
HAND GESTURE RECOGNITION VIA ELECTROMYOGRAPHIC (EMG)

ARMBAND FOR CAD SOFTWARE CONTROL

A Thesis
IN

Electrical Engineering

Presented to the Faculty of the University
of Missouri–Kansas City in partial fulfillment of

the requirements for the degree

MASTER OF SCIENCE

by
ALA-ADDIN NABULSI

B.S., University of Jordan, 2014

Kansas City, Missouri
2018



c© 2018

ALA-ADDIN NABULSI

ALL RIGHTS RESERVED



HAND GESTURE RECOGNITION VIA ELECTROMYOGRAPHIC (EMG)

ARMBAND FOR CAD SOFTWARE CONTROL

Ala-Addin Nabulsi, Candidate for the Master of Science Degree

University of Missouri–Kansas City, 2018

ABSTRACT

In the past, computers - whether personal or at work - required a mouse and key-

board to interact with them, and they are still used to this day. Even for video games a

physical tool (controller) is needed to interact with the gaming environment. Previously

that was acceptable since that was how these electronic devices were conceived, but with

the recent boom in Virtual reality (VR) and Augmented Reality (AR), that reality has al-

ready started to change. VR and AR have existed for well over 2 decades [1], yet only in

the last 5 years have they started getting closer to reaching their true potential. With this

new technology, we can go to virtual worlds, interact with creatures that never previously

existed, and visualize information in ways never thought possible before.

With the emergence of VR came the need to change the way we interact with

the virtual environment and, with that, the way we interact with technology as a whole.

And what better controller for the job than the human hand. If the user can interact with
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technology with hand gestures then the whole process becomes intuitive, eliminating any

training time, and giving the user a more natural experience. For this, Hand Gesture

Recognition (HGR) systems will be needed.

HGR systems recognize the user’s hand shape by means of a glove, cameras, or

biosignals. One particularly useful biosignal for this task is the forearm Electromyo-

graphic (EMG) Signal. This signal reflects the contraction state of the forearm muscles.

EMG signals are already being used in prosthetics to help amputees have more natural

control over their prosthetic limbs. They can also be used for translating sign language,

or just generally in Human-Machine-Interaction (HMI).

This work proposes a method to interact with computers using hand gestures,

specifically for a Computer Aided Design (CAD) software known as Solidworks. To

achieve this a commercial EMG armband (the Myo - Thalmic Labs) was used to record

8-channel EMG signals from a group of volunteers over the span of 3 visits. The data

set was then preprocessed and segmented. The resulting data set consisted of 10 hand

gestures performed by 10 subjects, with 162 samples per gesture. A total of 11 feature

sets were extracted and applied to 4 different machine learning models.

A 9-fold cross validation and testing was performed and the classifiers over all the

feature sets were evaluated and compared. The best model validation performance was

achieved by the Linear Discriminant Analysis (LDA) model with an average Area Under

Curve (AUC) of 76.35% and an average Equal Error Rate (EER) of 29.73%.
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In future work, we propose to use the HGR method developed in this thesis in

multiple applications such as mapping certain shortcut commands in Solidworks (and

other applications) to hand gestures.
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CHAPTER 1

INTRODUCTION

The purpose of this paper is to show the feasibility of using hand gestures, via

a wearable armband (Myo armband) with biosignal sensors, to control Computer Aided

Design (CAD) software such as Solidworks. This would allow for a more intuitive method

of control, thus bringing the experience of using such sophisticated software one step

closer to the average user [2].

1.1 Background

A biosignal could be defined as any signal in the human body that can be measured

and/or monitored. Electric biosignals are possibly the most used biosignals in the medi-

cal field. Examples include Electroencephalography (EEG), Electrocardiography (ECG),

Mechanomyography (MMG), and Electromyography (EMG). The biosignal of interest in

this paper is the EMG signal.

Electromyography (EMG), also referred as Electromyogram, is an electric biosig-

nal that reflects the contraction state of a muscle [3]. It can be acquired through two types

of sensors: Intramuscular EMG (Intra-EMG) sensors or Surface EMG (sEMG) sensors.

Intra-EMG sensors are needle-shaped electrodes that penetrate the skin and go into the

muscles for better conductivity. They are mostly used in diagnosing neurological disor-

ders [4]. The sEMG, on the other hand, is a flat sensor that is placed on top of the skin
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region over the muscle of interest. Since sEMG is non-invasive, it is a preferred method

for many applications.1

EMG signals can, if utilized correctly, tell a great deal about the human body. For

example, EMG signals can be recorded from a subject’s forearm and fed it into a Machine

Learning model that would then be trained to recognize what hand gesture is being made

at that given time. Hand Gesture Recognition (HGR) systems can learn from a variety of

sensor data, whether the data is in the form of images, audio signals or even biosignals.

1.2 Types of Hand Gesture Recognition Systems

1. Visual Based HGR: (V-HGR)

V-HGR systems use a variety of image capture devices to track the motion of the

hands and what gestures they are making. Such devices include depth-aware cam-

eras (structured light or time-of-flight cameras), single 2D camera, or even stereo

cameras. These HGR devices can either be fixed to a table2 [5] or fixed to a Head-

Mounted-Display (HMD)3.

[Devices: Leap Motion (figure 1a), Microsoft Kinect 2 (figure 1b), Nimble Sense]

2. Glove Based HGR: (G-HGR)

These gloves, whether wired or wireless, have inertial measurement units (IMUs)

to track the orientation of the hands, and flex sensors along the fingers to track

1From this point onward, any mention of EMG refers to sEMG unless stated otherwise.
2https://www.xbox.com/en-US/xbox-one/accessories/kinect
3https://www.leapmotion.com
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Figure 1: Devices used in V-HGR: (a) The Leap Motion controller, (b) The Microsoft
Kinect 2

individual finger movement; but require an additional Visual-Based device to track

position.

An intriguing fact about one of these data gloves in particular (Gloveone)4 is that

it gives haptic feedback (vibrations) to the fingers and the palm of the hand to sim-

ulate touch or force. This is highly desirable, whether in Virtual Reality (VR) or

Augmented Reality (AR) applications. Such systems are still currently under de-

velopment by some companies, while others are about to release their data gloves5.

[Devices: Gloveone, Manus VR Glove (HTC Vive), Cyberglove III, Essential Re-

ality P5 Gaming Glove]

3. Biosignal Based HGR: (B-HGR)

Until a few years ago, the only existing HGR systems for VR were mainly visual-

based or glove-based, which were still under development. A third category re-

cently emerged, which can be referred to as Biosignal based HGR system. This

paper will focus on the EMG based HGR (EMG-HGR) systems. In EMG-HGR

4https://www.neurodigital.es/
5https://manus-vr.com/
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systems, IMUs are used to track position and orientation; but the hand gesture is

tracked using the EMG sensors. The EMG sensors are electrodes that sense the

biosignal potential of the forearm muscles as they contract and relax to perform

different hand gestures. This HGR system6 is in the form of a wireless armband

worn on the forearm known as the Myo armband (figure 2).

Figure 2: The Myo Armband (Thalmic Labs)

A few research groups have come up with their own configurations [6], but so far

only one such system is available commercially (the Myo). It has been shown that

adding another modality, such as a Near-Infrared Spectroscopy (NIRS) sensor could

improve HGR accuracy [7].

As of March 14th, 2017 there are at least 9 VR gloves in development7. This

shows how HMI is shifting from using controllers towards using hand gestures. That is

why there is a need to build better, more reliable, HGR systems. Although the V-HGR

and G-HGR systems are more accurate as of now, the EMG-HGR provides an inconspic-

uous equivalent that also protects the user’s privacy (no cameras). Though more develop-

ment/improvements need to be made to EMG-HGR systems in order to consider them as
6https://www.myo.com/
7http://virtualrealitytimes.com/2017/03/14/full-list-of-glove-controllers-for-vr/
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reliable input methods.

1.3 Applications of Hand Gesture Recognition

HGR systems are already having a great impact on many research fields, includ-

ing: Human Machine Interaction (HMI), Sign Language Interpretation (SLI), and Intu-

itive Prosthetic Control (IPC).

