
head displacement during discharge is rare and for those that exist are generally
rough measurements. In some cases the time period of observation is missing,
but even so, the data gives a range of wellhead displacement for these types of
wells. Time-series data of wellhead displacement provides additional informa-
tion on the structural response of the casings to large temperature changes.
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Figure 5.29: The setup and wellhead of wells RN-22 (top left), HE-53 (top right)

and RN-32 (bottom). The laser is projected on a ruler above or below the master
valve. For the HE wells the setup was similar to that of HE-53.
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In this study, wellhead displacement (elevation) of five high-temperature geother-
mal wells was monitored while the wells were discharged. The wells are located
in the Hengill and Reykjanes geothermal areas which are both located on an ac-
tive volcanic ridge in SW Iceland. The monitored wells HE-13, HE-46 and HE-
53 are located in the Hengill geothermal field and wells RN-22 and RN-32 are
located in the Reykjanes geothermal field. The geometrical sizes of the casings
of the monitored wells are listed in Table 5.5.

Table 5.5: The casing programs of the monitored wells (measured depth of cas-

ings).
HE-13 OD [in] t[mm] Length [m]
Production casing ~ 95/8" 12.2 775
Anchor casing 133/8” 12.2 255
Surface casing 185/8" 11.0 78
HE-46 D [in] t[mm] Shoe depth [m]
Production casing ~ 133/s” 12.2 1032
Anchor casing 185/8”  11.0 337
Surface casing 221/ 11.0 83
HE-53 D [in] t[mm] Shoe depth [m]
Tieback casing 7" 12.6 607
Production casing ~ 95/8” 12.2 965
Anchor casing 133/8” 12.2 306
Surface casing 185/8" 11.0 70
RN-22 D [in] t[mm] Shoe depth [m]
Production casing  133/s” 12.2 729
Anchor casing 185/8" 123 292
Surface casing 221/ 12.5 74
RN-32 D [in] t[mm] Shoe depth [m]
Production casing  133/s”  12.2 1077
Anchor casing 185/8" 12.3 345

Surface casing 221/ 12.0 100
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A laser was projected onto a ruler which was attached above the master valve,
see Fig. 5.28. The reference point, where the the laser tripod was located, was
2.5-3 meters from the wellhead, depending on the setup. A digital single-lens
reflex camera was then used to take high-resolution snapshots of the ruler, see
Fig. 5.30, later to be interpreted thus minimizing measurement error, which with
this method is estimated as +0.25 mm. The measurement setup for wells RN-22,
RN-32 and HE-53 can be seen in Fig. 5.29. The temperature of the wellhead was
measured at various locations on the wellheads using an infrared thermometer,
with £2 % reading accuracy. The results of the wellhead displacement study
and comparisons to the model are described in the results section below (section
6.3.1).

Figure 5.30: High resolution picture of the laser projected on a ruler on well-
head flange of HE-46. Initial position of the shut-in well right before discharge.
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Results

6.1 Thermal analysis

In the thermal modeling, temperature is applied as initial conditions of the for-
mation of the geothermal system near the well that is being studied, followed by
wellbore condition where the temperature is applied to the inner surface of the
production casing. To illustrate this, a couple of thermal analysis are presented
here. In all subsequent modeling, the heat transfer is assumed to be purely con-
ductive as only the cased section of the well is modeled and the primary goal
is to provide thermal load for later structural modeling. Inside the wellbore the
temperature is quasi-static in the sense that it is controlled through load steps,
but the thermal solution is transient. An example of such quasi-static thermal
solution is shown in Fig. 6.1.

Temperature distribution of casings, cement and formation is shown in Fig. 6.2,
where discharge of a cold well that immediately becomes 450°C hot (step load)
is modeled. Although this is an unlikely scenario, since wells normally need
time to warm-up after being drilled, it provides a worst case thermal load. An
initial condition of the analysis is the formation temperature. As the temperature
is purely conductive the steady state (SS) conditions are not reached even after
100 years of constant production. In the second load case, also shown in Fig. 6.2,
the well is assumed to be quenched with cold water after constant production of
1 year (step load).

89
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Figure 6.1: Transient thermal analysis of a typical simplified load history (°C).
1. Cooling due to drilling, 2. Warm-up, 3. Discharge (12 minutes), 4. Discharge

(3 months).
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Figure 6.2: Model results of temperature at 100 m depth for discharge (above)

and cooling after one year of production (below), IDDP-1 temperature case.
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6.2 Structural analysis

6.2.1 Axisymmetric model of multiple casings

Results of the axisymmetric model are shown further in case studies below in
section 6.3.1 where it is compared to surface measurements and section 6.4 where
it is used to model the load history of the IDDP-1 well.
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Figure 6.3: Temperature distribution 2.5 hours after discharge, assuming uni-
form 200°C temperature load inside the wellbore.

The axisymmetric model can be used to model various casing programs and load
cases by parametric input. In all cases, transient thermal analysis is first per-
formed and the results used as load along with wellbore pressure in the structural
model. For the results shown here the discharge is simulated by assuming a uni-
form 200°C inside the wellbore. The temperature distribution after 2.5 hours at
the second highest coupling of the production casing is shown in Fig. 6.3. At this
time, a thermal gradient exists between the casings where the production casing
is at ~200°C and the anchor casing is at ~70°C.
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Figure 6.4: Total strain in the cased well down to the anchor casing shoe during
discharge. X-axis is scaled 100:1. Couplings in production casing are clearly
visible. Cement between casing and formation shows greater strain than between
casings.
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Figure 6.5: Stress (von Mises) near the second highest coupling (Pa) in casing
and cement.
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Fig. 6.4 shows total strain in the cased section of the well down to the shoe of
the anchor casing. Connections of the production casing are clearly visible but
in this case the anchor casing is without connections (welded). Strain of cement
outside of casings to the formation is higher than in the cement between casings.

Von Mises stress results in the casing and cement at the second highest coupling
are shown in Fig. 6.5. As no threads are modeled, the highest stresses in the
casings are located where the couplings meet the casing. As the couplings are
simplified and no threads are included the highest stresses occur due to the sharp
change in thickness but in reality the highest stresses in the casings would be
expected to be in the first threads where the thickness of the casing is reduced as
shown later in section 6.2.2. In this case the highest stress in the casing is 316
MPa. The highest stress in the cement occurs at the upper surface of the second
highest coupling, 83 MPa. This is a potential weak spot in the cement, needing
further attention.
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Figure 6.6: Effect of cooling time on stress in cement near the uppermost cou-
pling.
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The effect of cooling time on stress forming in the cement near the uppermost
coupling in the production casing is shown in Fig. 6.6. This assumes that 20°C
cold water is used to kill the 200°C well. The results indicate that cooling for
1/2 hour leads to high compressive stress of 36 MPa but the compressive strength
of the cement is defined as 25 MPa. Reduction in stress is seen for 1 hour and
at 10 hours the residual stress is at manageable 8 MPa. No change is seen when
cooling for longer time. Quenching with cold water is analyzed for the case study
of the IDDP-1 well in section 6.4.
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Figure 6.7: Displacement of the production casing and the wellhead (meters).

Wellhead displacement is shown in Fig. 6.7. For this case the displacement of
the production casing is 35.8 mm and the wellhead displacement is 11.7 mm.

Three different casing programs are compared to understand what effect diameter
of casings and number of casings has on wellhead displacement. Three cases are
considered, the two common profiles used in Iceland, the large profile with a
133/8” production casing, the regular profile with 95/8” production casing and
the casing program of IDDP-1, consisting of a 133/s” production casing and two
additional external casings. The temperature, shown in Fig. 6.1, is the same for
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in all three cases. The casing programs are listed in Table 6.1 and the results are

listed in Table 6.2.

Table 6.1: The well programs used in the analysis. The casing program of IDDP-
1 is shortened for the comparison.

Well program  Casing OD [in] t[mm] depth (m)
Large profile ~ Production casing 133/5" 12.2 700
Anchor casing 185/¢"  12.3 250
Surface casing 221" 127 50
Regular profile Production casing 95/8" 11.0 700
Anchor casing 1338 122 250
Surface casing 185/5" 11.6 50
IDDP-1 Production casing 95/8" 13.8 740
Anchor casing 133/5" 13.1 735
Intermediate casing 2 185/s” 13.0 730
Intermediate casing 1~ 241/2" 13.0 254
Surface casing 3212”7 13.0 87

The large casing profile shows ~2 mm higher wellhead displacement than the
regular profile. However, the IDDP-1 profile shows double displacement com-
pared to the regular and large profile. This is due to the increased change for
displacement because of more number of thermally expanding casings. The max-
imum von Mises stress in the production casing is in similar range for all three

cases.

Table 6.2: Wellhead rise during discharge - comparison of well profiles (identical

loading)
Casing Nr. of Nr.of Production Wellhead Max von Mises
program casings nodes casing rise [mm] stress in
nodes  rise [mm] casing [MPa]
Large 3 228451 19.3 15.2 372.2
Regular 3 204801 17.4 13.7 358.4
IDDP-1 5 251228 36.4 33.1 3354
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6.2.2 Buttress connection in cement

In the axi-symmetric model of the cased section of a well, where simplified cou-
plings are included to account for their anchoring effect in the cement, large
stresses are seen near the uppermost couplings of the production casings, see
Fig. 6.8.
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Figure 6.8: High stress develops in the cement near the topmost coupling of the
production casing using the large axi-symmetric model of the whole well with
simplified connections. Casings are shown in dark gray and external cement in

gray.

Tensile strength of buttress thread casing (BC) connection is analyzed and com-
pared to API mechanical rating. The casing chosen for this analysis has an outer
diameter of 133/8” and nominal weight of 68 Ib/ft. The results show that if 700
m casing hangs (in air) from the connection the stress is well below the yield
strength of the K55 material. However, compared to 5000 m casing hanging
from the connection, equal to 4960 kN tensile force, yield is reached in the cas-
ing. This is in agreement with the API mechanical rating of the K55 casing which
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has pipe body yield strength of 4760 kN, the tensile strength of API BC coupling
is however 5780 kN.
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Figure 6.9: Structural modeling of buttress thread casing (BC) connection dur-
ing installation assuming casing hanging free in air, 700 m (left) and 5000 m
(right) of casing hanging from the connection. Von Mises stress (Pa).
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Figure 6.10: Structural modeling of buttress thread casing (BC) connection dur-
ing installation assuming 5000 m of casing hanging free in air, plastic strain (von
Mises) forms in the first threads of the casing (K55grade).
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Model of the topmost coupling of the production casing showing

high stress in cement surrounding the coupling (5 mm upward displacement of

the production casing). Von Mises stress (top left),

Figure 6.11

von Mises stress in cement

(bottom left), cement elements that have exceeded the compressive strength of
the cement shown in red (top right) and displacement due to upwards casing

displacement of 5 mm (bottom right).
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Cement, external casings and formation are now added to the model, to analyze
stresses in the coupling and surrounding cement which the coupling is anchored
in. The topmost coupling of the production casing is analyzed assuming 5 mm
upward displacement of the production casing as a result of thermal expansion
of the casing during discharge.

In this case, the cement is modeled elastically, thus the stress is linear according
to the Young’s modulus. In each step the cement elements are checked if they
have exceeded the compressive and tensile strength. The tensile strength is as-
sumed to be 10% of the compressive strength. The elements that have exceeded
the strength of the cement are given diminished material properties to simulate
damage. These elements are colored red in the top right corner in Fig. 6.11.
Using this approach the large production casing displacement of 5 mm generates
a cement damage through its full thickness. Although this might be an overes-
timation or simplification, the analysis indicates that cement damage could be
substantial near the topmost couplings of the production casing where the casing
displacement is not as restricted as deeper in the well.
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6.2.3 Collapse of casings

To understand the collapse of casings and the effect of annular support on the
collapse resistance as well as collapse shape, several analyses are performed.
First, an eigenvalue buckling analysis is used to predict the theoretical collapse
strength of a perfectly round casing (with API thickness manufacturing tolerance
of —12.5%). The load on the casing is uniform external pressure. The casing that
is studied has an outer diameter of 133/s” and the thickness is 12.2 mm. Since this
is a linear analysis, contact between surfaces can not be included and therefore
the analysis is limited to the casing only.

Table 6.3: Theoretical collapse strength of the modeled casing using eigenvalue
buckling analysis. The calculated API collapse resistance of this casing is 13.4
MPa.

Mode shape Theoretical collapse % of API

nr. strength [MPa] collapse resistance
1 14.4 107.1

2 14.5 107.9

3 14.5 108.4

4 14.7 109.6

5 15.1 112.4

6 15.7 117.1

7 16.7 124.9

8 18.1 135.3

The theoretical collapse strength for mode shapes 1-8 are listed in Table 6.3 and
the collapse mode shapes that were obtained with the method can be seen in
Figure 6.12. As seen in the table, The theoretical collapse strength of the casing
is slightly higher than the calculated API collapse resistance of the casing which
is 13.4 MPa.
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Figure 6.12: Collapse mode shapes 1-8 of the production casing (eigenvalue
buckling analysis).
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Figure 6.13: Collapse shape after using nonlinear buckling analysis with mode
shape perturbation.

To account for nonlinearities, i.e. large displacements, in material properties and
contact between surfaces, nonlinear buckling analysis is used. Because of the
perfect geometry of the model, some small perturbation or instability needs to be
introduced for collapse to be possible. There are several ways to do this. In all
cases, small changes in material properties are randomly introduced to the cas-
ing, where 20% of the total number of elements are selected for this purpose. The
first mode shape from the eigenvalue buckling analysis is used as perturbation to
the initial geometry of the casing. The resulting collapse shape is displayed in
Fig 6.13. Load-displacement curves are used to determine the collapse load.
Since the magnitude of the mode shapes from the modal analysis is arbitrary,
scaling factors are selected for slight initial deformations. The 1st mode shape
is used as perturbation and scaled with values of 0.0005 and 0.001, shown in
Fig. 6.14, the resulting limit loads for collapse are determined as 26.4 MPa and
21.6 MPa, respectively. This is higher than the theoretical collapse strength, i.e.
the bifurcation point, that was obtained in the eigenvalue buckling analysis. The
load-displacement curve for a perfectly round casing (with material impurities) is
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Figure 6.14: Load-displacement curves showing the effect of initial geometry
where mode shape perturbation is used.
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Figure 6.15: Load-displacement curves showing the effect of ovality on collapse.
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shown for reference with collapse limit load of 38.4 MPa. Next, the effect of the
initial ovality of the casing, defined in equation 5.1, on collapse resistance is an-
alyzed. The load-displacement curves in Fig. 6.15 show that small ovality of the
casing, 0.1-3.0%, reduces the collapse strength substantially. 0.1% ovality, cal-
culated according to equation 5.1, the collapse limit load is 25.5 MPa compared
to the perfectly round casing with collapse load of 38.4 MPa.
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Figure 6.16: Load-displacement curves showing the effect of external defect
depth on collapse.

Load-displacement curves showing the effect of external defect depth, 10% to
the extreme 80% of the casing thickness, is shown in Fig. 6.16. Fig. 6.17 shows
that at 10% defect depth the casing is unstable but the location of the defect does
not control the location of the collapse. At 20-30% defect depth the collapse is
located at the defect and at 40% the deformation becomes substantial. At the
extreme case of 80% defect depth the collapse occurs in the defect itself in the
form of plate buckling.
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Figure 6.17: Effect of external defect depth (percentage of casing thickness) on
collapse shape. End view of the externally cemented casing.
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Figure 6.19: Collapsed casing with external defect depth of 40% of the casing
thickness and cement support.
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Figure 6.20: Collapse shapes of a casing with external casing depth of 50% of
the casing thickness, with and without support from cement (cement not shown).
Initation of collapse (left) and post-collapse shape (right).

Due to the buckling analysis being nonlinear, contact between surfaces and there-
fore the effect of cement support can be modeled. The collapse resistance of the
casing is analyzed with and without cement support. Additionally, a geometric
defect is added to the casing. Without the cement support the casing collapses
completely, as is seen if cement slurry pressures exceed the collapse strength
during cementing. When cement support is present in the model the casing only
collapses partially, beginning at the location of the defect. The collapse load-
displacement curves shown in Fig. 6.18 show that the cement support increases
the collapse resistance of the casing. The limit load for collapse is 14.4 MPa for
the unsupported casing and 18.1 MPa for the casing that is supported. In addi-
tion, the collapse shape of the supported casing resembles the collapse shapes
that have been seen in wells, see Figs. 3.7 and 3.8. Using nonlinear material
properties, i.e. stress-strain curves for the steel, is compared to using linear ma-
terial properties, also shown in Fig. 6.18. When nonlinear material properties
are used, plastic deformations take place which generates instability and leads to
collapse. When linear material properties are used, on the other hand, the casing
remains stable until collapse occurs elastically. According to standard ISO/TR
10400:2007(E), the D/t ratio of the casing defines a collapse region in a transition
between elastic and plastic collapse, see Fig. 3.9.
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Fig. 6.19 shows a collapsed casing with defect depth of 40% of the casing thick-
ness and external cement support. Sections of the collapse and post-collapse
shapes for cases with and without cement support are shown in Fig. 6.20. A
summary of the collapse analysis is listed in Tab. 6.4.

Table 6.4: Summary of the effect of initial geometry on collapse. The calculated
API collapse resistance of this casing is 13.4 MPa.

Initial geometry Collapse limit % of API collapse
load [MPa] resistance
Without external cement support:
Perfectly round 38.4 287
Ist mode shape (0.0005) 26.4 197
Ist mode shape (0.001) 21.6 161
Ovality (0.1%) 26.4 197
Ovality (0.5%) 24.0 179
Ovality (1.0%) 22.8 170
Ovality (2.0%) 21.0 157
Ovality (3.0%) 19.8 148
External defect (0.5%t) 14.4 107
With external cement support:
External defect (0.1%*t) 33.6 251
External defect (0.2%t) 25.2 188
External defect (0.5%t) 15.6 116
External defect (0.8*t) 12.0 89.6

Collapse of the production casing as a result of the presence of an annular water
pocket is analyzed. The water pocket is defined as shown in Fig. 5.3. Two cases,
with and without the water pocket, are compared. Table 6.5 shows maximum
von Mises stress, radial displacement and axial displacement in the production
casing for both cases. In the case without the water pocket, no collapse takes
place despite the high temperature of 750°C and 5 MPa net external pressure.
Instead the casing expands radially pushing against the cement and no debonding
from the cement occurs. When the water pocket is included, collapse occurs at
the location of the water pocket at 40% of the load, i.e. at about 300°C and 2
MPa net external pressure. The radial displacement of the collapsed casing can
be seen in Fig. 6.21.
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Table 6.5: Maximum stress and displacements in the production casing, with
and without annular water pocket.

W/o water pocket With water pocket

Value Location Value Location

Von Mises stress (MPa) 358 | Casingbody | 440 | At water pocket
Radial displacement (mm) | 2.20 | Near coupling | -106 | At water pocket
Axial displacement (mm) | 1.09 | Near coupling | 63.7 | At water pocket

ANSYS 11.0
-.105446
. 08654
. 067635
. 048729
. 028823
-.010917
. 0079848
. 026094
. 0458
. 064706

BO00RECEN

Figure 6.21: Collapse due to annular water pocket of a 133/8" production casing
with wall thickness of 12.2 mm. The figure shows radial displacement (in meters)
of the casing which collapsed at 300 and 20 bar net external pressure.
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6.3 Case study - Wellhead displacement analysis

6.3.1 Elevation measurements

Geothermal wells gradually warm up during thermal recovery from drilling (oc-
curring over period of weeks to months). During discharges however, wellbore
temperatures can change rapidly (<1 min). Large temperature changes can occur,
especially close to the surface in wells that have cold gas or air mixture upper-
most in the well. In such cases thermal expansion leads to upwards wellhead
displacement. Wellhead elevation displacement data was gathered for 5 wells as
they were discharged. In each case, the measurements lasted several hours and
for 3 wells the elevation was measured again after several days of discharge.

In the survey, two types of discharges were observed; (i) from initially cold wells
that needed air-pressure assistance in order to discharge and (ii) from wells that
had developed wellhead pressure naturally by accumulation of non-condensable
gases. In the initally cold wells, the wellhead temperature difference was large
and abrupt as the wells were discharged. The wellhead displacement was there-
fore rapid during the first minutes after the wellhead valve was opened and then
slowed down over time. But for the two initially warm wells that were observed,
the lower temperature difference resulted in slower change in wellhead displace-
ment in one well and no displacement in the other well during the observation
period.

The wellhead temperature changes during discharge are shown in Fig. 6.22 and
the wellhead displacement data is displayed in Fig. 6.23. Table 6.6 summarizes
the wellhead temperature change, the monitored wellhead displacement and the
monitoring period. All of the wells, except HE-53, showed upwards wellhead
displacement shortly (<1 min) after discharge was initiated, but virtually no dis-
placement (-0.5 mm) was seen for the wellhead of HE-53 during the observation
period of three hours.
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Initial 4 hours

Figure 6.24: Photographs of the wellhead displacement of well HE-46 during
discharge. After 4 hours of discharge the displacement was 40 mm and after 9
days it was 52 mm.

Table 6.6: Monitored wellhead displacement and wellhead temperature change,
AT, before discharge T; and after discharge Ty. Well numbers marked with
HE are located in the Hengill geothermal area and wells marked with RN are
located in the Reykjanes geothermal area. Well HE-46 was monitored during
two separate discharges marked (1) and (2).

Well number 7; (°C) Ty (°C) AT,, (°C) Uy, (mm) Monitoring period

HE-46 (2) 6 197 191 52.0 9 days
HE-46 (1) 8 193 185 22.5 2.5 hours
HE-13 18 197 179 40.5 3 days
RN-22 66 215 149 7.0 2.5 hours
RN-32 3 207 204 15.0 9 days

HE-53 310 260 -50 -0.5 3 hours
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A discharge attempt of HE-46 that failed, as pressurized air was released with-
out initiating discharge, indicates that the wellhead displacement is governed by
thermal expansion rather than wellhead pressure. A downward wellhead dis-
placement of 1.5 mm was observed while the wellhead pressure decreased from
45 to O bar-g as shown in Fig. 6.25. Compared to the wellhead displacement dur-
ing discharge, where the maximum observed upward displacement was 52 mm,
the downward displacement due to pressure release is small.
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Figure 6.25: Wellhead displacement from 45 to 0 bar-g during a failed discharge
attempt of well HE-46.

Photographs of the wellhead displacement of HE-46 is displayed in Fig. 6.24.
Two photographs merged into one show the initial elevation of the wellhead of
RN-32 and the displacment 9 days after discharge initiation.
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Figure 6.26: Merged photographs of the initial elevation of the wellhead on RN-
32 at 3°C and 35 bar-g and the displacement 9 days after discharge initiation at
207°C and 17 bar-g.

Fig. 6.27 shows the locations where temperature measurements were taken on
the wellhead of HE-46. The two discharges of the well, with two years in be-
tween, show nearly identical temperature changes. Figs. 6.28 and 6.29 show the
measurement locations and temperature measurements on the wellhead of RN-
22 and HE-13, respectively. Fig. 6.30, shows wellhead temperature, pressure
and wellhead displacement of the initial flow-test of RN-32. The temperature
measurements indicate that the wellheads and therefore also the wellbore have
reached steady temperatures about one hour after discharge initiation. However,
the wellheads keep rising which is explained by gradual temperature increase in
the anchor and surface casings.
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data during discharge of RN-22.
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6.3.2 FEM analysis

The casing programs of wells HE-46, HE-13, RN-22, RN-32 and HE-53 are
modeled with the 2D axi-symmetric model described in section 5.1, where the
whole cased section is modeled. Numerical results, from the model are com-
pared to the wellhead displacement measurements that are described in section
6.3.1. The transient temperature distribution of the wells is calculated from each
assumed load history which is based on temperature and pressure logs and well-
head data. The load case for well HE-46 is shown in Fig. 6.31.The estimated
formation temperature used as load to the whole model in the thermal analysis.
Then assumed wellbore cooling from drilling, warm-up and lastly discharge is
modeled with transient analysis. The thermal results are then used as load in
the structural analysis along with defined wellbore pressure. Similar load input
is prepared for each well with site specific formation temperatures and wellbore
temperature and pressure loads.
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Figure 6.31: Temperature and pressure profiles used as load cases for
well HE-46.
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Fig. 6.32 is used for transition of the wellbore temperature load between the pre-
discharge and discharge load cases, illustrating how the wellhead temperature of
well HE-46 increases after flow-testing is initiated.
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Figure 6.32: Measured wellhead temperature during initiation of flow which is
used as transition between the pre-discharge and discharge load cases of well
HE-46.

The modeled temperature distribution and displacement of the wellhead of HE-
46 after 9 days of discharge are displayed in Fig. 6.33, respectively. The results
show slight sliding of the production casing inside the wellhead. The modeled
wellhead displacements are compared to the measured displacement for the 5
wells that were measured in Figs. 6.34 to 6.37. There is a good agreement
between the model and the measurements.
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Figure 6.34: Measured wellhead displacement for well HE-46 and
FEM model results (default model parameters).
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Figure 6.35: Measured wellhead displacement for well HE-13 and
FEM model results (default model parameters).
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Figure 6.36: Measured wellhead displacement for well RN-22 and
FEM model results (default model parameters).
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Figure 6.37: Measured wellhead displacement for well RN-32 and
FEM model results (default model parameters).
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6.4 Case study - Structural analysis of IDDP-1

6.4.1 Operation history and casing failures

The Iceland Deep Drilling Project (IDDP) consortium was established in the year
2000 to investigate the feasibility and economics of deep, high-enthalpy geother-
mal resources, and supercritical hydrothermal fluids, as possible future energy
sources (Fridleifsson et al., 2014). The first well IDDP-1 was drilled in the Krafla
geothermal field in north-east Iceland in years 2008-2009 with the aim of drilling
to a total depth of 4500 m and reaching superheated or supercritical heat source.
Due to the depth of the well, it was designed with five casings. But after unex-
pectedly drilling into magma the final depth became ~2100 m (Hauksson et al.,
2014; Hoélmgeirsson et al., 2010; Pélsson et al., 2014). The production casing
and the anchor casing were thus both ~1950 m deep, but casings in conventional
high temperature geothermal wells are typically about 700-1000 m deep. The
casing program of the well is listed in Table 6.7.

Table 6.7: The casing program of IDDP-1 (as built) (Thorhallsson et al., 2014,
Pdlsson et al., 2014).

D [in] t[mm] Length[m] Steel grade Connections

Surface casing 32172  13.0 87 X56 Welded
Intermediate casing 1 241/2  13.0 254 K55 Welded
Intermediate casing 2 185/8 13.0 785 K55 BC
Anchor casing (Top 290 m)  135/8  15.9 290 T95 Hydril 563
Anchor casing (290-19499 m) 133/8 13.1 290-1949 K55 Hydril 563
Production casing 95/8 13.8 1935 K55 Hydril 563
Slotted liner 95/8 120  1935-2072 K55 BC

During cementing of the production casing it was evident that cementing was
poor at around 620 m depth and as the well was flow tested the casing collapsed
at that location. According to Cement Bond Logs (CBL) from ISOR (Iceland
GeoSurvey) there was little evidence of a cement bond with the production cas-
ing at depth intervals 615-635 m and 725-785 m. The casing appears to have
collapsed during the initial flow testing, near the suspected intersection between
the two cementing operations (Pélsson et al., 2014). This inhibited further log-
ging of the well below the casing failure, but a video log conducted by ISOR
(Iceland GeoSurvey) later revealed the severe collapse, Fig 6.40.
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Figure 6.38: Operation history and maximum wellhead temperature of each dis-
charge phase of IDDP-1.

The well was flow-tested several times with intermittent stops as surface equip-
ment had to be redesigned. Ingason et al. (2014) presented the operation history
data of the wellhead pressure (P) and temperature (T) of IDDP-1 during five
discharge phases. The operation history, discharge phases and wellhead temper-
atures are shown in Fig. 6.38. During phase I, saturated steam was produced but
in the succeeding phases the fluid became superheated, with wellhead conditions
at 450°C and 140 bar-g (Hauksson et al., 2014; Ingason et al., 2014), as shown
in Fig. 6.39. Since the load history is important for analyzing built-up plastic
strain in the casings, the flow-test phases of the discharge system are used to
reconstruct the load history for the structural analysis.
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Due to a critical situation of steam leakage followed by a master valve malfunc-
tion after successfully flow-testing at superheated conditions for 10 months, the
well was quenched by injecting water into it in July 2012 (Ingason et al., 2014).
The video log of the well from the year 2014 revealed four failures in the produc-
tion casing. Three connection failures were found at depths of 300 m, 356 m and
505 m. In all cases the casing had been pulled down from the coupling leaving
the outer casing and cement exposed, see Figs. 6.41 to 6.43. The gap formed was
approximately 0.4 m for the ruptures at 300 m and 356 m and 0.25 m at 505 m.
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Figure 6.39: Enthalpy estimation of the fluid in the different discharge phases of
the IDDP-1 well. Saturated steam was produced from the well in phase I and in
later phases the steam became superheated.
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Figure 6.40: Severe casing collapse at about 620 m depth in IDDP-1 (by cour-
tesy of Landsvirkjun).
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Figure 6.41: Combined image from a video log of a coupling rupture at approx-
imately 300 m depth in the IDDP-1 well. After the failure occurred the cement
and the outer casing were exposed (by courtesy of Landsvirkjun).
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Figure 6.42: A combined image of the coupling rupture at 356 m depth in IDDP-
1 (black areas are regions that were not documented in the video). Much of the
cement has fallen into the well and external casing is exposed (by courtesy of
Landsvirkjun).
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Figure 6.43: A combined image of the coupling rupture at 505 m depth in IDDP-
1 (black areas are regions that were not documented in the video). A casing bow-
centralizer that is placed around the coupling is visible, holding the cement in
place (by courtesy of Landsvirkjun).
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6.4.2 FEM analysis

The axisymmetric model of the IDDP-1 well is shown in Fig. 6.44. Due to the
deep casings, the anchoring effect of couplings was included by using bonded
contact at the connection locations instead of using simplified couplings as shown

before (e.g. in Fig. 6.8).

