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ABSTRACT When exploring big amounts of data without a clear target, providing an interactive experience
becomes really difficult, since this tentative inspection usually defeats any early decision on data structures
or indexing strategies. This is also true in the physics domain, specifically in high-energy physics, where
the huge volume of data generated by the detectors are normally explored via C++ code using batch
processing, which introduces a considerable latency. An interactive tool, when integrated into the existing
data management systems, can add a great value to the usability of these platforms. Here, we intend to
review the current state-of-the-art of interactive data exploration, aiming at satisfying three requirements:
access to raw data files, stored in a distributed environment, and with a reasonably low latency. This paper
follows the guidelines for systematic mapping studies, which is well suited for gathering and classifying
available studies. We summarize the results after classifying the 242 papers that passed our inclusion criteria.
While there are many proposed solutions that tackle the problem in different manners, there is little evidence
available about their implementation in practice. Almost all of the solutions found by this paper cover a
subset of our requirements, with only one partially satisfying the three. The solutions for data exploration
abound. It is an active research area and, considering the continuous growth of data volume and variety,
is only to become harder. There is a niche for research on a solution that covers our requirements, and the
required building blocks are there.

INDEX TERMS Big data applications, data analysis, data engineering, data exploration, database systems,

interactive systems, systematic mapping study.

I. INTRODUCTION

Extracting knowledge from raw data is a well-known problem
for many and very diverse domains—from finance to science.
This is known as Knowledge Discovery in Databases (KDD),
because ‘“‘knowledge” is the final product of the process [1],
[2]. Data Mining is often used as a synonym, although some
authors consider it to be part of the KDD process itself rather
than completely equivalent [2], [3]. We tend to agree more
with the second view but this does not affect the purpose,
scope or results of this study.

To help understand the scope of the current study, we refer
to the CRISP-DM (CRoss Industry Standard Process for Data
Mining) [4], which proposes a process model for data mining
projects. The phases of this process can be seen in figure 1.

The scope of Interactive Data Exploration (IDE) tools lies
on the data understanding phase. This has human intuition

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

as a core part of the process, where the user tentatively
explores the data, iterating and reformulating the queries as
their knowledge and insight changes with each iteration. The
target of this stage is to generate new hypotheses and not to
validate them [5]. The validation is left for the Evaluation
phase.

A system that is able to be used in such a way needs to
be lightweight, adaptive and have reasonably low response
times—([6] considers two seconds to be the upper limit for
the continuity of thoughts—, helping and assisting, without
getting in the way of the person involved in the loop.

These restrictions, combined with the “data deluge”,
impact almost all scientific research domains and they pose
a hard and interesting problem. On the one hand, we need
responsive and efficient systems for querying huge volumes
of data. On the other hand, since the access patterns are
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FIGURE 1. The CRISP-DM process model, from [4].

not only unknown beforehand but also variable with time,
traditional approaches that enforce an early decision on data
structure, storage and indexing are unsuitable [7].

This problem can be tackled at different levels—from the
physical layout on disk, to the interface interacting with the
user. In 2015, Idreos et al. [8] classified several of these solu-
tions depending on which approach they take on the issue.
This paper attracted our attention to this research area due to
the potential applications in High Energy Physics (HEP) and,
in particular, for the processing of ROOT files containing data
from the Large Hadron Collider (LHC) at CERN.

This possibility is, in fact, mentioned as a motivating exam-
ple of some of the papers to which we initially had access
[9]-[11], although, to the best of our knowledge, they have
not been implemented in practice.

For such a system to be practical, it also has to be able to
run on multiple ROOT files that are distributed across several
machines—located in two separate sites—at the CERN data
center.

In summary, we need to satisfy three main requirements:

1) Interactive response times, as already discussed

2) Access to raw data files. Pre-loading data in main

memory is not an option due to the data volume and
because we aim for a system that extends and does not
replace the existing data management solution

3) Distributed, since files are stored and replicated by an

already existing distributed storage.

Ideally, the granularity of the access has to be higher than
“file level” because scientists normally worry about datasets
that are defined by the data origin, year, conditions, etc...,
and one dataset may be distributed across several files [12].

To follow up on this idea and to identify if there is any
existing solution, we have done a systematic mapping study
to get a rigorous picture of the state of the art, how it has
changed since Idreos’ tutorial, and to determine the maturity
of the area. Even thought our motivation example emerges
from the HEP domain, this study is focused on interactive data
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exploration in general, and can be of interest for researchers
in other scientific domains.

The rest of this document is structured as follows. Sub-
sectionl-A is an overview of the different approaches that
attack each of our three requirements for interactive data
exploration. Section II describes how this study has been
done and Section III summarizes the findings. Section IV
includes a discussion of the results, including, for complete-
ness and fairness, threats to the validity of this secondary
study. Finally, Section VI lists the conclusions.

A. OVERVIEW
While in this study we do a systematic mapping study of the
interactive data exploration research area in general, we were
initially motivated by the three constrains for our use case:
exploration of raw data files, located on a distributed storage,
and with a latency low enough as to enable interactive use.
Here, we summarize some of the approaches we have
found used to cover each one of our requirements.

1) RAW DATA FILES

We have to provide access to data stored in the form of
ROOT files, that has a volume of several Petabytes, and
which keeps growing each year [13]. While these files can
be stored on tape or disk, we focus only on those avail-
able on disk, as the latency of tape storage is way beyond
the interactivity requirements. Depending on the experi-
ment, the number of files stored on disk can range between
260M to 500M [14], normally on the order of one to ten
GiB [15]. This basically discards a scenario where the data
is pre-loaded in main memory because it would take a con-
siderable amount of time and, at the very least, duplicate the
amount of required storage. Furthermore, the fact that the best
schema design, if any, can be unknown at first makes this
more difficult because it becomes completely impractical to
re-design and re-load the data several times as the exploration
progresses.

For these reasons, we are interested in engines that allow
in situ queries, as proposed by [16]. In this paper, Idreos et al.
lead a line of research that is focused on systems that are
capable of executing queries over flat raw files without any
preprocessing, adapting their internal working dynamically to
the workflow. More specifically, they prototype an adaptive
loading system that reads data when needed and suggests
possible directions for further research on adaptive systems:
storage, execution, and auto-tuning.

Following on the vision of that paper, [17] presents the
“NoDB” paradigm, which provides access to raw data files
avoiding the latency and overhead introduced by pre-loading,
and which are comparable in performance with traditional
Database Management Systems (DBMS). Since there is no
pre-loading, data has to be read as needed—adaptive loading.
The system also needs to generate indexes dynamically to
remain performant.