• Human-Machine-Interaction (HMI)

In HMI, a user can control/interact with a computer in a way that is more natural

through hand gestures, by means of HGR systems. Combining this with voice

recognition, keyboards and mice may become obsolete in the near future.

• Sign Language Interpretation (SLI)

In SLI, HGR systems can help provide an equivalent to existing voice-based lan-

guage translation applications for the people who use sign language in their every-

day interactions [8].

• Intuitive Prosthetic Control (IPC)

Prosthetics’ physical designs have undergone many changes over the years as well

as did their method of control. IPC is a more modern method of prosthetic control

that seeks to use the EMG signals of subject’s distal muscles on the amputated

limb in order to control their prosthetic in a more natural fashion and significantly

improve the subject’s quality of life [9].
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1.4 Computer Aided Design

Computer Aided Design (CAD) is using a computer to create, modify, analyze, or

optimize a design [10]. CAD allows manufacturers and designers to bring their ideas into

a virtual reality before building them in the real world. This allows them to analyze their

designs and simulate how they may run in the real world in order to “debug” them before

sending them off to production.

There are many commercially available CAD software, with Autodesk’s Auto-

CAD and Inventor, and Dassault Systemes’s SolidWorks being among the most widely

used. These programs started off having command-line based control, which meant ev-

erything was drawn using just the keyboard as an input device. This method is efficient for

those trained to use it but comes off as complicated for the non-engineering/programming-

oriented individuals. Later there was a shift that involved adding the mouse for input.

This added more degrees of freedom to the users and hence made it easier, since using

the mouse to draw is slightly more intuitive than the keyboard. With these two devices, in

addition to the ever-evolving user interfaces and visuals, drawing in CAD has become a

lot easier to use than in the early days. With the emergence of environments such as VR

and AR, the method of interacting with CAD software will evolve once more to become

highly intuitive, to a point where a non-technical individual can learn to use it within min-

utes. As with other VR/AR applications, the HMI in future CAD will be by means of

hand gestures and HGR systems.
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1.5 Overview of EMG - Hand Gesture Recognition System

In an EMG-HGR system, the acquired EMG signals undergo some signal process-

ing before going into the Machine Learning Model. The involved signal preprocessing

includes scaling, filtering, projecting the data onto new dimensions, or obtaining any of

its statistical and frequency information. Once the preprocessing is complete, the signal

is then ready to go into the Machine Learning (ML) Model. The model extracts features

from the data, which are then used to classify the EMG signal sample. This classification

then triggers an action in the Myo-controlled system being used. An illustration of this

process is shown in figure 3.

Figure 3: Overview of an EMG-HGR System

The chosen hand gestures can be linked to specific keyboard keys using key bind-

ings. Afterwards, those keys can be used in a software’s shortcut menu (e.g. Solidworks)

to be mapped to their assigned actions.
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CHAPTER 2

RELATED WORK

Previous works on HGR with the Myo armband have used different methods for

each aspect of the proposed HGR systems, the aspects being the preprocessing methods

(features extracted), the machine learning models used, whether or not other modalities

were used alongside the EMG signals, and the different data sets collected and used. The

published variations in these aspects are discussed individually below.

2.1 Signal Preprocessing Methods

Once an EMG signal sample is acquired, it needs to be preprocessed in accordance

with the classification method to be used. For EMG signals, preprocessing may include:

full-wave rectification of the signal, normalization, and filtering (to remove noise from

power sources and other biosignals). After this is done, other EMG features can be ex-

tracted to be fed into the classifier. Extracted features in previous work include:

1. Mean Absolute Value (MAV)

2. Zero Crossings (ZC)

3. Waveform Length (WL)

4. Root Mean Square (RMS)

5. Wilson Amplitude (WAMP)
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6. Maximum (Max)

7. Minimum (Min)

8. Standard Deviation (SD)

9. Histogram (Hist)

10. Short-time Fourier Transform (STFT, A.K.A. Spectrograms)

11. Variance (VAR)

12. Discrete Wavelet Transform (DWT)

13. Amplitude Spectrum (AS)

14. Modified Mean Frequency (MF Mean)

15. Modified Median Frequency (MF Median)

16. Energy Ratio

17. MAV of DWT Coefficients

18. SD of DWT coefficients

19. Ratios between MAV of DWT coefficients

20. Pairwise-Inner-Product (PIP)

21. Teager Energy (TE)
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Table 1 shows the various features that have been most commonly extracted before

classification. Some of these feature will be explained further in Chapter 5. As seen in

Table 1, depending on the selected feature(s), acceptable results could be achieved with

using as many as 9 features as an input [2], or using just 1 [11]. A more detailed account

of Table 1 will follow.

Kerber et al [2] achieved a classification accuracy of 95% by extracting and com-

bining (at feature level) the MAV, ZC, WAMP, Hist, VAR, AS, MF Mean, MF Median,

and the Energy Ratio.

Gieser et al [12] achieved a classification accuracy of 89.95% (KNN), 90.75%

(SVM) by extracting and combining (at feature level) the MAV, RMS, Max, Min, and

VAR.

Luh et al [13] achieved a classification accuracy of 89.38% by extracting and

combining (at feature level) the MAV, SD, DWT, MAV of DWT coefficients, SD of DWT

coefficients, and the Ratios between MAV of DWT coefficients.

Lin et al [14] achieved a classification accuracy of 83% by extracting and fusing

(at feature level) the MAV, WL, RMS, PIP, and TE.

Allard et al [11] achieved a classification accuracy of 97.9% by extracting the

STFT (Spectrogram) feature.

Lobov et al [15] achieved a classification accuracy of 97.03% by extracting the

RMS feature.

Amirabdollahian et al [16] achieved classification accuracies of 94.9% (linear),

89.8% (polynomial), 31.1% (RBF) by extracting the Waveform length feature.
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Benalcazar et al [17] achieved a classification accuracy of 89.5% without extract-

ing any features. They only fully-rectified the signals then passed them through a low-pass

filter (LP(Abs(x))) then fed the samples to the classifier.

2.2 Machine Learning Models

As can be seen in Table 2, the best results were obtained by using Convolutional

Neural Networks (CNNs) [11], followed by Multilayer Perceptrons (MLPs) [15], SVM

[16], then the remaining statistical methods [2, 12–14]. A more detailed account of table

2 will follow.

Kerber et al [2] achieved a classification accuracy of 95% by means of a Support

Vector Machine (SVM) classifier.

Gieser et al [12] compared the k-Nearest Neighbor (KNN) classifier with the

SVM. They achieved a classification accuracy of 89.95% with the KNN classifier and

90.75% with the SVM classifier.

Luh et al [13] achieved a classification accuracy of 89.38% by means of a Multi-

layer Perceptron (MLP), also known as the Artificial Neural Network (ANN).

Lin et al [14] compared the ANN, KNN, Linear Discriminant Analysis (LDA),

Quadratic Discriminant Analysis (QDA), and SVM classifiers. They achieved a classifi-

cation accuracy of 83% with the ANN classifier, 78% with the KNN classifier, 81% with

the QDA classifier, and 81% with the SVM classifier.

Allard et al [11] achieved a classification accuracy of 97.9% by using 2 identical

Convolutional Neural Networks (CNNs).
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Lobov et al [15] achieved a classification accuracy of 97.03% by using an MLP,

with 2 layers (layer size 1 = 9, layer size 2 = 7).

Amirabdollahian et al [16] used an SVM classifier and compared different kernels,

namely the Linear, polynomial and Radial Basis Function (RBF) Kernels. They achieved

a classification accuracy of 94.9% with a linear kernel, 89.8% with a polynomial kernel,

and 31.1% with a Radial Basis Function (RBF) kernel.

Benalcazar et al [17] achieved a classification accuracy of 89.5% by means of a

KNN classifier, with Dynamic Time Warping for calculating distance between neighbors.

2.3 Sensor Fusion

Using motion data alongside EMG, the classification performance greatly im-

proves. As can be seen from Table 3, whether adding acceleration [18], or acceleration

and orientation data [19–21], the classification accuracy was always above 95%. The rea-

son for this is that the motion data accounts for the hand and/or forearm’s motion while

performing a hand gesture (in addition to the hand’s shape). A more detailed account will

follow.

Kerber et al [2] achieved a classification accuracy of 95% by only using Myo’s 8

EMG signals.