FEM model x-axis scaled 1000:1

(___’ u Wy ‘I

290 m
| 254 m

785 m

1949 m

Wellhead (180° symmetry expansion)

[P
¥
\

Friction defined between
contacting surfaces

Figure 6.44: Axisymmetric nonlinear FEM model of the IDDP-1 well. The an-
choring effect of the couplings in the cement is included in the model by using
bonded contact at the coupling locations. A simplified wellhead is also included
to account for wellhead pressure and the interaction between the production cas-
ing and the wellhead. The casing depths are shown to the right by scaling the

x-axis by 1000 to 1.
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Convergence studies of the axisymmetric model of the cased section of the well
with respect to mesh density in the axial direction is shown in Fig. 6.45. The
mesh configurations are listed in Table 6.8. In order to simplify the mesh sensi-
tivity evaluation, the model is cut from the bottom. The convergence study shows
similar results for all four meshes. Mesh IV is therefore chosen for the analysis
and the casings are analyzed down to 1700 m depth. Furthermore, the conver-
gence studies show that cutting the model from the bottom does not change the
results since load premises are not changed. The element density is on the limit
of being too coarse, but using coarser mesh would violate element shape checks.
Therefore, small local stresses and strains can not be expected, only the global
picture.

Table 6.8: Considered mesh densities in radial (elements/thickness) and longi-
tudinal (elements/m) directions.

Mesh  Model  Mesh Production Production Anchor Anchor
depth (m) density casing cement casing cement
I 390 Radial 4 3 2 2
Longitudinal 15.6 15.6 7.6 7.6
I 774 Radial 2 2 2 2
Longitudinal 7.6 7.6 7.6 7.6
m 1209 Radial 1 2 1 2
Longitudinal 7.6 7.6 4.0 4.0
v 1722 Radial 1 2 1 2
Longitudinal 4.0 4.0 4.0 4.0

Residual stresses from installing the casings is accounted for by defining initial
stress conditions. They consists of (i) tensile stress from a casing hanging free
from the top in a well filled with cold water and (ii) thermal stress from the
temperature difference between the cement as it sets and the drilling fluid. The
cementing temperature of the four innermost casings displayed in Fig. 6.46 is
estimated form temperature measurements taken before cement bond logging
(CBL).
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Figure 6.45: Mesh convergence studies. Results taken after 30 seconds of cool-
ing. The different mesh densities are listed in Table 6.8.
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Figure 6.46: Assumed cementing temperature of the four innermost casings,
based on data from Landsvirkjun. This is used as a reference temperature for
initial thermal stress calculations in the model.
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Fig. 6.47 shows estimated formation temperature from neighboring well KG-
25 located ~100 m from IDDP-1, used as initial temperature condition of the
formation. Wellbore temperature and pressure loads for discharge phase I and V
are also shown. The pressure in phase I shows two-phase fluid and for phase V
superheated steam is produced.

The temperature distribution in and around the well after 7 months of thermal
recovery from drilling is shown in Fig. 6.48. Fig. 6.49 and Fig. 6.50 show
the temperature distribution in discharge phase V after 2 days and 11 months
of discharge, respectively, and Fig. 6.51 shows the distribution after 8 hours of
cooling while killing the well with cold water.

Axial stress and strain distribution down the production casing and anchor cas-
ing during discharge phase V and while quenching the well is shown in Figs.
6.52 and 6.53, respectively. During phase V, both casings develop high axial
compressive stresses that reach above yield and plastic strains are formed. Near
to the surface in the top ~50 m the stresses are high initially in the production
casing, but are relived as the outer casings heat up and expand as well. The ma-
terial and thickness change from T95 to K55 at 300 m depth in the anchor casing
is clearly visible. Stress in the production casing is affected by this material
change. Stress concentrations are also seen in the production casing at external
casing shoe locations, namely at 87 m, 254 m and 785 m depth. These points are
of particular interest and might contribute to casing failures.
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Figure 6.47: Temperature and pressure loads for the modeling of phase I (top)
and phase V (bottom). x Formation temperature of KG-25 (Bjornsson et al.,
1990), T 8 months warm-up (Axelsson et al., 2014), 1 Based on monitored well-
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Figure 6.48: Modeled temperature distribution (°C) of the well after 7 months
of warm-up after drilling. The x-axis is scaled by 1000 to 1.
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Figure 6.49: Modeled temperature distribution (°C) of the well after 2 days of
discharge in phase V. The x-axis is scaled by 1000 to 1.
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Figure 6.50: Modeled temperature distribution (°C) of the well after 11 months
of discharge in phase V. The x-axis is scaled by 1000 to 1.



6.4. Case study - Structural analysis of IDDP-1 141

<& »
L} i

Surface casing

Intermediate casing 1

HELCREEN

=S

Intermediate casing 2 (shoe)

1700 m

™ Anchor casing

Figure 6.51: Modeled temperature distribution (°C) of the well after 8 hours of
quenching with cold water. The x-axis is scaled by 1000 to 1.
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Figure 6.53: Quenching. Axial stress and total axial strain of the production

casing (top) and anchor casing (bottom) during quenching of the well.
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Fig. 6.54 shows the measured and modeled vertical displacement of the well-
head of IDDP-1 from warm-up, through multiple discharge phases and in the
end killing of the well with water. The height of the wellhead was measured
by Landsvirkjun’s personnel at the lower flange of the master valve and the ref-
erence point for the measurements was the drilling platform which is grounded
approximately 3.0 m outward from the center of the well.

The measured wellhead displacement is not recovered to its initial position dur-
ing shut-ins, but interestingly the downward displacement during quenching of
the well goes below the initial position of the wellhead, suggesting large tensile
forces due to thermal contraction of the casings subsequent to being permanently
strained in compression. This phenomenon is explained in Fig. 3.6. The modeled
wellhead displacement shows similar trend as the measured elevation but does
not capture accurately the displacement magnitude where for discharge phase V
the final modeled displacement is 345 mm but the measured one is 440 mm.

The evolution of the maximum von Mises strain (total strain) of the production
casing and the anchor casing over the operation history of the well is displayed in
Fig. 6.55. Cyclic stress and strain results for the production casing at 50 m depth
is displayed in Fig. 6.56 to illustrate the buildup of plastic strain in each thermal
cycle. This differs depending on location selected in the casing. Following the
load history, the first few thermal cycles show no signs of the tensile stress reach-
ing yield, but in the last thermal cycle when the well is quenched, high tensile
stress and plastic tensile strain forms. Table 6.9 lists a summary of the structural
results.
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Figure 6.54: Modeled and measured vertical height of the wellhead of IDDP-
1. Wellhead height data is shown by courtesy of Landsvirkjun. The green lines
indicate the start of each discharge phase.
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Table 6.9: Summary of structural results. Maximum wellhead pressure (P,)
and temperature (T,,), maximum displacement of the wellhead (d,,,) and max-
imum von Mises stress and strain results for the production casing and anchor
casing during different phases of the load history.

Production casing Anchor casing

Max P,;, MaxT,, Maxd,;, (mm) Max von Max von Max von Max von

(bar) °C) model (data) Mises Mises Mises Mises

stress [MPa] strain stress [MPa] strain

Thermal recovery 0 30 150 (-) 382 0.0133 449 0.0022
Phase I 120 325 216 (368) 378 0.0135 665 0.0078
Phase II 20 380 272 (-) 382 0.0145 660 0.0107
Phase Illa 105 350 246 (-) 359 0.0144 542 0.0100
Phase IIIb 70 390 262 (-) 374 0.0154 633 0.0105
Phase IV 112 410 265 (-) 403 0.0163 636 0.0106
Phase V 145 450 345 (440) 414 0.0175 627 0.0128
Quenching 0 ~10 63 (-17) 384 0.0156 607 0.0127
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Discussion

In this study, the focus has been on analyzing structural response of high-temperature
geothermal wells to operational loads, i.e. temperature and pressure changes.
Quantification on the known number of casing failures occurring in geothermal
wells does not exist as such data is in general rare and systematical survey is not
practical. This is due to the fact that wells can be in production or shut-in for long
periods and such failures are primarily found if restrictions are observed during
downhole logging. However, qualification of the types of casing failures can be
made from failures that have been recorded. This information indicates that the
main casing failures that are found in wells are casing collapses and connection
failures (discussed in section 3.5).

Connecting casing failures to specific load cases is thus of great value in order to
improve design and operation of high-temperature geothermal wells. Procedures
of drilling, running casing, cementing and well operations after completion all
affect the structural integrity of the casing. The results from the multiple FEM
analyses in this study show that the main factor contributing to the identified
casing failures is thermal expansion in materials, both for structural materials as
well as in annular fluids. The results also show the importance of the overall con-
struction and geometry of wells, e.g. casing roundness and quality of cementing,
for the well integrity.

During this PhD study, the effect of collapse on well integrity was seen in its
most critical form, where the collapse of the production casing in the IDDP-1
well is considered to have lead to failures of two external casings, most likely
due to high-velocity erosion in the annulus between casings after the production
casing collapsed. Quenching the well later lead to multiple tensile connection
failures demonstrating that killing wells with cold water should be an absolute
last resort in such critical situations.

149
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The findings of this study clearly indicate that cooling of casings that have reached
beyond the yield point due to thermal (compressive) straining leads to high ten-
sile stresses that can cause such failures. The temperature limit of non-recoverable
compressive straining that subsequently results in failure if the well cools again
depends on a number of factors. The main ones are: the yield strength and stress-
strain relationship of the particular casing material (at elevated temperatures) and
the temperature difference from the cementing setting temperature to the maxi-
mum temperature at operation conditions of a particular casing.

Additionally, the FEM analysis results of the load history of the IDDP-1 well us-
ing a two-dimensional axisymmetric model indicate that location of casing shoes
and casing thickness changes affect how stresses and strains form in neighbor-
ing casings. The structural analysis indicate that the proximity to such casing
changes could have contributed to failures where a connection failure was found
in the production casing of IDDP-1 at the depth where the next outer casing
changes both in thickness and material.

The time factor of wellbore temperature changes is also shown to be important.
During discharges, the production casing is subjected to an abrupt temperature
change while the anchor casing is somewhat protected by the thermal insulation
of cement in between, where the warm-up is gradual. However, off-centered cas-
ing at various locations could complicate the thermal flow between casings, as
one side is less insulated due to less cement and heats up faster than the other,
which has greater thermal insulation due to increased cement thickness. The
FEM results also illustrate that after 8 hours of quenching, large thermal differ-
ences still exist between casings. Therefore, it can be concluded that the stress
and strain distribution in each casing is governed by several factors, e.g. ce-
menting temperatures, material properties, thickness changes, locations of cas-
ing shoes of adjacent casings, surface friction and change in temperature/pressure
distribution down the well with time.

In multiple collapse analyses, the positive effect of uniform cement support around
casings is shown, where collapse resistance of cemented casing versus un-cemented
casing is considerably higher. The results demonstrate how the collapse resis-
tance is significantly reduced with small perturbations or geometric irregularities,
e.g. ovality, defect or trapped annular water pockets or high residual water con-
tent in the cement. In all cases, the initial circular geometry of casings is shown
to be tremendously important to reduce probability of casing collapse. Various
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model setups indicate that couplings are anchored in the cement and between
casing connections the constraint of the casing are governed by friction between
the steel and cement surfaces.

In the study, various methods have been used to validate the results of the FEM
analyses. Parameter uncertainty in the model is quantified by using sensitiv-
ity analysis and probabilistic design analysis which both help to understand the
model and the structure. By using the method, parameter significance to spe-
cific results are revealed. Material properties are chosen according to literature
and available data, using actual multilinear stress-strain curves from tensile test-
ing of the steel materials used and design curves of strength reduction at ele-
vated temperatures. However, material properties of cement are approximated
with a bi-linear stress-strain curves defining a tangent modulus after its compres-
sive strength is reached, simulating residual strength after occurrence of cement
failure. This is necessary in order to achieve convergence while modeling load
histories of wells where large displacements are modeled and loads reversed.
Push-out test results of cemented casings at ambient temperatures are used as a
baseline for frictional characteristics of casing-cement surfaces.

Downhole logging data is crucial to define realistic temperature and pressure
loads with depth and time in the model. Similarly, access to continuous temper-
ature and pressure data at the wellhead is important to understand changes with
time. Time series data during warm-up in cement on the external surface of the
anchor casing is used to validate the thermal model of the cased well. Wellhead
temperature, pressure and elevation data is gathered for several wells and used
to validate displacements in the model. Lastly, casing failures provide essetnial
insights into the structural response to loads.
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Conclusions

Previous studies have shown the importance of analyzing structural systems of
multiple casings, cement and formation with models that involve plasticity, slid-
ing surface contact and transient response to loads. This has been the aim of the
PhD study, where several models were developed to understand the structural
system. A global model that can solve local problems, e.g. multiple collapses in
a production casing, is still not practical as such model would involve hundreds
of millions of DOF due to the small diameter to depth ratio of wells. Instead
the study was aimed at dividing the problem into smaller ones with the intention
of analyzing different load cases using local models (3D collapse models) and
global models (2D axisymmetric models).

The objective of the study was to gather information and gain knowledge of how
the structure of a high-temperature geothermal well reacts as it goes through var-
ious load cases over its lifetime and by that increasing understanding of reasons
for casing failures. The tool that was used to achieve this was the nonlinear finite-
element method. The models that were developed were used to analyze near well
temperature changes as a result of wellbore temperature changes during opera-
tion history of wells. This includes, temperature conditions of the formation
(initial conditions), cooling from drilling, warm-up after drilling, flow-testing,
production, production stops and killing by pumping in water. The structural im-
pact of transient thermal loading was found by analyzing load histories of wells.

The main conclusion that can be taken from the field study are that wellhead
displacement is primarily governed by temperature changes rather than by well-
head pressure. The main practical conclusions from the FEM analyses can be
summarized as:

- In high-temperature wells, the temperature difference from cementing to pro-
duction causes permanent plastic strains in the casings, because thermal stresses
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reach beyond the yield strength of the constrained casings.

- Large residual tensile stresses are found in the casing if wells are cooled after
being subjected to operational temperatures.

- Casings are primarily constrained (anchored) by cement at couplings, and be-
tween couplings the constraints are determined by friction between the steel and
cement surfaces.

- The probability of casing collapse can be lowered significantly by selecting
casings with proper circular geometry for the production casing, that has less
collapse resistance if the casing is initially oval or eccentric.

- Proper lateral and radial support of cement greatly improves resistance of cas-
ings against collapse.
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Further work

The feasibility of utilizing high enthalpy fluids from deep geothermal sources
where temperatures and pressures are higher than seen in conventional high-
temperature wells is a questions that could in part be answered by FEM analysis.
The focus of this study has been to understand current design of high-temperature
geothermal wells, but it is clear that further studies are needed in order to advance
the evolution and development of geothermal or other thermal application well
designs.

The FEM results demonstrate that time of warm-up of casings from the cooled
conditions during drilling to operation temperatures plays an integral role in
stress and strain development in layered steel casings and cement sheaths. De-
veloping methods for controlled warm-up of wells where the cased portion of
the well is allowed to warm-up to near production temperatures over a period
of weeks or even months could reduce probability of casing failure occurring
over the lifetime of the well. Engineering such method is not trivial since in-
dividual wells are different depending on reservoir conditions. The uppermost
multi-cased section of wells can be difficult to warm-up slowly from the source
deeper in the well. A possibility of initial warm-up of newly drilled wells from
other heat sources, e.g. from another well or by separation water, followed by
slow bleeding at the wellhead could reduce the effect of thermal expansion on
the structure.

The core design of high-temperature geothermal wells has not changed much in
the past three decades. New ideas for increased structural integrity are needed
as it seems that a design limit has been reached, due to structural strength limi-
tations at elevated temperatures, thermal expansion and material limitations due
to harsh geothermal environments. Research and development for new emerging
technologies and material selection for casings and cement are needed to push
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this unclear boundary further. FEM analysis still provides a powerful tool for
further research and development in this field.

A number of new studies and international collaboration projects touch the sub-
ject, including: Europe Union’s Horizon 2020 projects GeoWell, DEEPEGS and
Descramble. Objectives include introducing new technology for high-enthalpy
wells, improving material selection and cement formulations of casings and ce-
ment for geothermal operations. The results from this study have already been
implemented in development of flexible couplings, a patented solution that is
designed to mitigate thermal straining by allowing displacements of casing seg-
ments and have been developed at ISOR (Iceland GeoSurvey) from year 2015
within projects GeoWell and DEEPEGS (Kaldal and Thorbjornsson, 2016; Thor-
bjornsson et al., 2017). The new technology could allow high-enthalpy wells to
be utilized with increased change of success by reducing thermal strains in the
casing.
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ABSTRACT

The production casing of a high temperature
geothermal well is subjected to multiple thermo-
mechanical loads in the period from installation to
production. Temperature and pressure fluctuations
are large in high temperature geothermal wells, for
example during the first discharge the temperature
difference from a non-flowing to a flowing well can
be on the range of hundreds of degrees centigrade.
During installation, stimulation and production,
problems can arise due to these loads and due to a
possible corrosive geothermal environment. Plastic
buckling of the production casing is a problem that
can occur. It results in a bulge in the wall of the
casing and is detrimental to the geothermal energy
production and the lifetime of the well. The cost of
each well is very high. Therefore, it is important to
analyze the structura environment of high
temperature geothermal wells in effort to avoid
repeated problems in the design and installment
phases of the casing.

A finite-element model has been developed to
evaluate the temperature distribution, deformation
and stresses in a high temperature geothermal well
and to evauate the reasons for buckling in the
production casing. The load history of the casing is
followed from the beginning of the installment phase
to the production phase.

The results show that the load history and also the
sequence of loading is important in order to
understand the true structural behavior of wells.

INTRODUCTION

Geothermal wells consist of several concentric steel
casings and concrete sealant that is in contact with
the surrounding rock formation. Plastic buckling of
the production casing is a problem that can occur.

The innermost casing, the production casing, buckles
and forms a bulge on the inside of the casing wall.
This deformation of the casing can lead to reduced
energy output and in worst cases render the well
inoperative.

A number of interesting cases of casing impairments
have occurred in Iceland. There exist however some
difficulties in tracking the history of the wells. For
example the load history of wellsis not always fully
known, as down hole P-T measurements are often
sparse and cannot be performed constantly. Icelandic
well drilling, operation and completion reports, from
the Nationa Energy Authority and Iceland
Geosurvey, were used to gather information and data
on the load history and well completion processes.
Casing failure as a result of trapped fluid in the
casing to casing annulus have been discussed as a
suspected cause of casing collapse by for example
Bjornsson (1978), Magneschi (1995) and Southon
(2005). Southon lists casing faillure modes in
geothermal wells and discusses the importance of
ensuring that construction and design techniques are
sound and carefully implemented. He also discusses
that pre-tension loads need to be determined to avoid
compression yielding when using buttress threaded
couplings. Euler buckling and helical buckling are
addressed by Leaver (1982) where analyses are
performed and equations developed for buckling of
an uncemented length of casing. Euler buckling is
also addressed by Rechard and Schuler (1983) where
buckling models are produced.

Chiotis and Vrellis (1995) list casing failures
observed in Greek wells where wellhead movement,
casing joint decoupling, buckling of a9 5/8 in casing
in 6 different places, tieback casing collapse and
serious wellhead leakages associated with casing
corrosion are discussed. They conclude that the major
casing failures observed are caused by thermal stress
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and that burst and collapse strengths are severely
reduced by axia thermal stress.

Kane (1996) evaluates corrosion problems involving
in-service failures of geothermal well production
casings where high thermally induced tensile stressin
combination with the presence of hydrogen sulfide
results in sulfide stress cracking.

Few finite-element models of wells have been
created. A 2D finite element model of the cross
section of a double cased geotherma well was
created for representing the behavior of the
cement/sealant by Philippacopoulos and Berndt
(2002) where the results showed the inadequacy of
geothermal well design based solely on compressive
strength. A plane strain finite element model for well
faillure due to formation movement and a three
dimensional model to analyse the local behavior of
the  casing-cement-formation  interaction  in
geothermal  wells were developed aso by
Philippacopoul os and Berndt (2000) where the part of
the results revealed the importance of the cement
properties on the response of the casing patch cement
included in the three dimensional model.

Peng, Fu and Zhang (2007) created a finite-element
model to represent oil-field casing failure in
unconsolidated formations where the results showed
non-uniform and multi-directional casing
deformation.

The buckling/bulging of the wall of the casing is
presumably a local phenomenon, athough the whole
well should be considered since forces are
transmitted throughout its whole length. A finite-
element model has been devel oped where a section of
a high temperature geothermal well is modeled.
Boundary conditions are defined to represent the
considered outer interaction. The well section is 24 m
long and includes three casings, the production
casing, the security casing and the outermost surface
casing, as well as concrete and the rock formation.
Two simplified couplings are included in the
production casing in order to observe the effect of
increased stress in the concrete near the couplings as
well asthe inverse effect on the casing.

The objective of the analysis is to evauate the
highest risk of production casng wall
buckling/bulging with the use of the model.

The load history of the casing is tracked from the
beginning of the installation of the casing, where the
casing is hanging from the top of the well, to the
production phase, where the casing has been
subjected to high temperature change (possibly
cyclic) due to operation on site and stimulation
procedures. Tracking the load history is important
because the casing can be damaged at various steps,
such as in the installment phase, the stimulation
process, warming-up periods, discharging of the well
and even in the production phase. In addition stress

builds up in the casing and plastic deformation
occurs, constantly increasing the risk of instability
and casing impairment.

In this article, the focus is on wall buckling and
collapse of the production casing. Production casing
impairment modes and load history are discussed. A
finite-element model and a case study is represented
and discussed. Finally the results from the model are
presented and discussed.

PRODUCTION CASING IMPAIRMENT

Casing failure modes can be classified into (@)
buckling failures, (b) coupling failures, (c) tear
faillures and (d) corrosion failures. Casing failure
modes and possible load cases are listed in Table 1.
Indications of casing failures are often in limited
numbers and casing failure can go unnoticed for a
long period, if noticed at all. Casing failures can
cause a serious hazard of leakage and blow out risk.
For instance in one known example from the 70s, the
production casing of awell in northern Iceland was in
poor shape due to a highly corrosive environment,
eventually causing an immense explosion, leaving a
crater where the wellhead once stood (Pamason
2005). Large wellhead movement and
buckling/bulging of the casing suggests compressive
forces in the casing due to therma expansion,
whereas body tear and coupling rupture indicate
tensional forces that form during casing installment
and when the completed well is cooled.

Table 1: Casing failure modes and possible |oad.

Casing failure mode L oad
(a) Buckling Euler buckling | +AT, axial
compression
Wall buckling | +AT, AP, flow
problem
(b) Coupling | Tensional tear | -AT, gravity
Compression +AT, axia
thread dlip compression
(c) Tear Casing body -AT, gravity

After the casing string has been cemented, Euler
buckling can occur, where the casing acts as a
column, if thereis alarge enough un-cemented gap in
the surrounding annulus allowing a large deflection
(Rechard 1983). This can occur if the casing is
subjected to compressive axia force for instance
during temperature increase.

Buckling of the casing wall, where a bulge forms on
one side, is a different scenario from Euler buckling.
The absolute reason for the bulge deformation is
unclear, but possible cause is a combination of
various loads and imperfections. Possible
imperfections could be a reduced casing wall
thickness and the existence of enclosed water or un-
cemented gap in the casing to casing annulus due to a




faulty cementing job. Complete collapse of the casing
can occur if the pressure difference between the outer
and inner wall exceeds the collapse resistance of the
casing, for example during cementing.

High axial tension forces, for instance when negative
temperature change occurs, can lead to coupling
faillures and in some instances casing body tear.
When the casing depth is large and imperfections are
present, the weight of an uncemented casing can
cause a casing body tear or coupling failure in worst
case scenario. Axial compression, for example due to
increase in temperature, can cause a thread dip in the
coupling area.

Corrosion can cause serious production casing
failures. It can be very different between geothermal
regions and even different within a geothermal
region, for example from well to well or varying with
depth. For H,S rich environments sulfide stress
cracking (SSC) and hydrogen embrittlement can
cause problems depending on the material selection
for the steel casing (Kane 1996). Other forms of
corrosion, for example uniform corrosion, erosion,
and cavitation can exist in geotherma wells. No
general solution for corrosion in geothermal wells
exists and each case should be treated separately.

PRODUCTION CASING LOAD HISTORY

Here the load history of the production casing is
tracked from the installment phase to the production
phase. The possible load cases considered occur at
various phases, i.e. the (i) instalation of the
production casing, (ii) stimulation of the well, (iii)
discharge of the well, and (iv) production.

P = pygh |pL gh > pygh \+AT -AT \
> . //’ .\\“ “/ g— \“
N / N_A
- I
A B C D

Figure 1: Production casing loads.

(i) Installation of the production casing

The discussed load cases are summarized in Table 2.
During the instalation of the production casing,
casing components are screwed together and lowered
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down into the well one by one. The first load on the
casing, load case 1, is tensiona force due to gravity,
see diagram A in Figure 1. The tension increases with
increased depth, putting the highest strain on the last
installed casing component that supports the whole
casing before the concrete sets. While the casing is
being installed, the well is kept full of cold water,
which provides a buoyant force.

Table 2: Considered load cases.

Load | Description Load
case

(i) Installation of the production casing

1 Casing hanging | Gravity.
from the top of the

well.
2 Cement slurry in | Outer pressure from
place. cement sSlurry +
pumping pressure.
3 Concrete setting. Temperature increase

due to hea of
hydration and well
surroundings.

4 Production section | Temperature decrease
of the well drilled | due to cooling fluid.
with cooling fluid.

(ii) Stimulation of the well

Sa-i Warm-up period. Temperature

increases.

S5aii | Cooling, water is | Temperature
pumped into the | decreases due to cold
well. water.

5b Rock fractured with | Temperature

pressurized water. decreases,  pressure
inside the well.
5c Fracture  cleaning | Can cause corrosion if
with acid. it comes in contact
with the casing.
5d Rock fractured | No load subjected on
locally by burning | production casing.
rocket-fuel.
(iii) Discharge of the well
6a Water column lifted | Temperature increase,
with air bubbles | small pressure de-
through drill-string. | crease,
6b Water column | Rapid
pushed down and | depressurization and
released quickly temperature increase
(iv) Production
7 Harmful flow | Local dynamic
regimes. pressure change.

If centralizers are taken into account as a weight
relieving force, the relieving force has to be roughly
estimated. This is due to friction between the
centralizers and the outer steel casing wall and the
formation below the outer casing shoe.
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According to APl SPEC 10D, Specification for Bow-
Soring Casing Centralizers, the measured starting
and running force of a previously run casing should
be less than the weight of 40 feet (12.2 m) of medium
weight casing (Mechanical Cementing Products
2009). If one centralizer is placed on each three
casing components, then the maximum reduction of
the load on the top of the casing should be less than
1/3 of the casing weight. The pressure at the top of
the casing cross section then becomes,

P= ‘(/)sC - pW) g Lpr

where ps and p,, is the density of steel and water, g is
gravity, L is the length of the casing and C is the
weight reduction due to the friction between the
centralizers and the outer casing/formation. With this
approach C has to be estimated but in al cases C
should be larger than 2/3.

The second load case occurs when the cement slurry
is being pumped in place. The concrete is pumped
through the drill string, the casing collar and shoe,
and up the annulus. The casing is full of water so the
static pressure difference between the outer and inner
wall of the casing is determined by the difference in
density between concrete and water, normally about
1.6, see diagram B in Figure 1.

When the slurry is pumped in place the outer pressure
on the casing must not exceed the collapse resistance
of the casing. Pressure can build up for example
because of a blockage in the annulus which can lead
to acasing collapse.