Going one step further, [9] introduces RAW, which is a
query engine capable of querying not only CSV files but also
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more complex files as ROOT files. This engine is based on
code-generation and it uses plug-ins for specific file formats.
Similarly, Proteus [10] also uses code generation to support
heterogeneous data formats, traversing the query plan only
once to generate the code to be compiled and executed on the
fly.

With SCANRAW [18], improvements for this kind of solu-
tion are proposed by parallelizing parts of the processing
and loading the data into a database system to improve the
execution time of following queries.

Both Alpine [19] and Slalom [20] support queries over raw
data files. They improve the adaptive indexing of raw files by
also creating adaptive partitioning over the original file and
deciding the most suitable indexing strategy to use separately
for each partition.

In summary, for querying raw data files in a binary format,
systems need to provide a plug-in mechanism that extends
the original implementation with different data formats. Code
generation can be used to remove the overhead caused by
indirections. Given that the original files are not usually
indexed, these systems also need to create assisting data
structures on-the-fly to avoid the initial load time that more
traditional database systems normally require.

2) INTERACTIVE RESPONSE TIMES

With large data volumes, response times can be much higher
than the interactive limit of two seconds, even with good
indexes. When the data is being tentatively explored, a fast
“good enough” response can be better than a complete but
much slower one.

Approximate  Query Processing (AQP) [21]-[23]
approaches can help when we can compromise some accu-
racy for better response times, reducing the amount of data to
be processed for each query.

The most common and obvious approach to reduce the
amount of data to be processed is sampling, which limits
the processing to a subset of the original data. However, this
introduces an associated error with any given query, which in
itself is also the subject of research.

Errors caused by sampling can affect the performance of
the system itself [22] and the decisions taken by the end users
[22], [24] because they may be more used to the complete
output provide by traditional DBMS or they may misinterpret
the error estimations given by the system.

Error estimation techniques are normally classified into
two main sets [22], [25], [26]:

Analytical These methods can be fast but they need to

be manually derived for each type of query.

Consequently, they are normally available

only for simple queries with basic data

aggregations.

Bootstrap [27] These are more flexible because they use
re-sampling of the original sample to esti-
mate the error. However, this makes them
also more computationally expensive.
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The analytical bootstrap method [25], reduces the over-
head of the bootstrap error estimation, removing the need for
re-sampling.

It is worth mentioning that sampling tends to fail when the
query interest is focused on extreme values (outliers) [22],
[28], [29].

Another recent approach is database learning [30], which
exploits the answers to past queries to infer some knowl-
edge about the nature of the underlying data, decreasing
with time the amount of data to be read. Following this
idea further, active database learning [30]-[32] proposes sys-
tems that would pro-actively “train themselves’ to improve
their models [33]. However, as of the time of this writing,
we are unaware of any database system that implements this
technique.

3) DISTRIBUTED ENVIRONMENT

Seaweed [34] deserves a mention for this requirement
because it is the only system found by this study that clearly
states its objective of scaling to a big number of end-systems
(103 to 10%), where it is usual to have some of them off-line
or going off-line at any given moment.

These authors also consider that centralization, redistribu-
tion and replication of the data can limit the scalability of the
system, especially due to the requirements imposed on the
network when it has to be moved away from where it was
originated.

We are interested in systems that could sit on top of an
existing data storage solution where replication and distri-
bution policies are out of our control. Thus, similarly to
Seaweed, we need to process the data wherever it is located.
This location may be off-line.

They solve this issue persisting the queries for a given
delay, so when a back-end system comes back online it will
execute its part of the plan, updating incrementally the results.
This delay enables the user to reach a compromise between
the completeness of the response and the responsiveness.
We find that this approach can be interesting for our use case.

Il. METHOD

A systematic mapping study is a process for the exploration
of the situation of a wide research area with a high level of
granularity, allowing us to identify areas in the domain where
it may be interesting to explore in more detail [35]. Because
we are trying to obtain an overview of the situation of the
research on data exploration techniques and identify where
additional work may be required, we have decided to follow
this approach, and, more specifically, the guidelines proposed
by [36]. For completeness, we include in figure 2 the diagram
of the process for a systematic mapping study, as defined by
Petersen et al.

We first justify the need for the study and the research
questions it will answer. Then, we perform the search for
papers from different sources, applying a selection criteria to
discard those that are not of interest for the purposes of this
study. We define the classification schema used to map the
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FIGURE 2. The Systematic mapping process [36].

current status of the domain, and, finally, we propose how to
summarize and visualize the resulting data.

A. JUSTIFICATION

LHC data are stored as ROOT [37] files. Some of the analysis
on these files are relatively simple queries, which is cur-
rently done with hand-written C4++ programs. Even though
Karpathiotakis et al. has already proposed using declarative
queries instead [9], we are unaware of any progress in that
direction since it was used as a motivating example.

A tool that provides a high level of querying this type of
data can be of great use, especially if integrated with the exist-
ing storage solutions used today by the LHC experiments,
such as EOS [38]. This interface would allow scientists to
spend more time exploring the data and less time writing low
level code to dive through the specifics of the file format.

However, before embarking on such a project, we need
to get a better picture of the state-of-the-art because more
recent developments may already cover part, if not all, of our
needs. Systematic mapping can be a suitable tool for this
purpose. Furthermore, the output of this study can help other
researchers to identify interesting directions for their own
work or even tools for those looking to cover a similar need.

B. RESEARCH QUESTIONS

In the tutorial, Idreos et al. [8] propose a classification of
different possible approaches to our problem. This study
provides an excellent introduction but we wanted to expand
on it by answering two questions that were not covered by the
original paper and we also wished to survey the subsequent
evolution of the domain.

1) RQ1. HOW HAS THE RESEARCH AREA EVOLVED?

Given that this is an active research area, it has probably
progressed since the Idreos et al. tutorial that we are using as a
baseline. Therefore, the first question to answer to decide how
to focus future research is: How has it evolved since 2015?

2) RQ2. WHAT IS THE MATURITY LEVEL OF

THE RESEARCH AREA?

How many complete and reliable solutions are there? Are
they successfully implemented in practice? How do they
improve the users’ experience? Identifying publications is not
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enough, we also want to assess in what part of the software
lifecycle they focus.

3) RQ3. HOW FAR ARE WE FROM A TOOL THAT SOLVES
OUR THREE REQUIREMENTS?