Gieser et al [12] achieved a maximum classification accuracy of 90.75% using just

the 8 EMG signals.

Luh et al [13] were able to achieve a classification accuracy of 89.38% using the

8 EMG channels.
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Lin et al [14] achieved an accuracy of 83% using just the 8EMG signals.

Allard et al [11] used the 8 EMG signals to achieve a classification accuracy of

97.9%.

Lobov et al [15] achieved an accuracy of 97.03% using only the 8 EMG signals.

Amirabdollahian et al [16] achieved classification accuracies of 94.9% (linear ker-

nel), 89.8% (polynomial kernel), and 31.1% (RBF kernels) by using just the 8 EMG sig-

nals.

Benalcazar et al [17] were able to achieve a classification accuracy of 89.5% using

the 8 EMG signals from the Myo armband.

Paudyal et al [19] achieved a classification accuracy of 95.36% after utilizing the

Myo’s IMU data (9-axis).

Yeh et al [18] achieved a classification accuracy of 97.9% when then added Myo’s

accelerometer data (3-axis).

Paudyal et al [20] achieved a classification accuracy of 97.7%. This was achieved

with data from 2 Myo armbands, utilizing all the signals from both armbands (EMG+IMU).

Kutafina et al [21] used 2 Myo armbands (EMG+IMU) to achieve a classification

accuracy of 98.3%.

2.4 Data Sets Used

The data sets collected for EMG classification vary in size as well as their other

aspects. They can be seen in Table 4. Their sizes varied from 5 subjects [13] up to 35 [12],

as well as their number of samples per class, ranging from 40 [15, 20] up to 4000 [13]. A
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more detailed account will follow.

Kerber et al [2] collected EMG data, using 1 Myo armband, from 14 subjects

performing 40 hand gestures, 5 times each. This resulted in each gesture class consisting

of 70 samples. All study participants in the study were able-bodied. (i.e. none of the

participants had amputated arms.)

Gieser et al [12] collected EMG data, using 1 Myo armband, from 35 subjects

performing 11 hand gestures, 3 times each. This resulted in each gesture class consisting

of 105 samples. It was not clear whether or not there were any amputees in the data set.

Luh et al [13] collected EMG data, using 1 Myo armband, from 5 subjects per-

forming 17 hand gestures, 800 times each. This resulted in each gesture class consisting

of 4000 samples. All study participants in the study were able-bodied.

Lin et al [14] collected EMG data, using 1 Myo armband, from 10 subjects per-

forming 9 hand gestures, 5 times each. This resulted in each gesture class consisting of

50 samples. All study participants in the study were able-bodied.

Allard et al [11] collected EMG data, using 1 Myo armband, from 18 subjects

performing 7 hand gestures. Each gesture class consisting of 70 samples (through win-

dowing). All study participants in the study were able-bodied.

Lobov et al [15] collected EMG data, using 1 Myo armband, from 10 subjects

performing 7 hand gestures, 4 times each. This resulted in each gesture class consisting

of 40 samples. All study participants in the study were able-bodied.

Amirabdollahian et al [16] collected EMG data, using 1 Myo armband, from 25

subjects performing 4 hand gestures, 5 times each. This resulted in each gesture class
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consisting of 125 samples. All study participants in the study were able-bodied.

Benalcazar et al [17] collected EMG data, using 1 Myo armband, from 10 subjects

performing 5 hand gestures, 60 times each. This resulted in each gesture class consisting

of 600 samples. All study participants in the study were able-bodied.

Paudyal et al [19] collected EMG and IMU data, using 1 Myo armband, from 9

subjects performing 26 hand gestures, 6 times each. This resulted in each gesture class

consisting of 54 samples. All study participants in the study were able-bodied.

Yeh et al [18] collected EMG and Accelerometer data, using 2 Myo armbands,

from 11 subjects performing 9 hand gestures, 10 times each. This resulted in each gesture

class consisting of 110 samples. All study participants in the study were able-bodied.

Paudyal et al [20] collected EMG and IMU data, using 2 Myo armbands, from 10

subjects performing 20 hand gestures, 4 times each. This resulted in each gesture class

consisting of 40 samples. All study participants in the study were able-bodied.

Kutafina et al [21] collected EMG and IMU data, using 2 Myo armbands, from

17 subjects performing 9 hand gestures, 3 times each. This resulted in each gesture class

consisting of 51 samples. All study participants in the study were able-bodied.

As it can be seen, there is not a lot of consistency in the data sets regarding the

number of test subjects, number of gestures collected, which gestures are collected, the

number of times a gesture is repeated, or the type of muscle contractions (isotonic/isometric).

Another issue that arises, due to the data sets being in-house (private), is the in-

ability of researchers to actually compare their work with one another. This is halting any

significant, quantifiable, progress to be made in EMG signal classification. A solution to
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this would be having an agreed-upon methodology/protocol for EMG data collection re-

garding the previously mentioned inconsistencies, the type of data collected, and the data

storage methods. This data set can incorporate able-bodied individuals, as well as am-

putees, and include gestures that would account for the different application of EMG Sig-

nal Classification. Having such a data set collected and publicly available would provide

researchers with a benchmark to compare their work. Only in this way can significant,

quantifiable progress be made in EMG classification.
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Table 1: Extracted EMG Features

Authors
Features [2] [12] [13] [14] [11] [15] [16] [17]
MAV X X X X
ZC X
WL X X
RMS X X X
WAMP X
Max X
Min X
SD X
Hist X
STFT X
VAR X X
DWT X
AS X
MF Mean X
MF Median X
Energy Ra-
tio

X

∗ X
∗∗ X
∗ ∗ ∗ X
PIP X
TE X
LPF(Abs(x)) X
Accuracy 95% 89.95% (KNN),

90.75% (SVM)
89.38% 83% 97.90% 97.03% 94.9% (lin-

ear), 89.8%
(polynomial),
31.1% (RBF)

89.5%

* MAV of DWT coefficients
** SD of DWT coefficients
*** Ratios between MAV of DWT coefficient
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Table 2: Machine Learning Methods Used

Author Classifier Type Accuracy
[2] SVM 95%
[12] KNN & SVM compared 89.95% (KNN), 90.75% (SVM)
[13] MLP (compared with fuzzy

logic)
89.38%

[14] ANN, KNN, LDA, QDA, SVM 83%(ANN), 78%(KNN),
80%(LDA), 81%(QDA),
81%(SVM)

[11] 2 cascaded identical CNNs 97.90%
[15] MLP (2 layers: Ls9+Ls7) 97.03%
[16] SVM (Linear, Polynomial, and

RBF Kernels)
94.9%, 89.8%, 31.1%

[17] KNN (with Dynamic time warp-
ing)

89.5%

Table 3: Sensor Fusion

Author Other Modalities Accuracy
[2] - 95%
[12] - 89.95% (KNN), 90.75% (SVM)
[13] - 89.38%
[14] - 83%
[11] - 97.90%
[15] - 97.03%
[16] - 94.9% (linear), 89.8% (polyno-

mial), 31.1% (RBF)
[17] - 89.5%
[19] 9-axis IMU data 95.36%
[18] 3 axis Accelerometer 97.90%
[20] 9 IMU channels (x2) 97.7%
[21] 9 IMU channels (x2) 98.30%
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Table 4: Collected Data sets

Author Able-
bodied

Subjects Classes Samples/
Class

Armbands
(Myo)

Other Modalities

[2] X 14 40 70 1 -
[12] N/A 35 11 105 1 -
[13] X 5 17 4000 1 -
[14] X 10 9 50 1 -
[11] X 18 7 70∗ 1 -
[15] X 10 7 40 1 -
[16] X 25 4 125 1 -
[17] X 10 5 600 1 -
[19] X 9 26 54 1 IMU
[18] X 11 9 110 1 Accelerometer
[20] X 10 20 40 2 IMU
[21] X 17 9 51 2 IMU
* using windowing.
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CHAPTER 3

CHOOSING HAND GESTURES

3.1 Identifying Possible Actions in Solidworks

Hand gestures help a great deal with human communication. They can have dif-

ferent meanings in different cultures and/or regions. Before choosing the hand gestures

for this project, the actions/commands to be used had to first be identified. In CAD soft-

ware (namely, Solidworks) there are different type of actions that can be done. These can

be divided into five categories:

• Manipulation:

This category involves manipulating an objects drawing in order to get a better look,

closer look, or overall look.