The third load case deds with the reference
temperature conditions inside the well when the
concrete is setting. Heat of hydration, is released
when cement comes in contact with water because of
the exothermic chemical reaction in the cement
(Portland Cement Association 1997). Temperature
increases slightly as the concrete cures, a temperature
increase of 12°C of a 300 mm thick curing concrete
have been recorded (Portland Cement Association
1997). The annulus gap between casing and
formation is much thinner so this temperature change
can be considered small compared to the temperature
conditions in a non-flowing geothermal well. In
addition, when the cement has been placed and the
cooling of the well is stopped, the well heats up
slowly due to the hot surroundings. When the
concrete bonds with the steel and solidifies the
reference "zero" temperature of the casing-concrete is
reached. After the bond between the casing and
concrete is made, the well could heat up slowly due
to the surroundings, but this depends on the rock
formation, for example if there are hot fissures
present.

In the fourth load case the production section of the
well is drilled with cooling fluid or mud. This is the

first major cooling of the casing resulting in its
contraction. This leads to tensional forces in the
casing as the concrete reactional forces are
compressive, seediagram D in Figure 1.

(ii) Stimulation of the well

If wells do not perform properly the relationship
between the well and the geothermal reservoir needs
to be improved with stimulation methods.

In load case 5, several stimulation methods are
reviewed with regards to load on the production
casing. Method 5a, where intermittent cold water
injection is used with periods of thermal recovery, is
one of the most common ones used for high
temperature wells in Iceland (Axelsson 2006). In this
method cracking is caused in the rock with thermal
shocking. Cyclic therma loading and large
temperature changes can cause damage in the
production casing and the surrounding concrete due
to thermal expansion/contraction of the steel, see
diagram C and D in Figure 1.

In method 5b pressurized water is used to clean out
and fracture already present fissures. This cools down
the well causing contraction of the steel, see diagram
D in Figure 1. This can be avoided by using inflatable
packers, where the stimulation can be focused on
specific intervals in the well rather than the whole
open section (Axelsson 2006).

Method 5c involves cleaning out fissures with acid.
The acid must not come into direct contact with the
steel because of a possible corrosion risk.

Method 5d was used recently in Iceland, where
rocket fuel was burned at specified location a high
temperature geothermal well to create a shock wave
which caused cracking in the rock(Sigurdsson 2010).
This method separates the stimulation process from
the well section above, minimizing the load on the
casing.

(iii) Dischar ge of the well

Discharge methods are used if the flow in the well
does not start automatically when the well is opened.
In load case 6, two discharge methods are described.
In method 63, flow isinitiated with air that is pumped
through the drill-string creating air bubbles that
reduce the density of the water column above. In this
method, increased temperature is the main load on
the casing as well as the pressure changes from
hydrostatic to flow conditions.

In method 6b, air pressure at the wellhead is used to
push the water column down into the reservoir. Then
after some time the pressure is released and the well
discharges quickly. This causes a rapid
depressurization and temperature increase.




(iv) Production

When the well is in production, harmful flow regimes
could result in casing impairment. For example, plug
flow can occur when the geothermal fluid boils,
which could cause local dynamic pressure changes
and cavitation.

EINITE-ELEMENT MODEL

The FE-model is a 3D thermal and structural model.
The therma model calculates the temperature
distribution, or rather the temperature change from
the reference cementing conditions. The reference
conditions (or zero condition) for the model is where
the concrete sets and forms a connection to the steel
casings. The temperature distribution is first
calculated through all casings, concrete and the
surrounding rock formation. The solution from the
thermal model is then used as a load for the structural
model.

Figure 2: Element model geometry.

As mentioned before two couplings are included in
the production casing. For simplification, the
couplings are modeled as a solid body with no
threads included. The couplings are included to see
the steel-concrete interaction assuming no thread-slip
in the coupling. For better efficiency half of the well
is modeled, which is possible because of symmetry.
Three casings are included, a 13 3/8 in (outer
diameter) and 12.2 mm (0.48 in) thick production
casing, 18 5/8 in and 13 mm (0.51 in) thick security
casing and a 22 1/2 in aso 13 mm (0.51 in) thick
surface casing.

Figure 2 shows the model geometry and the included
coupling. Imperfections are included in the concrete
as a smal variation in material properties. These
variations are shown as yellow elements.
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Figure 3: The coupling of the production casing and
the surrounding concrete (transparent).

Material properties are defined separately for the
steel, the concrete and the ground, see Table 3. The
reference value for the compressive strength of the
concrete is 27.6 MPa. Stress-strain behavior of K55
is used in the model for al three casings. In the
model four different stress-strain curves can be used
for the steel. Defined steel grades for K55, X56, L80
and T95 were obtained from tensile strength tests by
Karlsdottir (Karlsdéttir 2009).

Table 3: Reference values, material properties used
in the FE-analysis.

Steel Concrete | Rock
Young's modulus | 210 GPa | 2,8 GPa | 100 GPa
(B
Poisson'sratio (y) | 0.3 0.15 0.31
Density (p) 7850 1666 2650

kg/m® kg/m® kg/m®
Thermal 46 0.81 2
conductivity (K) | W/(m°C) | W/(m°C) | W/(m°C)
Thermal 12e-6/°C | 9e6/°C | 5.4e-6
expansion (a) /°C

The bonding characteristics between steel and
concrete are one of the reasons for the numerical
complexity of the model. During the solution process,
the contact between the casing and the concrete is
constantly changing from bonded to dliding to
sticking to debonding. This makes the problem
extremely complicated and computation time
becomes considerably large.

Maximum surface shear strength (Wallevik 2009)
between the steel casing and the concrete, before
debonding occurs, is used in the analysis. When the
friction stress reaches the maximum shear strength,
the bond is broken and sliding begins.

Furthermore, a maximum normal contact stress is
used to control the debonding characteristics.
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CASE STUDIES

A load history case of the production casing is
extracted from the load cases presented in the
"Production casing Load history" section. The load
history is put together with load cases 1-4, 5a-i, 5a-ii
and 6a from Table 2. This particular case is supposed
to represent a general load history of a typical well,
although the load history for each high temperature
geothermal well is unique. K55 steel in used in al
casings and the material properties seen in Table 3
are used.

In another case, high positive temperature difference
is applied on the casing to see at what temperature
the casing buckles. To see the effect of enclosed
water in the concrete, two cases are performed, one
where a small water pocket isincluded in the analysis
and one without it. A temperature change of 750°C
and inside pressure of -5 MPa is applied on the
casing in both cases. A small water pocket is
included in the analysis, 1,6 m long, filling up half of
the annulus circumference. Imperfections are
randomly dispersed in the domain, consisting of 80%
water and 20% concrete.

above. In load case 3, al casings, concrete and the
rock formation are added to the analysis, where the
slurry is assumed to solidify at 50°C which is the
reference temperature for the analysis. After
bounding of the concrete with the steel, the
temperature change is assumed to increase by 50°C
because of the heat of hydration and the
surroundings. At load case 4, the casing is cooled
with cooling fluid, assuming that it reaches
temperatures as low as 5°C. In load case 5a-i the
casing heats up to 300°C as the well is allowed to
heat up during stimulation procedures. In load case
5aii the well is cooled down to 5°C again during
stimulation procedures. In the last load case the well
heats up to production conditions, 350°C, as it is
discharged.

Table 4 lists the load, temperature change, 4T, and
pressure difference, P;.,, between the inner and outer
wall of the casing, for each load case in the analysis.

Table 4: Load for the analysis.

Load | AT[°C] Pio Comment

Case | (well temp.) | [MPa]

1 - - Gravity of a 600 m
casing hanging free.

2 - -0.58 | Cement slurry outer
pressure on casing.

3 +50 (100) - Heat of hydration and
surroundings.

4 -95 (5) - Production section of
the well drilled with
cooling fluid.

Seri +295 (300) - Stimulation, heating
period

Saxii -295 (5) - Stimulation, cooling
period

6a +345 (350) - Discharge of the well

P

NSTS 11.0
0

30.009
77.778

116.667
155.556
194.444
233.333
2712.222
311.111
350

10CCNEEEN

Figure 4: Water pocket in concrete (cyan colored),
(production casing is transparent).

RESULTS

Load history results

In the following load cases, assumed temperature
changes and pressure are used in the model, based on
typical conditions that should be expected in reality.

In load cases 1 and 2, only the production casing is
modeled. In load case 1, 600m of casing is assumed
to be hanging freely below the modeled section. In
load case 2, a cement dlurry pressure of 0.6 MPais
subjected on the casing assuming 100 m of concrete

Figure 5: The temperature distribution (temperature
difference) of load case 6a.



The temperature distribution solution from the
thermal model for load case 6a can be seen in Figure
5. The temperature distribution is then used as a
temperature difference load on the structural model.
In Table 5 the maximum von Mises stressis listed for
the production casing and surrounding concrete for
al load cases. The maximum radia displacement of
the casing is displayed in Table 6 and the maximum
axial displacement of the casing is displayed in Table
7.

Table 5: Maximum von Mises stress (MPa).

Load | Steel Casing Concrete

Case | Value Location Value Location

1 31.2 | Coupling - -
border

2 97.0 | Near - -
coupling

3 160 | Coupling 2.87 | Coupling
border border

4 284 Coupling 496 | Coupling
border border

Sai 329 Coupling 30.2 | Coupling
border border

Saii 433 Between 15.7 | Coupling
couplings border

6a 374 Near 345 | Coupling
coupling border

Table 6: Maximum radial displacement of the casing
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S5aii. The highest stress in the concrete occurs in
warm-up periods at the coupling borders.

It is interesting to see that the highest inward radial
displacement of the casing occurs during this cooling
period.

Figure 6: Stress reduction/increase in couplings in

load case 6a.

Near the couplings, the stress increases in the
concrete and reduces in the steel couplings, see
Figure 6. Since there are no threads included in the
couplingsin the analysis the coupling failures can not
be predicted precisely with this model, but this gives
an indication of how the steel and concrete react.

Load S(tr:elm)cliasin Figure 7 shows that debonding of the production

g : i . .
Case Value Location casing _and concrete is progressing an_d asmall gap is

- beginning to form, increasing the risk of buckling
L -0.00757 | Near coupling next time the well is heated up
2 -0.0638 | Near coupling ’
3 0.136 Near coupling atvs 110
4 -0.567 | Casing body -
Sari 0.726 Near coupling E-
Saii -1.740 | Between couplings =
6a 0.897 | Outer radius =
]
Table 7: Maximum axial displacement of the casing
(mm).

Load Steel Casing
Case Value Location
1 2.834 At lower end
2 2.798 At lower end
3 -0.0938 Coupling border (inner)
4 0.0583 Coupling border (outer)
Sari -0.689 Coupling border (inner)
Saii -7.77 Between couplings W
6a -7.814 Between couplings

Figure 7: Contact gap between casing and concrete
From these results it can be seen that the casing inload case Savii.
suffers the highest strain when it is cooled down

during the supposed stimulation process in load case
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The stimulation method where the rock is fractured
with cyclic thermal shocking can cause damage to the
casing if the difference in temperature is high and if
thisis done repeatedly.

Buckling

Since buckling did not occur in the load history
analysis above, a load of a high temperature is
subjected on the casing to see at what temperature
buckling occurs.

Table 8: Maximum stress and displacements - case
without water pocket.

Steel casing
Maximum Value | Location
Von Mises stress [MPa] 358 | Casing body

Radial displacement [mm] | 2.20 | Near coupling

Axial displacement [mm)] 1.09 | Near coupling

Table 9: Maximum stress and displacements at the
buckling point - case with water pocket.

Steel casing
Maximum Value | Location
VVon Mises stress [MPa] 440 | At water pocket

Radial displacement [mm] | -106 | At water pocket

Axial displacement [mm] 63.7 | At water pocket

In the case without the water pocket buckling does
not occur despite the high temperature change. The
results show that the casing expands radially pushing
up against the concrete and causing no debonding
from the concrete. The maximum von Mises stress in
the concrete is 35.7 MPa at the coupling boundary.

Figure 8: Buckling, radial displacement (meters).

In the case including the water pocket, buckling
occurs at 40% of the load, i.e. at about 300°C and -2

M000RECNN

L 064706

MPa inside pressure. The maximum stress of the
casing reaches the yield strength of the steel at the
buckling point and the maximum von Mises stress in
the concrete reaches 44 MPa at the boundary of the
water pocket. The radia displacement and the
buckling shape can be seen in Figure 8.

CONCLUSION

A finite-element model was developed to calculate
the stresses in a casing that is subjected to thermo-
mechanical loads.

The results show that the production casing
experiences a peak in stress when the casing is cooled
during a supposed stimulation process, whereas the
concrete suffers the highest stress during heating
periods. The stress in the concrete is increased near
the couplings, whereas the inverse occurs in the steel
couplings.

During cooling periods the casing contracts axially
and it is interesting to see how much it contracts
radially resulting in debonding between the steel and
concrete. This leads to higher risk of buckling when
the well heats up again because of reduced support
from the concrete, which shows that the load history
and the sequence of load cases is important. In
addition the load history is important because of
cumulative stresses and plastic strains that occur in
the casing.

The results show buckling when a water pocket is
included in the concrete surrounding the production
casing, whereas a case without the water pocket
shows radial expansion of the casing and no
buckling. This shows that a water pocket that is
enclosed in the casing-to-casing annulus clearly has
an effect on the buckling phenomenon.

It isclear that further work needsto be doneto gain a
better knowledge of how the production casing
behaves as a whole in a high temperature geothermal
well and to gain a better insight into the failure
modes that cause problems. In addition, values for a
complete load history of areal failure case would be
preferred to use as an input in the model. There are
many uncertainties regarding what leads to casing
impairment. It is apparent that a combination of
factors are causing casing failures, which could
include; imperfections and production flaws in
casings, casing thickness deviation, ovality of the
casing, casing centralization, concrete mix properties,
quality of the cementing job, and various loading
scenarios. In further work it would also be interesting
to compare different casing sizes, the effect of
concrete gap or water pocket size on the types of
buckling, as well as different stimulation and
discharge procedures and methods.
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ABSTRACT

During the discharge of high temperature geothermal
wells, the temperature difference in the well from
non-flowing to flowing conditions is in the range of
couple of hundreds of degrees centigrade and the
pressure fluctuation is also large. The wellhead rises
due to thermal expansion of the casing and the
wellbore pressure, in some cases excessively because
of concrete damage or poor cementing job.
Measurements of a particular high temperature well
were performed during discharge. Temperature and
pressure changes were measured at the wellhead as
well as the wellhead rise. A model was constructed
using the finite element method (FEM) and
computational results from the model were compared
to the measurements.

The results from the transient thermal FEM analysis
show a rapid temperature response in the concrete
layers of the well. In the concrete surrounding the
production casing the temperature rises to roughly
95% of thermal equilibrium in only few hours. The
coupling-concrete interactions in the FEM model
indicate that the concrete has a weak spot and is most
likely to get damaged at the coupling ends. The
results show that the rise of the wellhead is exclusive
to the uppermost 500 meters of the well but
displacements are negligible beneath.

INTRODUCTION

At the start of the discharge of high temperature
geothermal wells the geothermal fluid is abruptly
sucked out of the reservoir by the low pressure
conditions on the surface. This causes large pressure
fluctuations inside the wellbore as well as local flow
conditions, such as plug or slug flow, that causes
vibration that can easily be felt on the surface by an
observer and could be harmful for the casing. The
large temperature change in the well causes thermal

expansion of the casing, which in turn causes the
wellhead to rise.

Relatively few studies have been published on
structural finite-element (FEM) models of the casing
in geothermal wells. A 2D FEM model of the cross
section of a double cased geothermal well was
created by Philippacopoulos and Berndt (2002) in
order to represent the behavior of the cement/sealant,
where the results showed the inadequacy of
geothermal well design based solely on compressive
strength. A plane strain finite element model for well
failure due to formation movement and a three
dimensional model to analyze the local behavior of
the  casing-cement-formation  interaction  in
geothermal  wells were developed also by
Philippacopoulos and Berndt (2000) where the results
revealed the importance of the cement properties on
the response of the casing patch cement included in
the three dimensional model.

Peng, Fu and Zhang (2007) created a FEM model to
represent oil-field casing failure in unconsolidated
formations where the results showed non-uniform
and multi-directional casing deformation. Theodorio
and Falcone (2008) presented a finite-element model
and experimental work to evaluate the low-cycle
fatigue (LCF) resistance of an 18-5/8 in diameter
casing with Buttress threaded connections. Their
results showed that under extreme loads the LCF
resistance of the connection could be as low as 10

cycles.
In a M.Sc. thesis by Magnusdéttir (2009) a two
dimensional FEM model (as well as a three

dimensional buckling model) of a geothermal well
was constructed, where the upward displacement of
the wellhead was analyzed with regards to the
bonding characteristics between the production
casing and concrete. The results for full, partial and
no bonding between the surfaces, were compared and
showed how the defined connection behavior greatly
affected the results. Another M.Sc. thesis by Olafsson
(2011) covers a structural analysis of a wellhead on a
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high temperature geothermal well using a FEM
model where several load cases are analyzed with
regard to pressure and temperature loads. The load
history and buckling of the production casing was
covered by Kaldal (2011) where a section of a well
was analyzed with regards to local collapse of the
casing. The results showed increased stress in the
concrete around couplings indicating a potential risk
of local damage.

Wellhead movement can be an indicator of failures in
wells. Large wellhead movement for example could
indicate that the concrete between casings is
defective or damaged and could lead to serious
casing damage. The wellhead movement of a
"healthy" well can be a great contributor for the
calibration of structural models dealing with the
frictional interaction between steel casings and
concrete. Measurements of the wellhead movement
during discharge are therefore an excellent
contribution to structural modeling of geothermal
wells. Large wellhead movement can also be an
indicator of a potential risk of casing damage in the
well. Casing failures can cause a serious hazard of
leakage and blow out risk. For instance in an extreme
example from the 70s, the production casing of a well
in northern Iceland was in poor shape due to a highly
corrosive environment, eventually causing an
immense explosion that created a crater at the
wellhead location (Palmason 2005).

In this article the rise of the wellhead, during
discharge of high temperature geothermal wells, is
examined. A case study is presented of well HE-46 in
the Hellisheidi high temperature geothermal area
located in south-west Iceland, where temperature,
pressure and wellhead movement measurements were
conducted during discharge. A transient axially
symmetric two dimensional thermal and structural
model of a geothermal well is presented.

FINITE-ELEMENT MODEL

The finite-element method (FEM) is used to construct
thermal and structural models of a high temperature
geothermal well from the wellhead to the bottom of
the production casing. It is a two-dimensional axially
symmetric model which includes nonlinearities in (i)
material properties, (ii) geometrical displacements
and (iii) connectivity between contacting surfaces
(contact elements).

The main nonlinear material properties that are used
are the stress-strain curves for K55, L80, T95 and
X56 steel at room temperature, obtained from tensile
strength tests by Karlsdottir (Karlsdéttir 2009).
Strength reduction at elevated temperatures is
included for the steel in the model. For the concrete,
an approximation is made where a maximum
compressive strength is defined before it is assumed
to yield plastically. Defining a concrete material
model that behaves differently in compression and
tension for a model of this scale has proved to be

unpractical but could be a subject for revisal in future
studies. Other material properties are defined
linearly.

The bonding characteristics between steel and
concrete are one of the reasons for the nonlinear
behavior of the model. In the model, all contacting
surfaces are defined using contact elements. Coulomb
friction is used to describe the bonding
characteristics, where a coefficient of friction and
maximum friction stress are defined. The maximum
friction stress controls when bonded contact changes
to sliding contact and relative sliding between
surfaces initiates.

L2

Figure 1: The geometry of the two dimensional axial-
symmetric finite-element model. Upper
magnification: simplified wellhead based on the
actual design. Lower magnification: simplified
coupling without threads.

The geometry of the model is shown in Figure 1. It is
a two dimensional model, axially symmetric around
the center of the well. It includes three casings at the
top; the production casing, the security casing and the
surface casing. The model reaches from the wellhead
to the shoe of the production casing, where it sits on
the rock formation which goes 20 meters deeper until
it reaches the lower boundary of the model. The
radial boundary of the rock formation goes 20 meters
outward, which showed to be sufficient for both the
thermal and the structural parts of the model.
Modeling wells that are drilled in sedimentary basins
or soft ground would probably require the outer



boundary to be larger, but in this model the formation
is assumed to be solid rock.

As can be seen from the geometry of the model, it's
diameter-to-depth ratio is very small, which requires
a large number of elements because the elements
must have proper width-to-length ratio to function
correctly. Although the geometry of the well can be
regarded as being simple in shape, the problem
becomes computationally complex due to; the large
number of elements and the numerous nonlinearities,
such as material nonlinearities, large displacement
nonlinearities, and the interaction between surfaces.
In the model the production casing has an outer
diameter of 13 3/8 in, thickness of 12.2 mm and is
700 m in length. Simplified couplings with no threads
are included in the model as can be seen on the lower
magnification in Figure 1. A simplified wellhead
based on an actual design is also included to see how
the casing and the wellhead interact. The wellhead is
welded to the security (anchor) casing as shown in
the upper magnification in Figure 1. The first flange
of the wellhead and the casing guidance gasket are
simplified into a solid piece which are included in the
model to see how the production casing slides inside
the wellhead. The model is further described in the
results chapter in connection with the results.

LOADS IN GEOTHERMAL WELLS

Casing design is generally based on axial tension and
compression, burst pressure and collapse pressure,
where axial tension is a measure of how much load
can lead to pipe body failures and coupling failures,
see diagram A in Figure 2. The internal vyield
pressure (burst pressure) is the minimum internal
pressure that will cause a ductile rupture of the pipe
body and the collapse resistance of casings is the
minimum external pressure that will cause a collapse
of the casing, see B in Figure 2. Standards provide
equations and calculations for the properties of
casings for the oil and gas industry. They are
however lacking in calculations of high thermal
loads.

To understand what loads act on the casing it is
necessary to go through the load history of the
casing. During the installation of the production
casing, casing components are screwed together and
lowered down into the well one by one. If residual
stresses from the production of the casing are
neglected, the first load on the casing is tensional
force due to gravity, see diagram A in Figure 2.
While the casing is being installed, the well is kept
full of cold water, which provides a buoyant force.
The tensional force increases with increased depth,
putting the highest strain on the last installed casing
component that supports the whole casing before the
concrete sets. This load is however dependent on how
many centralizers are used and the diameter of the
hole.
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Figure 2: Production casing loads.

During cementing, the casing experiences both burst
and collapse loads, i.e. the difference in internal
and/or external pressure. The concrete is pumped
through the drill string, the casing collar and shoe,
and up the annulus. The casing is full of water so the
pressure difference between the outer and inner wall
of the casing is determined by the difference in
density between concrete and water, normally about
1.6, see diagram B in Figure 2. When the slurry is
pumped in place the outer pressure on the casing
must not exceed the collapse resistance of the casing.
Pressure can build up for example because of a
blockage in the annulus which can lead to a casing
collapse. When the concrete is setting, heat of
hydration is released when cement comes in contact
with water because of the exothermic chemical
reaction in the cement (Portland Cement Association
1997). Temperature increases slightly as the concrete
cures, a temperature increase of 12°C of a 300 mm
thick curing concrete have been recorded (Portland
Cement Association 1997). The annulus gap between
casing and formation is much thinner so this
temperature change can be considered small
compared to the temperature conditions in a non-
flowing geothermal well. In addition, when the
cement has been placed and the cooling of the well is
stopped, the well heats up slowly due to the hot
surroundings.

When the concrete bonds with the steel and solidifies
the reference "zero" temperature of the casing-
concrete is reached. After the bond between the
casing and concrete is made, the well heats up slowly
due to the surroundings, but this depends on the rock
formation, for example if there are hot fissures
present. When the production section of the well is
drilled cooling fluid or mud is used to cool the well
and provide circulation for transporting cuttings to
the surface. This is the first major cooling of the
casing resulting in its contraction. This leads to
tensional forces in the casing as the concrete
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reactional forces are compressive, see diagram D in
Figure 2.

If wells do not perform properly the relationship
between the well and the geothermal reservoir needs
to be improved with stimulation methods. Most of the
methods involve injection of cold pressurized water.
A method where intermittent cold water injection is
used with periods of thermal recovery, is one of the
most common ones used for high temperature wells
in Iceland (Axelsson 2006). In this method cracking
is caused in the rock with thermal shocking. Cyclic
thermal loading and large temperature changes can
cause damage to the production casing and the
surrounding concrete due to thermal
expansion/contraction, see diagram C and D in
Figure 2. In a related method, pressurized water is
used to clean out and fracture already present
fissures. This cools down the well causing
contraction of the steel, see diagram D in Figure 2.
Damage to the casing can be avoided by using
inflatable packers, where the stimulation can be
focused on specific intervals in the well rather than
the whole open section (Axelsson 2006). In another
method acid is used to clean out fissures. The acid
must not come into direct contact with the steel
because of a possible corrosion risk. Recently, rocket
fuel was burned at a specified depth in a high
temperature geothermal well in Iceland to create a
shock wave which caused cracking in the rock
(Sigurdsson 2010). This method separates the
stimulation process from the well section above,
minimizing the load on the casing.

In order for a well to flow unassisted, the pressure in
the well needs to be higher than the atmospheric
pressure. The wellhead is usually kept closed for a
period of time in order to increase the pressure on the
wellhead.

Discharge methods are used if the flow in the well
does not start automatically when the well is opened.
In one method an air pump is used to build pressure
at the wellhead that pushes the water column down.
After a period of time the pressure is released and the
well discharges quickly. This causes a rapid
depressurization and temperature increase.

Three conceptual load cases, pre and post discharge
can be seen in Figure 3. In the figure to the left, a
schematic is shown of a non-flowing well with no top
pressure. The pressure (black line) is hydrostatic
below the water table which lies somewhere in the
well and the temperature (blue line) is low above the
water table.
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Figure 3: Conceptual load cases before and after
discharge.

On the figure in the middle the well has either been
closed to gain pressure of non-condensable gases or a
pump is being used to increase the wellhead pressure.
In both cases the water table is pushed down in the
well, causing the temperature where the water table
was before to decrease. This state is held until the
wellhead pressure is enough for the well to be
discharged. On the last figure to the right, the
pressure and temperature conditions after discharge
can be seen. In the discharge the pressure uppermost
in the well decreases and the temperature increases
abruptly.

Another more advanced discharge method requires a
drill rig on site, where the flow is initiated with air
that is pumped through the drill-string creating air
bubbles that reduce the density of the water column
above, thus creating momentum. In this method,
increased temperature is the main load on the casing
and the pressure changes slowly from hydrostatic to
flow conditions. This method, however, is rarely used
due to increased cost.

After the well is discharged harmful dynamic flow
conditions, such as plug and slug flow, could result in
casing impairment. At the phase change where the
geothermal fluid boils, the flow becomes turbulent
and could cause local dynamic pressure changes and
cavitation, which can erode the casing.

CASE STUDY - MEASUREMENTS OF WELL
HE-46 IN HELLIHEIDI, ICELAND

Temperature, pressure and the rise of the wellhead
during discharge were measured at the wellhead on
well HE-46 which is located on the Hellisheidi high
temperature geothermal area in south-west Iceland.
The well, drilled in the year of 2008, has a total depth
of 2444 meters with a production casing that reaches
down to 1032 meters. The wellhead of HE-46 can be
seen in Figure 4.

Air pump was used to build up pressure inside the
well for few weeks before discharge. On the day of
discharge the pump had built up a pressure of 37.5
bar-g (the discharge of the well was delayed for few
days due to a rare Icelandic thunderstorm). The well
was opened quickly, causing an abrupt discharge of
the steam rich geothermal media which was then
directed out to the silencer. A large pressure




fluctuation occurred at the beginning of the
discharge, the first 10 minutes of the discharge can be
seen in Figure 6. The pressure decreased rapidly to
7.0 bar-g and then rose to steady 19.5 bar-g. This
fluctuation and its influence on the casing could be
interesting to investigate further. The outer
temperature of the expansion spool rose steadily from
8°C to 193°C in 5 minutes, see Figure 5. The
temperature had reached 197°C one day later.
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Figure 4: The expansion spool and master valve of
the wellhead of well HE-46 (figure: Heimir
Hjartarson).

The rise of the wellhead basement and the flange
above the expansion spool on the wellhead was
measured with an optical elevation meter and a laser.
Temperature was measured at several locations on
the wellhead; at the upper and lower flange of the
expansion spool and on the outer surface of the
expansion spool. Pressure was measured with a
pressure gauge located above the master valve.

The wellhead is restrained by three main features; the
concrete layers of the casings (the wellhead is an
extension of the second casing outward, the security
casing), a "spider" support which consists of four
bars in tension on top of the wellhead and four
centralizing bars in the wellhead basement. The total
rise of the wellhead during the observation can be
seen in Figure 7. Unfortunately, the measurement
period was to short to observe the final wellhead rise
but the wellhead was still rising at the end of the
measurement period. The sharp rise at the beginning
stages of the discharge is however interesting and
illustrates the substantial force due to the thermal
expansion of the casing.
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Figure 5: Measured wellhead temperature during

discharge (outer temperature of the expansion spool).
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Figure 6: Wellhead pressure during the first ten
minutes of discharge.
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Figure 7: Wellhead rise; upper flange of the
expansion spool, wellhead basement.
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RESULTS

Thermal calculations

One dimensional casing-concrete layer model

A one dimensional thermal model of the upper layers
of a high temperature geothermal well with a top
temperature of 200°C, was constructed and time-
dependent analysis were performed to obtain
information on how fast the system reaches thermal
equilibrium. The well is assumed to have three
casings that are all cemented. The boundary
conditions at the outer boundary of the ground, which
is selected as 50 m from the center of the well, is set
to Ty = 0°C and at the inner wall of the production
casing is set to T, = 200°C, assuming production
conditions uppermost in the well. The analysis is
time-dependant where the load is changed in a step to
simulate a well discharge.
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Figure 8: Thermal response in the concrete layers of
the well.
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Figure 9: Thermal response in the surrounding rock,
5 and 10 meters from the well.