The final target of this research is to identify solutions that
cover our three requirements and could be integrated into
the storage software at CERN. Even though Idreos et al. [8]
closed their tutorial by mentioning the importance of inter-
connection research, they do not provide any references or
study on this area.

C. SEARCH STRATEGY

For the retrieval of studies, it is necessary to clearly define
how the search is going to be performed. This work combines
three different strategies, as follows:

e Set of known works obtained from [8] because our

RQ?2 is not covered by the original classification.

« Forward snowballing [39] from the known set of publi-

cations using Google Scholar.

« For completeness, database searches to improve the cov-

erage of our study.

Jalali and Wohlin [40] argue that snowballing and database
searches can lead to similar patterns but they also agree that
it is “not easy to draw any general conclusions” about if
the conclusions obtained are the same using the two different
approaches. Thus, we have opted to follow both.

The set of digital libraries consulted is:

« ACM Digital Library

« Elsevier (Science Direct)
o Springer

« IEEE Digital Library

« Wiley Online Library

o World Scientific Net

Given the fast pace at which the field moves, older
papers have been probably superseded or, if still relevant,
we expect them to be already included in [8]. Consequently,
we have limited the scope in time to studies published from
2010 onwards

All of the references obtained by any of the previous
method were imported into a group in the Mendeley Ref-
erence Manager. Any obviously non-interesting entry —
such as book or proceeding indexes—were removed at this
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TABLE 1. Category.

User Interaction

Data Visualization
Exploration Interfaces

Visual Optimizations
Automatic Exploration

Visual Tools

Assisted Query Formulation Novel Query Interfaces

Middleware

Interactive Performance Optimizations Data Prefetching

Query Approximation

Database Layer

Indexes
Data Storage

Adaptive Indexing
Adaptive Loading

stage. The definitive list can be found on a public group in
Mendeley.com1L

D. STUDY SELECTION CRITERIA

We based the initial screening of studies on title, abstract,
and keywords. In some cases, when the information provided
by these fields was insufficient to take a decision, we also
considered their conclusions or read the complete study.

We have focused here on finding primary studies related
to data exploration. The filtering was performed using the
following exclusion criteria:

Unsupported language Studies written in a language dif-

ferent than English, Spanish or
French

Incomplete publication Abstract only, or presentations
were excluded
Out of the data exploration
domain
Secondary, tertiary and surveys
In case of duplication, or high
similarity for the same set of
authors, only the most complete
or the most recent was taken into
account.

Off topic

Not a primary study
Duplication

Those publications that passed the inclusion criteria were
reviewed to make sure all their fields were correct. Normally,
this should have been done during the previous stage but due
to the sheer volume of publications yielded by the search
strategy this step was postponed until the filtering was done.
Because only title and abstract were used for the filtering, this
did not affect the end result.

E. CLASSIFICATION
Publications that pass the selection criteria will be classified
into two axes: data exploration facet and research type.

1) CATEGORY
As mentioned in section II-B, we base our study on the
classification done by Idreos et al. [8], which is included
for convenience in table 1. For more details, we refer the
interested reader to Idreos’ tutorial.

For our purposes, we have assigned one single category to
each work covered by our study, choosing the most prominent
topic when more than one category could fit.

Thttps://www.mendeley.com/community/interactive—data—exploration—in—
science-systematic-mapping/
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Time Series Flexible Engines
Adaptive Storage Sampling
TABLE 2. Research type.
Research type Description

Evaluation research Investigation of a problem or
implementation in practice.

These papers propose a solution and
argue for its relevance without complete
validation. A proof-of-concept may be
offered.

These papers investigate the properties
of a solution proposal that has not yet
been implemented in practice.

These papers sketch a new way of
looking at things, a conceptual
framework, etc.

These paper contain the author’s
opinion.

These paper should contain a list of
lessons learned by the author from his or
her own experience. The evidence can
be anecdotal.

Proposal of solution

Validation research
Philosophical papers

Opinion papers

Personal experience papers

2) RESEARCH TYPE

To answer our second research question—the maturity of the
area—we follow the classification of research approaches
done by [41], as our guidelines for systematic mapping
do [36].

We summarize the different research types in table 2.

As per this classification, we expect mature solutions that
have been implemented in practice to be covered by one or
more Evaluation Research studies. If, on the contrary, they
are on very early stages, then most related studies will fall
into the Philosophical or Opinion categories.

F. DATA EXTRACTION AND VISUALIZATION

At this stage, the papers were filtered and classified.
We needed to summarize the obtained data in a way that is
useful to answer our research questions.

To answer RQ1, we focused on the counting of each cate-
gory and their visualization on a time series plot.

To answer RQ2, a bubble plot can help to more easily
identify the most frequent research type per category. In this
way, we can identify if one area is more mature than other.
Additionally, we also counted and displayed how many pub-
lications include some sort of user study, which should prove
if any particular solution is successful at improving the inte-
gration of a human on the loop.

Finally, for RQ3, we flag interesting papers classified under
Proposal of Solution with the three requirements separately,
if stated on their abstract or conclusions.

Additionally, while it was not in the original research
questions, we can also extract which publication forums are
the most prominent on our results.
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TABLE 3. Search queries.

Library Scope Search

ACM Digital Library  Full text ("RAW data" OR "RAW file" OR "ROOT file") AND (query OR exploration)

ScienceDirect Title, abstract, keywords (computer science)  ((RAW OR ROOT) AND (query OR exploration))

Springer Full text (computer science) ("RAW data") AND (query OR exploration) + ("RAW file") AND (query OR
exploration)

Wiley Online Library ~ Abstract RAW AND query

IEEE Digital Library ~ Abstract RAW AND query

World Scientific Net Full text (computer science) RAW AND query

TABLE 4. Accepted and rejected count.

TABLE 5. Category summary.

Accepted Duplicated Not Pri-  Off Too Old  Total

mary Topic
242 9 16 5,295 126 5,688
4.25% 0.16% 0.28 % 93.09% 2.22% 100%

IIl. RESULTS
In this section, we describe the outcome of each stage of the
systematic mapping.

A. STUDY SELECTION

As previously described, we have three different sources of
papers: the references from [8], search engines, and forward
snowballing from those that pass the selection criteria.

Table 3 displays the search queries that were used for each
digital library. All searches were done on May 16, 2017 and
they yielded a total of 5,525 articles.

Idreos’ tutorial provided 47 papers and the forward snow-
balling provided 116.