[Actions: Pan, Zoom, and Change Orientation]

• Drawing: (2D)

This category includes an assortment of 2D objects to select from to start drawing

with the mouse.

[2D Shapes: Lines, Rectangles, Polygons, Circles, Arcs, etc.]

• Editing: (2D)

This category includes actions that can be done to 2D drawings.
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[Actions: Fillet, Trim, Extend, Move, Copy, Delete, Scale, etc.]

• Editing: (3D)

Includes actions that can be done to 3D objects in addition to 2D drawings.

[Actions: Fillet, Extrude, Revolve, Sweep, Loft, etc.]

• Executive Actions:

Includes actions such as Confirm, Cancel, Undo, and Exit Sketch.

After identifying the possible CAD actions, it is possible to assign a hand gesture

to each action. This task is easier said than done since the human hand, starting from the

wrist to the finger tips, has 27 Degrees of Freedom (DoF). Each of DoF has a continu-

ous range of possible angles, giving an almost infinite number of possible hand gesture

variations. Adding other factors, such as two hands/their relative position/other context, it

becomes fairly difficult to categorize hand gestures. For this, a Hand Gesture Taxonomy1

had to be found or developed.

3.2 Hand Gesture Taxonomy

Previous studies in hand gestures focused on using hand motion, as a part of body

motion, to describe body language. The objective, for body language, was different in

nature than HMI with hand gestures since there was no need to characterize hand gestures

with such a detail as would be needed for HMI. This could be due to the fact that, in the
1A taxonomy is a technique of hierarchical classification. It is used to name defining class characteristics

that can be used to distinguish one class from another.
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case of body language, the observer is a human that can register and understand a variety

of hand movements, no matter how subtle, without any conscious thinking. In HMI, the

observer of hand gestures is a computer analyzing images, signals, etc. So in order to

define any gestures used in HMI, their characteristics would need to be as detailed (and

as clear) as possible. Vafaei’s work [22] made this possible. He described a Hand Gesture

Taxonomy that adopted previous work and adapted it to be used in HMI. His taxonomy

contained a wide variety of distinctive hand features that would make hand gestures easily

defined, and hence distinguishable.

His proposed taxonomy can be seen in table 5. A description of it is shown below.

The taxonomy is described by 11 dimensions, divided into two groups:

• Group 1: Gesture Mapping

These dimensions describe how gestures are mapped to tasks, this includes:

1. Nature:

Whether the gesture is manipulative, Pantomimic (i.e. imitates an action),

Symbolic (i.e. visually depicts a symbol), Pointing, or Abstract.

2. Form:

Whether the gesture is static (no motion/change in gesture), dynamic (has

motion/change in gesture), or a stroke (consists of tapping motion).

3. Binding:

Whether the gesture is bound to a certain object, reference point in a room, or

is world independent.
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4. Temporal:

Whether the gesture is continuous (i.e. action performed during gesture) or

discrete (i.e. action occurs after completing gesture).

5. Context:

Whether or not the gesture requires prior context.

• Group 2: Physical Characteristics

These dimensions describe the physical attributes of a gesture, including:

1. Dimensionality:

Whether the gesture occurs in 1 axis (linear translational motion), 2 axes (pla-

nar translational motion), 3 axes (translational/rotational motion in 3D space),

or 6 axes (gesture both translational and rotational motion in 3D space).

2. Complexity:

Whether the gesture consists of a simple gesture (simple) or a sequence of

hand shapes (Compound).

3. Body Part:

What body part(s) is involved when in performing the gesture.

4. Handedness:

Whether the gesture is performed by dominant hand, non-dominant, or both.

5. Hand Shape:

Description of hand shape, fingers, etc.
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6. Range of Motion (ROM):

Whether joint rotation is small or large, compared to joint’s ROM (i.e. whether

a gesture is subtle or not).

Table 5: Hand Gesture Taxonomy

Group Dimension Type
Gesture
Mapping

Nature Manipulative, Pantomimic, Symbolic, Point-
ing, Abstract

Form Static, Dynamic, Stroke
Binding Object-Centric, World-Dependent, World

Independent
Temporal Continuous, Discrete
Context In-Context, No-Context

Physical
Characteris-
tics

Dimensionality Single-Axis, 2-Axes, 3-axes, 6-Axes

Complexity Simple, Compound
Body Part Hand, Arm, Head, Shoulder, Foot
Handedness Dominant, Non-Dominant, Bi-Manual
Hand Shape e.g. Flat, Open, Bent, Index Finger, Fist,

ASL Shapes, . . .
ROM Small, Large

3.3 Chosen Hand Gestures and Their Actions

After researching the hand gesture taxonomy, it seemed best to choose well es-

tablished/recognized hand gestures instead of inventing new gestures. For this reason, 13

hand signs were selected from the American Sign Language (ASL) alphabet, in addition

to 4 other hand gestures, adding up to 17 hand gestures in total. Most of the gestures

were chosen due to them representing their mapped action, either visually or by other
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means. The chosen gesture can be viewed in figure 4 and their mappings can be found in

table 6. Then the characteristics of the selected hand gestures, according to the proposed

taxonomy, were logged. They can be found in tables A.1 - A.4 in the Appendix.

Figure 4: Visual Representation of Chosen Hand Gestures
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Table 6: Mapping of Chosen Hand Gestures

Command Category Task Hand Shape
Editing Fillet ASL - U

Chamfer Curved Palm
Trim ASL - V
Extend ASL - L
Move 3-finger pinch
Copy ASL - C
Delete ASL - Q
Scale ASL - F
Smart Dimensions ASL - I

Manipulate Change Orientation 5-finger pinch
Actions Confirm thumbs up

Undo ASL - Y
Cancel ASL - W
Exit Sketch ASL - B
Toggle Mouse Movement ASL - G
Mouse Click ASL - X

3D Draw Revolve ASL - O
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CHAPTER 4

DATA COLLECTION

4.1 IRB Protocol

Before collecting any data, approval was needed from the Institutional Review

Board (IRB) at the University of Missouri – Kansas City. To attain IRB approval, all

the investigators involved in the study, in addition to any research assistants, had to un-

dergo the Collaborative Institutional Training Initiative (CITI) training titled ”Group 1

Biomedical Investigator (UMKC and TMC)”. This training assures that the investigators

are knowledgeable in how to ensure the collected data’s privacy and the safety of the

individuals (or animals) that the data is collected from.

The investigative team involved in the research consisted of an associate profes-

sor (Principal Investigator), a masters student (Co-Investigator), and a bachelors student

(Research assistant). The co-investigator conducted the data collection sessions, while

the research assistant assisted with the data preprocessing and segmentation. The IRB

approval form can be found in Appendix-B.

Upon approval from the IRB at the University of Missouri – Kansas City, 12

volunteers participated in the study. EMG and IMU data was collected, via the Myo

armband, from the 12 subjects over the course of 3 visits. The procedures were explained

to the volunteers and they each provided written consent prior to starting data collection.

The consent form can be found in Appendix-B.
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4.2 Data Collection Process

In the beginning of a data collection session (i.e. visit), the volunteer would wear

the Myo armband on their right forearm in the manner recommended by Thalmic Labs,

the Thalmic Labs Logo facing upwards (forearm posterior) and the USB port facing the

wrist. Then it is allowed to ”warm up” for a few minutes. Once warmed up, the Myo

connects to the computer used for data collection. A syncing gesture, required whenever

the Myo is to be worn, is performed. The syncing gesture consists of a full wrist extension

at maximum force. The amplitude of maximal contraction is used to normalize the 8

signals. Once the Myo is synced and connected to the computer, then it is possible to

start using the MATLAB data collection script. The script generated a Graphical User

Interface (GUI) that allowed the co-investigator to key in the subject number, the gesture

number, the set1 number, and the visit number. It also showed a timer. It will be discussed

in the next section.