The thermal response is calculated through a period
of 30 days. A steady-state analysis is performed in
comparison to the transient analysis to see when
thermal equilibrium is reached in the well casings
and in the surrounding ground, assuming constant
temperature conditions inside the well.

The results show that the thermal response in the
casings of the well is relatively fast, taking only few
hours to reach thermal equilibrium. But the thermal
gradient from the center of the well to outer layers is
still rather high, as can be seen by the temperature
difference in the concrete layers, i.e. the concrete
around the production casing, the security casing and
the surface casing, as well as the surrounding rock in
Figure 8 and Figure 9.
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Figure 10: Temperature distribution in the vicinity of
the well.

The temperature distribution in the vicinity of the
well at various points in time can be seen in Figure
10. The thermal gradient is still very steep 1 hour
after the beginning of the discharge and continually
drops over time until a thermal equilibrium is
reached, after 20 days of constant production.

Two dimensional well model

The temperature change of a well and its
surroundings during a discharge of the well is
presented here. These results are later used as a
thermal load in the structural analysis.
The rock temperature remains unchanged at the outer
boundary of the model, therefore the boundary
conditions at the outer boundary of the ground, which
is 20 m from the center of the well, is Ty = 0°C. At
the inner wall of the production casing, the
temperature change is based on pre and post
discharge temperature data from the Iceland
Geosurvey.
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Figure 11: Steady-state thermal results, temperature
change before and after discharge.
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Figure 12: Transient thermal results, temperature
change two hours and twenty minutes after the
beginning of discharge.
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The steady state thermal results in Figure 11 show the
total temperature change in the well after the
discharge has started. The transient thermal results in
Figure 12 show the temperature change two hours
and twenty minutes after initiating the discharge,
which is the same time interval as the measurement
period of well HE-46. The transient thermal results
show how the temperature increases through time
into the outer layers of the well.

Structural calculations

Two dimensional well model

The load for the structural model consists of the
temperature and pressure change from pre- to post-
discharge. The temperature change results, obtained
from the transient thermal model, are used as load on
a geometrically identical structural model. The
pressure change is also applied as a load on the inside
of the production casing and the wellhead. Both a
nonlinear static analysis and a nonlinear transient
analysis are performed.
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To understand better how the load changes, a
schematic of the conceptual load cases is shown in
Figure 13, focusing on the location uppermost in the
well above the water table. In phase I-11 shown in the
figure the pressure is built up until it reaches a steady
target pressure value which is then kept constant for a
period of time until the well is discharged in phase
I11. The discharge phase takes shorter time compared
to the other phases, i.e. minutes vs. weeks. In phase
IV, pressure and temperature remain steady in the
production phase. The pressure and temperature
change in phase Ill is of primal concern in this
analysis.

PT
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I o 1 IV time

Figure 13: Conceptual load case phases uppermost
in the well (red circle) above the water table; I.-11.
Pressure buildup, I11. Discharge and IV. Production.

The pressure change before and after the discharge
can be seen in Figure 14. The pressure difference
(from the blue to the green curve) is based on
measurements at well HE-46 and is used as a load in
the analysis.
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Figure 14: Pressure load on the structural model.

The difference between the pre-discharge and the
discharge pressure profile.

The static structural analysis is solved using a
nonlinear static solution method, where the numerous
nonlinearities, i.e. contact elements, nonlinear
material properties and large deformation effects, are
accounted for. The transient structural analysis is
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solved using a nonlinear transient solution method
with time-dependent loading.

The results from both solution methods, i.e. static and
transient, show that the production casing moves
almost freely inside the wellhead. The casing, with
the help of the external couplings, overcomes the
friction with the concrete in connection with the outer
casing and pulls it up, as can be seen in Figure 18.
This occurs because of the thermal expansion of the
casing and the concrete. The ratio of damaged
concrete, i.e. the concrete that has surpassed the
compressive and tensional strength of the concrete
used in the well, can also be seen in Figure 15. The
high ratio above 150°C is mainly concrete in tension
at the top of the well as well as concrete near the
couplings of the production casing. Figure 16 shows
how the concrete is more likely to get damaged
around the couplings. This is consistent with the
results from a three dimensional collapse model by
Kaldal (2011).
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Figure 15: Steady-state results of the wellhead rise at
various temperatures and the ratio of broken
concrete around the production casing.
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Figure 16: Stress (Von Mises, MPa) in the concrete
surrounding one of the coupling on the production
casing (only the concrete is visible).

In Figure 17 the steady state discharge results show a
wellhead rise of 923 mm and a maximum

Ratio of broken concrete

displacement of 665 mm of the production casing
inside the wellhead.
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Figure 17: The steady-state results of the wellhead
rise at 200°C at the top. Total wellhead rise of 92.3
mm and maximum displacement of the production
casing inside the wellhead of 0.665 m.
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Figure 18: The wellhead rise 48 seconds after
initiating discharge. Wellhead rise of 37 mm.

The transient wellhead rise in Figure 18, 48 seconds
after discharge, shows that the production casing
rises faster than the wellhead, because the
temperature of the production casing is much higher
in the beginning than the temperature of the security
casing connected to the wellhead.

If the transient results from the model are compared
to the measured wellhead rise of well HE-46, in
Figure 19, it can be observed that the measured
wellhead rise is fast at the beginning and then slows
down. The FEM results also show a fast wellhead
movement in the beginning but the rise is about four
times larger then the measured values. This could be
explained by additional constraints on the actual
wellhead compared to the modeled wellhead. The
measured wellhead includes additional "spider"
constraint, that consists of four tension bars, as well
as a bulky concrete cellar which provides additional
constraints. This is not included in the model. The



FEM results can be regarded as the unconstrained
wellhead results, but it should be noted that further
analysis and measurements are needed to validate the
model.
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Figure 19: Wellhead displacements of the first ten

minutes of the discharge.

CONCLUSION

Measurements of pressure, temperature and wellhead
movement during discharge of well HE-46 in the
Hellisheidi high temperature geothermal area, south-
west Iceland, have been presented in this study. The
measured outer temperature of the expansion spool
showed that the temperature increases quickly in the
first few minutes as expected. The pressure
measurements showed fluctuations during the
discharge, where the pressure decreased rapidly
initially and then increased again up to a steady
value. The monitoring of the wellhead movement
showed a rise of 15 mm in one minute and then the
wellhead continued to rise up to 22 mm in the next
two hours.

An axially symmetric two dimensional nonlinear
transient thermal and structural finite element model
of a high temperature geothermal well was presented
and used to simulate the discharge of well HE-46.
The results were then compared to the measurements
performed on the well during discharge. The results
from a one dimensional transient thermal model
showed the thermal response of the uppermost layers
of a well with three casings. These results showed
that the thermal response of the well is fast and the
temperature increased to roughly 95% of the final
temperature in only few hours. Thermal equilibrium
is reached after 20 days according to the one
dimensional model. The two dimensional thermal
results showed the temperature change during a
discharge of a high temperature geothermal well
based on the measurements of well HE-46. The
results were used as an input load for a transient
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structural model used to calculate the structural
response due to thermal and pressure loads.

Results from the steady state structural analysis
showed a wellhead rise of 92.3 mm and a rise of 665
mm of the production casing inside the wellhead.
Results from the transient structural analysis showed
a wellhead rise of 48 mm during the first minute of
discharge while the measured wellhead rise during
the first minute was 12 mm. This indicates that the
modeled wellhead is not as well constrained as the
actual wellhead. It should be noted that the friction
between contacting surfaces is probably the main
uncertainty in the analysis. The additional constraint
of the actual wellhead could also be explained by the
"spider" support which consists of four bars in
tension on top of the wellhead and holds the wellhead
in place as well as by the additional weight of the
wellhead and the concrete cellar around it.

A structural model of an underground structure is
hard to validate with actual displacement or strain
measurements below the surface. The validation must
therefore mostly rely on measurements above the
surface, such as of the rise of the wellhead during
discharge as well as strain measurements on the pipe
walls at the wellhead. Other measurements, such as
tensile tests of the steel used in the casings and push-
out tests to valuate the steel-concrete interaction, are
also important for the model. It is clear that
additional measurements during discharge must be
performed in order to be able to validate the model
adequately. Once the model has been validated, it can
provide a variety of information regarding
displacements and stress of the well in its entirety.
Future work will involve analysis of the breakage of
the concrete near the couplings in more detail.
Another interesting topic is a comparison of different
wellhead designs in order to find the optimal design
in discharge situations of high temperature
geothermal wells.
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ABSTRACT

Casing failures such as collapse is the suspected
result of combined loads and impurities in the casing
and/or the surrounding concrete. In this paper a
simple case of collapse caused by a geometric defect
in the casing is analyzed using the finite-element
method (FEM). The collapse of an impaired casing
and its resulting shape is investigated with respect to
the external supporting concrete. A specific load
history for the production casing is used in the
analysis. The first load consists of the external
pressure of the cement slurry during well cementing,
followed by subsequent cyclic thermal loads. The
load history represents the fundamental loads which
occur during the lifetime of a typical well. The
magnitude of the external pressure and its stimulus
for later collapse is also analyzed. The collapse shape
obtained in the FEM analysis is similar to collapse
shapes that have been observed in geothermal wells.

INTRODUCTION

High temperature geothermal wells are constructed of
several concentric steel casings with cement in
between the casing walls. The structural integrity of
such well casings is essential for the utilization of
high temperature geothermal wells. Casing failures
can lead to a reduced energy output from the well,
render the well inoperative and in worst cases cause
unsafe conditions above the surface.

Casing failures such as collapse are the result of
combined loads and impurities in the casing and/or
surrounding concrete. Collapse or bulging of
geothermal well casings is an example of a serious
casing failure. Bulging is referred to as the buckling
shape where the collapse occurs on one side of the
cross section of the casing. This bulging collapse
shape is related to the external support of the concrete
and it only occurs when this support is present.

A well with a decreased cross sectional area, due to a
collapsed production casing, produces less than an

intact well, since the output of the well is
proportional to the cross sectional area of the casing
(Thorhallsson 2006). If the casing gets damaged, for
example by tearing or collapse, the risk of well blow-
out or more catastrophic well failures increases.
Therefore, it's important to understand fully the
structural system and its response to various loads
during well operations. Accordingly, it is important
to recognize the expected load history of the structure
so that the deformation and stress fields that form
during the lifetime of the well can be anticipated.
Analysis of the bulging collapse shape is the
motivation for this paper. A simple case of collapse
caused by a geometric defect in the casing is
analyzed using the finite-element method (FEM). The
collapse of the impaired casing and its collapse shape
is investigated with respect to the presence of
external supporting concrete.

The collapse of pipes in general has been profusely
studied, often in connection to specific topics. Such
analysis has been performed for the necessity of
economical design and safety dating back to the end
of the industrial revolution where the resistance of
tubes to collapse was studied extensively and
empirical equations were derived from numerous
experiments (Fairbairn 1858). Since then many
studies have been performed on the subject to
improve empirical equations of pipe collapse. Casing
collapse is highly dependant on geometrical
imperfections of the casing. In collapse experiments,
imperfections like the average outside diameter,
average wall thickness, eccentricity and ovality have
been measured and predicted with (empirical)
equations (C. R. Kennedy et al. 1962, ISO/TR
10400:2007(E)). Collapse of well casings is an
example of a specific case of pipe collapse. Collapse
due to external pressure, e.g. during cementing, is
similar to other cases of pipe collapse such as in
deepwater sea-floor pipelines due to ambient external
pressure. Effects of defects on the collapse pressure
of pipes have been studied with experiments and
finite element models (Assanelli et al. 1998,
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Sakakibara et al. 2008, Netto 2009). The bulging
collapse of well casings, that takes place during well
operations after well completion, is a different case
because of the lateral/radial support of the external
concrete. This is to some extent comparable to
horizontal soil supported pipes that have greater
capacity to withstand net external pressures than
pipes without support (Watkins and Anderson 2000).
In well-compacted soil the cross section remains
sensibly circular until failure by wall-buckling takes
place (Bulson 1983). Likewise for burst design, the
support of the external cement sheath increases the
burst resistance of casings (Kalil et al. 2011).
Collapse of pipes is caused by excessive net external
pressure as well as instability due to various
impurities. For concrete supported casings, instability
in the casing to casing annulus is introduced, e.g. due
to off centered casing and trapped fluid. Casing
failure as a result of the expansion of trapped fluid in
the annulus between casings has been discussed to a
certain extent as a suspected cause of casing bulge
collapse (Bjornsson et al. 1978, Magneschi et al.
1995, Southon 2005).

In the remaining sections casing impurities and
collapse loads are discussed, a three dimensional
finite element model of a casing with a small
geometrical defect is described, and finally collapse
analysis results are presented and discussed.

CASING _IMPURITIES AND COLLAPSE
LOADS

A complete collapse of casings is a buckling shape
that is governed by uniform external to internal
differential pressure. The empirical equations used in
standards for collapse resistance of casings is based
on combined theoretical, numerical and statistical
tools (ISO/TR 10400:2007(E)). These empirical
equations do however not account for external
supporting concrete and non-uniform loads and are
also considered to be rather conservative.

In general, the ratio of outer diameter to thickness
(D/t) determines whether collapse occurs in the
elastic-, plastic- or intermediate range of the wall
compressive stresses. For high values of the D/t ratio,
elastic collapse is a governing factor. For lower
values, the buckling occurs in the plastic range and
for the lowest values the buckling is governed by the
yield strength of the material (10400:2007(E) 2007).
The critical elastic buckling pressure for long tubes
under uniform radial pressure is

1
o = 535 (%)

(Timoshenko 1961, Bulson 1983, Chater and
Hutchinson 1984) where v is Poisson's ratio, E is
Young's modulus, t is the tube thickness and R is the

tube radius. This equation does however not account
for collapse as a result of plastic deformation in the
material which occurs in thicker casings. For thicker
casings a tangent modulus, E; is used in place of E, to
find the critical buckling pressure beyond the
proportional limit.

After completion of geothermal wells the concrete
surrounding the production casing provides a
structural support for the casing. When the well
warms up, the concrete restrains the thermally
expanding casing and limits both axial and radial
movement to some extent. The bulging collapse
shape, seen in Figure 1, only occurs in completed
wells. The concrete support restricts the radial
movement which results in a different collapse shape
from that seen in casings without external support.
Furthermore, the buckling shape suggests instability
that is caused by non-uniform conditions on the outer
surface of the casing.

Figure 1: The buckling shape of a collapsed casing
with external concrete support’.

The collapse of casings in completed wells is the
result of combined loads, e.g. pressure and
temperature, and impurities in the casing and/or
surrounding concrete.

It is well documented that geometric imperfections,
e.g. average outside diameter, average wall thickness,
eccentricity, and ovality, reduce the collapse
resistance of casings. Defects, such as pitting due to
external corrosion, external casing damage or other
asymmetric conditions, also cause instability that can
result in premature casing collapses.

Although the concrete should act as a pressure seal,
concrete damage and impurities could lead to non-
uniform conditions around the circumference of the
casing. Instability can be caused by an off-center
casing which can cause water/mud accumulation at
the narrower side of the annulus due to lower flow
rate during cementing. This could lead to fluid
entrapment at one side of the annulus.

! Courtesy of HS Orka hf.



Material impurities and manufacturing residual stress
result in decreased collapse resistance as well.
Furthermore, corrosion can cause serious production
casing failures. It can be very different between
geothermal regions and even different within a
geothermal region, for example from well to well or
even varying with depth. For H,S rich environments
sulfide stress cracking (SSC) and hydrogen
embrittlement can cause problems depending on the
material selection for the steel casing (Kane 1996).
No general solution of corrosion problems in
geothermal wells exists and each case needs to be
treated separately.

External to internal differential pressure is the main
cause for the collapse of pipes. External casing
pressure can be the result of thermally expanding
fluids in the annulus during discharge. Wellbore
pressure fluctuations due to cavitation and slug flow
could also cause local casing collapse.

The maximum pumping pressure at the top of the
well is described with

Ppump = PCR - P(Z)

where Pcr is the API rated collapse resistance of the
casing, z is the casing depth and P(z) is the
hydrostatic differential pressure of external concrete
and internal water at the bottom of the casing. While
the casing is being cemented on the outside, the
inside is filled with cold water. If however this is
neglected and in addition the external concrete
pumping pressure gets too high, the casing can
collapse due to excessive external pressure.
Excessive pumping pressure could also merely create
a deformation in the casing which could end in
collapse due to subsequent wellbore loads, e.g. cyclic
thermal loading.

Cracked or otherwise damaged concrete can also
cause external pressure load on the casing, for
example if small steam channels form or if water is
present in the annulus when the well is discharged.
The effect of temperature is twofold since it produces
thermal stresses in the casing and lowers the strength
of the material. The latter occurs at high
temperatures, around 300°C and above. Collapse of
pipes as a result of temperature loading is not as well
documented as collapse from external pressure, but
cyclic temperature loading could ultimately lead to
collapse or tearing of the casing.

A combination of geometric imperfections, material
impurities and dynamic loading, such as local
cavitation or rapid temperature change during
discharge (or cooling), are likely causes of casing
collapse.
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MODELING

The finite element method (FEM) is used to construct
a three dimensional model of the casing. The model
is divided into two parts, thermal and structural. If
thermal loads are to be included in the structural
analysis, the change in temperature is first calculated
in the thermal part of the model and the temperature
distribution results are then used as load for the
structural part. Eigenvalue buckling analysis is used
to predict the theoretical collapse strength and the
collapse mode shapes of the casing. The eigenvalue
analysis is a linear solution method in which
nonlinear properties, e.g. interaction of contacting
surfaces, are not taken into account. Nonlinear
buckling analysis is then used to account for
nonlinearities which are found in the (i) material
properties, (ii) large geometrical displacements and
(iii) connectivity between contacting surfaces
(contact elements). The limit load of the casing is
obtained and stabilization is used to track the post-
buckling shape of the casing.

Figure 2: The geometry of the finite element model.

Available data on the stress-strain behavior of K55
casing steel and compressive strength of the concrete
is used in the model. The stress-strain curves for the
casing steel were obtained from standardized tensile
tests (Karlsdottir 2009). The maximum compressive
strength of concrete is defined as 27.6 MPa in the
analysis. When the maximum compressive strength is
reached the concrete is assumed to yield plastically.
The material properties used in the FE analysis are
listed in Table 1.
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Table 1: Material properties used in the FE analysis
(non-linear MP are discussed in the text).

Steel Concrete

that are used in the analysis are shown in Table 2.
Half of the casing is modeled, which is possible due
to the symmetry of the casing and its collapse shape.

Young's modulus (E) [GPa] 205 2,79 The thickness of the pipe wall is scaled with the
Poisson's ratio (y) 0.3 0.15 manufacturing tolerance which is assumed to be
Density (p) [kg/m] 7850 1666 —12,5% in the analysis.

Th.conductivity (K) [W/(m°C)] 46 0.81

Specific heat (c) [kJ/kg°C] 0.49 0.88 Table 2: Geometrical parameters for the FE analysis.
Thermal expansion (o) [1/°C] 12e-6 9e-6 in mm
Compressive strength (f.) [MPa] - 27.6 Outer diameter of casing (D) 133/8 339.7
Coefficient of friction (p) 0.5 Thickness of casing (t) 0.48 12.2
Max shear stress (Tma) [MPa] 0.72 Thickness of concrete (t.) 2.10 53.4

The finite-element program Ansys is used to
construct the model. Contact element pairs are used
between contacting surfaces. Their main purpose is to
prevent surfaces to intersect each other, while still
allowing gap formation and tangential movement
between casing and concrete. The Coulomb friction
model is used to describe friction between contacting
surfaces, where they can withstand shear stresses up
to a certain magnitude across their interface before
they start sliding relative to each other(Release 11.0
documentation for ANSYS 2007). Once the
equivalent shear stress exceeds Tma relative sliding
begins. The friction model is defined as:

Tiim = UP + b
|T| = Tiim

where 7 is the equivalent shear stress, zjp is the limit
shear stress, u is the isotropic coefficient of friction, b
is the contact cohesion and P is the contact normal
pressure, see Figure 3 for the graphical interpretation
of the Coulomb friction model.

T

Sliding

Toax =1

Sticking

p

Figure 3: The Coulomb friction model in Ansys
(Release 11.0 documentation for ANSYS
2007).

The geometry of the casing model is shown in Figure
2. A 12 meter section of the production casing is
modeled in three dimensions. The concrete around
the production casing is also included and for
simplification external casings are not included. No
radial displacement is allowed at the outer radial
boundary of the concrete and axial displacements are
constrained at both ends. The geometrical parameters

Due to the perfect geometry of the model some
imperfections or perturbations need to be introduced
to create instability in the structure. Instead of
applying a small radial force, which is a common
practice, instability is created with randomly
distributed material imperfections in the steel casing.
These imperfections are included in the casing as
small variations in material properties. Overview of
the diminished casing used in the analysis can be
seen in Table 3.

Table 3: Diminished casing overview

%
Manufacturing tolerance -12.5
Random material imperfections 20

Local external defect 10-50 of thickness

The effect of a small local defect, located on the
outside of the production, casing is also analyzed.
The size and shape of the defect is controlled by three
parameters; thickness, angle size and length, see
Figure 4. The defect can be interpreted as pit
corrosion, defect or damage for example from
scratching while running down the casing.

o

Figure 4: Size and shape of the external defect of the
casing.



RESULTS

Eigenvalue buckling analysis is used to predict the
theoretical collapse strength or the bifurcation point
of a perfectly round casing subjected to uniform
external pressure. Manufacturing tolerance of
—12,5% is used to scale the wall thickness of the
casing. Theoretical collapse strength values for mode
shapes 1-8 are listed in Table 4 and the obtained
collapse mode shapes can be seen in Figure 5.

7

8

Figure 5: Collapse mode shapes 1-8 of the
production casing (eigenvalue buckling
analysis).

The theoretical collapse strength values obtained
from the eigenvalue buckling analysis are slightly
higher than the calculated API collapse resistance
which is calculated as 13.4 MPa. There are no
imperfections in the casing and the standard is known
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to provide rather conservative values for the collapse
resistance. This implies that the eigenvalue buckling
analysis underestimates the actual limit load of the
casing although the results give a close match to the
API collapse resistance.

Table 4: Theoretical collapse strength of the modeled
casing using eigenvalue  buckling
analysis. APl collapse resistance of this
casing is calculated as 13.4 MPa.

Mode shape Theoretical % of API collapse
nr. collapse strength resistance
[MPa]

1 14.4 107.1

2 145 107.9

3 145 108.4

4 14.7 109.6

5 15.1 112.4

6 15.7 117.1

7 16.7 124.9

8 18.1 135.3

Nonlinear buckling analysis is used to predict the
actual collapse limit load. Nonlinearities are now
accounted for the casing. Additionally, the first mode
shape from the eigenvalue buckling analysis is scaled
down and used as perturbation to the initial geometry
for the nonlinear buckling analysis. The limit load for
the collapse is determined as 21.6 MPa, see Figure 6,
which is higher than the theoretical collapse strength
(bifurcation point) obtained in the eigenvalue
buckling analysis. This is in agreement with the
statement above that the linear eigenvalue buckling
analysis probably underestimates the collapse
strength of the casing.

Figure 6: Initiation of collapse of a casing without
geometrical defect. A nonlinear buckling
analysis with the first mode shape scaled
and used as perturbation. Collapse occurs
at 21.6 MPa.
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In Figure 7, load-displacement collapse curves are
plotted for a perfectly round casing as well as a
casing mode shape perturbation. The collapse limit
load of a perfectly round casing is 38.4 MPa. For first
mode shape perturbation the collapse occurs at 26.4
MPa and 21.6 MPa for scaling constants of 0.0005
and 0.001, respectively.

]
=]

Perfectly round casing

— Ist mode shape perturbation (0.0005 scaling)
---- 1st mode shape perturbation (0.001 scaling)
[ Collapse resistance, 13.4 MPa (API, ISO/TR)
I Elastic collapse (Timoshenko 1961)
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Figure 7: Effect of initial geometry on collapse.
Perfectly round casing and mode shape
perturbation. Results from a nonlinear
buckling analysis.

The effect of ovality on collapse strength of the
casing is analyzed. Ovality of pipes is defined as

X Dmin

D
Ovality = 2 5

where Dy is the maximum outer diameter, Dy, is
the minimum outer diameter and D is the mean outer
diameter.
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Figure 8: Effect of casing ovality on collapse. Results
from a nonlinear buckling analysis.
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Collapse curves of casings with ovality of 0.1% -
3.0% can be seen in Figure 8 and the collapse limit
loads are listed in Table 5.

The effect of a geometric defect on the external
surface of the casing is analyzed. First, the extreme
case is analyzed where the defect depth is 0.5 times
the casing thickness, 20° in circumference and one
meter long. The collapse resistance of a casing with
and without the structural support of the external
concrete is analyzed as well, see Figure 9.
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Figure 9: The effect of concrete structural support to
the casing. Load-displacement collapse
and post-collapse curves of an extreme
defect case where the defect depth is 50%
of the casing thickness.
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The effect of nonlinear material properties, i.e.
nonlinear stress-strain curves for K55 steel, are also
compared and can be seen in Figure 9. The collapse
limit load of the casing without concrete support is
14.4 MPa and with concrete support it increases to
18.1 MPa. Using linear material properties, the
collapse limit load for same cases is 37.2 MPa and
56.4 MPa. When nonlinear material properties are
used, plastic deformations take place which creates
instability and leads to collapse. Conversely, when
linear material properties are used, the casing remains
stable until it collapses elastically. Why the elastic
collapse does not match the theoretical elastic
collapse, seen in blue box on the graphs, can be
explained by the D/t ratio of the analyzed casing
which collapse is determined by the transition
between plastic and elastic collapse. The collapse and
post-collapse shape with and without concrete
structural support can be seen on the section
diagrams in Figure 10.




With concrete

/ Without concrete

Without concrete
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Figure 10: Collapse shapes of a casing with external
defect depth of 50% the casing thickness,
with and without concrete support
(concrete  not shown). Initiation of
collapse (above) and post-collapse
(below).

The effect of defect dept on the collapse shape of a
casing supported by external concrete is analyzed as
well. Defect depths of 10% to extreme 80% of the
casing thickness can be seen in Figure 12. At 10% the
defect merely makes the casing unstable but the
location of the defect does not dominate the location
of the collapse. At 20-30% the collapse is located at
the defect but the deformation is relatively small.

Figure 11: A collapsed casing with external defect
depth of 40% of the thickness of the
casing. Collapse load of 15.3 MPa.

At 40% defect depth, also seen in Figure 11, the
deformation of the collapse becomes substantial, both
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inward and along the length. The radial displacement
is 85mm and the length of the deformation is
approximately 2 meters, twice as long as the defect
length. For the cases of 50% to 60%, which are
extreme cases unlikely to exist in reality, the
deformation is similar to the 40% case, but cases
above 70% the collapse becomes local to the defect
and begins to resemble plate buckling. Collapse
curves of various defect depths can be seen in Figure
13 and corresponding limit loads are listed in Table

OO

10% 20%
30% 40%

50% 60%
70% 80%

Figure 12: Effect of external defect depth on the
collapse shape (percentage of casing
thickness). End view of the casing and
external concrete.
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Figure 13: Effect of external defect depth on
collapse.

A summary of the effect of initial geometry on
collapse limit load can be seen in Table 5.

Table 5: Summary; effect of initial geometry on
collapse. Mode shape perturbation,
ovality and external defect. API collapse
resistance of this casing is calculated as
13.4 MPa.

Initial geometry Collapse % of API
limit load  collapse
[MPa] resistance

Without external concrete:

Perfectly round 38.4 287
1st mode shape (0.0005) 26.4 197
1st mode shape (0.001) 216 161
Ovality (0.1%) 26.4 197
Ovality (0.5%) 24.0 179
Ovality (1.0%) 22.8 170
Ovality (2.0%) 21.0 157
Ovality (3.0%) 19.8 148
External defect (0.5*t) 14.4 107
With external concrete:

External defect (0.1*t) 33.6 251
External defect (0.2*t) 25.2 188
External defect (0.5*t) 15.6 116
External defect (0.8*t) 12.0 89.6

The effect of a small deformation due to external
pressure and its stimulus on subsequent collapse due
to cyclic thermal loads is analyzed. A casing with
external defect depth of 40% of the casing thickness
is used in the analysis. The external pressure, which
can be looked at as an excessive concrete pumping
pressure, generates a small permanent deformation in
the casing. Pressure is excluded from the analysis
after the first load step to observe the thermal effect.