From this total of 5,688, only 242—4.25%—were accepted,
the details are shown in table 4. This rather low hit ratio comes
mostly from the on-line searching of digital libraries because
the lack of well defined, or univocal, keywords makes it
difficult to decide what to search for. We do not seem to be
alone in this respect [42], [43].

Even once defined, and because we must use different
search engines, there are few or no commonalities between
the way queries can be written and handled between different
archives [44], [45].

This yield is no smaller than those of systematic studies in
other fields, which can be as low as 0.3% [46].

B. STUDY DATA EXTRACTION

Table 5 displays the frequency of publications for each clas-
sification cluster proposed by [8]. It is worth mentioning that
four papers on the Database Layer did not fall into the prede-
fined clusters, given their genericity [7], or as an evaluation
of different techniques [47]-[49].

Figure 3 displays the frequency of each major cluster
against the research type count for each one. In table 6, we
display the publication forums where more than one study has
been published. While there are two main forum, summing
30.58% of all the publications, most of the papers are spread
out on different conferences and journals.

It is worth noting that this table includes gray literature;
that is, outside of the formal academic publishing. While one
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Category Count
User Interaction 86
Assisted Query Formulation 28
Visual Optimizations 25
Novel Query Interfaces 14
Visualization Tools 11
Automatic Exploration 7
Exploration Interfaces 1
Middleware 48
Query Approximation 34
Data Prefetching 14
Database Layer 108
Adaptive Indexing 26
Flexible Engines 16
Time Series 16
Sampling 15
Adaptive Storage 14
Adaptive Loading 10
Spatial Query 6
Other 5

may argue that this papers have not been [yet] subject of a
peer review, they are still included because gray literature
can be, and is, a useful source of knowledge for information
users [50]. In fact, Kitchenham and Charters [35] recom-
mended in their guidelines for systematic reviews to include
gray literature in searches.

IV. DISCUSSION

A. ANSWERING THE RESEARCH QUESTIONS

1) RQ1. HOW HAS THE RESEARCH AREA EVOLVED?

Figure 4 displays the evolution during time of each of the
three major classification clusters: user interaction, middle-
ware and database.

Considering our search strategy, most of the results are pos-
terior to 2012. Different approaches seem to be, in general,
well balanced—we refer again to table 5—, although there is
space for more works focused on exploration interfaces and
automatic exploration, which are the less frequent published
approaches.

2) RQ2. WHAT IS THE MATURITY LEVEL OF THE
EXISTING SOLUTIONS?
We can use the figure 3 to answer this question. The vast
majority of papers considered by this study—79.35%—fall
within the proposal of solution research type.

Meanwhile, evaluation and validation research are
represented just by a 11% and 6.07%, respectively.
Only 32 documents (13%) include some sort of user study:
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User
Interaction 6 67
Middleware 3 39

Database
Layer 5 86

Validation Research Proposal of Solution
FIGURE 3. Layer vs research type.

TABLE 6. Publication forum.

Evaluation Research

10 3 0
4 1 1
12 4 1

Philosophical Paper Opinion Papers

Publication

Count

Journal
The VLDB Journal
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Visualization and Computer Graphics
International Journal of Cooperative Information Systems
Journal of Big Data
ACM Transactions on Database Systems
Future Generation Computer Systems
SIGMOD Record
Others

Conference
ACM International Conference on Management of Data (SIGMOD)
Proceedings of the VLDB Endowment
IEEE International Conference on Data Engineering
Conference on Innovative Data Systems Research (CIDR)
Database Systems for Advanced Applications

International Conference on Scientific and Statistical Database Management

IEEE International Conference on Big Data
International Conference on Extending Database Technology
International Workshop on Data Management on New Hardware

ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS)

Advances in Visual Computing
Big Data Analytics
Database and Expert Systems Applications
IEEE International Conference on Mobile Data Management
Intelligent Information and Database Systems
International Conference on Advanced Cloud and Big Data
Workshop on Human-In-the-Loop Data Analytics
Others
Gray literature

24 for ‘User Interaction’, 4 for ‘Database Layer’ and 2 for
‘Middleware’. Research on how different solutions —either
existing or proposed— perform in practice is lacking.

These figures are hardly surprising because they seem to
have been commonplace in computer science for a long time
now [51]-[53]. For instance, Sjobergh et al. [53] survey the
status of controlled experiments in software engineering and
the numbers they find are equally low, with only 113 con-
trolled experiments found on 5,453 papers.

It is hard and also out of the scope of this study to
make some inferences from these results. Tichy et al. [51]
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mention some potential reasons and measures to improve
this situation, namely: difficulty on performing experiments
where humans are involved, the lack of common benchmarks,
or even that empirical work is not encouraged by the journals
and conferences of this area.

3) RQ3. HOW FAR ARE WE FROM A TOOL THAT SOLVES
OUR THREE REQUIREMENTS?

In figure 5 we display a Venn diagram with our three require-
ments. We can see there is a single study that covers the
three requirements: A Distributed In-situ Analysis Method
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40-
Layer
§ == Database Layer
8 =+ Middleware
20- === User Interaction
O -

2006 2008 2010 2012 2014 2016 2018
Year

FIGURE 4. Number of papers per layer and year. Note that the drop
during 2017 is due to the search having been done in May 2017.

Distributed

<>

Raw Interactive

FIGURE 5. Venn diagram with solutions that satisfy our requirements.

for Large-scale Scientific Data, by Han et al. [54]. While
they mention the access over raw files and the fact that it
is distributed, they do not explicitly state anything about
their interactivity. However, the measured times for selective
queries that they report are in the order of a few seconds.
Consequently, we decided to consider it to be suitable for
interactive usage.

The tests they perform use datasets that are close to the
memory available on the system and, therefore, more tests
with bigger dataset sizes could be needed.

Aside from this paper, no other study combines access to
raw data with low response times.

The solutions that cover at least two out of the three
requirements are summarized in more detail in section V.

B. STUDY INSIGHTS
Research in data exploration is very active and there
has been—and there is—a myriad of solutions proposed.
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In fact, this should not come as a surprise: in 2005
Stonebraker and Cetintemel [55] had already predicted this
was bound to happen and predicted that there would be an
increase of domain-specific tools. This would explain why,
of the all classified studies, only one tool satisfies our three
prerequisites.

In general, several different systems and approaches have
been proposed, which could, perhaps, be seen as building
blocks. Not all combinations necessarily make sense but it
seems that there are research opportunities in this direction,
depending on the specific needs to be covered.

For instance, in our particular case, we could consider
combining distributed access over raw files, as [54] does, but
using approximate query processing to reduce the response
times.