During the data collection session, the volunteer repeats a gesture 60 times, in sets

of 20, while wearing the Myo armband. This is repeated for the 17 hand gestures while

taking scheduled breaks in between sets and gestures. Extra breaks were also taken as

needed. This process was repeated for 3 visits with the 12 subjects.

The data sessions were also recorded with a camera mounted onto the computer

collecting the data. In its field of view were a secondary monitor, that had the GUI in

view, and the participant’s hand that the data was collected from. The purpose of the

video was to review the footage for any mistakes done during the session, so those parts

1Also referred to as ”section”.
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of the EMG data streams could be cut out.

4.3 Data Collection Script

A custom MATLAB script was written to be used in data collection. The script

was built upon an open-source MATLAB script, MyoMex2. Using MyoMex, a GUI was

designed in MATLAB that allowed the researcher to key in the subject number, visit

number, gesture number, and section number.

The section number made it possible to collect a gesture’s data over several time

periods (sets), allowing for rest periods in between. It could also allow for the collection

of one sample at a time, eliminating the need for later data segmentation. Although that

would make the data collection experience unpleasant for all those involved in the session.

The data collection GUI also contained keys to Start and Stop data recording and

a timer to keep track of time. The timer was used as a reference to use when cutting out

mistakes from the collected data. The GUI layout can be viewed in figure 5.

This script was meant to be used in order to streamline the data collection process

and, once packaged and available to public, would allow for other researchers to also

collect data using the Myo armband. This would also allow for standardization of the

EMG data collection process and allow other researchers to contribute to expanding this

data set into a larger, publicly available, benchmark data set for EMG-based Hand Gesture

Recognition.

2”https://www.mathworks.com/matlabcentral/fileexchange/55817-myo-sdk-matlab-mex-wrapper”
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Figure 5: Data Collection GUI

To decrease the burden on the subjects during data collection, data recording con-

tinued running through the session, even when mistakes were made. In addition to that,

if a sample for a certain gesture was forgotten, that sample would be performed later in

the session and a note would be made regarding it. The method of dealing with such

circumstances will be described in Chapter 5.

4.4 Collected Dataset

The final collected dataset consisted of 17 hand gestures, each repeated 180 times

(from 3 visits) per subject. This resulted in each gesture class having 2160 samples (60

times x 3 visits x 12 subjects), i.e. 36720 samples in total.
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CHAPTER 5

SIGNAL PREPROCESSING

Before feeding the EMG data into any of the ML algorithms, the collected data

first had to go through processing to have it in a format suitable for the ML scripts. This

included editing the collected data, segmenting it into individual samples, and extracting

features, which will be discussed in the following sections.

5.1 Sample Editing

After data collection, the first step of the data preprocessing was to edit the data:

cropping out the parts where the subject made any mistakes, such as performing the wrong

hand gesture or making a mistake in performing the hand gesture. For this, a custom-made

MATLAB scripts (Editing Script) was written to perform the Delete, Copy, and Paste

operations on the collected data. The Delete operation allowed to delete the parts of the

signal where mistakes, as mentioned above, were made. The Copy and Paste operations

allowed a forgotten sample (done at the end of the session) to be taken from the end of the

sample set and be pasted into its correct place, while ensuring that no sample exists twice

in the data set, to keep the number of samples per class per subject relatively consistent.

This script would start by plotting the 8 signals in 8 subplots (figure 6) and ask the

user to select which operation to perform: Copy, Delete or Paste. Then the user selects 1

of the 8 signals to perform this operation on by simply clicking on the subplot, directly
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from the figure window. Once a signal is selected, it is re-plotted, separately, in a larger

window. There the user can select a segment to copy by clicking on beginning and end

points straight from the plot. The same process applies for deleting a segment. There is

no limit on how many samples can be copied. For segment deletion, the user can keep

deleting until there are no data points left.

For pasting a segment, a figure with subplots with all the copied samples from that

gesture is shown. The user then selects a copied segment from the list and then selects a

point on the original signal plot as a starting point to insert the selected copied segment.

These operations were repeated until all the mistakes/notes were taken care of.

Figure 6: Original EMG Plots (Set of 20 samples)

To demonstrate the script’s output, the EMG sample set in figure 6 is used. The

first sample (first bi-directional spike, most visible in plot of signal 3) is copied, then the

next 19 samples are deleted. The first sample is then pasted 4 times after the first sample.
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This results in 5 repetitions of the first sample, as shown in figure 7.

Figure 7: Demo of Edited EMG Plots

5.2 Sample Segmentation

Since the EMG samples were collected in batches (20 at a time), the collected data

needed to be segmented into individual samples. An EMG Onset Detection algorithm

was implemented to automatically detect the time instances in which a hand gesture had

occurred and segment the collected data accordingly. The process was performed by

means of a custom-made MATLAB script.

The Segmentation script starts by plotting all 8 signals in 8 subplots – 20 samples

per subplot. Overlaying each signal plot is a low-pass filtered (LP) version of the fully-

rectified (FR) signal (with a specific starting cutoff frequency). Overlaying those are the

thresholds for each signal, which is the Mean Absolute Value (MAV) of the FR-LP signal
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multiplied by a certain starting weight. Using this threshold, a rectangular signal (set of

windows) was produced for each of the 8 signals. One of the 8 window sets will be used

to segment all 8 signals into individual segments. A preview is shown in figure 8. This

demonstrates how the example from the previous section (5 copied samples) would have

been segmented.

Figure 8: Segmentation of 5 copied samples from previous section: The blue line is the
edited signal. The red line is the LPF[ABS(x(t))] signal. The purple is the MAV multiplied
by a certain constant. The yellow line is the window set generated by thresholding.

The segmentation script allows the user to change the cutoff frequency and the

MAV-weight until at least one of the window sets appropriately divides the signal up into

20 distinct samples. Then the user can select which of the 8 window sets best segments

the signals into 20 samples. The selected window set would then be used for segmentation

over all 8 channels. After segmentation, the individual samples are saved.

Figure 9 shows how increasing the frequency from 1 Hz (figure 8) to 10 Hz can

change the 8 window sets.
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Figure 9: Segmentation of Demo samples using LPF frequency of 10 Hz.

The effect of increasing the MAV weight from 1.1 (figure 8) to 1.3 can be observed

in figure 10, the effect of decreasing it to 0.9 is shown in figure 11. It clearly shown how

increasing the MAV weight decreases the window widths and decreasing it increases the

window widths.

5.3 Preprocessed Data Set

After the preprocessing, some hand gestures and subjects were excluded due to

them being fairly difficult to segment using the segmentation script. Segmenting those

samples would require knowing the starting and ending points of each sample individu-

ally. Although cumbersome, it maybe done in the future to increase the size of the data

set.

The final preprocessed data set consists of 10 subjects performing 10 hand ges-

tures, each repeated 162 times (from 3 visits) per subject. This resulted in each gesture
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Figure 10: Segmentation of 5 copied samples from previous section (increasing MAV
weight from 1.1 to 1.3).

class having 1620 samples (54 times x 3 visits x 10 subjects) per gesture class, i.e. 16200

samples in total. The 10 hand gestures were the 5-finger pinch and the thumbs up gestures,

in addition to the ASL letters U, V, L, F, I, Y, B and G.

5.4 Generating the Final Data Set, Targets, and Labels

After the data was segmented it was possible to rearrange the data into the final

data set. All the samples were arranged in a 10x10 cell array such that each cell had the

samples of 1 subject for 1 gesture for all visits:

(54 samples) x (3 visits) = 162 samples per subject per gesture.

Once the data set cell array was created, 2 similar cell arrays were created with the

samples’ corresponding targets and labels. This would make it much easier when dividing

the data sets into training, validation, and testing sets.

The distribution of the sample lengths was plotted, showing that the sample lengths,
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Figure 11: Segmentation of 5 copied samples from previous section (decreasing MAV
weight from 1.1 to 0.9).

for all the data, ranged from 62 data points to 462 data points per channel. Their plot can

be seen in figure 12. The ML algorithms used cannot take samples of different lengths, so

all the samples were padded with zeros to make all their lengths equal to 462. The data

set was then normalized from 0 to 1.

Figure 12: EMG Sample Length Distribution
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5.5 EMG Features

Eleven feature sets, used in the literature, were extracted for each of the 8 signals.