The thermal distribution for the cyclic thermal
analysis can be seen in Figure 14.

RE00ROCEN

Figure 14: Thermal load used in the analysis; warm-
up (above) and cooling (below).

The load history used in the analysis consists of
external pressure which is then removed to see the
resulting plastic deformation, following is cyclic
thermal load which consists of a temperature
difference of 300°C. This is a steady-state analysis so
transient effects, such as rapid cooling, are not
included. Pressure, reaching from 10 MPa to
excessive 20 MPa, is subjected on the external
surface of the casing which for pressure above 10
MPa results in plastic deformation.

6

i AT

P,=10MPa 7
P, =12.5 MPa
P,=15MPa

—— P, =15.25 MPa

0
1 /(
—PE:ZOMPa

4 T 2 T 2
1 2 3 4 5 6 7 8 9 10

Loadstep (time)

Figure 15: Initial external pressure and its effect on
subsequent deformations. Blue: external
pressure load, light blue: pressure
removed, red: warm-up to 300°C, white:
cooling.
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Pressure above 15.3 MPa collapses the casing before
temperature load is applied. Radial displacement
curves can be seen in Figure 15. During cooling,
stress relaxation is followed by tensile stress buildup
in the casing, which goes beyond the proportional
limit of the stress-strain curve of the steel. Because
the radial displacement is still positive, this reverses
the displacement of the defect, initially moving
inward, forcing the displacement outwards again. By
using linear material properties, see Figure 16, this
does not occur. As the load history shows,
subsequent collapse due to excessive initial pressure
does not occur.
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Figure 16: Nonlinear material properties and linear
material properties compared.

CONCLUSION

In this study collapse limit loads of casings were
analyzed with respect to pressure and temperature
loads combined with casing imperfections with and
without external concrete support. Eigenvalue
buckling analysis was used to find the collapse mode
shapes of a geometrically perfect casing. Nonlinear
buckling analysis showed that the limit load for the
casing was higher than the theoretical collapse
strength  (bifurcation point) of the eigenvalue
buckling analysis, indicating that the eigenvalue
buckling analysis underestimated the collapse
strength of the casing.

The effect of initial geometry on collapse was
analyzed. The collapse limit load of a perfectly round
casing was compared to casings with geometry
perturbation of the first mode shape from the
eigenvalue buckling analysis. The casings with the
mode shape perturbation showed reduced collapse
strength of approximately 30-50%, using two scaling
factors for the first mode shape. The reduction in
collapse strength due to ovality was also analyzed. It
showed that slight ovality reduces the collapse
strength of the casing substantially. The effect of
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external defect and the defect depth on the collapse
strength and collapse shape was analyzed. Modeled
collapse shapes of a casing subjected to external
pressure with and without the support of concrete
were obtained. The latter resembled bulge collapse
shapes documented in high temperature wells.

A load history was used consisting of external
pressure followed by cyclic temperature difference of
300°C. The results showed that the initial pressure
did not result in subsequent collapse. This is partly
due to the nonlinear behavior of stress-strain curves
of steel when reaching beyond the proportional limit.

It is apparent that a combination of factors cause
casing failures. The load, consisting of temperature
and pressure changes, and the load history is
probably the main contributor. When subjected to
load, imperfections in  casings and surrounding
concrete have also proved to play a big role in the
generation of casing failures such as casing collapse.

Future work will involve analyzing more load
histories and including transient loads, such as
wellbore pressure fluctuations due to cavitation and
slug flow, as well as further studying casing and
concrete imperfections.
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Abstract

High temperature geothermal wells which are drilled in geothermal areas are constructed of sev-
eral concentric steel casings that are cemented together. The structural integrity of such well casings
is essential for the utilization of high temperature geothermal wells. The temperature change in high
temperature geothermal wells is large and much larger than commonly seen in oil wells. This large
temperature change can cause problems in the casing due to thermal expansion of materials. The well-
head rises during discharge due to thermal expansion of the steel in the casing and the large temper-
ature change can also lead to casing collapse due to expanding annular fluids. With recent increasing
interest in drilling deeper geothermal wells the strength of the casing becomes one of the most limiting
factor. A nonlinear structural finite element model of the cased well is presented and discussed here.
The purpose of the model is to evaluate the structural integrity of the casing when it is subjected to
thermo-mechanical loads. The outcome of the model depends highly on the accuracy of the input pa-
rameters, i.e. geometrical sizes and material properties. The accuracy of the results are evaluated with
the use of probabilistic design analysis where selected input parameters of the model are assumed to

contain a reasonable amount of scatter. The uncertainties of the model can thus be quantified.

1. Introduction

Geothermal wells are constructed of several
concentric steel casings which are fully cemented
together and cemented to the rock formation.
Usually, three casings are used; the production
casing, anchor casing and surface casing. The
wellhead consists of a casing head flange, expan-
sion spool and a master valve. The wellhead is
attached to the top of the anchor casing and the
production casing movements relative to the an-
chor casing is accommodated below the master
valve inside the expansion spool [5].

During the discharge of high temperature
geothermal wells, the temperature difference in
the well from non-flowing to flowing conditions
is large. To take an example, reservoir temper-
atures in the Krafla high temperature geother-
mal area in Iceland typically range from 210 °C to
350°C [11]. The large temperature change gen-
erates thermal stress in the casing which is par-
tially constrained by the concrete. While the well
warms up the wellhead rises as a result of ther-
mal expansion of the casings and concrete. Cas-

*gunnarsk@hi.is

ing failures can lead to a reduced energy output
from the well, render it inoperative and in worst
cases cause unsafe conditions above the surface.
Thus the structural integrity of well casings is
essential for the utilization of high temperature
geothermal wells.

The casings and the wellhead form a struc-
tural system which is unpractical to solve ana-
lytically mainly due to the nonlinear behavior
of the contacting surfaces. Therefore, the struc-
tural system is analyzed numerically with the use
of the nonlinear finite element method (FEM). A
thermal and nonlinear structural model of the
cased well is constructed where nonlinearities,
e.g. friction, plasticity and large non-uniform
deformations are accounted for. The nonlinear
axi-symmetric model described here is a con-
tinuation of the work described by Kaldal [7].
Other models of geothermal wells have been cre-
ated, e.g. an elastic 2D FEM model presented
by Gretarsdottir [4] and a nonlinear FEM model
by Magnusdottir where the bonding characteris-
tics between the production casing and its outer
concrete were analyzed [10]. The collapse of
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the production casing is a non-symmetrical phe-
nomenon which cannot be analyzed with this
model but has been modeled with nonlinear 3D
FEM models by Kaldal [6][8].

As opposed to deterministic analysis, where
input parameters are treated as constants which
results in a one possible solution, a probabilistic
approach is used, where the input parameters are
assumed to contain a reasonable amount of scat-
ter, which then gives an estimate of the model un-
certainties. Here, selected results from the FEM
model are used as outputs for the probabilistic
analysis. Scatter plots of the input parameters
versus the output results reveal which input pa-
rameters are significant to the results of the FEM
model. A cumulative distribution function of
the wellhead movement and the maximum von
Mises stress in the casings and surrounding con-
crete is obtained here and are used to review the
uncertainty of the model. In this paper, proba-
bilistic analysis of the FEM model is presented
where several input parameters are evaluated.

2. Probabilistic design

Probabilistic design is an analysis technique
for assessing the effect of uncertain input pa-
rameters and model assumptions [1]. Using this
method the uncertainties of the model can be
quantified by acknowledging that the input pa-
rameters are not constants but rather parame-
ters that follow statistical distribution functions
such as Gaussian or normal distribution. By this
assumption the limited outcome of determinis-
tic results is avoided and the uncertainties in
the model and probability distribution of the re-
sults are analyzed. Of course, the modeling error
which refers to the difference between the physi-
cal system and its mathematical model [2] can be
larger due to numerous approximations made to
the geometry, material properties, load, etc. But
all in all this method gives a map of the results
rather than one point.

Intertwined in the method is the determina-
tion of the sensitivity of individual parameters to
the results. For the model described below, each
input parameter is assumed to follow normal dis-
tribution given by assumed mean and standard
deviation. The probabilistic analysis employs the
Monte Carlo Simulation method with Latin Hy-
percube Sampling, which avoids repeated sam-
ples [1]. A given number of simulation loops are
performed and before each loop, individual in-
put parameter is randomly given a value within
its normal distribution domain. When the simu-
lation loops are finished the sensitivity of the in-

put parameters to the results can be visualized
with scatter plots.

For the probabilistic analysis used on the FEM
model described below, 400 simulation loops
were used. The selected input parameters that
were used for the probabilistic analysis are listed
in Table 1. Their assumed means and standard
deviation are listed as well. The standard devia-
tion ¢ provides the sample range for the param-
eter and 99.7% of the samples should fall within
30 from the mean provided that the number of
simulation loops is sufficient.

Table 1: Probabilistic design input parameters (mean and as-
sumed standard deviation).

Parameter Units Mean Std
s - 0.45 0.15
Tmax MPa 0.46 0.13
E., GPa 2.4 0.6
Ey, GPa 80 20
e MPa 30 7.5
Pst kg/m® 6125 150
Peo kg/m3 1600 200
Qs 1/°C 12e-6 le-6
Qco 1/°C 10e-6  1.5e-6
O0-€sc - 1 01

3. FEM model description

A nonlinear thermal and structural model of a
high temperature geothermal well which reaches
from the wellhead to the bottom of the produc-
tion casing is constructed with the use of the
finite-element method (FEM). The focus is to
analyze the structural system which consists of
a wellhead and several concentric casings con-
nected together and to the formation with con-
crete. The model is two dimensional and axi-
symmetric around the center of the well. It in-
cludes nonlinearities which are found in large ge-
ometrical displacements, in material properties
and in connectivity between contacting surfaces.

The model, shown in Figure 1, is paramet-
rically designed so geometrical sizes and mate-
rial properties are adjustable by the user. Sim-
plified couplings with no threads are included in
the production casing to account for the anchor-
ing effect of the couplings in the concrete. A sim-
plified wellhead based on an actual design is also
included to account for pressure loads and the in-
teraction between the casing and the wellhead.
Material properties and reference values that are
used in the model are listed in Table 2. Addition-
ally, the reference value for the coefficient of fric-
tion between steel and concrete is ¢ = 0.5 and
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Figure 1: The geometry of the model.

the maximum shear stress when sliding initiates
iS Tmaw = 0.46 MPa. Nonlinear material prop-
erties of steel grades K55, L80, T95 and X56 are
implemented in the model with the use of stress-
strain curves which were obtained from tensile
tests [9]. The concrete is assumed to yield plas-
tically above its maximum compressive strength
and the formation is assumed to be solid basaltic
rock.

Table 2: Material properties and numerical values used in the

model.

Material property Units  Steel Concrete
Young’s modulus (E) GPa 210 24
Poisson’s ratio (v) - 0.3 0.15
Density (p) kg/m® 7850 1600
Th. conductivity (K) W/mec 50 0.81
Specific heat (c) J/kgec 400 880
Th. expansion («) ec  12e-6 10e-6
Compressive strength (fc) MPa - 25e6

The frictional connection between surfaces
in particular makes the model computationally
complex. Contact element pairs are used be-
tween contacting surfaces. Their main purpose
is to prevent surfaces to intersect each other,
while still allowing gap formation and tangential
movement between casings and concrete. The
Coulomb friction model is used to describe fric-

tion between contacting surfaces, where it can
withstand shear stresses up to a certain magni-
tude across its interface before they start sliding
relative to each other [1]. Once the equivalent
shear stress exceeds 7,4, relative sliding begins.
The Coulomb friction model is defined as:

P +b T < Tomas
T= . 1
{ T"L[lfl' lf T 2 TTVL(LIL' ( )

where 7 is the equivalent shear stress, 7,4, is the
maximum shear stress, y is the isotropic coeffi-
cient of friction, b is the contact cohesion and P is
the contact normal pressure, see Figure 2 for the

graphical interpretation of the Coulomb friction
model.

Sliding

Trnax

Sticking

p

Figure 2: The Coulomb friction model in Ansys [1].
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The boundary conditions of the model are
defined such that no displacements are allowed
in the lower and outer boundary of the model.
The lower boundary is located 20 m deeper than
the production casing shoe and the outer (radial)
boundary of the rock formation is 20 m outward
from the well, which is sufficient for both the
thermal and the structural parts of the model.
The wellhead movement is observed at the nodal
point denoted with W on Figure 1.

4. Results

4.1. FEM results from a single simulation run

FEM results from a single simulation run,
with the material properties values listed in Ta-
ble 2, are presented here.

>
z
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2]
=
W

0
22.9467
45.8933
68.84
91.7867
114.733
137.68
160.627
183.573
206.52

BE0NEEONN

Figure 3: Temperature distribution 2.5 hours after discharge
(°Q).

The calculated temperature distribution at the
top of the well 2.5 hours after discharge, which
will be the reference time of the subsequent re-
sults, is displayed in Figure 3. A temperature
change of 200°C is assumed. The displacement
at the top of the well is displayed in Figure 4. In
this run the displacement of the production cas-
ing is 35.8 mm and the wellhead displacement is
11.7 mm. Stress concentration near the couplings
of the casing is illustrated in Figure 5 where the
maximum stress in the steel is produced near the
couplings and in Figure 6 where the maximum
stress in the concrete forms at the top of the cou-
plings. In this case the maximum stress for both
the concrete and the casing is formed at the sec-
ond highest coupling.
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Figure 4: Displacement of the wellhead 2.5 hours after
discharge (m). The displacement of the production

casing is 35.8 mm and the wellhead displacement is
11.7 mm.
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Figure 5: Von Mises stress at the second highest coupling
(Pa).
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Figure 6: Von Mises stress of concrete at the second highest
coupling (Pa).
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Figure 7: Histograms of normally distributed input parameters.

4.2. Distribution of inputs and outputs

The material properties for the FEM model
that were selected as input parameters for the
probabilistic analysis are listed in Table 1. His-
tograms of the input parameters which were as-
sumed to follow normal distribution are seen in
Figure 7. The samples of the input parameters
follow normal distribution which confirms that
for the probabilistic analysis, 400 Monte Carlo
simulation loops are sufficient.

The results from the FEM model that were se-
lected as outputs for the probabilistic analysis, i.e.
wellhead displacement and maximum von Mises
stress in the production casing, the anchor casing
and the surrounding concrete for each casing, are
displayed in the histograms in Figure 8 and dis-
cussed in the discussion section below.

4.3.  Correlation between inputs and outputs

Scatter plots showing the correlation between

the selected input parameters and the selected
outputs of the model are illustrated in Figure 14.
A significance level of the correlation between
input and outputs is chosen to be 2.5%, so that
R? < 0.025 is dismissed as insignificant.
For the first column, the wellhead displacement,
the significant parameters are; ps;, Tmae and o
with correlations of R? = 0.02528, R? = 0.32987
and R? = 0.35066. All other input parameters
are of no significance to the wellhead movement.
Summary of the significant parameters and cor-
relations is listed in Table 3.

Table 3: Significant input parameters and correlation with the

results.

Output Input R?
Wellhead st 0.02528
displacement Tmaz  0.32987
gy 0.35066
Max. von Mises stress of gt 0.36826
the production casing o-€5. 0.73963
Max. von Mises stress of T4 0.62363
the production concrete E., 0.15270
fe 0.03274
ag  0.09283
o-€5.  0.02940
Max. von Mises stress of  pg; 0.02701
the anchor casing Pco 0.21588
gy 0.73663
Max. von Mises stress of  F,, 0.83435
the anchor concrete gt 0.11622

4.4. Cumulative distribution function

If the results from all the Monte Carlo sim-
ulations are sorted and plotted against the pro-
portion of the result values an empirical cumu-
lative distribution function (CDF) of the results
is obtained. These plotted curves can then be
used to visualize the results. From the wellhead
displacement results for example, seen in Figure
9, it can be stated with 90% certainty that the
wellhead displacement is less than or equal to
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Figure 8: Histograms of the selected output results from the probabilistic analysis.
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Table 4: Statistical summary of the output results from the
probabilistic analysis.

Mean  Std Min Max
i. 8.43 1.52 5.19 18.1
ii. 335.6 29.73 254.6 426.5
iii. 44.86 1955 14.11 120.6
iv. 159.2 13.69 1223 203.1
v. 9589 2163 3.010 17.16

i: Wellhead displacement.

ii: Max. von Mises stress of the production casing.
iii: Max. von Mises stress of the production concrete.
iv: Max. von Mises stress of the anchor casing.

v: Max. von Mises stress of the anchor concrete.
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5. Discussion

In the single run of the FEM model it was il-
lustrated how the results appear after 2.5 hours
which was the reference time for the probabilis-
tic analysis. The temperature distribution shown
in Figure 3 illustrates how shallow the tempera-
ture front has reached during this time. Figure
4 illustrates the wellhead displacement and how
the production casing slides inside the wellhead.
The stress concentration region which is located
at the couplings is illustrated in Figures 5 and 6.

The selected outputs of the FEM model for the
probabilistic analysis are not as distinctively nor-
mally distributed as the input parameters which
were randomly given a value within the normal
distribution domain. The histograms of the re-
sults seen in Figure 8 do however reveal that,
apart from the maximum von Mises stress in the
concrete surrounding the production casing, the
results follow normal distribution nevertheless.
The standard deviation given for the input pa-
rameters in the probabilistic analysis are inten-
tionally large but might be a bit too spacious.
Excluding the insignificant input parameters and
narrowing the standard deviation of the signif-
icant input parameters should remove some of
the noise and improve the results from the prob-
abilistic analysis.

The correlations between input and output
parameters reveal which input parameters are
significant for each of the output results, see Ta-
ble 3. Thermal expansion of the casings a,; and
the parameters for friction, ps; and 7,44, proved
to be significant to the wellhead displacement,
st the least significant of the three with a cor-
relation of R? = 0.02528. Thermal expansion of
steel a; is significant for all the selected output
results. Specially for the maximum von Mises
stress of the production casing and the anchor
casing. Scaling the stress-strain curve for steel
appears only to be significant for the maximum
stress in the production casing and its surround-
ing concrete sliding freely inside the anchor cas-
ing and the wellhead. The anchor casing on the
other hand is connected to the wellhead which
results in less degree of freedom.

The maximum von Mises stress might not
be a good output from the probabilistic analysis
since it is a local peak stress which does not re-
semble the whole casing. Instead or rather addi-
tionally, because the maximum is surely of inter-
est, mean stress with standard deviation could be
a better option of outputs for comparison.

The cumulative distribution functions (CDF)
of the output results, Figures 9 to 13, illus-
trate the uncertainties of the model. For ex-
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ample it can be stated with 95% certainty and
with these premises that the wellhead displace-
ment is below 11 mm, the maximum von Mises
stress in the production casing will be lower than
390MPa, its surrounding concrete 82MPa, the
anchor casing 182 MPa and its surrounding con-
crete 13 MPa. This means that the production cas-
ing has reached beyond the proportional limit of
the stress-strain curve for K55 steel which has a
minimum yield strength of 379 MPa[3], its sur-
rounding concrete is partially broken, but the se-
curity casing and its surrounding concrete are
still intact, again with 95% certainty.

6. Conclusion

In this paper, probabilistic analysis of a struc-
tural FEM model of a high temperature geother-
mal well was presented. Using probabilistic
methods on FEM models provide a broader un-
derstanding of the problem and the model itself
and produce a topography of the results as well
as enabling the uncertainties of the model to be
quantified.
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Nomenclature

E Young’s modulus

FEg Young’s modulus of steel

E., Young’s modulus of concrete
Eg4. Young’s modulus of formation
v Possion’s ratio

P Density

Pst Density of steel

Peo Density of concrete
fe Compressive strenght of concrete
K Thermal conductivity

R2
a

O-€sc

Specific heat

Thermal expansion
Thermal expansion of steel
Thermal expansion of concrete
Coefficient of friction
Maximum shear stress
Limit shear stress
Equivalent shear stress
Contact normal pressure
Contact cohesion
Coefficient of determination
Standard deviation

Stress-strain curve scaling factor
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1. Introduction

Large temperature changes pose many design challenges in
a diverse range of structures. This applies to high temperature
geothermal wells which are subjected to large wellbore temper-
ature and pressure changes. The wells are constructed of several
concentric steel casings that are fully cemented together as well as
to the surrounding rock formation. The structural integrity of the
casings is essential for the utilization of geothermal wells.

During its lifetime, casings are subjected to multiple thermo-
mechanical loads that can increase the risk of casing failures. With
recent increasing interest in drilling deeper geothermal wells the
strength of the casing is one of the limiting factors because of
increased casing depths, higher pressures and temperatures and
more difficult corrosive environment, when compared to conven-
tional wells.

When high temperature geothermal wells, which are located in
high temperature geothermal areas where temperatures at 1000 m
depth reach beyond 200°C (Bodvarsson, 1961; Palmason, 2005;
Axelsson et al., 2006), are discharged the geothermal fluid flows
abruptly from the reservoir because of the lowered pressure on
the surface. This decrease in wellbore pressure causes boiling in
the geothermal fluid. For most high temperature geothermal wells
a mixture of hot water and steam is present at the wellhead

* Corresponding author. Tel.: +354 525 4700; fax: +354 525 4632.
E-mail address: gunnarsk@hi.is (G.S. Kaldal).

http://dx.doi.org/10.1016/j.geothermics.2015.02.003
0375-6505/© 2015 Elsevier Ltd. All rights reserved.

(Palmason, 1980; Garcia-Gutierrez et al., 2002; Sveinbjornsson and
Thorhallsson, 2014).

The flowing mixture causes pressure fluctuations with demand-
ing wellbore flow conditions. The resulting vibration can
sometimes be felt on the surface and can cause local casing prob-
lems, but the most powerful mechanical force in the structure is
driven by large temperature changes which generate large ther-
mal stresses and causes the wellhead to rise during discharge. The
thermal stress caused by thermal expansion of the casings is mainly
attributed to the thermal gradient between the alternating casing
and concrete layers.

In high temperature geothermal wells, 2-5 casings are used;
conductor casing, surface casing, intermediate casing which
is sometimes omitted, anchor casing and production casing
(Thorhallsson, 2008). The concrete in between the casings provides
axial constraints for the casings as well as providing radial and lat-
eral support which lowers the risk of buckling and collapse of the
casings. In most Icelandic wells, the wellhead is connected to the
anchor casing and the production casing is allowed to slide inside
an expansion spool below the master valve of the wellhead. Fig. 1
shows a diagram of a typical casing program for high temperature
geothermal wells in Iceland.

Wellbore temperature changes can lead to casing failures, espe-
cially when the stress reaches the yield point and beyond. The
thermal tensile stresses that form during the cooling of wells may
also be large enough to exceed the coupling joint strength of the
casing, resulting in casing failure (Maruyama et al., 1990).

The expected temperatures in wells that are located in high
temperature areas are determined by their position within the
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Py tensile stress due to casing weight (MPa)

g acceleration of gravity (m/s2)

h height (m)

t thickness (mm)

D outer diameter (in)

E Young's modulus (GPa)

v Poisson’s ratio

o density (kg/m3)

Pw density of water (kg/m3)

k thermal conductivity (W/m° C)

c specific heat (J/kg® C)

o thermal expansion (1/° C)

fe compressive strength of concrete (MPa)

" coefficient of friction

wh coefficient of friction between the production casing
and the wellhead

Tmax maximum shear stress (MPa)

Tlim limit shear stress (MPa)

T equivalent shear stress (MPa)

P contact normal pressure (MPa)

b contact cohesion (MPa)

T; initial wellhead temperature (° C)

Ty final wellhead temperature (° C)

AT wellbore temperature change (° C)

AT,  wellhead temperature change (° C)

Twh wellhead temperature (° C)

Py wellhead pressure (MPa)

Uph wellhead displacement (mm)

st subscript for steel

o subscript for concrete

o subscript for rock formation

geothermal reservoir, the location of inflow fissures and the
temperature of the reservoir. For example, in the Krafla high tem-
perature geothermal field in Iceland, the reservoir temperatures
typically range from 210°C to 350 °C (Ragnarsson, 2003). Recently,
wellhead temperatures as high as 440°C (Axelsson et al.,, 2014;
Armannsson et al., 2014; Hauksson et al., 2014; Ingason et al., 2014)
were seen in the first Iceland Deep Drilling Project (IDDP) well
IDDP-1 located in the same reservoir but closer to the heat source.
The well became the world’s hottest producing geothermal well
(Elders et al., 2012).

The nonlinear behavior of materials used in geothermal wells
and the nonlinear frictional characteristics between contacting sur-
faces creates a problem that is unfeasible to solve analytically.
Therefore, to get a wider understanding of the structural response
ofthe system to temperature and pressure loads, a numerical model
has been developed to simulate stresses, strains and large displace-
ments in the cased section of high temperature geothermal wells.
The nonlinear finite-element method (FEM) is used to construct
a two-dimensional axis-symmetric structural model of the cased
well which is presented and discussed here. Preliminary results of
the model have been presented by Kaldal et al. (2012, 2013).

Few FEM models of wells have been published where the fric-
tional characteristics between the surfaces in contact are taken
into account. Philippacopoulos and Berndt (2002) presented a
two-dimensional FEM model of a cross section of a double cased
geothermal well with the objective of evaluating the stress field of
the concrete, where the need for further general research to focus
on the transient structural response of a geothermal well as a struc-
tural system was emphasized. Gretarsdottir (2007) presented an
elastic two dimensional FEM model of a geothermal well where
no separation between surfaces was accounted for. By using a

/ Expansion spool
Production casing
A A Anchor casing
50-100 m Surface casing
100-300 m
Y
All casings
cemented to top
700-1500 m

Perforated liner

Fig.1. Adiagram of a typical casing program for high temperature geothermal wells
in Iceland.

three-dimensional push-out model and push-out test results
obtained in a laboratory along with the two dimensional model, the
displacement of the production casing at the surface was estimated.
Magnusdottir (2009) presented a nonlinear two-dimensional FEM
model of a geothermal well, where the upward displacement of
casings was analyzed with regards to the bonding characteristics
between the production casing and concrete by using contact ele-
ments. The results for no-, partial- and full separation between
the surfaces, were compared and showed how the defined contact
behavior greatly affected the results. Ferla et al. (2009) proposed
a linear axis-symmetrical model of a short section of a well
with a casing surrounded by concrete and rock, where thermal-
induced stresses around a cased injection well were modeled. The
model included two types of rock which showed that interbedding
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layers of relatively soft and relatively stiff rock types have a major
effect on the thermal stress distribution along the casing. They also
analyzed casing pre-tension and its effect on the reduction of the
thermal compressive stress.

In the model presented here, friction is defined for all surfaces
in contact. The model predicts temperature distribution, displace-
ments, stresses and strains. Unsymmetrical phenomenons such
as collapse, buckling and structural effects of directionally drilled
wells, can however not be analyzed with the model due to its axial
symmetry.

To get a greater insight into the structural response of high
temperature geothermal wells to wellbore pressure and temper-
ature changes, wellhead displacement data was gathered during
discharge of 5 wells, located in the Hengill and Reykjanes geother-
mal areas in Iceland. In this paper the wellhead displacement
data is presented and used to validate the proposed nonlinear
FEM model. The model can then be further used to analyze the
structural integrity and structural response of steel casings to
thermo-mechanical loads.

2. Casing loads in geothermal wells

Numerous load cases arise during the lifetime of geothermal
wells. The loads mainly consist of casing weight, temperature and
pressure changes. In general, casing design is based on (i) axial
tension, (ii) burst and (iii) collapse pressures. The casing must with-
stand the expected loads that are likely to occur during its lifetime.
Standards, e.g. ISO/TR 10400:2007(E), which provide equations
and calculation guidelines for the properties of casings, have been
developed for the oil and gas industry. But well design and the
definition of anticipated loads is currently outside the scope of stan-
dardization for the petroleum and natural gas industries (ISO/TR
10400, 2007).

In casing design for oil and gas wells, the most important param-
eters are fluid pressure, casing weight and tensile loading (Hole,
2008). In geothermal wells however, high temperature loading is
generally the most severe (Hole, 2008). To understand what loads
act on the casing it is useful to go through the load history of the
casing. It can be different from well to well but the most critical
load cases are similar and will be described to a certain extent.

The load cases considered here occur at various time periods,
i.e. during installation, well operations (e.g. opening and closing of
wellhead valves and cooling with cooling water), and during pro-
duction of high enthalpy steam. After well completion the casing
loads consist of wellbore temperature and pressure changes. For
high temperature geothermal exploration, where reservoir tem-
peratures are not well known, the inflow temperature and pressure
of wells is assumed to follow the boiling point-depth curve (BPD) for
water (Bjornsson et al.,, 1978; Thorhallsson et al., 2014). If, however,
wells have been drilled in the area and the reservoir temperatures
are known, pressure and temperature conditions of prior wells can
be used as basis for design.