Code generation is a popular approach for querying raw
data files and approximation-aware code generation has been
noted as a challenge that is yet to be addressed [31]. Conse-
quently, more work on this particular overlap of approaches
may provide interesting results.

On a orthogonal consideration, since the generation of data
volume will likely not slow down, the trend for more tools
covering specific niches is probably going to continue. This
diversity of tools is a challenge in itself in many respects,
for example: How do we choose the right solution? What
is the cost of making the wrong choice? What happens if
the chosen tool goes unmaintained in the future and there
is no community around it? Will it be hard to maintain? Of
course, these questions are not new in software engineering
but typically there are not many choices when it comes to
decide on traditional data storage systems, such as DBMS. In
the last decade, there has been an increase of available options
(relational, object oriented, schema-less, key-value, ...) and,
while opting for a DBMS has become harder, it has remained
rather manageable. However, looking at the results of this
study, the difficulty for users to decide will likely become
more challenging.

C. THREATS TO VALIDITY

1) SEARCH BIAS

The gaps identified may be covered in journals and confer-
ences associated with the user domain—e.g. astrophysics—,
rather than with computer science and engineering. The
forward snowballing step reduces this risk because these
hypothetical publications would most likely cite the original
proposal of solution. However, considering that our research
method has allowed us to find even gray literature, we con-
sider this risk to be low.

2) FILTERING OF ARTICLES

Given the huge number of papers that resulted from the
search, a first filtering was done just based on title and
abstract. This is a difficult challenge. Unlike in other dis-
ciplines, sometimes abstracts do not contain enough infor-
mation about the paper and keywords can be inconsistent
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between journals and authors [40], [45], [56]. As recom-
mended by [45], we have also taken into consideration the
conclusions to cover this issue.

3) CLASSIFICATION

Another concern about these classifications is the bias of the
researcher’s own interpretation [57]. For instance, Jorgensen
and Shepperd [43] report on a disagreement over 39% of the
reviewed papers in their systematic review due to different
interpretations of the description of each category. We have
been careful in this respect to guarantee the internal validity
of the study, although some misclassification may still exist.

Additionally, it can be hard to identify if a solution covers
or not one of the three predefined requirements based just
on a paper. They may not have been explicitly mentioned if
the authors did not consider them relevant for the purposes
of their publication. Therefore, there may have been false
negatives.

The present paper documents our process and the result-
ing publication list has been made publicly available—see
subsection II-C—, so anyone interested can replicate and/or
validate our results.

V. DISCUSSION OF RELEVANT METHODS

Included for completeness is a summary of each of the nine
publications that cover, at least, two out of the three require-
ments.

A. ALL THREE REQUIREMENTS

As already mentioned, the only solution that covers the three
requirements is documented on the paper “A Distributed
In-situ Analysis Method for Large-scale Scientific Data”
[54], classified as ‘““adaptive loading”.

Stonebraker et al. [58] build on top of SciDB, a distributed
array-based scientific database, and focus on HDF files [59].
To avoid the overhead of data pre-loading, they leverage the
flexible architecture of this database engine, providing their
own scan operator to read the data directly from the raw
files when needed, which needs to be adapted to the internal
representation of SciDB.

This adaptation is done in two different stages: local and
global mapping.

During the local mapping, they read on demand the data
that matches the filters associated to the query, adapting it to
the SciDB chunk representation: pieces of array data that are
distributed together based on some policy - e.g hashing, range
partitioning.

At the global mapping stage, the resulting chunks are
redistributed across the storage nodes following the SciDB
policies.

Although not relevant for our use case, it is worth men-
tioning that they also merge small files together to reduce the
performance penalty of processing many small files.

This approach is interesting as it compartmentalizes well
the logic required to access the raw data from the file distri-
bution and the query engine.
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However, the paper notably misses information about the
network traffic caused by their global mapping stage, since
the network overhead depends on how the actual data distri-
bution matches SciDB expectations.

B. DISTRIBUTED ACCESS TO RAW FILES

DiNoDB [60] is oriented towards the interactive development
of data aggregation algorithms, where the user needs to move
quickly between the batch processing stage and the interac-
tive evaluation of the quality of the results.

It is deployed together with Hadoop and it generates the
auxiliary metadata using user defined functions executed by
the reducers during the batch processing stage. Therefore,
the metadata ends up stored together with the raw data - the
output of the reducers, and will also be replicated by the
Hadoop Distributed File System (HDFS) across the cluster.
Additionally, the output data may be cached optionally in
memory - via ramfs or the filesystem cache.

For the interactive stage, on each HDFS Data Node it
is deployed an instance of a customized PostgresRaw [17]
database, a modified version of PostgreSQL with additional
support for raw files based on positional maps - positions of
attributes within the file.

With this architecture deployment, the client 1) issues
the query to each node separately; 2) PostgresRaw uses the
indices to retrieve the offsets of the relevant records and the
positional maps to find the fields within the raw file; and
3) the client aggregates the results.

This approach gets good response times for the interactive
stage, but the latency increases significantly when the output
data does not fully fit into memory.

ARMFUL (Analysis of Raw data from Multiple Files)
[61], probably has the most strict requirement set of all the
analyzed papers. Its authors need to access raw data generated
during the execution of a workflow and collect their prove-
nance with high granularity. While other tools keep track of
the data provenance at the file level - leaving to the user the
cross-match of records stored in different files - they are able
to associate related data entries contained in the raw data files
at the record level.

To do so, the authors formally define two additional work-
flow algebraic data operators [62], which allows to address
specific records stored on a file within a dataflow: Raw Data
Extraction - read, tokenize, filter, parse - and Raw Data
Indexing. These operators can be composed with the existing
ones, as Map or Filter - for instance, a user could map a list
of file names to their content and then filter records with a
specific threshold, keeping track of the provenance of the data
during all the process.

The indexing can rely on external tools, and two implemen-
tations are provided: one based on bitmap indexes generated
by FastBit [63], and another one on positional maps, imple-
mented following RAW’s approach [9].

Since this study focus particularly on raw data access dur-
ing simulations, the interactivity only applies to the queries
made to the provenance database.
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C. DISTRIBUTED AND INTERACTIVE

This combination is the one with the most matching methods.
Five out of the six ones are classified as “query approxima-
tion”, and the remaining one, even though labeled as “visual
optimization”, relies heavily on query approximation as
well.