They are:

1. Root Mean Square (RMS)

The root mean square for a channel (c) is calculated according to the following

equation, resulting in 1 value per channel:

RMS (c) =

√√√√ 1

w

w∑
i=1

xc (i)
2 (5.1)

2. Mean Absolute Value (MAV)

The mean absolute value for a channel (c) is calculated according to the following

equation, resulting in 1 value per channel:

MAV (c) =
1

w

w∑
i=1

|xc (i)| (5.2)

3. Variance (Var)

The Variance for a channel (c) is calculated according to the following equation,

resulting in 1 value per channel:

V ar (c) =
1

w

w∑
i=1

xc (i)
2 (5.3)

4. Mean Frequency (Freq-mean)

The mean frequency, in terms of the sampling frequency (fs=200 Hz) is calculated

for a channel (c), resulting in 1 value per channel.
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5. Median Frequency (Freq-med)

The median frequency, in terms of the sampling frequency (fs=200 Hz) is calculated

for a channel (c), resulting in 1 value per channel.

6. Integrated Absolute Value (IAV)

The Integrated Absolute value for a channel (c) is calculated according to the fol-

lowing equation, resulting in 1 value per channel:

IAV (c) =
1

w

w∑
i=1

xc (i) (5.4)

7. Wilson Amplitude (WAMP)

The Wilson Amplitude for a channel (c) is calculated according to the following

equation, resulting in 1 value per channel:

WAMP (c) =
w∑
i=1

f (|xc (i)− xc (i+ 1)|) (5.5)

where

f (xc) =

{
1 xc<0

0 otherwise
(5.6)

8. Frequency Amplitude Spectrum

The amplitude spectrum for a channel (c) is calculated according to the equation

below. The frequency bins are grouped into 5 bins of equal size and their average

computed, resulting in 5 values for a channel (c).

Ac =
W∑
j=1

|fftc (j)| (5.7)
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9. Energy of Approximate Wavelet Coefficients

A bi-orthogonal mother wavelet was used to decompose each signal into 8 scales.

For each scale, the approximate wavelet coefficients are generated, and their ener-

gies calculated, resulting in 8 values per channel. The wavelet transform equation

is shown below:

F (a, b) =

∫ ∞
−∞

f(x)ψ∗(a,b)(x)dx (5.8)

where the ∗is the complex conjugate symbol and function ψ is a mother wavelet

function.

10. All feature sets (1 to 9)

This feature set is a concatenation of the feature sets 1 to 9 for each sample, resulting

in 20 values per channel.

11. Spectrograms (reduced dimensionality)

This feature set resulted from generating a channel c’s spectrogram, using 8 seg-

ments and 50% overlap. Then the absolute values of all 8 spectrograms are con-

catenated, generating an 8-channel image.

A spectrogram is generated using the short-time Fourier Transform, described in

the following equation:

STFT (Xc(t))(τ, ω) ≡ Xc(τ, ω) (5.9)

Xc (τ ,ω) =

∫ ∞
−∞

xc (t)ω (t− τ) e−jωtdt (5.10)
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After generating the spectrograms, Principal Component Analysis (PCA) is used to

reduce their dimensionality using the principle components corresponding to 90%

of the covariance matrix, resulting in 536 values per channel (compared to the orig-

inal 1806 values per channel). (i.e. the spectrogram’s dimensionality was reduced

to less than a third of its original size.)

Upon generating a feature set for a given sample, it is then normalized from 0 to

1 across all channels (individually) to maintain consistency among subjects/gestures. The

generated feature sets, and their corresponding targets and labels, were then divided into

80%, 10%, and 10% for training, validation and testing respectfully in accordance with a

subject independent scheme. (i.e. using data of different subjects for training, validation

and testing.)
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CHAPTER 6

MACHINE LEARNING MODELS USED

Machine Learning (ML) models have been used on quite a variety of data, includ-

ing image data, audio, video and biosignals (e.g. EMG signals). Due to the small size of

the data set, the ML models used were statistical-based. These models were used individ-

ually and as in committees. In the future, when the data set reaches a sufficient size, other

ML models (such as deep learning models) can be used and compared. The models used

are described below.

6.1 Statistical-based Methods

Statistical-based methods are, as the name implies, methods that involve using a

data set’s populational distribution in order to classify it. The methods used are briefly

described below:

• Support Vector Machine (SVM):

SVMs binary classifiers work by projecting the data into a higher dimensional

space, in which the data become linearly separable, separating the data, then bring-

ing the boundary back to the main space and identifying each class’ edge examples,

A.K.A Support Vectors (SVs). Through this method, the margin between the SVs

and the boundary is then maximized, which maximizes generalizability. The SVM
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model used consists of 10 binary SVMs (in a one-vs-all coding scheme), each hav-

ing a Gaussian kernel, a kernel scale of 1, and a box constraint of 10.

• K-Nearest Neighbor (KNN):

The KNN classifier works by taking each sample in the data set and looking at its

“K” nearest neighbors. The class with the higher neighbor-subset in the nearest

neighbors is selected as the samples class. The KNN model used 3 nearest neigh-

bors, and a maximum of 50 data points in a leaf node and Euclidean distance as a

distance metric (in its KD-tree nearest neighbor search method).

• Linear Discriminant Analysis (LDA):

A Fisher LDA classifier projects the data into a subspace in order to maximize

the inter-class distance and intra-class scatter. The LDA model (Fisher) used has

a regularized linear discriminant. It uses 1 covariance matrix generated from the

whole data set.

• Naı̈ve Bayesian (NB):

The NB classifier classifies the data (using Bayes’ Rule) based on the data’s prior

probabilities and maximum likelihood. The NB model uses an unbounded Gaussian

kernel to model the data. The class prior probabilities are equal for all classes.

A 9-fold cross validation was performed using 8 subjects’ data for training and

1 subject’s data for validation in each fold. Performance of the 4 models was compared

by means of the Area Under Curve (AUC) and Equal Error Rate (EER) metrics obtained
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from the Receiver Operating Characteristic (ROC) curve on the validation data. Then all

models were tested using the testing data set, and the best performing model (overall)

was selected based on the best validation performance. The best performing model for

the test subject was selected based on the best performing testing model. The results will

be discussed in the next section.

At this point, it is worth pointing out that the classification results in Chapter 2

are reported in terms of accuracy, as apposed to that of this work, which are in terms of

ROC’s AUC and EER. The AUC and EER metrics are more generalized and would still

hold true in circumstances where the data set’s sample distribution is uneven among all

classes. To ease the comparison of this work with others, it is important to note that a

model’s classification accuracy can be easily obtained by the following formula:

Accuracy = 1− EER (6.1)

6.2 Committees

A scheme (and script) were developed to fuse the 4 models together, at score

level, to form committees. Although some tests were performed, the results were still

inconclusive. More tests on committees will be done in the future to find out whether or

not fusing these 4 classifiers would, in fact, yield a greater classification performance than

that of the individual models. The proposed score fusion scheme is described below:

This scheme would account for all possible combinations of the 4 models, adding

up to 11 possible combinations in total (6 permutations of 2 models + 4 permutations of
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3 models + 1 permutation of 4 models).