During the installation of the production casing, casing compo-
nents are joined and lowered down into the well. If residual stresses
from the production of the casing are neglected, the first load case
consists of axial tension due to gravity, see diagram Ain Fig. 2. While
the casing is installed, the well is kept full of cold water, which pro-
vides a counteracting buoyancy force. The tensile force on the top
increases with increasing length of the casing, putting the high-
est strain on the last installed casing component that holds up the
whole casing. The axial tensile load depends on several factors, e.g.
thickness and diameter of the steel casing, how many centralizers
are used, the diameter of the hole, cementing method, the deviation
of the hole and the density of the mud/water/cement that provides
the buoyancy force.

-AT |
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Fig. 2. Casing load cases.

Prior to cementing, the well is cooled with cooling fluid. During
cementing, using the inner string method, the concrete slurry is
pumped down through the drill string and up the annulus. Unlike
oil and gas wells, geothermal well casings are usually run back to
the surface and are fully cemented over the full length of the casing
(Hole, 2008). The casing is kept full of cold water so the differential
pressure between the outer and inner surface of the casing wall
does not reach critical levels, i.e. exceeding the collapse resistance
of the casing. The differential pressure is determined by the hydro-
static pressure difference between concrete and water, as well as
the additional cement pumping pressure, see diagram B in Fig. 2.

The solidified concrete, which seals up the annulus between
the casings and the formation, provides support to the casings.
The temperature at which the concrete solidifies at is the refer-
ence temperature for subsequent thermal stresses in the casing.
The temperature gradually increases with depth down the well and
after the cement has been placed the temperature increases due to
external warm-up of the well and due to the exothermic chemical
reaction while the cement sets. The neutral thermal stress con-
ditions of each casing is therefore determined by its temperature
distribution when the cement sets.

While the well is allowed to warm-up during its thermal recov-
ery from drilling, the initial tensile stress in the casing is relieved
and compressive thermal stress slowly builds up, see diagram C
in Fig. 2. The intensity depends on the temperature difference
and how fast the well warms up. Drilling into permeable zones in
geothermal areas, using water as circulation fluid, large volumes of
cold water are lost to the reservoir and full thermal recovery takes
from 2 weeks to 3 months (Birkisson and Hole, 2007). During this
period the wellbore is normally full of water and wellhead pressure
slowly builds up.

In some cases the water inside the wellbore prevents wellhead
pressure to naturally build up. In those cases wellheads are some-
times shut completely to allow accumulation of non-condensable
gases at the top. Pressure then builds up gradually and pushes the
water column down into the reservoir making discharge possi-
ble when the well is opened. Air-pumps at the wellhead are also
used for this purpose. The disadvantage of using air is that the well
and the wellhead cools down while cold air is pumped into the
well which then causes a greater thermal shock when the well is
discharged.

When the well is discharged the wellhead pressure decreases
rapidly and the temperature in the well increases sharply. The large
temperature change causes thermal expansion of the casing which
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Table 1 Table 2
The casing sizes of the monitored wells. Examples of wellhead displacements during discharge of selected wells in Iceland.
- Mainly from discharge reports from the National Energy Authority (Orkustofnun)
HE-13 D (in) t(mm) Length (m) and Iceland Geosurvey (ISOR) in Icelandic.
Productlonlcaslng 95/8 122 775 Well Year  Discharge method uy, (mm) Time from discharge
Anchor casing 133/8 12.2 255
Surface casing 185/8 11.0 78 KJ-19 1982 Natural 20 5h [1]
45 22 days
HE-46 D (in) t(mm) Length (m) KJ-21 1982  Natural 2 2h 2]
Production casing 133/8 122 1032 33 1 day
Anchor casing 185/8 11.0 337 68 52 days
Surface casing 2212 11.0 83 Kj-22 1983 Natural 27 Missing 3]
HE-53 D (in) t(mm) Length (m) NJ-12 1986  Wire-piston 41 11 days [4]
Tieback casing 7 12.6 607 NJ-13 1985  Natural 9 Sh [5]
Production casing 95/8 12.2 965 NJ-14 1986  Air-pump 20 15h 6]
Anchor casing 133/8 122 306 NJ-16 1986 Natural 5 Missing [7]
Surface casing 185/8 11.0 70 PG-1 2004 Air-pump 15 14 days [8]
IDDP-1 2011 Natural 420 10 weeks [9]
RN-22 D (in) t(mm) Length (m)
Production casing 133/8 12.2 729 [1] Krafla, Hola KJ-19 (0S82099/JHD27), October 1982.
Anchor casing 185/8 123 292 [2] Krafla, Hola KJ-21 (0S83013/JHDO03), February 1983.
Surface casing 221)2 12,5 74 [3] Kraﬂa, Hq]a KJ-22 (0S84008/JHD02), February 1984.
[4] Nesjavellir, Hola NJ-12 (0S85100/JHD56), November 1985.
RN-32 D (in) t (mm) Length (m) [5] Nesjavellir, Hola NJ-13 (0S85101/JHD57), November 1985.
Production casing 133/8 12.2 1077 [6] Nesjavellir, Hola NJ-14 (0S86031/JHD09), April 1986.
Anchor casing 185/8 123 345 [7] Nesjavellir, Hola NJ-16 (0S87007/JHDO6), February 1987.
Surface casing 221/2 12.0 100 [8] Peistareykir, Hola PG-01 (ISOR-2004/040), November 2004.

causes the wellhead to rise, as shown later. The sharp wellbore
temperature change also generates thermal stress in the produc-
tion casing which is in direct contact to the geothermal fluid. The
temperature rise in the outer casings of the well is much slower
and more gradual than the almost immediate temperature change
of the production casing. Since the upper layers of the well warm
up from within during discharge, thermal expansion generates
thermal stress in all casings as they gradually warm up. The produc-
tion casing is therefore much more affected by cyclic temperature
change than the outer casings which warm up slower because of
the thermal buffer the concrete in between the casings provides.

When wells need to be closed, for example for maintenance,
thermal stress forms due to the cooling of the well. For a typical
well, the wellhead temperature slowly decreases after the well-
head is closed and thermal stress due to cooling is not a problem.
If however the well needs to be shut off with cold water the cas-
ing rapidly contracts, creating tensile forces due to the support of
the outer casing and concrete layers, see diagram D in Fig. 2. If the
stress in the casing reaches beyond the yield point during warm-up
or discharge, cooling it down again generates tensile stress which
could lead to a coupling rupture and/or rupture of the casing body.

Thermal stresses generate similar problems in oil wells where
steam injection is used. Steam is used to heat the formation down
at the pay-zone to a temperature sufficient to reduce the viscosity
of the hydrocarbons which then flow back into the heat injection
well (Vogel, 1966).

In essence, the largest casing stresses that are produced in high
temperature geothermal wells are axial thermal stresses caused by
thermal expansion that occurs due to large temperature changes.

3. Wellhead displacement survey

A change in wellhead elevation during changes in wellbore
pressure and temperature provides information on the structural
response of the well. Monitoring wellhead displacement during
discharge can be used to study the rapid displacement during the
sudden wellbore pressure and temperature changes.

Wellhead elevation displacement data was gathered for 5
high temperature geothermal wells in the Hengill and Reykjanes
geothermal areas which are both located on an active volcanic ridge
in SW Iceland. The wellhead displacement was monitored while
the wells were discharged. The monitored wells HE-13, HE-46 and

[9] Ingason et al. (2014).

HE-53 are located in the Hengill geothermal field in Iceland and
wells RN-22 and RN-32 are located in the Reykjanes geothermal
field in Iceland. The geometrical sizes of the casings of the moni-
tored wells are listed in Table 1.

Table 2 shows examples of typical wellhead displacements
during discharge of selected wells in Iceland. Time-series data
of wellhead displacement provides additional information on the
structural response of the casings to large temperature changes.
In this study, wellhead displacement data along with temperature
and pressure data was gathered at the wellheads during the first
few hours of discharge. A laser line was projected onto a ruler which
was attached above the master valve of the wells, see Fig. 3. The ref-
erence point, where the laser tripod was located, was 2.5-3 m from
the wellhead, depending on the setup. A digital single-lens reflex
camera (Canon EOS 600D) was then used to take high-resolution
snapshots of the ruler to minimize the measurement error, which
with this method is estimated to be +0.25 mm.

The temperature of the wellhead was measured using an
infrared thermometer, with £2% reading accuracy, at various loca-
tions on the wellheads. The wellhead pressure was observed with
gauges located above the master valve.

Fig. 3. The wellhead of well HE-46. Arrow showing the laser projected on a ruler on
the top flange of the master valve.
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Fig. 4. The geometry of the model. The whole model is displayed on the right and the wellhead and a simplified coupling are shown in close-ups. The wellhead displacement

is monitored at the node denoted with W.

4. Model description

The finite-element program Ansys is used to construct a nonlin-
ear FEM model. It is divided into two parts, thermal and structural.
Before the structural part is run, a transient thermal analysis is per-
formed. The thermal results are then used as load in the structural
model.

The modelis two-dimensional and axially symmetric around the
center of the well. Axial and radial deformations can therefore be
analyzed but lateral and unsymmetrical deformations, e.g. bending,
buckling and collapse can not. Although the angular displacements
are zero, hoop strains and stresses can nevertheless be analyzed
because of the revolving axial symmetry. Nonlinear behavior, i.e. (i)
large geometrical displacements, (ii) nonlinear material properties
and (iii) connection between contacting surfaces are solved with
the modified Newton-Raphson method (Ansys Inc.).

The model, seen in Fig. 4, reaches from the wellhead down to
the bottom of the production casing and 20 m further down where
the lower boundary is located. The radial boundary of the model is
located 100 m from the center of the well. The wellhead displace-
ment is tracked at the node denoted with W in Fig. 4.

Simplified couplings with no threads are included to account
for the anchoring effect of the couplings in the concrete. A simpli-
fied wellhead is also included to account for pressure loads and the
interaction between the casings and the wellhead. The first flange
of the wellhead and the casing guidance ring, which for simplifi-
cation are joined into a solid piece, are included in the model to
account for the sliding of the production casing inside the well-
head, see Fig. 5. The model is designed so that geometrical sizes
and material properties are easily adjustable by the user.

The material properties and default values that are used in the
model are listed in Table 3. Additionally, the value used for the
coefficient of friction between steel and concrete is ©=0.45 and
the maximum shear stress when sliding initiates is Tjyqx = 0.46 MPa
which is based on two separate shear strength studies of

Fig. 5. Symmetry expansion (180°) of the simplified wellhead for the axis-
symmetric model. The wellhead is fixed to the anchor casing and the production
casing is allowed to slide inside the wellhead.

Table 3

Material properties and default numerical values used in the model.
Material property Units Steel Concrete Rock
Young's modulus (E) GPa 205 2.40 80.0
Poisson’s ratio (v) - 0.30 0.15 0.31
Density (p) kg/m? 7850 1600 2650
Th. conductivity (K) W/m° C 50.0 0.81 2.00
Specific heat (c) Jlkg" C 490 880 840
Th. expansion (o) 1/ C 12e-6 10e-6 5.4e—6
Compressive strength (f¢) MPa - 25e6
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Fig. 6. Stress-strain curves used in the model for steel grades K55, X56, L80 and T95
(Karlsdottir and Thorbjornsson, 2009).

externally cemented casings. Shear strengths performed by
Gretarsdottir (2007) showed maximum shear strength of 0.26 MPa
and 0.64 MPa, for 1 day strength and 28 days strength, respectively.
Similar results were obtained by Wallevik et al. (2009), where the
maximum shear strength was 0.21 MPa and 0.72 MPa, for 1 day
strength and 28 days strength, respectively. The steel-steel coeffi-
cient of friction between the production casing and the wellhead
is not known but is chosen to be u,,, =0.7, near the upper limit
of the static coefficient of friction for steel-steel contact which is
0.640.11 according to ASM (1992).

Nonlinear material properties of steel grades K55, L80, T95
and X56 are implemented in the model by using stress-strain
curves which were obtained from tensile tests by Karlsdottir and
Thorbjornsson (2009), seen in Fig. 6. Due to lack of data for
the stress-strain curves of casing steel at elevated temperatures,
strength reduction is accounted for by scaling these curves accord-
ing to Snyder (1979).

The steel is assumed to follow the kinematic hardening rule,
which is observed in cyclic loading of metals and can be used to
model behavior such as the Bauschinger effect (Thakur et al., 1996)
and buildup of plastic strain during cyclic loading, known as plastic
ratcheting (Ansys Inc.).

In the model, the concrete is assumed to yield plastically above
its maximum compressive strength. It is however arguable how
this should be defined due to the question of the post-failure com-
pressibility of the concrete in tri-axial stress state. In the model,
the Young’s modulus of the concrete after it has reached the maxi-
mum compressive strength is reduced by 50%. A concrete material
model that behaves differently in compression and tension is not
defined in the model but could be implemented in future studies.
Other material properties are defined linearly and the formation is
assumed to have the properties of solid basaltic rock.

The influence of the material properties on the results have been
analyzed by Kaldal et al. (2013) with probabilistic design analy-
sis, where the significant parameters to the wellhead displacement
were found to be the frictional parameters as well as the thermal
expansion coefficient for steel.

Contact between surfaces is defined with contact elements
and the frictional characteristics are solved using the Coulomb
friction model for all contacting surfaces. Contact element pairs
are used between contacting surfaces. Their main purpose is to
prevent surfaces from intersecting each other while still allowing
gap formation and tangential movement. Using the Coulomb
friction model, friction is described with a friction coefficient,

Fig. 7. The Coulomb friction model in Ansys (Ansys Inc.).

1, and maximum shear stress, Tmqx. The surfaces can withstand
shear stresses up to a certain magnitude across its interface before
relative sliding initiates (Ansys Inc.). Once the equivalent shear
stress exceeds Tmax, relative sliding begins.

The Coulomb friction model is defined as:

UP+b ifT < Tmax
T= (1)

Tmax if T > Tmax

where 7 is the equivalent shear stress, Timax is the maximum shear
stress, u is the isotropic coefficient of friction, b is the contact cohe-
sion and Pis the contact normal pressure. Fig. 7 shows the graphical
interpretation of the Coulomb friction model.

The boundary conditions are such that no displacements are
allowed at the lower and radial boundary of the model. The load
consists of wellbore temperature and pressure (T-P) profiles.

Tensile stress due to the installation of the casings is accounted
for by including initial tensile stress in each casing. This initial stress
corresponds to a casing hanging from the top in cold water. The
thermal stress formed due to the temperature difference between
the drilling fluid and the cementing temperature conditions is also
included in theinitial tensile stress for each casing with the assump-
tion that the casing is fully constrained initially.

The casings and concrete are meshed with eight-node
quadrilateral-shaped elements and the rock formation is meshed
with six-node triangle-shaped elements. The diameter-to-depth
ratio of the model is very small, as can be seen in Fig. 4. This requires
alarge number of elements because the elements must have proper
width-to-length ratio to function correctly. Convergence studies of
the model with respect to mesh density in the axial direction of the
well can be seen in Fig. 8. When the axial element density of the
casings is changed, the density of the external elements which rep-
resent the rock formation, change as well. Average element length
of 0.25 m proved to be adequate. This is equivalent to 100.000 ele-
ments for a test model with a 285 m long production casing.

When simulating discharge, the initial wellbore conditions are
important. The time period the pre-discharge conditions apply to
are also important, because of the temperature distribution of the
outer casing-, concrete- and rock layers. Therefore, the initial T-P
profiles before discharge and the time the well has been in that
state need to be included in the analysis. Same applies to wellbore
conditions after discharge. The load history for well HE-46 that is
used in the modeling is listed in Table 4. Similar load histories are
used for all the wells, but with different T-P profiles, pre-discharge
conditions and time periods.

Figs. 9-13 show the T-P profiles that are used for the model-
ing of the geothermal wells referred to as HE-46, HE-13, RN-22,
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Fig. 8. Convergence studies of the element mesh density of the model.

Table 4

The load history for well HE-46.
Case Description Time period
1. Rock temperature Initial
2. Cooling due to drilling 40 days
3. Temperature recovery 8 months
4. Pre-discharge (air-pump) 18h
5. Discharge (AP) 1min
6. Discharge (AT) 12 min
7. Post-discharge 1 9 days
8. Post-discharge 2 3 months

RN-32 and HE-53, respectively. Fig. 14 illustrates how the well-
head temperature of well HE-46 increases with time right after the
wellhead valve is opened. This is used for transition between the
pre-discharge and discharge load cases seen in Fig. 9.
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Fig. 9. Temperature and pressure profiles used as load cases for well HE-46.
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Fig. 10. Temperature and pressure profiles used as load cases for well HE-13.
5. Results
5.1. Wellhead displacement survey

A photographic series of the wellhead displacement during dis-
charge of HE-46 can be seen in Fig. 15, where the elevation of the
wellhead is seen for the initial state of the closed well, 4h after
discharge and 9 days after discharge.

The wellhead displacement during discharge of wells HE-13, HE-
46, RN-22 and RN-32 is displayed in Fig. 16. All of the monitored
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Fig. 11. Temperature and pressure profiles used as load cases for well RN-22.
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Fig. 12. Temperature and pressure profiles used as load cases for well RN-32.

wells, except HE-53, started to show upwards displacement of the
wellhead shortly (<1 min) after discharge was initiated. Virtually no
displacement (—0.5 mm) was seen for the wellhead of HE-53 during
its observation period of 3 h. The corresponding wellhead temper-
ature change during discharge is shown in Fig. 17 and Table 5 lists
the wellhead temperature change before and after discharge, the
monitored wellhead displacement and the observation period.
Some of the wells had already built up pressure naturally while
others were full of water beforehand and needed discharge assis-
tance. For wells HE-13, HE-46 and RN-32 air-compressor was used
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Fig. 14. Measured wellhead temperature which is used as transition between the

pre-discharge and discharge load cases in the model at the start of discharge of well
HE-46.

to build-up wellhead pressure before discharge, but wells RN-22
and HE-53 had developed wellhead pressure naturally. The well-
head temperature change, AT,,,, during discharge of the wells that
needed air-pressure assistance was therefore much larger than that
of wells RN-22 and HE-53.

Prior to discharge of HE-53 the wellhead temperature was
310°C and the wellhead displacement was presumably near its
maximum. During the discharge of the well the decrease in pres-
sure resulted in temperature decline of 50°C and the wellhead
lowered by mere 0.5 mmin 3 h, which is barely within the measure-
ment error. Prior to discharge of well RN-22, however, the wellhead
temperature was 66 °C and a gradual wellhead rise of 7.0 mm was
observed in 2.5 h as the temperature rose to 215 °C.

Two separate discharges of well HE-46 were monitored with
two years in between, shown in Fig. 16, labeled (1) and (2) respec-
tively. Pressure had been built up with a small air-compressor for
discharge 1 for about two weeks and the pressure had reached
38bar-g when the well was discharged. In discharge 2, a larger
air-compressor was used and a pressure of 45 bar-g was built up
in just under 2 h. When the well was then opened for discharge

the pressure was released but without initiating flow. A downward
wellhead displacement of 1.5 mm was observed while the well-
head pressure decreased from 45 to Obar-g, see Fig. 18. Pressure
was built up again to 48 bar-g and held for a day before the well
was discharged successfully maintaining, a pressure of 11.8 bar-g.

For well HE-13, the large air-compressor was used to build up
wellhead pressure. The well was closed for 12 days with a pressure
of 46 bar-g prior to discharge.

Well RN-32 had naturally built up wellhead pressure of 4 bar-g
but a discharge trial failed. An air-compressor was used to build-up
wellhead pressure three days prior to a successful discharge. The
wellhead pressure was 34.8 bar-g prior to discharge.

Table 5

Monitored wellhead displacement and corresponding wellhead temperature differ-
ence, AT, before discharge T; and after discharge Tj.
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Fig. 13. Temperature and pressure profiles used as load cases for well HE-53.

Well T;(°C)  T;(°C) ATy (°C)  uwy (mm)  Monitoring period

HE-46(2) 6
HE-46 (1) 8
HE-13 18
RN-22 66
RN-32 3
HE-53 310

197
193
197
215
207
260

191 52.0
185 225
179 40.5
149 7.0 2.5h
204 15.0 9 days
-50 -05 3h

9 days
25h
3 days
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Fig. 15. Photographic series of the wellhead displacement of well HE-46 during discharge.
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Fig. 16. Wellhead displacement data of the monitored wells during discharge.
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Fig. 17. Wellhead temperature during discharge of the monitored wells.

5.2. Numerical results

As an example, the modeled temperature distribution of the
wellhead of well HE-46 and the wellhead displacement 9 days after
discharge is displayed in Figs. 19 and 20, respectively. The results
show how the production casing slides inside the wellhead, but the
phenomenon has not been confirmed even though recent video logs
indicate its existence.

The temperature distribution of the modeled wells and the sur-
rounding rock is calculated according to the assumed load history
and load cases for each well. The modeled wellhead displacement
is compared to the measured wellhead displacement in Figs. 21-25
for wells HE-46 (2), HE-13, RN-22, RN-32 and HE-53 respectively.

By using the default model parameters and material properties,
as outlined in the model description section, the results show simi-
larities to the measured wellhead displacement for the majority of
the wells.

The particular wellhead displacement of HE-46, seen in Fig. 21,
differs from the other wells and the model tracks the 15 min break
poorly. However, the initial sharp displacement is a good match
with a modeling error of 1.0 mm or 4.2%. The modeling error of the
final observed displacement is 8.0 mm or 15.4%.
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Fig. 18. Wellhead displacement from 45 to 0 bar-g during a failed discharge attempt
of well HE-46.
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Fig. 19. Modeled wellhead temperature 9 days after discharge of well HE-46 (180°
symmetry expansion).

The modeled wellhead displacement of HE-13, Fig. 22, shows a
good match to the measured displacement in terms of slope and
final displacement but it overshoots the initial displacement by
5 mm or about 25% and the final displacement observation by 3 mm
or about 7%.

The model overshoots the initial displacement of well RN-22
by 3 mm and then tracks the slope of the displacement with good
accuracy, see Fig. 23.

The FEM results for RN-32, Fig. 24, show a close match but the
change in wellhead displacement with time is underestimated. The
final measured point, 9 days after discharge, is underestimated by
6.9 mm or about 27%.

For well HE-53, where a total wellhead displacement of
—0.5mm was observed, the modeled downward wellhead dis-
placement fluctuates with time and overshoots the downward
displacement by 2.5 mm, see Fig. 25.
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Fig. 20. Modeled wellhead displacement 9 days after discharge of well HE-46 (180°
symmetry expansion).
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Fig. 21. Measured wellhead displacement for well HE-46 and FEM model results
(default model parameters).
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Fig. 22. Measured wellhead displacement for well HE-13 and FEM model results
(default model parameters).
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Fig. 23. Measured wellhead displacement for well RN-22 and FEM model results
(default model parameters).
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Fig. 24. Measured wellhead displacement for well RN-32 and FEM model results
(default model parameters).

6. Discussion

In the wellhead displacement survey, two types of discharges
were observed; (i) discharge from initially cold wells that needed
air-pressure assistance and (ii) discharge from wells that developed
wellhead pressure naturally. Although the data set is small, it is
interesting to compare the wellhead displacement of the different
types of discharges. For the initially cold wells HE-13, HE-46 and
RN-32 the wellhead displacement was very fast in the first minutes
after the wellhead valve was opened and then the displacement
proceeded at a slower pace. For well HE-53, where the wellhead
displacement was presumably at its maximum before discharge,
almost no displacement (<0.5 mm) was observed after discharge.
For well RN-22, which also had developed wellhead pressure nat-
urally but was not as hot as well HE-53 before discharge, the fast
initial displacement as was seen in the initially cold wells was miss-
ing. This indicates that thermal stresses and strains produced in the
initially warm wells are less severe than that of the initially cold
wells because of lower thermal gradient between casings resulting
from a long warm-up period. The abrupt temperature change of
the initially cold wells on the other hand produces a large thermal
gradient between casings in the shallow region of the wells.

HE-53 Data
FEM

Wellhead displacement [mm]

_5 i i
>

107 107" 10
Time [hours]

Fig. 25. FEM model results for well HE-53 (default model parameters).

Two separate discharges of well HE-46 show different wellhead
displacement curves which shows that the wellhead displacement
is not always the same for the same well. The different wellhead
pressures before discharge might be the cause, since the water level
in the well is pushed lower down the well with increasing pressure.
The pre-discharge wellhead pressures were 38 bar-g and 48 bar-g,
for discharges 1 and 2, respectively. The difference might also be
associated with strain aging of the casings, since the casings repeat-
edly reach the yield point for repeated discharge-cooling cycles at
such high temperatures. In discharge 2, the wellhead displacement
was sharp in the beginning, stopped for about 15 min and then pro-
ceeded again. The wellhead displacement of HE-13 was similar to
that of HE-46, since the displacement also came to a halt after the
initial sharp rise, but only for about 3 min in this case. For all of the
wells, except HE-53, the wellhead displacement slows down with
time and shows signs of exponential decay.

The small wellhead displacement of the failed discharge attempt
of HE-46, Fig. 18, suggests that the wellhead displacement of
high temperature wells is primarily governed by temperature
changes rather than wellhead pressure. The displacement due to
the air-pressure release was roughly 2.5% of the final observed
displacement when it was discharged successfully. It should how-
ever be noted that for saturated steam, pressure and temperature
are dependent variables and high wellhead pressure results in
increased wellhead temperature, as can be seen in the case of well
HE-53.

A detailed probabilistic design analysis of the model, where
scatter of the material properties is taken into account, is the next
step in this study. By using a probabilistic design approach, effects
of material properties, e.g. Young's modulus, thermal expansion
coefficient and compressive strength of the concrete, can be deter-
mined. This has already been done with a subset of the material
properties by Kaldal et al. (2013) but is outside the scope of this
paper. As presented by Kaldal et al. (2013), the wellhead displace-
ment changes significantly by changing the shear strength between
the steel and concrete surfaces, and the shear strength is presum-
ably quite irregular down the well. By using the default material
properties of the model and shear strength data of cemented
casings, the modeled wellhead displacement was similar to the
measured wellhead displacement for the majority of the wells.
The largest difference between the model and the measured dis-
placement was 8 mm for well HE-46, where the final observed
displacement 9 days after discharge was 52 mm but the results from
the model showed 44 mm. Small wellhead displacement, as was
seen in HE-53, was difficult to track as the results fluctuated with
time. This is the result of contact element interactions and could
be improved by increasing the element mesh density of the model.
Additionally, the particular 15min break in the displacement of
HE-46 was not tracked well by the model. Greater resolution and
time-series data of the wellbore T-P changes might resolve this,
but no such data is available to the authors knowledge.

7. Summary and conclusions

In this paper, a survey of wellhead displacement of high tem-
perature geothermal wells is presented and used to validate a
nonlinear structural FEM model of a cased well. To understand
the structural response of high temperature wells in greater detail,
wellhead displacement data of 6 discharges from 5 wells, located in
the Hengill and Reykjanes geothermal areas in Iceland, was gath-
ered. A nonlinear structural FEM model of a cased well is presented
and the wellhead displacement data is compared to the modeled
results.

The results show good agreement between the model results
and wellhead displacement measurements of the 5 different wells.
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When modeling small displacements (<1 mm), the results fluctuate
which can be resolved by increasing the element mesh density of
the model.

Although the wellhead displacement was used here to validate
the model, tracking the wellhead displacement is secondary to
stress and strain analysis of the cased well. In future studies the
model can be used to analyze the structural integrity of casings
when subjected to various load cases and load histories. The model
can be used to assist with the design process of geothermal well
casing programs by predicting various things, e.g. wellhead dis-
placement, stress and strain distribution in each casing and the
location of potential joint failures. Additionally, potential load cases
and various materials can be tested with the model.
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ABSTRACT

Large temperature changes are a central design concern in a diverse range of structures. Large and quick wellbore temperature
changes in high temperature geothermal wells, e.g. during discharge and quenching of wells, produce large thermal stresses in the
production casing which can cause casing failures. The wellbore temperature change during discharge causes the wellhead to rise
due to thermal expansion of the casings, since the wells are constructed of several concentric steel casings which are fully cemented
to the top. The structural integrity of such casings is essential for the utilization of high temperature geothermal wells. The casings
in connection to the wellhead form a structural system which involves nonlinear interaction of the contacting surfaces. Therefore,
the structural system is analyzed numerically with the use of the nonlinear finite element method (FEM). Three FEM models are
presented here with the purpose of evaluating the structural integrity of high temperature geothermal well casings. A load history is
used in the analysis, consisting of transient wellbore temperature and pressure changes.

1. INTRODUCTION

Energy of deep geothermal heat sources is extracted from geothermal reservoirs through geothermal wells. The energy rich water
turns to steam as the pressure drops while it flows up the well. High temperature geothermal wells are often constructed of three
concentric casings; a surface casing, an anchor casing and a production casing where the geothermal fluid flows. The casing
components that form the casing are either connected with threaded couplings or welded together. Each casing is cemented
externally all the way to the top for structural support and leakage prevention. The purpose of the casings is multifold; to prevent
collapse of the borehole, to prevent flow from unwanted aquifers, for blow out prevention during drilling and to be a conductor for
the geothermal fluid to flow up the well (Bjornsson et al., 1978). The anchor casing is connected to an expansion spool below the
master valve, allowing for axial displacement for the production casing inside the wellhead when it expands thermally. Numerous
casing load cases arise during different stages of geothermal wells, see Figure 1, the main ones being; casing weight (A),
differential pressure between outer and inner surface of the casing (B) and temperature changes (C and D).