It would seem that to get fast responses some compromises
on the precision have to be made. This makes sense intuitively
as processing less data will reduce the processing time at the
cost of less accuracy. Additionally, on a distributed system,
some nodes may be offline, unresponsive or overloaded.
In order to keep the latency low, the results need to be
aggregated within a reasonable deadline, even if parts of the
system have not responded yet.

It is worth noting that most of these papers also match the
“sampling” category, but since sampling is just an aspect of
the overall solution and their authors normally use “query
approximation” to refer to their methods, we have decided to
classify them as such.

BlinkDB [64] allows users to perform SQL-like aggre-
gation queries on data stored on HDFS, specifying time
or error constraints. First, the authors base their system
on the assumption - supported by evidence - that the col-
umn sets used for the aggregation queries are predictable,
regardless of the actual grouping value. With this informa-
tion, they perform a stratified sampling [65] to avoid the
under-representation of rare subgroups. Finally, the system
chooses the suitable samples based on the query constraints
provided by the user, profiling them at run time so it can
improve the execution plan for later queries.

ScalaR [66] improves the performance of the visualiza-
tion of big data sets dynamically reducing the size of the
response returned to the front-end layer. Its authors provide
an intermediate layer that consumes the queries issued by the
user and uses the statistics computed by the database back-
end to evaluate in advance the expected size of the result set.
If this size is above a given threshold, the query is rewritten
to either aggregate, sample or filter the data, generating a
smaller approximate response that can be displayed more
performantly.

Although their solution is back-end agnostic, their pro-
posed implementation relies on SciDB [58]. It quickly comes
to mind that this could potentially be integrated with the
previous method by Han et al. [54], resulting on a visual
exploration tool for raw data files.

The authors of DICE (Distributed and Interactive Cube
Exploration) [67] attack the problem on three fronts: specula-
tive query execution, online data sampling, and an exploration
model - faceted cube exploration - that limits the number of
possible queries, improving the efficacy of the speculative
execution.

Probably, the most interesting idea from this paper is the
notion of the exploration being done in “‘sessions’’: The
authors do not attempt to optimize for any possible query,
but only for those that are likely to follow from the state of
the current session. Predicting a set of potential following

10700

queries is made possible thanks to their exploration model,
which restricts the possible number of “transitions” from the
current state for a session.

The predicted queries are then ranked based on their like-
lihood and accuracy gain, and those that are most likely
and provide the most accuracy gain will be speculatively
executed in advance, populating the cache. When the final
query arrives, the response can be built from the content of
the cache if the predictions were successful. Otherwise, it will
be scheduled to the underlying nodes.

For more information about ‘‘data cubes’’, we refer to the
DICE paper, or the original proposal [68].

AccuracyTrader [69] is a distributed approximate pro-
cessing system comprised of two components: one online and
one offline.

First, the offline part reduces the dimensionality of the
original data using Single Value Decomposition - so it only
supports numerical values. Then, it groups similar entries
using an R-Tree, where each node represents an aggregated
data point, and all nodes at the same level correspond to a
“synopsis”’. This tree is flattened into an index at a level that
balances between the number of leaves under each aggregated
data point and the selectivity of the tree at that level. Finally,
it aggregates the data for each index entry using the original
dimensions of the indexed points and stores this aggregated
data into the ““synopsis”.

When a query arrives, the online part uses these ‘“‘syn-
opsis” to produce an approximate result with an accuracy
estimation. It then iterates using the detailed data points to
improve the response accuracy until the deadline specified
by the user expires.

In this paper, the authors prove that the system scales
well in terms of tail latency and accuracy when the number
of requests increases for a “‘search engine”-like workload.
However, the data has to be aggregated into the synopsis
beforehand.

KIWI [70] is a SQL front-end built on top of Hadoop
that aims to provide both batch processing and interactive
analytics via approximate query processing. It generates both
vertical (column) and horizontal (row) samples, and re-writes
the queries to use these samples instead of the original data.
However, it is hard to assess the technical soundness of this
solution, since the paper is very short - 2 pages including
citations - and we have not been able to find any later citations
nor do the authors cite other papers about the same tool.

Finally, Wang et al. [71] introduce a framework based on
the map-reduce paradigm. Instead of the traditional batch
processing approach where the analysis is performed on big
chunks of data, their system executes the analysis logic iter-
atively on samples, updating an estimator in each round until
a stop condition is satisfied - both estimator and condition
provided by the user. When the termination condition is
satisfied, the remaining jobs are canceled, saving computing
cycles and reducing the latency. Similarly to other analyzed
solutions, they use a stratified sampling to ensure a good
accuracy and the coverage of rare cases. The sampling is done
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Title Year Cluster Type Ref.
A Discussion on Visual Interactive Data Exploration 2011 Visualization Tools Validation Research [72]
Using Self-Organizing Maps
A Distributed Infrastructure for Earth-Science Big Data 2015  Novel Query Interfaces Proposal of Solution  [73]
Retrieval
A GPU-based index to support interactive spatio- 2016 Spatial Query Proposal of Solution  [74]
temporal queries over historical data
A Holistic Approach to OLAP Sessions Composition 2014  Assisted Query Formulation Proposal of Solution  [75]
A Logic-Based Approach to Mining Inductive 2007 Novel Query Interfaces Proposal of Solution  [76]
Databases
A Scalable Execution Engine for Package Queries 2017 Novel Query Interfaces Proposal of Solution  [77]
A Schema-Based Approach to Enable Data Integration 2017  Flexible Engines Proposal of Solution ~ [78]
on the Fly
A Signaling Game Approach to Databases Querying 2016 Novel Query Interfaces Proposal of Solution  [79]
and Interaction
A Unified Correlation-based Approach to Sampling 2017 Sampling Proposal of Solution  [80]
Over Joins
A distributed in-situ analysis method for large-scale 2017 Adaptive Loading Proposal of Solution  [81]
scientific data
A framework for query refinement with user feedback 2013  Assisted Query Formulation — Proposal of Solution  [82]
A graphical system for interactive creation and explo- 2016  Visualization Tools Proposal of Solution  [83]
ration of dynamic information visualization
A hierarchical aggregation framework for efficient mul- 2017  Adaptive Indexing Proposal of Solution ~ [84]
tilevel visual exploration and analysis
A study of SQL-on-Hadoop systems 2014  Exploration Interfaces Validation Research ~ [85]
A taxonomy for region queries in spatial databases 2015 Spatial Query Evaluation Research ~ [86]
A time-series compression technique and its applica- 2015 Time Series Proposal of Solution  [87]
tion to the smart grid
ADS: the adaptive data series index 2016  Adaptive Indexing Proposal of Solution ~ [88]
AIDE: An Active Learning-Based Approach for Inter- 2016  Sampling Proposal of Solution  [89]
active Data Exploration
AIR: Adaptive Index Replacement in Hadoop 2015 Adaptive Indexing Proposal of Solution  [90]
AQP++: A Hybrid Approximate Query Processing 2017 Query Approximation Proposal of Solution  [91]
Framework for Generalized Aggregation Queries
AQUAdexIM: highly efficient in-memory indexing and 2016 Time Series Proposal of Solution  [92]
querying of astronomy time series images
About Database Summarization 2010  Query Approximation Proposal of Solution  [93]
Abstraction Without Regret in Database Systems 2014 Flexible Engines Philosophical Paper [94]
Building: a Manifesto
Access Path Selection in Main-Memory Optimized 2017 Indexes Evaluation Research ~ [95]
Data Systems: Should I Scan or Should I Probe?
AccuracyTrader: Accuracy-Aware Approximate Pro- 2016 Query Approximation Proposal of Solution  [96]
cessing for Low Tail Latency and High Result Accuracy
in Cloud Online Services
Adaptive Indexing over Encrypted Numeric Data 2016  Adaptive Indexing Proposal of Solution [97]
Adaptive indexing approach for main memory column 2016 Adaptive Indexing Proposal of Solution ~ [98]
store
Adaptive query processing on RAW data 2014 Flexible Engines Proposal of Solution ~ [99]
Adaptive-sampling algorithms for answering aggrega- 2008  Sampling Validation Research ~ [100]
tion queries on Web sites
Alpine: Efficient In-Situ Data Exploration in the Pres- 2017  Adaptive Indexing Proposal of Solution ~ [101]
ence of Updates
An Adaptive Data Partitioning Scheme for Accelerat- 2017 Adaptive Storage Proposal of Solution  [102]
ing Exploratory Spark SQL Queries
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An Analysis of Query-Agnostic Sampling for Interac-
tive Data Exploration