The combinations can be seen below:

Table 7: All possible combinations of the SVM, KNN, LDA, and NB models

Combination No. of Classifiers Classifiers
1 2 SVM, KNN
2 2 SVM, LDA
3 2 SVM, NB
4 2 KNN, LDA
5 2 KNN, NB
6 2 LDA, NB
7 3 SVM, KNN, LDA
8 3 SVM, KNN, NB
9 3 SVM, LDA, NB

10 3 KNN, LDA, NB
11 4 SVM, KNN, LDA, NB

For each possible combination, the scores were fused using the following 8 meth-

ods:

1. Weighted sum using EER:

Score weights are generated using the reciprocal of their ROC’s Equal Error Rate

(EERs), after rescaling the reciprocals to sum up to 1. Then a weighted sum of the

individual model scores is performed to obtain the final fused scores. This method

is described in mathematical form below:

Sw sum = sum (w1S1, . . . , wnSn) (6.2)

where

wn =
1

EERn

(6.3)
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2. Weighted sum using AUC:

Score weights are generated using their ROC’s Area Under Curve (AUCs), after

rescaling them to sum up to 1. Then a weighted sum of the individual model scores

is performed to obtain the final fused scores. This method is described in mathe-

matical form below:

Sw sum = sum (w1S1, . . . , wnSn) (6.4)

where

wn = AUCn (6.5)

3. Weighted sum using EER and AUC:

Score weights are generated using the product of their AUCs and the reciprocal

of their EERs and rescaling them to sum up to 1. Then a weighted sum of the

individual model scores is performed to obtain the final fused scores. This method

is described in mathematical form below:

Sw sum = sum (w1S1, . . . , wnSn) (6.6)

where

wn =
AUCn

EERn

(6.7)

4. Product:
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Scores from each model are multiplied together, element by element (also referred

to as Hadamard Product), to obtain final fused scores. This method is described in

mathematical form below:

Sprod = S1 ◦ . . . ◦ Sn (6.8)

5. Max:

Scores from each model are compared, element by element, and the maximum from

each element is used to obtain the final fused scores. This method is described in

mathematical form below:

Smax = max(S1, . . . , Sn) (6.9)

6. Min:

Scores from each model are compared, element by element, and the minimum from

each element is used to obtain the final fused scores. This method is described in

mathematical form below:

Smin = min(S1, . . . , Sn) (6.10)

7. Median

Scores from each model are compared, element by element, and the median from

each element is used to obtain the final fused scores. This method is described in
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mathematical form below:

Smedian = median(S1, . . . , Sn) (6.11)

8. Mean:

Scores from each model are compared, element by element, and the mean from

each element is used to obtain the final fused scores. This method is described in

mathematical form below:

Smean = mean(S1, . . . , Sn) (6.12)

Through these methods, a total of 88 committees (11 permutations x 8 score fusion

methods), would be evaluated using 9-fold cross validation and then their classification

performance can then be compared with that of the 4 individual models.
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CHAPTER 7

RESULTS AND DISCUSSION

After training the 4 classifiers with the 11 feature sets, and performing 9-fold

cross validation, the best performing models were evaluated with the testing data set. The

individual results will be discussed in the following sections.

7.1 Validation

The validation AUC and EER results for the 4 individual classifiers can be viewed

in tabular format in tables 8 and 9, respectfully. The validation AUCs and EERs can also

be viewed in figures A.1 and A.2 in the appendix1.

1. SVM

As can be seen in tables 8 and 9, the best performing feature set for the SVM

classifier is the spectrogram, with an average AUC 75.8% and EER of 29.87%.

It is followed by the feature set 10, with an average AUC of 69.18% and EER

of 35.04%. The third, fourth, and fifth best feature sets were the RMS (average

AUC=68.4%, EER=36.6%), the MAV (average AUC=68.39%, EER=36.7%), and

IAV (average AUC=68.39%, EER=36.7%) respectfully. They are followed by the

Var (average AUC=65.6%, EER=38.76%), Frequency Amplitude Spectrum (aver-

age AUC=66.04%, EER=38.01%), and the Energy of the Approximate Wavelet

1All AUC and EER results (for both figures and tables) are reported as a percentage
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Coefficients (average AUC=64.49%, EER=39.6%).

The Worst performing feature sets for this classifier were the Mean Frequency, the

Median Frequency, and the Wilson Amplitude, all three yielding average AUCs

under 55% and EERs above 45%.

2. KNN

From observing tables 10 and 11, it can be seen that the KNN classifier is the worst

performing classifier among the them all. Its best feature set, the spectrogram, only

yielded an average AUC of 63% and an average EER of 37.3%. Following that are

the MAV (average AUC=61.46%, EER=38.8%), the IAV (average AUC=61.46%,

EER=38.8%), and feature set 10 (average AUC=61.48%, EER=38.86%). Its third

best are the RMS (average AUC=60.65%, EER=39.56%) and the Frequency Am-

plitude Spectrum (average AUC=60.75%, EER=39.48%). Its fourth best are the Var

(average AUC=59.88%, EER=40.29%) and the Energy of the Approximate Wavelet

Coefficients (average AUC=59.4%, EER=40.94%).

Its worst performing feature sets were also the Mean Frequency, the Median Fre-

quency, and the Wilson Amplitude, all three yielding average AUCs under 55% and

EERs above 45%.

3. LDA

As can be seen in tables 10 and 11, it is clear that the LDA classifier is the best
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performing classifier overall, with its best performing feature set being the spectro-

gram. It yielded an average AUC of 76.35% and an average EER of 29.73%. Its sec-

ond best was the RMS (average AUC=75.68%, EER=30.83%), the MAV (average

AUC=75.25%, EER=30.81%), and the IAV (average AUC=75.7%, EER=30.81%).

Its third best performing feature sets were the VAR (average AUC=74.66%, EER=31.5%),

and the Frequency Amplitude Spectrum (average AUC=74.81%, EER=31.27%).

Surprisingly, feature set 10 only yielded an average AUC of 73.68% and an av-

erage EER of 31.77%, compared to the feature sets summing up to it. Following

that was the Energy of the Energy of Approximate Wavelet Coefficients (average

AUC=70.81%, EER=34.41%). Although still in the last 3 feature sets, the Mean

Frequency (average AUC=60.61%, EER=42.06%) and the Median Frequency (av-

erage AUC=58.95%, EER=43.3%) performed better with the LDA classifier than

with the other classifiers.

Its worst performing feature sets the Wilson Amplitude, yielding average AUC of

52.7% and EER of 48.2%.

4. NB

Looking at tables 10 and 11, one can see the best performing feature set for the

NB classifier is the RMS, yielding an average AUC of 73.26% and an average

EER of 31.6%. Closely following the RMS were the MAV (average AUC=72.75%,

EER=32.13%) and the IAV (average AUC=72.75%, EER=32.13%). The third best

performing feature sets was the Var (average AUC=71.39%, EER=33.42%) fol-

lowed by the frequency Amplitude Spectrum (average AUC=68.63%, EER=33.08%).
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The Energy of Approximate Wavelet Coefficients yielded an average AUC of 61.99%

and an average EER of 38.95%, followed by feature set 10 (average AUC=31.57%,

EER=38.58%), the Mean Frequency (average AUC=60.8%, EER=41.77%), and the

Median Frequency (average AUC=58.96%, EER=43.15%).

The worst performing feature sets for the NB classifier were the Wilson Amplitude,

yielding an average AUC of 53.14% and an average EER of 48.1%, and surpris-

ingly, the spectrogram, yielding an average AUC of 53.19% and an average EER of

47.59%.

Looking at the overall classification performance from all 4 classifiers, it can be

observed that the RMS, MAV, VAR and IAV feature sets all had similar performances.

This could suggest that these feature sets may be interchangeable, hence using all 4 of

them may be redundant.

It can also be observed that the Mean Frequency, the Median Frequency, and the

Wilson Amplitude feature sets had the worst overall performance among the 4 classifiers.

This poor performance may be due to the fact that the Myo armband collects data at a

sampling frequency of 200 Hz, while EMG signals are usually collected at a minimum of

about 1000 Hz [23]. This low sampling frequency could be causing some aliasing in the

collected data.

To compare classifiers, it can be seen that the best overall performers were the

LDA and NB, followed by the SVM classifier. The KNN classifier performed the worst

(overall) among the 4 classifiers.
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Table 8: Validation AUCs of Individual Classifiers

Feature set SVM knn LDA NB
RMS 68.44 ±0.62 60.65 ±0.38 75.68 ±1.02 73.26 ±1.16
MAV 68.39 ±0.70 61.46 ±0.40 75.25 ±1.03 72.75 ±1.14
Var 65.60 ±0.60 59.88 ±0.41 74.66 ±0.97 71.39 ±0.79
Freq. (mean) 52.20 ±0.01 52.14 ±0.02 60.61 ±0.09 60.80 ±0.12
Freq. (median) 51.39 ±0.01 51.88 ±0.01 58.95 ±0.07 58.96 ±0.08
IAV 68.39 ±0.70 61.46 ±0.40 75.25 ±1.03 72.75 ±1.14
W. Amplitude 50.51 ±0.01 50.30 ±0.01 52.70 ±0.11 53.14 ±0.13
Freq. Amp. Spect. 66.04 ±0.71 60.75 ±0.42 74.81 ±0.75 68.63 ±0.84
Energy (Wavelets) 64.49 ±0.37 59.40 ±0.18 70.81 ±0.68 61.99 ±0.43
FS1:FS9 69.18 ±0.80 61.48 ±0.26 73.68 ±0.97 61.57 ±0.44
Spectrogram 75.80 ±0.56 63.03 ±0.13 76.35 ±0.52 53.19 ±0.08

7.2 Testing

The testing AUC and EER results for the 4 individual classifiers can be viewed in

tabular format in tables 10 and 11, respectfully. The testing AUCs and EERs can also be

viewed in figures A.3 and A.4 in the appendix.