\ Py j psgh | \ pcgh >

pweh | [+AT |
P \
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Figure 1: Main load cases of casings; (A) Self weight, (B) Differential pressure and (C and D) Temperature changes.

In general, casing strength is calculated in terms of axial tensile strength, collapse and burst pressures. The most important design
loads for oil and gas are casing weight, tensile loading and fluid pressure, in geothermal wells however, high temperature loading is
the most severe (Hole, 2008). The temperature change from the cementing temperature conditions to production temperature
conditions is typically around 200-300°C uppermost in the well, but the temperature distribution of the casings during cementing
provides the initial conditions for thermal stress calculations. Thermal expansion generates thermal stress in the casings and
concrete because of the thermal gradient in between the layers. Assuming completely constrained casing, the thermal stress is about
2.5 MPa/°C, which means that a K55 steel casing reaches its yield point (fy, = 379 MPa) at a temperature change of approximately
150°C. Fortunately, K55 casing steel is very ductile and can therefore generate large strain before problems occur. A well
composed of concentric steel casings, concrete and surrounding rock formation forms a structural system which involves a number
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ctural components, e.g. friction between contacting surfaces, tensile and compressive properties of materials and diminished
material properties at elevated temperatures, all of which add nonlinear characteristics to the structure. The load subjected on the
structure, the cased well, consists of transient wellbore pressure and temperature changes. The temperature rise while the well is
initially discharged can lead to stresses reaching the yield strength of the casing which results in formation of plastic strain. The
plastic strain is permanent so if the well cools down again, the plastic strain leads to tensile forces in the casing. These tensile
stresses may be large enough to exceed the coupling joint strength of the casing which could result in casing failure (Maruyama et
al., 1990). Because the well is composed of alternating layers of casings and concrete, the innermost casing, the production casing
is most affected by temperature changes and the external casings are somewhat protected against thermal shocks by the insulation
effect of the concrete in between. When initially cold wells are discharged, the thermal shock leads to sudden thermal expansion of
the production casing which results in the production of large thermal stresses. Same applies when wells need to be quenched with
cooling water, where instead of thermal expansion the cooling results in thermal contraction of the production casing. It’s therefore
favorable for the production casing that all the casings warm up as uniformly and with as little thermal gradient between them as
possible. For that reason slow wellbore temperature changes are required, this can however be difficult to control. Recently,
interests have developed in drilling deeper wells. With deeper wells the casing design becomes more challenging due to increased
casing depths, higher pressures and temperatures and difficult corrosive environment. Therefore, it’s important to know the
structural risks involved.

A high temperature geothermal well consisting of a number of concentric cemented steel casings forms a nonlinear structural
system where nonlinearities are found in material properties, large displacements and connection between contacting surfaces. The
nonlinear finite element method (FEM) is used to construct three models of the cased well providing a tool which can be used to
assess casing failure risks by modeling various possible load scenarios that could lead to casing problems. Such modeling also
provides evaluation prospects of different materials that could be used in future wells. In this paper, three FEM models of high
temperature geothermal well casings and numerical results are presented, some of which have previously been presented.

2. MODELING
2.1 Models

The analysis of the structural system of a high temperature geothermal well can be divided into categories depending on what is to
be studied. A specific failure mode, such as a local casing failure, does not necessarily require a full 3D modeling of the whole well
— a section of the well could be sufficient to explain the failure mode. In this paper, three models are essentially used to analyze
different aspects of the structural system of the high temperature geothermal well; (i) a 2D axisymmetric model of the whole cased
well used to model temperature, displacements, stress and strain distributions down the well, (ii) a 2D axisymmetric model of a
detailed coupling surrounded by concrete used to further model coupling strength and concrete damage near couplings, and (iii) a
3D model of a section of the well which can be used to model non-symmetric phenomena such as collapse. Casing failure modes
and the corresponding FEM models that are used to analyze them are listed in Table 1.

Table 1: Casing failure modes and corresponding FEM model used for analysis.

Failure mode

Description

FEM model

Axial tearing

Tearing at couplings due to high
tensile stress.

(i) 2D axisymmetric model of the whole cased well.
(ii) 2D axisymmetric model of a detailed coupling surrounded by
concrete.

Collapse Collapse due to pressure difference | (iii) 3D model of a section of the well, includes impurities and
between the outer and inner pipe wall. | geometrical defects, i.e. manufacturing tolerance, off center casing,
external defect, eccentricity and ovality of the casing.
Burst Rupture due to high internal pressure | Not specifically modeled.

and low external pressure.

Concrete damage

Concrete braking because of stress
reaching beyond the strength of the
concrete.

(i) 2D axisymmetric model of the whole cased well.
(ii) 2D axisymmetric model of a coupling surrounded by concrete.
(iii) 3D model of a section of the well.

Wellhead
displacement

Wellhead displacement due to
wellhead pressure and wellbore
temperature change.

(i) 2D axisymmetric model of the whole cased well.

Eight-node quadrilateral-shaped elements and six-node triangle-shaped elements are used in the 2D analyses, and 20-node
structural solid elements are used in the 3D analysis. Contact element pairs are used between contacting surfaces with the main
purpose of preventing intersection of surfaces, while still allowing gap formation and frictional displacement between casing and
concrete surfaces. The Coulomb friction model is used to describe friction between contacting surfaces.

The largest of the three models, the (i) 2D axisymmetric model of the whole cased well is used to analyze the structural response of
wells to wellbore temperature and pressure changes, see Figure 2. The geometrical sizes and material properties of a particular well
and a load history of the well can be read into the model with specific input files. Temperature, displacements, stresses and strains
of the casings and concrete at any depth is the output of the model. The structural response of geothermal wells to various load
cases can therefore be analyzed. Wellhead displacement due to wellbore temperature changes and wellhead pressure can also be
modeled with the model and the model shows correlation with measured wellhead displacement. The model is further described by
Kaldal et al. (2013b, 2014).

The (ii) 2D axisymmetric model of a detailed coupling is used to analyze buttress couplings which have been cemented. The
interaction between the casing, coupling and the concrete can therefore be modeled. The structural integrity of the concrete near the
couplings can also be specially focused on, but all three models show signs of concrete damage near the couplings which are
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essentially anchored in the concrete. Results from the two-dimensional model of the whole cased well can be superimposed 02?1
model thus improving the resolution of the results. The geometry of the model can be seen in Figure 4. The boundaries of the mode
are located 3.5 meters up and down from the center of the coupling and 2 meters outwards from the center of the well.

W

Figure 2: Model i, 2D axisymmetric model of the whole cased well used to model temperature, displacements, stress and
strain distributions down the well. W denotes the node location where the wellhead displacement is followed, Kaldal
(2013b, 2014).

Figure 3: Symmetry expansion (180°) of the wellhead of model i.

The (iii) 3D model of a section of the well is used to model collapse of the production casing. A number of collapse analyses with
various geometric imperfections, material impurities and combinations of loads have been modeled by Kaldal (2011, 2013a) where
the model is further described.

2.2 Material properties

All models share the same material properties, the default material properties values are listed in Table 2. Tensile data by
Karlsdottir and Thorbjornsson (2009) is used for the nonlinear stress-strain curves in the model. The strength reduction of casing
steel at elevated temperatures has been tested and presented by Thomas (1967) and Snyder (1979), where reduction of the Young’s
modulus, yield strength and tensile strength are reported, but accurate stress-strain curves are not available. The stress-strain data in
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odel is therefore scaled according to the reduction in Young’s modulus and yield strength with increased temperature. In the
model the maximum compressive strength of concrete is defined as 27.6 MPa and when the maximum compressive strength is
reached the concrete is assumed to yield plastically. The coefficient of friction between steel and concrete is defined as p = 0.45 and
the maximum shear strength between the surfaces is defined as 1,,,x = 0.46MPa, which is the mean value of two separate push-out
shear strength tests of externally cemented casings performed by Gretarsdottir (2007) and Wallevik et al. (2009).

Figure 4: Model ii, 2D axisymmetric model of a detailed coupling.

Figure 5: Model iii, a 3D model of a section of the well which is used to model non-symmetric phenomena such as collapse,

Kaldal (2011).

Table 2: Default values of several material properties used in the FEM models. Other material properties are discussed in

the text.
Item Symbol Unit Steel Concrete | Rock
Young's modulus E GPa 205 2,40 80.0
Poisson's ratio Y - 0.30 0.15 0.31
Density p kg/m3 7850 1600 2650
Thermal conductivity K W/(m°C) | 50 0.81 2.00
Specific heat c kJ/(kg°C) | 0.40 0.88 0.84
Thermal expansion o 1/°C 12¢-6 10e-6 5.4e-6
2.3 Loads

In all cases the models are divided into two parts, a thermal part and a structural part. The thermal analysis precedes the structural
analysis and calculates the transient temperature distribution of the model. The resulting temperature distribution is then used as
temperature load in the structural analysis. In model i, the 2D axisymmetric model of the whole cased well, the load is based on
wellbore temperature and pressure data which is logged down the well. In models ii and iii, the load is uniform inside the well,
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since only a small section of the well is modeled. A load history of the well, i.e. the wellbore temperature and pressure ch: ?3
with time, are important to evaluate the stresses that form during the lifetime of the well. A short load history of a well is listed in
Table 4. The initial stress of the casings is important to evaluate further stress formation. It consists of casing weight and tensile
stress due to cooling of the casing, from cementing conditions to further drilling with cooling fluid. The temperature distribution
when the cement sets provides the initial conditions for calculating subsequent thermal stresses in each casing.

3. RESULTS AND DISCUSSION

3.1 Structural analysis of the whole cased well and detailed coupling

The casing program of the modeled well is listed in Table 3 and the load history of the well is listed in Table 4. The initial condition
of the surrounding rock formation is the assumed virgin temperature before the well is drilled. When installed, the casings are
assumed to hang free from the top before they are cemented and the temperature distribution of the casings during cementing
provides the initial temperature for thermal stress calculations. Therefore, the initial conditions of the casings are (a) tensile stress
due to casing weight and (b) tensile stress due to cooling, from the cementing temperature distribution to the drilling fluid
temperature from further drilling.

Table 3: The casing program of the modeled well.

Casing Outer diameter [inches] | Thickness [mm] Depth [m] Steel grade
Production casing 13 3/8 12.2 700 K55
Anchor casing 18 5/8 11.0 300 K55
Surface casing 22 11.0 75 X56

The load history of the well, listed in Table 4, consists of the initial conditions, cooling of the well due to drilling, temperature
recovery, pre-discharge conditions where air-pressure is used for discharge assistance, discharge (AP and AT), and post-discharge
where constant production conditions are assumed.

Table 4: A load history of the well for model i.

Nr. | Load case Description Twn T@7om | Time period
[°Cl | [°C]

1. | Rock temperature Assumed virgin temperature of rock formation. | 11 210 Initial

2. | Cementing temperature Initial temperature of casings when cemented. 4 107 Initial

3. | Cooling due to drilling Cooling while drilling the total depth of the | 5 10 40 days

well.
4. | Temperature recovery Well warm-up from cold conditions. 11 210 9 months
5. | Pre-discharge (air compressor) | T and P conditions prior to discharge assuming | 5 104 24 hours

discharge assistance by pumping air into the
well to increase wellhead pressure.

6. | Discharge (AP) Wellhead opened and pressure changes sharply. | 5 104 1 minute

7. | Discharge (AT) The wellbore temperature changes gradually. 203 240 12 minutes

8. | Post-discharge Post discharge conditions followed assuming | 203 240 9 days
constant production.

9. | Post-discharge Post discharge conditions further followed. 203 240 3 months

The temperature distribution of the well and the surrounding rock formation at different times in the load history are displayed in
Figure 6. The geometry of the modeled wellhead and the displacement of the wellhead after going through the load history are
displayed in Figure 7 and the modeled wellhead displacement during discharge can be seen in Figure 8. The wellhead displacement
is fast during the first minute and then slows down.

Formation of stress during discharge near the topmost coupling of the production casing and the surrounding concrete is displayed
in Figure 9. As the production casing expands due to thermal expansion, during the increasing wellbore temperature, the wellhead
rises and large stress is produced in the surrounding concrete which warms up slower than the production casing. Similar
production of stress is seen in the detailed coupling model (model ii), see Figure 12.

Axial stress in the production casing at various times in the load history of the well are plotted in Figure 10. The casing is initially
in tension due to the casing weight and cooling from drilling, then when the well is allowed to warm up the tensile stress is
decreased as the casings warm up from the outside. Since the well is warmer deeper in the well, compressive stress builds up as the
casing expands thermally. In this case, air-compressor is assumed to be used to generate enough wellhead pressure in order for the
well to be discharged. This cools down the casing and tensile stress is formed again. Now, the well is discharged and it warms up
suddenly which generates high compressive thermal stress. Due to this, permanent strain is produced in the casing as the stress
reaches above the yield strength of the material. As external casing layers slowly warm-up and the casings expand thermally, the
stress is slowly reduced in the production casing.

When wells need to be quenched with cooling water in order to be shut down, large thermal stresses are produced. In Figure 11 the
model is used to analyze the production of stress in the concrete near a production casing coupling during cooling. Cooling the well
gradually over a longer period of time results in lower stress in the surrounding concrete due to lower thermal gradient between the
casing and the concrete, this is shown in Figure 11.
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234 1

700 m

Figure 6: Temperature distribution of the well and formation at different times (180° symmetry expansion of model i). 1.
Cooling due to drilling, 2. Warm-up, 3. Discharge (12 min), and 4. Discharge (3 months).
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Figure 7: Left: temperature distribution of the wellhead three months after discharge (°C). Right: axial displacement of the
wellhead (meters) after going through the load history that is listed in Table 4 (180° symmetry expansion of the
wellhead of model i).
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Figure 8: Modeled wellhead displacement of the well during discharge (model i).
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Figure 9: Stress (von Mises) in near the topmost coupling of the production casing during discharge (model i, concrete
shown separately on the right), Kaldal 2014.

Initial conditions (cementing+cooling)
Cooling due to drilling
———Warm-up
Pre-discharge
—Discharge (2 minutes)

Discharge (10 hours)
— Discharge (3 months)

-100 -

-200 ~

Depth [m]

-400

-500 ~

-600 ~

7 t
-400 -200 0 200 400
Axial stress [MPa]
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of a well (AT of ~200°C).
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% etailed coupling model is here used to further model concrete damage near the topmost coupling of the production casing in
the well. First, the top end of the production casing is subjected to a displacement of 5 mm. This could be interpreted as tension due
to a sudden cooling of the casing, or if the focus is on the concrete only, a displacement due to sudden thermal expansion in the top
of the well. The displacement leads to tensile stress in the topmost threads of the coupling as is seen in the top left corner in Figure
12.

In this case, the concrete is modeled elastically, thus the stress is linear according to the Young’s modulus, and in each step the
concrete elements are checked if they have exceeded the concrete compressive and tensile strength. The tensile strength is assumed
to be 10% of the compressive strength. The elements that have exceeded the concrete strength are given diminished material
properties to simulate concrete damage. These elements are colored red in the top right corner in Figure 12. Using this approach the
large production casing displacement of 5 mm generates a concrete damage through the full thickness of the concrete.

Although this might be an overestimation, the analysis indicates that concrete damage could be substantial near the topmost
couplings of the production casing where the casing displacement is not as restricted as it is deeper in the well.
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Figure 12: Model ii, analysis of the topmost coupling of the production casing, 5 mm upward displacement of the top end of
the production casing. Top left corner: Stress (von Mises) in the casing and coupling due to displacement of the
production casing. Bottom left corner: stress (von Mises) in concrete due to upwards displacement of the casing. Top
right corner: concrete elements that have exceeded the compressive strength of the concrete are shown in red.
Bottom right corner: displacement due to upwards casing displacement.

In the second analysis, the lower end of the production casing is subjected to the same displacement of 5 mm, see Figure 13. This
could resemble sharp warm-up of the production casing. In this case, almost no stress is generated in the concrete near the top of
the coupling, as the displacement fades out in the coupling. Instead, tensile stress is produced in the concrete near the bottom of the
coupling.

In both these cases, concrete damage occurs near the coupling due to displacement of the production casing. If wells go through
numerous discharge-cooling cycles, the top couplings in the production casing and the surrounding concrete might lose its sealing
capacity and the topmost couplings of the casing might also become a weak point due to decreased support of the surrounding
concrete.

3.2 Collapse analysis of the production casing of the well

Collapse analysis using the 3D model, were water is assumed to be trapped inside the annulus between the production casing and
the external casing, is seen in Figure 14. The modeled casing has an outer diameter of 13 3/8 inch and wall thickness of 12.2 mm.

8



Kaldal et al.

Imperfections, consisting of 80% water and 20% concrete, are randomly distributed in the area where the water is assumed
trapped (Kaldal et al., 2011). In the analysis, the casing collapses at a load consisting of 300°C internal temperature and additional
differential pressure between the outer and inner casing wall of 20 bars.
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Figure 13: Model ii, analysis of the topmost coupling of the production casing, 5 mm upward displacement of the lower end
of the production casing. Top left corner: Stress (von Mises) in the casing and coupling due to displacement of the
production casing. Bottom left corner: stress (von Mises) in concrete due to upwards displacement of the casing. Top
right corner: concrete elements that have exceeded the tensile strength of the concrete are shown in red. Bottom
right corner: displacements due to upwards casing displacement.
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Figure 14: On the left: trapped water in concrete (water elements are cyan colored and production casing is transparent),
Kaldal (2011). On the right: collapse at 300°C and 20 bar additional pressure difference between outer and inner
casing wall (radial displacement in meters, 13 3/8 inch casing outer diameter with wall thickness of 12.2 mm, model
iii), Kaldal (2011).
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% ffect of structural support of concrete and various defects have also been analyzed by Kaldal et al. (2013a). The results show
ow the collapse resistance of the modeled casing increases when support of concrete is added, see Figure 15 and Figure 16. The
collapse shape of the casing that is structurally supported by concrete resembles collapse shapes that have been documented in high
temperature geothermal wells. The results also show that defects and deformations, such as ovality and mode shape perturbation,
results in reduction in collapse resistance of the casing of approximately 30-50% compared to a perfectly round casing, see Kaldal

et al. (2013a).
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Figure 15: Load displacement curves comparing casing collapse with and without concrete support, external defect of 50%
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of the casing thickness is included, Kaldal (2013a).
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Figure 16: Collapse limit point and post-collapse with and without concrete support (cross-section view), Kaldal (2013a).

Figure 17: Collapsed casing with external defect with a depth of 40% of the wall thickness (13 3/8 inch casing outer
diameter with wall thickness of 12.2 mm), Kaldal (2013a). Collapse occurs at external pressure of 13.3 MPa.
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4. CONCLUSION 239
Analysis of a high temperature geothermal well using three FEM models was presented here. The results that were presented show
how the models can be used to structurally evaluate the casing of the well. Possibilities of analysis by using these models are
virtually unlimited in terms of load scenarios and material selection. By using the models, well design and well operations could be
improved by analyzing material selection, casing sizes and various load scenarios during the lifetime of the well.
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Flow testing of IDDP-1, the first Icelandic Deep Drilling Project (IDDP) well drilled in the Krafla geothermal
field in Iceland, demonstrated promising results by producing superheated steam. During an unavoid-
able quenching of the well the innermost casing failed presumably due to tensile stresses caused by
thermal contraction. Since the structural integrity of casings is essential for utilization of high tempera-
ture geothermal wells, the well has not been discharged again. In this paper, the casings of the well are

’;fwardsi' i analyzed structurally with a nonlinear finite-element model. The load history of the casings is followed
St;lélc c"::i‘n;"a ysis from installation and through several thermal cycles, but the well was discharged at least six times before

it was quenched with cold water. The results show that changes in stiffness due to the presence of casing
Wellhead displacement shoes and changes in casing thickness have an effect on the stress and strain formations in neighboring
Finite-element analysis casings. The results illustrate that during each thermal cycle, the wellbore thermal load is more severe for
IDDP the production casing than for the external casings that are somewhat protected, provided that cementing

High temperature geothermal well

in between is adequate.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal expansion and degradation of materials at elevated
temperatures pose challenges to the structural design of high
temperature geothermal wells. With recent increasing interest in
drilling deeper geothermal wells the strength of casings becomes
one of the limiting factors, particularly due to effects caused by ther-
mal expansion and material degradation. The thermal gradient that
develops between multiple casings, e.g. early on in discharges and
during quenching, causes thermal expansion mismatch that gen-
erates large stresses and commonly permanent (plastic) strains in
the steel casings.

The Iceland Deep Drilling Project (IDDP) is a research and
development project that is investigating the possibility of increas-
ing the energy resources in Iceland by obtaining high-enthalpy,
supercritical geothermal fluids (Elders et al., 2014). The first well,
IDDP-1, was drilled at the Krafla geothermal field in the years
2008-2009. It was designed to reach supercritical conditions at
4500 m depth but the drilling came to an end at about 2100 m
depth after drilling into magma (Hélmgeirsson et al., 2010; Palsson
et al., 2014). Despite this, the well was completed and flow test-
ing demonstrated promising results, where the steam output

* Corresponding author.
E-mail address: gunnarsk@hi.is (G.S. Kaldal).

http://dx.doi.org/10.1016/j.geothermics.2016.02.002
0375-6505/© 2016 Elsevier Ltd. All rights reserved.

eventually became superheated. The well became the world’s
hottest producing geothermal well (Elders et al., 2012). It was dis-
charged several times with intermittent shut-in periods and the
operation history shows that the casings have gone through sev-
eral thermal cycles. Due to a critical situation of steam leakage
followed by a master valve malfunction, the well was quenched
by injecting water into it (Ingason et al., 2014). A video log of the
well revealed three failures where the production casing had been
teared apart, at approximate depths of 300 m, 356 m and 505 m. In
all cases the failures developed at joints where the casing had been
pulled down from the coupling, presumably due to tension from
thermal contraction. Fig. 1 illustrates the rupture that occurred at
300 m depth. In all three cases the failures exposed the concrete
and external casing to the geothermal fluid. The direct contact of the
fluid to the anchor casing could cause potential corrosion problems
and the thermal insulation provided by the concrete in between
is lost. During the initial flow testing of the well, the production
casing collapsed at about 620 m depth, near to a suspected inter-
section between two cementing operations, partially blocking the
well (Palsson et al., 2014).

A nonlinear finite-element model that is used to structurally
analyze the cased section of the IDDP-1 well is presented here. The
purpose of the model is to evaluate the structural integrity of the
casings when subjected to temperature and pressure loads as were
seen in the IDDP-1 well. The model has previously been tested
against wellhead displacement data of 5 different wells during
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Table 1

The casing program of IDDP-1 (as built) (Thérhallsson et al., 2014; Palsson et al., 2014).

D [in] t[mm] Length [m] Steel grade Connections

Surface casing 321/2 13.0 87 X56 Welded
Intermediate casing 1 241)2 13.0 254 K55 Welded
Intermediate casing 2 185/8 13.0 785 K55 BTC

Anchor casing (Top 290 m) 135/8 15.9 290 T95 Hydril 563
Anchor casing (290-1949 m) 133/8 131 290-1949 K55 Hydril 563
Production casing 95/8 138 1935 K55 Hydril 563
Slotted liner 95/8 12.0 1935-2072 K55 BTC

discharge and shows good agreement with the data (Kaldal et al.,
2015), but is here adapted for transient stress and strain analysis
of the cased section of the IDDP-1 well. The load history of the well
is analyzed, in particular to assess the structural consequences of
multiple discharges with intermediate shut-in stops and the struc-
tural impact of quenching the well with cold water. Since the load
history is important for analyzing built-up plastic strain in the cas-
ings, the phases of the discharge system, given by Ingason et al.
(2014), are used to reconstruct the load history for the structural
analysis.

2. Modeling of IDDP-1

The casing program of IDDP-1 was designed to withstand
severe pressure and temperature conditions and therefore has
two additional intermediate casings (Palsson et al., 2014). The
casing program of the well as it was built is listed in Table 1.
Hydril/Tenaris 563 connections were selected for the production
casing and anchor casing and the top part of the anchor casing
was designed for creep and rupture conditions (Thérhallsson et al.,
2014). The anchor casing therefore consists of two different thick-
nesses and steel grades. The top 290 m, consist of 15.9 mm thick
API grade T95 steel casing with a diameter of 13 5/8” and the lower
section, below 290 m, consist of 13.1 mm thick API grade K55 steel
casing with a diameter of 13 3/8".

A nonlinear finite-element model (FEM) created in Ansys
was used to model the well. The model, see Fig. 2, is two-
dimensional and axially symmetric around the center of the well.
The stress—strain curves of the steel grades that are implemented
in the model were obtained from tensile tests by Karlsdottir and
Thorbjornsson (2009). The curves are converted to true stress—true
strain before implementation. Strength reduction at elevated tem-
peratures is accounted for by scaling the curves according to
guidelines in the recently updated New Zealand standard NZS
2403:2015, “Code of Practice for Deep Geothermal Wells”. Concrete
strength reduction at elevated temperatures is based on strength

Approx. 04 m

45° 920° 135° 180°

reduction curves of the Young’s modulus and compressive strength
of concrete by Phan and Carino (2000). In the model the steel fol-
lows a kinematic hardening material model where the Bauschinger
effectand buildup of plastic strain during thermal cycles is included.
The Bauschinger effect is commonly observed in metals where
the yield stress in one direction (e.g. in tension) is reduced if the
preceding stress in the reverse direction (e.g. in compression) has
reached beyond yield (Paul et al., 2016). Contact between surfaces
is defined with contact elements and frictional characteristics are
implemented with the Coulomb friction model for all contacting
surfaces. Material properties and friction implementation of the
model are further described by Kaldal et al. (2015).

The casings and concrete are meshed with eight-node
quadrilateral-shaped elements and the rock formation is meshed
with six-node triangle-shaped elements. Since the diameter-to-
depth ratio of the model is very small, a large number of elements is
required because the elements must have proper width-to-length
ratio to function correctly. Modeling the IDDP-1 well is there-
fore computationally demanding because of deep multiple casings
which have multiple contact surfaces and due to the long tran-
sient load history of the well. In order to model the cased section
of the well, some simplifications are made. The anchoring effect of
the couplings in the concrete is included by using bonded contact
at the coupling locations. A simplified wellhead is also included
to account for wellhead pressure and the interaction between the
production casing and the wellhead.

Mesh sensitivity convergence studies were performed with the
mesh configurations that are listed in Table 2. In order to evaluate
the mesh sensitivity, the model needs to be cut from the bottom
due to node limitations of the academic version of Ansys. The con-
vergence study shows similar results for all four meshes, see Fig. 3.
Mesh 1V is therefore chosen for the analysis and the casings are
analyzed down to 1700 m depth. Using coarser mesh would violate
element shape checks. Furthermore, the convergence studies show
that cutting the model from the bottom does not change the results
since load premises are not changed.

95/8in

| |
315°  360°

|
270°

225°

Fig. 1. Coupling rupture at approximately 300 m depth in the IDDP-1 well (by courtesy of Landsvirkjun). Combined image from a video log after the well was quenched. The
failure generated a gap (approximately 0.4 m) and exposed external concrete and the anchor casing.
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Fig. 2. Axisymmetric nonlinear FEM model of the IDDP-1 well. The anchoring effect of the couplings in the concrete is included in the model by using bonded contact at the
coupling locations. A simplified wellhead is also included to account for wellhead pressure and the interaction between the production casing and the wellhead. The casing

depths are shown to the right by scaling the x-axis by 1000 to 1.

Table 2
Considered mesh densities in radial (elements/thickness) and longitudinal (elements/m) directions.
Mesh Model depth (m) Mesh density Production casing Production concrete Anchor casing Anchor concrete
I 390 Radial 4 3 2 2
Longitudinal 15.6 15.6 7.6 7.6
11 774 Radial 2 2 2 2
Longitudinal 7.6 7.6 7.6 7.6
1 1209 Radial 1 2 1 2
Longitudinal 7.6 7.6 4.0 4.0
v 1722 Radial 1 2 1 2
Longitudinal 4.0 4.0 4.0 4.0

The solution process of the model is divided into thermal and
structural parts that use identical meshes and the transient results
from the thermal model are used as load in the structural part of
the model. The boundary conditions at the outer boundary of the
model, located 100 m from the center of the well, are defined as the
formation temperature in the thermal model and displacements are
not allowed in the structural model. Likewise, no displacements are
allowed at the bottom boundary of the formation which is located
20m deeper than the scaled depth of the casing shoe. All casings
are fully fixed to the formation at the casing shoe and are otherwise
restrained by friction. The model represents the global structural
system and local details, e.g. threads of couplings and centralizers,
are excluded. The objective is to analyze the structural response of
the well throughout its load history.