An Efficient Time Optimized Scheme for Progressive
Analytics in Big Data

An enhanced visualization process model for incremen-
tal visualization

An experimental evaluation and analysis of database
cracking

An intelligent, uncertainty driven aggregation scheme
for streams of ordered sets

Analytics in Motion: High Performance Event-
Processing AND Real-Time Analytics in the Same
Database

Answering Temporal Analytic Queries over Big Data
Based on Precomputing Architecture

Approximate OLAP on Sustained Data Streams
Approximate Query Engines : Commercial Challenges
and Research Opportunities

Approximate Query Processing: No Silver Bullet
Approximate range searching in external memory
AstroShelf: understanding the universe through scal-
able navigation of a galaxy of annotations
Benchmarking exploratory OLAP

Beyond one billion time series: Indexing and mining
very large time series collections with iSAX2+
Beyond the Wall: Near-Data Processing for Databases
Bi-Level Online Aggregation on Raw Data

Big sequence management: A glimpse of the past, the
present, and the future

BlinkDB: queries with bounded errors and bounded
response times on very large data

Bridging the Archipelago between Row-Stores and
Column-Stores for Hybrid Workloads

Building efficient query engines in a high-level lan-
guage

Cell-at-a-Time Approach to Lazy Evaluation of Dimen-
sional Aggregations

Cheetah: a high performance, custom data warehouse
on top of MapReduce

CliffGuard: A Principled Framework for Finding Ro-
bust Database Designs

Cluster-Driven Navigation of the Query Space
Clustrophile: A Tool for Visual Clustering Analysis
Combining Design and Performance in a Data Visual-
ization Management System

Computer-Assisted Query Formulation

Concurrency control for adaptive indexing

Controlling False Discoveries During Interactive Data
Exploration

D-Ocean: an unstructured data management system for
data ocean environment

DAQ: A New Paradigm for Approximate Query Pro-
cessing

DBMS Data Loading: An Analysis on Modern Hard-
ware
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Time Series

Query Approximation
Flexible Engines
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Data Prefetching
Flexible Engines
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Visualization Tools
Visualization Tools
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Visual Optimizations
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Query Approximation

Adaptive Loading

Evaluation Research
Proposal of Solution
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Evaluation Research
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Opinion Papers

Evaluation Research
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Validation Research
Evaluation Research
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DIRAQ: scalable in situ data- and resource-aware in-
dexing for optimized query performance

Data Canopy: Accelerating Exploratory Statistical
Analysis

Data Exploration with SQL using Machine Learning
Techniques

Data Tweening: Incremental Visualization of Data
Transforms

Data series management: The road to big sequence
analytics

Data vaults: A symbiosis between database technology
and scientific file repositories

DataPlay: interactive tweaking and example-driven cor-
rection of graphical database queries

Database Cracking: Fancy Scan, Not Poor Man’s Sort!
Database Learning: Toward a Database that Becomes
Smarter Every Time

Delay aware querying with Seaweed
Deterministic View Selection for
Queries: Properties and Algorithms
DiNoDB: Efficient Large-Scale Raw Data Analytics
Discovering Queries Based on Example Tuples
Distributed and interactive cube exploration

DivIDE: Efficient Diversification for Interactive Data
Exploration

Diversifying with Few Regrets, But too Few to Mention
Does Online Evaluation Correspond to Offline Evalua-
tion in Query Auto Completion?

Dynamic Prefetching of Data Tiles for Interactive Vi-
sualization

Dynamic reduction of query result sets for interactive
visualizaton

Efficient Evaluation of Object-Centric Exploration
Queries for Visualization

Efficient schemes for similarity-aware refinement of
aggregation queries

End-User Development of Information Visualization
Enhanced Query-by-Object approach for information
requirement elicitation in large databases

Enhancing Parallel Data Loading for Large Scale Sci-
entific Database

Evaluating a Stream of Relational K NN Queries by a
Knowledge Base

Exact indexing for massive time series databases under
time warping distance

Exemplar queries: a new way of searching

Exploring Databases via Reverse Engineering Ranking
Queries with PALEO

Fast and adaptive indexing of multi-dimensional obser-
vational data

Fast queries over heterogeneous data through engine
customization

Fast, Explainable View Detection to Characterize Ex-
ploration Queries

Fast-Forwarding to Desired Visualizations with zenvis-
age

Data-Analysis
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FlashExtract: a framework for data extraction by exam-
ples

Flying KIWI: Design of Approximate Query Process-
ing Engine for Interactive Data Analytics at Scale
Gestural query specification