The effect of stress that formed during the installation of the
casingis accounted for with initial stress conditions for each casing.

It consists of (i) tensile stress from a casing hanging free from the
top in a well filled with cold water and (ii) thermal stress from
the temperature difference between the cement as it sets and the
drilling fluid. The cementing temperature of the four innermost
casings displayed in Fig. 4 is based on data from the operator of the
well, the Icelandic power company Landsvirkjun.

The formation temperature is used as an initial condition and
is based on the estimated formation temperature of a neighbor-
ing well KG-25 which is located about 100 m from IDDP-1. Ingason
et al. (2014) presented the operation history data of the wellhead
pressure (P) and temperature (T) of IDDP-1 during five discharge
phases. The operation history, discharge phases and wellhead tem-
peratures are shown in Fig. 5. During phase I, saturated steam was
produced but in the succeeding phases the fluid became super-
heated as shown in Fig. 6. The load cases for each discharge phase
is applied with temperature and pressure inside the well, shown in
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data from Landsvirkjun. This is used as a reference temperature for initial thermal
stress calculations in the model.

Figs. 7-11 . The temperature load inside the well is released dur-
ing shut-in periods, so the well cools radially from the outside, and
the pressure is assumed to reach the same condition as in the initial
warm-up period. During quenching, the cooling of the wellbore and
the inner surface of the production casing is assumed to be almost
instantaneous. The load is thus a step load except for the first 10s
which are ramped.
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Fig. 5. Operation history and maximum wellhead temperature of each discharge
phase of IDDP-1.
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Fig. 6. Enthalpy estimation of the fluid in the different discharge phases of the IDDP-
1 well.

3. Results

Fig. 12 shows the measured and modeled vertical displacement
of the wellhead of IDDP-1 during warm-up, multiple discharge
phases and quenching of the well. The height of the wellhead was
measured (by Landsvirkjun personnel) at the lower flange of the
master valve and the reference point for the measurements was
the drilling platform which is grounded approximately 3.0 m out-
ward from the center of the well. In the graph, the start of each
discharge phase is indicated with green lines.

The evolution of the maximum von Mises strain (total strain)
of the production casing and the anchor casing over the opera-
tion history of the well is displayed in Fig. 13. Cyclic stress and
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strain results for the production casing at 50 m depth is displayed
in Fig. 14 to illustrate the buildup of plastic strain in each thermal
cycle. Following the load history, the first few thermal cycles show
no signs of the tensile stress reaching yield, but in all cases plastic
compressive strain is produced. In the second last shut-in period
of the well, the last period before quenching, plastic tensile strain
is reached while the well slowly cools down. In the last thermal
cycle the well is quenched and high tensile stress is formed. With
further cooling of the well, the tensile stress is reduced because of
contraction of the external casings.

Temperature distribution of the well during thermal recovery,
discharge and quenching are shown in Figs. 15-18 . Fig. 15 shows
the temperature distribution in and around the well after 7 months
of thermal recovery from drilling, Figs. 16 and 17 show the temper-
ature distribution in discharge phase V after 2 days and 11 months
of discharge, respectively, and Fig. 18 shows the distribution after
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8 h of quenching with cooling water. Fig. 17 also represents the hot
well conditions just before quenching. Note that the x-axis, refer-
ring to the horizontal direction, is scaled by 1000 to 1 in order to
see the casings.

Axial stress and strain results for the production casing and the
anchor casing are shown in Figs. 19-30 and a summary of the
results is listed in Table 3. In the figures, the results for the whole
discharge history are shown in gray in the background. As the well
slowly warms up during thermal recovery from drilling compres-
sive axial stress is produced in the casings, see Figs. 19 and 20 for
axial stress and strain distribution in the production casing and
anchor casing, respectively. Figs. 21 and 22 show the distribution
during discharge phase I. During this period the compressive stress
reaches the yield point of the material both in the production cas-
ing and the anchor casing. Small strain is however produced but
it is apparent that strain concentration is seen in both casings at
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the depths of the shoe locations of the outer casings. Similarly, the
thickness change of the anchor casing at 300 m depth is seen in the
strain formation in the production casing. Figs. 23 and 24 show the
axial stress and strain distribution after the fluid has become super-
heated during discharge phase II. The formation of strain continues
as the casings experience high compressive forces in the succee-
ding phases which are shown in Figs. 25 and 26 for discharge phase
IV and Figs. 27 and 28 for discharge phase V. Finally, the stress
and strain results for the quenching of the well are displayed in

Production casing
""" Anchor casing
— Discharge

Fig. 13. Maximum von Mises strain (total strain) in the two innermost casings
through the load history of the well. The green lines indicate the start of each dis-
charge phase. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of the article.)
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Fig. 14. Cyclic stress-strain and temperature of the production casing at 50 m depth.
The load history is followed through warm-up and multiple thermal cycles.

Figs. 29 and 30 and the joint yield strength and tensile strength of
the connections are plotted additionally for reference.

4. Discussion

The modeled wellhead displacement during the operation his-
tory of IDDP-1, shown in Fig. 12, shows similar trend as the
measured elevation of the wellhead. The displacement is however
sensitive to initial conditions, material properties, frictional proper-
ties and loads, and is therefore difficult to model with precision. The
measured wellhead displacement is not recovered to its initial posi-
tion during shut-ins, but interestingly the downward displacement
during quenching of the well goes below the initial position of the
wellhead suggesting large tensile forces due to thermal contraction
of the casings.

After thermal recovery from drilling, see Fig. 15, the transient
temperature distribution shows that after 7 months of warm-up,
the radial thermal gradient through the casing and concrete layers
is very small, with little temperature difference between casings in
shallow regions of the well. Fig. 16 shows the modeled temperature
distribution during discharge (phase V) where the radial thermal
gradient is high after 2 days of discharge with approximately 100°C
temperature difference between the two innermost casings. The
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Fig. 15. Modeled temperature distribution (°C) of the well after 7 months of warm-
up after drilling. The x-axis is scaled by 1000 to 1.
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IR00NEEm

1700 m

1 Production casing

Fig. 16. Modeled temperature distribution (°C) of the well after 2 days of discharge
in phase V. The x-axis is scaled by 1000 to 1.

thermal gradient is in contrast much lower after 11 months dis-
charge asis showninFig. 17. Thisillustrates the demanding thermal
load the production casing is subjected to during discharge. Simi-
larly, the production casing sustains an abrupt temperature change
during quenching of the well, as can be seen in Fig. 18. After 8h
of quenching, large thermal gradients still exist between casings
which illustrates that for large axial strains to be less severe the
quenching must be performed as slowly as possible.

The maximum von Mises strain (total strain) for the production
casing and the anchor casing over the operation history of the well,

Surface casing

Intermediate casing 1

termediate casing 2 (shoe)

1700 m

=

Fig. 17. Modeled temperature distribution (°C) of the well after 11 months of dis-
charge in phase V. The x-axis is scaled by 1000 to 1.

3m »

Surface casing

Intermediate casing 1

Intermediate casing 2 (shoe)

1700 m

Fig. 18. Modeled temperature distribution (°C) of the well after 8 h of quenching
with cold water. The x-axis is scaled by 1000 to 1.

see Fig. 13, illustrates how the anchor casing is protected against
abrupt thermal loads but the production casing is not, assuming
that the concrete in between casings is in good condition and
perfectly cemented. In each thermal cycle the production casing
reaches yield and forms plastic strain. Although plastic strain is
also formed in the anchor casing, the effect is less pronounced due
to the thermal insulation of the concrete in between casings.

The effect of neighboring casings on strain formation is clearly
seen throughout the load history of the well, see Figs. 19-30. This
materializes as sudden stress and strain changes with depth and
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Fig. 21. Axial stress and total axial strain of the production casing in discharge phase
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Table 3
Summary of structural results. Maximum wellhead pressure (P, ) and temperature (T,,,), maximum displacement of the wellhead (d,,;) and maximum von Mises stress and

strain results for the production casing and anchor casing during different phases of the load history.

Production casing Anchor casing
Max Py, (bar) Max Ty (°C) Max d,y;, (mm) Max von Mises Max von Mises Max von Mises Max von Mises
model (data) stress [MPa] strain stress strain
Thermal recovery 0 30 150(-) 382 0.0133 449 0.0022
Phase I 120 325 216(368) 378 0.0135 665 0.0078
Phase Il 20 380 272(-) 382 0.0145 660 0.0107
Phase Illa 105 350 246(-) 359 0.0144 542 0.0100
Phase IlIb 70 390 262(-) 374 0.0154 633 0.0105
Phase IV 112 410 265(-) 403 0.0163 636 0.0106
Phase V 145 450 345(440) 414 0.0175 627 0.0128

Quenching 0 ~10 63(-17) 384 0.0156 607 0.0127
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is clearly observed at the locations of casing shoes of external cas-
ings. This is for example seen in Fig. 21 where the shoe of one of the
intermediate casing at 785 m results in stress change in the pro-
duction casing at that depth. Change in axial stress with depth is
also directly connected to the temperature distribution down the
well. This is clearly observed during the warm-up of the well, see
Fig. 19, where the thermal load results in a thermal compressive
stress which resembles the temperature load displayed in Fig. 7.
The strain concentration in the production casing at a depth near
290 m, is however, caused by the thickness change in the external
anchor casing at that depth. This is seen as a sharp notch in the
plotted strain throughout the load history of the well. The stress
and strain distribution in each casing is therefore governed by sev-
eral factors, e.g. material properties, thickness changes, locations

8 hours of discarge
— 20 hours of discharge
— 3 days of discharge
— Well closed for 1 day
—— Well closed for 51 days

Fig.25. Axial stress and total axial strain of the production casing in discharge phase
v.
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Fig. 26. Axial stress and total axial strain of the anchor casing in discharge phase [V.

of casing shoes of neighboring casings, surface friction and change
in temperature/pressure distribution down the well with time.

During discharge, see Fig. 27, the results show that the wellbore
temperature change abruptly generates compressive stress in the
production casing which is reduced in the shallow regions as the
external casings heat up. Initially, the reverse is seen in the anchor
casing, see Fig. 28, where the stress increases slowly before reach-
ing a maximum and is then relaxed similarly when the external
casings warm up. This also indicates that the casings external to
the production casing are somewhat protected against abrupt tem-
perature changes inside the wellbore, provided that cementing in
between is adequate.

During quenching, see Fig. 29, the production casing which is
initially in compression generates high tensile stresses. Modeling
the quenching procedure in greater detail is a subject for further
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analysis. A connection to a transient wellbore flow model might
also be an interesting subject for further study. In the analysis,
indications of the coupling ruptures that were found at depths of
356m and 505 m are inconclusive and appear to be at arbitrary
locations. There is however, an indication of the failure at 300 m,
whichis likely caused by a change in thickness of the external casing
near that depth. Similar to the compressive stress that forms during
discharges, during quenching the tensile stress in the production
casing forms rapidly and the stress in the anchor casing changes
slowly from compressive to tensile as the casing cools down, see
Fig. 30. The tensile stresses that are produced in the anchor casing
stay below the joint tensile strength of the couplings. At the transi-
tion between casing material and thickness at depth at 290 m, the
tensile stress reaches the joint yield strength of the lower casing
section but elsewhere the stress is lower.

Further studies might include modeling cement imperfections
and analyzing the effect of production casing failures on outer

Fig.29. Quenching. Axial stress and total axial strain of the production casing during
quenching of the well.
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Fig. 30. Quenching. Axial stress and total axial strain of the anchor casing during
quenching of the well.

casings. But failures of the production casing, e.g. coupling ruptures
and collapses, would lead to increased local stresses in the outer
casings. The cyclic stress and strain results show how the material
behaves during the load history of the well. The predicted strain
in the production casing that forms during quenching is however
below the rupture strain of a new K55 material. Strength reduction
due to factors such as corrosion, stress relaxation and creep, which
all might have a great effect in this case are however difficult to
estimate. When the well was shut-in, condensate was formed in
the well. Since the shut-in periods were lasting for several weeks
up to 4 months, corrosion effects such as pitting and hydrogen
embrittlement might have weakened the material. Compressive
stress relaxation as seen in cyclic thermal load tests by Maruyama
etal.(1990) could result in higher subsequent tensile stresses than
the model predicts and creep might also have greater effect on the
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rupture strength of the casing than previously expected. These con-
siderations are a subject for future studies. The results from this
analysis forms a basis for further studies of casing design for deep
geothermal wells.

5. Summary and conclusions

In this paper, a nonlinear finite-element model of IDDP-1 is pre-
sented and the results are compared to wellhead displacement
data. The model results show that location of casing shoes and
casing thickness changes affect stress and strain formations in
neighboring casings and could cause local problems due to cyclic
strain hardening and production of large local strains. The results
illustrate that the production casing is subjected to abrupt temper-
ature changes during the operation history and the anchor casing is
protected, provided that the thermal insulation of the concrete in
between is sound. The results also illustrate that after 8 h of quench-
ing large thermal gradients still exist between casings and that
slower cooling would be ideal if possible in these critical situations.
The results demonstrate how the model can be used for transient
load history analysis. A simpler load history can however be used to
reveal structural risks during the design phase of casing programs
for wells. This could involve material selection, aiding with cas-
ing program design and well operation planning, e.g. determining
an adequate warm-up periods before discharges and developing a
quenching scenario with the objective of minimizing stresses and
strains in the casings.
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Structural Analysis of the Casings in Deep Geothermal Wells
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Abstract

With recent increasing interest in drilling deep geothermal wells in order to produce from higher
enthalpy heat sources than before, the strength of the casing becomes one of the most limiting
factors. Casing failures include collapse or partial collapse (bulges) and tensile ruptures if wells
are allowed to cool down or are killed by pumping water into them. Structural impact of large
temperature and pressure changes remains one of the challenges to be solved for utilization of
deep geothermal wells. Thermal expansion of materials, degradation of structural properties at
elevated temperatures, corrosion and cyclic loads are of particular concern as well as
determining how many thermal cycles casings can go through before failure occurs. A nonlinear
structural finite-element model of the cased section of high temperature geothermal well is
presented and discussed here. The purpose of the model is to evaluate the structural integrity of
casings when subjected to large temperature and pressure loads. The model can be used further
to evaluate well designs and material selections for deep geothermal wells.

Keywords: Casings, structural analysis, finite-element method, thermal loads, deep drilling
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Introduction

This paper provides an overview of
structural modeling of casings in high
temperature geothermal wells. Structural
integrity of high temperature geothermal
wells is important for utilization and safety
concerns on the surface. During each
drilling phase, steel casings are run in hole
and cemented externally, until the last phase
where the production section of the well is
drilled. This is done to control wells during % Temperature —
drilling, seal off unwanted feed-zones and L §
S

Axial compression —

the last casing, the production casing, acts
as a pipe allowing the geothermal fluid
(water and/or steam) to flow to the surface.
In most cases, a perforated liner is placed in
the production section to avoid formation
collapse. Above the liner is the cased
section of the well, which is a layered -
structure of multiple cemented casings. The

structure is initially relatively cold, i.e. : S . .

. 11 . strain that forms in axial compression can result in
during drllllng %md cemeptlng, comp:.ired to axial tension during cooling. Adopted from a
the hot conditions during production of diagram by (Rahman & Chilingarian, 1995).

«— Axial tension

Y Yield point

Figure 1. Concept diagram describing how plastic
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(two-phase or pure) steam. As cement sets
and hardens after cementing jobs for each
casing, its temperature distribution down
the well provides initial conditions for
subsequent thermal stresses that form as the
well warms up. In high-temperature
geothermal wells (T>200°C at 1000 m
depth) stresses which generate due to
thermal expansion driven by the
temperature change between an initially
cold well to a producing well, typically
reach beyond the yield point of the
commonly used casing material, API
(American Petroleum Institute) grade K55.
As stresses go past the yield strength, plastic
permanent strains are produced in the
casings. Depending on the magnitude of
these plastic strains, some wells, specially
the hotter ones, cannot be cooled down
again without causing casing failure. In
such cases, plastic strains that build up in
axial compression (hot well) lead to axial
tensile load when the casing cools down
again. Figure 1 illustrates this phenomenon,
where plastic strains created in compression
lead to high tensile stresses when the casing
cools down again. Casing failure of tensile
rupture of the casing normally occurs in the
casing near couplings (first thread groove)
or in the threads themselves. In casing
design, guidelines acknowledge that axial
tension leads to reduced collapse resistance
of casings. However, as standards are
developed for the oil & gas industry where
casings are anchored at the casing shoe with
cement and not cemented over their full
length as in geothermal wells, failures as a
result axial compressive loads are assumed
to be on the form of Euler buckling (or
helical buckling) where the casing string
buckles laterally. Casings in geothermal
wells have no means to displace laterally
due to the cement support, instead high
compressive stresses and strains are formed
which can as with tension reduce their
collapse resistance.

The Finite-Element Method (FEM) models
shown in this paper have been created to
evaluate stresses and strains in casings due

DOI: 10.3384/ecp17138391

to pressure and temperature changes in
wells.

Load history of casings

Casings are cold-drawn seamless steel
pipes. Thickness tolerance of such pipes is -
12.5% (API, 2005), meaning that for a 9
5/8” 47 1b/ft casing that is specified with
thickness of 12 mm, it may be 12 mm on
one side and 10.5 mm on the other. Heat
treatments are used to relieve residual
stresses present in the material due to non-
uniform cooling during manufacturing.
Residual stresses and non-circular geometry
(ovality, eccentricity and wall thickness
irregularity) can significantly lower the
collapse resistance of casings. Material
properties, i.e. yield strength and shape of
the stress-strain curve, and residual stresses
also affect collapse resistance (ISO/TR,
2007).

While casings are run-in-hole, the highest
axial tensile stress occurs at the topmost
coupling, which essentially holds up the
whole casing string before it is cemented.
Buoyancy and friction between the casing,
centralizers and the wellbore lower the axial
force on top.

Thermal stresses form in casings as wells
warm up, which magnitudes are controlled
by the temperature difference AT at each
location as well as the (time dependent)
thermal gradient through the layered casing
structure. The initial conditions are different
between wells, and depend on formation
temperature, feed zones that are closed off
with cement, cooling from drilling and the
time the well has been cooled. In many
cases, depending on feed zones, drilling
time, etc., wells heat up faster downhole as
the formation temperature increases with
depth. In cases where the cement sets at
such temperature conditions, the highest AT
(from cementing conditions to production)
is uppermost in the well. This does however
not mean that the highest compressive
stresses form at the wellhead. At the surface
there is freedom for displacement, both
because of the design of the wellhead, if it
includes an expansion spool, and due to less
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restricted displacement as the surface can
displace upwards. Wellheads are known to
move upwards as wells warm-up,
sometimes called wellhead growth. This is
in some cases very evident during discharge
initiation, where the temperature uppermost
in the well changes quickly, whereas deeper
in the well lower AT is seen. When drilling
has been problematic and the wellbore has
been cooled for a long period, AT can be
similar at the wellhead and deeper in the
well, as the cement sets before the well
heats up. The positive side of higher setting
temperatures is that less stresses form
during production. The down side is that if
cement sets at too high temperature, cooling
due to further drilling can de-bond the
casing from the cement as it contracts,
creating a micro-annulus.

As discussed in the introduction,
compressive stresses form in the casing as
the well warms up and plastic strains form
in the most common material used, API
grade K55. Using the next higher grade L80
postpones the problem and plastic strains
will occur as well. Using the specified
minimum yield strength of K55 and L8O,
379 MPa and 552 MPa (API, 2005), onset
of plastic strains is at around 150°C and
200°C, for K55 and L80, respectively
(using a thermal expansion coefficient of
13um/(m°C) and Young’s modulus of 205
GPa). This however does not tell the whole
story as stress-strain characteristics can
influence collapse resistance. For a work
hardening material such as K55 it has been
shown that the API collapse equation
applies only for small axial tensile stresses
and that the measured collapse resistance is
significantly higher than those predicted by
the API equation (Maruyama, et al., 1990).
They show that due to the work hardening
characteristics of grade K55 casing, it may
be superior to higher-grade casing for
thermal well service where high residual
axial tensile stresses may be present.

Field study and FEM analysis

In this study, wellhead displacement
monitoring during discharge initiation is

DOI: 10.3384/ecp17138391

259

used to validate a FEM model of the cased
section of a high-temperature geothermal
well (Kaldal, et al., 2015). Figure 2 shows
temperature and elevation measurement
locations on the wellhead of well HE-46,
located in  Sleggjubeinsdalur  near
Hellisheidi power plant.

Figure 2. Locations for temperature measurements
during discharge initiation of well HE-46, located in
Sleggjubeinsdalur near Hellisheidi power plant.
Location [2] shows where elevation measurements
were taken for the wellhead.

The ANSYS Parametric Design Language
(APDL) is used to construct the models.
Included are temperature dependent
material properties, including stress-strain
curves for casing materials, for determining
formation of plastic strain, and thermal
expansion coefficients. Other material
properties include; Young’s modulus,
Poisson’s ratio, density, thermal
conductivity, specific heat and compressive
strength of cement. Kinematic hardening
material model is used for the casings and
the compressive strength of cement is
included by using a bi-linear material
model.

Boundary conditions of the model are at the
rock formation outer boundary and bottom
where displacements are constrained. Initial
conditions of the rock formation is the
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estimated formation temperature and
cementing temperature distribution for all
casings, which need to be defined for each
specific case. Transient thermal analyses
include load steps such as cooling due to
drilling, thermal recovery where wells heat-
up over a period of weeks to months,
discharge initiation, discharge and well
shut-in. Initial conditions for the structural
modeling are the formation overburden
pressure and residual axial load in casings
from casing run-in. Transient thermal
results are then used as temperature load in
the structural analysis, where
displacements, stresses and strains (elastic
and permanent plastic strain) are analyzed.

Results

Wellhead displacement

Wellhead measurements, i.e. temperature,
pressure and elevation changes during
discharge initiation were taken for several
wells including the case studied here, well
HE-46.

Temperature changes, shown in Figure 3,
are similar for two separate discharges,
conducted in years 2011 and 2013.
Wellhead pressure, measured for the 2011
discharge, is initially 37.5 bar-g and after
discharge initiation (at 13:16 o’clock on
graph), it lowers and stabilizes at 18 bar-g.
In 2013 the wellhead pressure was initially
48 bar and after discharge initiation it
stabilized at 16 bar-g.
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Figure 3. Temperature during discharge initiation of
well HE-46, measurement locations are shown in
Figure 2 (Kaldal, et al., 2012) (Kaldal, et al., 2015).

DOI: 10.3384/ecp17138391

)
S

Pressure [bar-g]

13:05 13:09 13:13 13:16 1320 13:24 1327 13:31 1335 13:39
Time (hh:mm)
—8— Campbell data (OR) ~ —*—Pressure gage

Figure 4. Wellhead pressure changes during
discharge initiation (well opened at time 13:16).
Campbell data (taken at 1 min intervals) shows
initial pressure of 37.5 bar-g. Note that lowering in
pressure in Campell data before discharge is due to
closing of control valve and both pressure gauges are
behind it (Kaldal, et al., 2012) (Kaldal, et al.,
2015).
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Figure 5. Measured displacement of the wellhead of
two separate discharges of well HE-46 in years 2011
and 2013 (Kaldal, et al., 2012) (Kaldal, et al.,
2015).

Measured wellhead displacements for the
two separate discharges, shown in Figure 5,
differ by 15 mm after 2 h of discharge. In
2013, wellhead displacement measured 37
mm and in 2011, it was 22 mm, in both
cases after 2 h of discharge.
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FEM results

During installation while casings are run in
hole, wells are kept full of water or mud and
the casing is filled with water. Depending
on the situation, a buoyancy force and
friction counteracts the casing’s self weight.
The largest tensile forces should occur at the
top of the casing that hangs in the well. A
buttress-threaded connection (BTC) is
modeled. Assuming no buoyancy or
friction, i.e. casing hanging in air, stresses
forms in the threads of the connections as is
shown in Figure 6.
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Figure 6. Von Mises stress (Pa) of buttress threaded
connection (BTC) during installation assuming 700
m (top) and 5000 m (bottom) casing hanging from
the connection in free in air. For API K55 grade
casings the minimum yield strength is 379 MPa
(API, 2005).

Two cases are taken, conventional 700 m

casing and extreme 5000 m casing.
assuming 9 5/8”47 1b/ft casing. In the
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former, the stresses are below yield of any
API casing grade, but for the latter, stresses
above yield occur in the area of the casing
where the first threads are located. This
implies a risk zone of casing failure due to
axial tension.
After drilling, and warm-up, wells are flow
tested. A simulation of flow test of well
HE-46 results in wellhead displacement of
30 mm after 2 hours of discharge, whereas
the measured value was at 36 mm (Figure
7). The modeled wellhead displacement,
shown in Figure 8, shows that the
production casing slides slightly inside the
wellhead due to thermal expansion.
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Figure 7. Measured displacement during discharge
(2013 data) and modeled displacement in green
(Kaldal, et al., 2015).
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Figure 8. Modeled wellhead displacement due to
thermal expansion of casings, also shown in Figure
7 (Kaldal, et al., 2015).
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Figure 9. Modeling of casings during discharge
shows high compressive stresses forming near
couplings, which anchor the casing in the cement
(Kaldal, et al., 2015).

Deeper in the well, where the casings are
more constrained than at the surface,

discharge initiation results in compressive
stresses forming due to thermal expansion
as the well heats up. Figure 9 shows
compressive stresses in the production
casing near a simplified connection,
illustrating how the casing is anchored at the
couplings in the cement. In this case, the
treads are not modeled and therefore lower
stresses are seen in the coupling.

Modeling shows high stresses forming in
the cement at these anchoring locations as
the production expands. Figure 10 shows
modeling of stresses near the uppermost
coupling of the production casing as it
displaces upwards. Stresses above the
compressive strength (27 MPa) of the
cement occurs at the top of the coupling.
After the compressive strength is reached,
the cement deforms according to its defined
bi-linear material curve, explaining higher
stresses.
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Figure 10. As wells heat up, high stresses develop in cement near the couplings that anchor the thermally
expanding production casing in the cement (casings and simplified coupling shown in dark gray and

external concrete shown in gray).
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Modeling of casing collapse due to annular
pressure, i.e. due to expansion of water in
cement/annulus during discharge, shows
that cement support has vital effect on the
casing’s collapse form (Figure 11). Casings
without  cement  support  collapse
completely, but with the support the
collapse is less severe. A small defect is
included on the external surface of the
casing for introducing instability to the
model to allow buckling. Figure 12 shows
that the collapse resistance of the un-
cemented casing is much less than that of
the cemented casing.

w Without concrete
&\
‘)

/

With concrete \‘

Post-collapse

Figure 11. Collapse form of casing with and without
external cement structural support (Kaldal, et al.,
2013).
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Figure 12. Modeled collapse of casings shows

increased collapse resistance with cement structural

support (Kaldal, et al., 2013).
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Discussion

Measurements of wellhead displacement
during discharge initiation was used to
validate results from a FEM model of the
cased section of a high-temperature
geothermal well.  Although temperature
monitoring of well HE-46 showed similar
values, two separate discharges (two years
apart) show different outcome in wellhead
displacement. The cause of this unclear, but
many factors could influence the
displacement, e.g. T and P wellbore
conditions can be different although
wellhead conditions are similar, constraints
of the wellhead might be different as two
years are between measurements, the
wellhead might be less constrained in the
latter case due to cement cracking near the
top.

In FEM analysis of  threaded
casing/coupling connection, the highest
stresses occur in the area of the casing
where the first threads are located. Casing
failures of tensile ruptures have been seen at
this location in wells that were quenched by
pumping cold water into them. In another
case, in well IDDP-1 in Iceland, where
premium connections were used, the
threads of the casing were swept off due to
high shear force in the threads.

The models show that the casings are
anchored at the couplings that stand out into
the cement. Therefore, higher stresses are
seen in the cement nearby couplings.
According to the FEM results, collapse
resistance of casings increases when cement
is present in the annulus, and the collapse
form is less severe than for non-cemented
casings, that completely collapse together.

Conclusions

Nonlinear FEM structural modeling of
casings in high-temperature geothermal
wells was presented. As most wells
experience temperature change that leads to
thermal stresses above the yield strength of
casing materials commonly used, API
grades K55, L80 and T95, plasticity needs
to be considered. This is addressed by

Proceedings of the 58th SIMS 397

September 25th - 27th, Reykjavik, Iceland



264

defining nonlinear material stress-strain
curves, and using multilinear kinematic
hardening material model. Modeling such
as this requires knowledge about the
structure, its initial conditions and loads in
the form of temperature and pressure
changes. Load history 1is therefore
important, to fully understand the
structure’s response to loads. For drilling
deeper wells to challenging pressures and
temperatures and assuring a lasting well, the
structural design needs to be carefully
considered to include all aspects of the
design. Including material challenges of
strength reduction at elevated temperatures,
thermal  expansion, corrosion  and
embrittlement, wellhead pressure class.
Modeling such as shown here provides an
excellent tool for evaluating stresses and
strains for future well designs.
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