H20O: A Hands-free Adaptive Store

Hashedcubes: Simple, Low Memory, Real-Time Visual
Exploration of Big Data

Holistic Indexing in Main-memory Column-stores
How Progressive Visualizations Affect Exploratory
Analysis

IEVQ: An Iterative Example-Based Visual Query for
Pathology Database

IVIS4BigData: A reference model for advanced visual
interfaces supporting big data analysis in virtual re-
search environments

IncApprox: A Data Analytics System for Incremental
Approximate Computing

Indexing for interactive exploration of big data series
Information retrieval using dynamic indexing

Initial Sampling for Automatic Interactive Data Explo-
ration

Intelligent Data Granulation on Load: Improving Info-
bright’s Knowledge Grid

Interactive Browsing and Navigation in Relational
Databases

Interactive Data Exploration Using Semantic Windows
Interactive Inference of Join Queries

Interactive SQL query suggestion: Making databases
user-friendly

Interactive Visualization of Big Data

Interactive and Scalable Exploration of Big Spatial
Data — A Data Management Perspective

Interactive time series exploration powered by the mar-
riage of similarity distances

Invisible Glue : Scalable Self-Tuning Multi-Stores
Invisible loading

Keyword Search in Relational Databases: A Survey
Knowing When You’re Wrong: Building Fast and Reli-
able Approximate Query Processing Systems

Kodiak: leveraging materialized views for very low-
latency analytics over high-dimensional web-scale data
L-Store: A Real-time OLTP and OLAP System
Learning Path Queries on Graph Databases

Learning Queries from Examples and Their Explana-
tions

Learning and verifying quantified boolean queries by
example

Logic-Partition Based Gaussian Sampling for Online
Aggregation

Main Memory Adaptive Indexing for Multi-core Sys-
tems

Managing Massive Time Series Streams with Multi-
Scale Compressed Trickles

Meet Charles, big data query advisor

Merging file systems and data bases to fit the grid
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Merging what’s cracked, cracking what’s merged
Merlin: Exploratory Analysis with Imprecise Queries
Model-Based  Diversification for  Sequential
Exploratory Queries

Model-driven Visual Analytics

Modeling Large Time Series for Efficient Approximate
Query Processing

Modeling Semantic and Behavioral Relations for
Query Suggestion

MuVE: Efficient Multi-Objective View Recommenda-
tion for Visual Data Exploration

NoDB: efficient query execution on raw data files
ORange: Objective-Aware Range Query Refinement
On Improving User Response Times in Tableau

On Interactive Pattern Mining from Relational
Databases

On query result diversification

On the analysis of big data indexing execution strate-
gies

Optimized Disk Layouts for Adaptive Storage of Inter-
action Graphs

Optimized Multi-Resolution Indexing and Retrieval
Scheme of Time Series

Optimizing database load and extract for big data era
Organic databases

PABIRS: A data access middleware for distributed file
systems

PFunk-H: approximate query processing using percep-
tual models.

Past and Future Steps for Adaptive Storage Data Sys-
tems: From Shallow to Deep Adaptivity

Progressive diversification for column-based data ex-
ploration platforms

QPlain: Query by explanation

QueRIE reloaded: Using matrix factorization to im-
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VizDeck: self-organizing dashboards for visual analyt- 2012
ics

What Users Don’t Expect about Exploratory Data 2017
Analysis on Approximate Query Processing Systems

Wide Table Layout Optimization based on Column 2017
Ordering and Duplication

Workload-Driven Antijoin Cardinality Estimation 2015
XmdvtoolQ:: Quality-aware Interactive Data Explo- 2007
ration

YmalDB: Exploring relational databases via result- 2013
driven recommendations
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dbTouch: Analytics at your Fingertips. 2013
iOLAP: Managing Uncertainty for Efficient Incremen- 2016

tal OLAP

without replacement, so in each iteration new data points are
taken into account, improving the selectivity of the method.

D. SUMMARY
We can see some commonalities looking at the underlying
techniques used by the solutions described above:

First, for providing access to raw files, code generation
and positional mapping seem to provide a good solution.
Both are implemented either directly - PostgresRaw - or used
via integration with an existing implementation - DiNoDB.
Isolating the raw data access as a database operator composes
well for all studied solutions regardless of the framework of
reference - workflow, PostgreSQL or SciDB.

Second, to provide the interactivity on a distributed sys-
tem, the engine needs to approximate the results using a
deadline or an accuracy requirement as a stop condition.
The resiliency and the low latency are achieved by being
capable of processing only parts of the data, via sampling -
BlinkDB -, pre-computed summaries - AccuracyTrader - or
both. In either case, error estimation becomes an important
part of the system, both internally and as part of the interface
exposed to the user.

VI. CONCLUSIONS

In this systematic mapping study we have detailed the method
that we followed to gather and filter papers related to data
exploration, searching for solutions that tackle big data vol-
umes, stored in a distributed way and with a low latency. This
process have produced 242 papers, which we have classified
according to their approach [8] on one axis, and to their
research type [41] on another.

The results suggest that plenty of solutions have been
proposed by researchers. However, there is rarely any follow
up, at least published, on their practical implementation, be it
to confirm a successful introduction to users or to evaluate
other tools already in place. Unfortunately, this is not different
to the state of other areas of the computing sciences.

We have found evidence that code generation is a
well-proven approach for accessing raw data files, although
most solutions have not been generalized onto a distributed
environment.

10708

Visualization Tools Proposal of Solution [305]
Query Approximation Validation Research  [306]
Adaptive Storage Proposal of Solution [307]
Sampling Proposal of Solution [308]
Novel Query Interfaces Proposal of Solution [309]
Automatic Exploration Proposal of Solution [310]
Visual Optimizations Proposal of Solution [311]
Novel Query Interfaces Proposal of Solution  [312]
Query Approximation Proposal of Solution  [313]

AQP research can bring response times down to a latency
suitable for interactive exploration. However, the overlap
between raw data files and approximate query processing still
seems to be an area where more research may be needed.

In general, there are building blocks that satisfy each one
of the three requirements that we want to satisfy, albeit sep-
arately. However, it is unclear how difficult it would be to
integrate or implement them in practice.

Finally, it seems likely that the future will bring even more
powerful building blocks for data exploration, resulting in
flexible systems tailored to specific needs and capable of
adapting themselves to changes on the workflow, allowing
users to focus on the information rather than on how to treat
performantly the raw data.

APPENDIX
RESULTS OF THE MAPPING STUDY
See Tables.
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