1. SVM

As can be seen in tables 10 and 11, the best performing feature sets from the

SVM classifier were the RMS (average AUC=83.56%, EER=24.8%), MAV (aver-

age AUC=83.23%, EER=24.37%), and the IAV (average AUC=83.23%, EER=24.37%).

Those were followed by the Var (average AUC=91.62%, EER=26.62%), the Fre-

quency Amplitude Spectrum (average AUC=80.47%, EER=25.63%), feature set 10

(average AUC=79.44%, EER=27.18%), and the Energy of Approximate Wavelet

Coefficients (average AUC=76.15%, EER=31.1%). The Spectrogram yielded an

average AUC of 62.24% and an average EER of 39.88%.
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Table 9: Validation EERs of Individual Classifiers

Feature set SVM knn LDA NB
RMS 36.64 ±0.34 39.56 ±0.36 30.83 ±0.60 31.60 ±0.57
MAV 36.71 ±0.39 38.81 ±0.38 30.81 ±0.55 32.13 ±0.53
Var 38.76 ±0.30 40.29 ±0.38 31.52 ±0.50 33.42 ±0.34
Freq. (mean) 48.42 ±0.01 47.92 ±0.02 42.06 ±0.05 41.77 ±0.07
Freq. (median) 49.00 ±0.01 48.13 ±0.01 43.30 ±0.03 43.15 ±0.04
IAV 36.72 ±0.39 38.81 ±0.38 30.81 ±0.55 32.13 ±0.53
W. Amplitude 49.55 ±0.01 49.74 ±0.01 48.22 ±0.05 48.05 ±0.07
Freq. Amp. Spect. 38.01 ±0.45 39.48 ±0.39 31.27 ±0.40 33.08 ±0.60
Energy (Wavelets) 39.60 ±0.17 40.94 ±0.17 34.41 ±0.34 38.95 ±0.34
FS1:FS9 35.04 ±0.53 38.86 ±0.24 31.77 ±0.55 38.58 ±0.38
Spectrogram 29.87 ±0.33 37.30 ±0.11 29.73 ±0.30 47.59 ±0.06

The Worst performing feature sets for the SVM classifier were the Mean Frequency,

the Median Frequency, and the Wilson Amplitude, all three yielding average AUCs

under 55% and EERs above 45%.

2. KNN

From tables 10 and 11, it is shown that the KNN its the worst performer, overall,

among the 4 classifiers during testing. Its highest performing feature sets were the

MAV (average AUC=72.17%, EER=28.66%) and the IAV (average AUC=72.17%,

EER=28.66%). Its second-best performers were the RMS (average AUC=70.65%,

EER=30.41%) and the Frequency Amplitude Spectrum (average AUC=80.47%,

EER=30.5%). Closely following were feature set 10 (average AUC=69.86%, EER=31.22%)

and the VAR (average AUC=69.22%, EER=31.67%). The Energy of Approximate

Wavelet Coefficients yielded an average AUC of 65.29% and an average EER of

35.37%.

54



The Worst performing feature sets for the KNN classifier were, as per usual, the

Mean Frequency, the Median Frequency, and the Wilson Amplitude, in addition to

the spectrogram, all yielding average AUCs under 55% and EERs above 45%.

3. LDA

Referring to tables 10 and 11, The LDA classifier has some reasonably well per-

forming feature sets, in comparison to the previous 2 classifiers. Its best perform-

ing feature set is the RMS, yielding an average AUC of 9103% and an average

EER of 16.84%. Closely following it were feature set 10 (average AUC=89.64%,

EER=18.73%), the IAV (average AUC=89.24%, EER=18.99%), the MAV (average

AUC=89.24%, EER=18.99%), and the VAR (average AUC=89%, EER=19.47%).

The Frequency Amplitude Spectrum feature set yielded an average AUC of 88.23%

and an average EER of 20.3%, and the Energy of Approximate Wavelet Coefficients

yielded an average AUC of 84.14% and an average EER of 24%.

The worst feature sets for the LDA classifier were the Mean Frequency (aver-

age AUC=63.59%, EER=40.44%), the Wilson Amplitude (average AUC=62.14%,

EER=41.62%), the Spectrogram (average AUC=60.1%, EER=41.75%), and then

the Median Frequency (average AUC=57.98%, EER=44.43%).

It is worth noting here that even the worst performing feature sets performed better

with the LDA classifier than they usually did with the other classifiers.

4. NB
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It can be seen from tables 10 and 11 that the NB classifier has one of the best per-

forming feature sets, among all the classifiers, for the testing evaluation. This best

feature set was the RMS, yielding an average AUC of 92.07% and an average EER

of 15.8%. It is closely followed by the Frequency Amplitude Spectrum (average

AUC=90.11%, EER=17.38%), the IAV (average AUC=89.46%, EER=18.51%), the

MAV (average AUC=89.46%, EER=18.51%), and the Var (average AUC=87.65%,

EER=20.51%). Feature set 10 yielded an average AUC of 80.36% and an average

EER of 21.16%, followed by the Energy of Approximate Wavelet Coefficients, with

an average AUC of 74.51% and an average EER of 28.59%.

The worst performing feature sets for the NB classifier were the Mean Frequency

(average AUC=63.7%, EER=40.44%), the Wilson Amplitude (average AUC=62.79%,

EER=41.15%), the Median Frequency (average AUC=57.26%, EER=45.46%), and

lastly the Spectrogram (average AUC=51.91%, EER=48.47%).

The testing results in this paper only reflect how the classifiers (and feature sets)

performed with 1 test subject’s data. Due to this fact, any observations here cannot be

generalized to their performance in the real world. Their general performance can only

really be observed by collecting data from a much larger number of subjects and evaluat-

ing based on that.

Keeping this fact in mind, it was observed that (for this test subject) the best per-

forming feature sets, overall, were the RMS, the MAV, the VAR, the IAV, and the Fre-

quency Amplitude Spectrum. The overall performance of the Energy of Approximate

Wavelet Coefficients and feature set 10 varied among the different classifiers, performing
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well for some (compared to other feature sets) while worse in others. The worst overall

testing performance resulted from the Mean Frequency, the Median frequency, the Wilson

Amplitude, and the Spectrogram feature sets.

So the overall best validation performance was achieved by the LDA classifier,

using the Spectrogram feature set, achieving an average AUC of 76.35% and an average

EER of 29.73%. Unfortunately, in testing this model, it only achieved an average AUC of

60.1% and average EER of 41.75%.

The best performing model for the test subject used was the NB classifier, with

the RMS feature set, achieving an average accuracy of 92.07% and an average EER of

15.81%.

It is worth restating that these testing results are not absolute, as the testing data

set consists of only one subject, hence it cannot be used to infer the performance of any

of these models in the real world.

Table 10: Testing AUCs of Individual Classifiers

Feature set SVM knn LDA NB
RMS 83.56 ±0.03 70.65 ±0.01 91.03 ±0.01 92.07 ±0.01
MAV 83.23 ±0.05 72.17 ±0.02 89.24 ±0.02 89.46 ±0.06
Var 81.62 ±0.05 69.22 ±0.01 89.00 ±0.01 87.65 ±0.03
Freq. (mean) 53.49 ±0.00 52.94 ±0.00 63.59 ±0.00 63.70 ±0.00
Freq. (median) 51.31 ±0.00 52.20 ±0.00 57.98 ±0.00 57.26 ±0.00
IAV 83.23 ±0.05 72.17 ±0.02 89.24 ±0.02 89.46 ±0.06
W. Amplitude 53.24 ±0.00 53.09 ±0.00 62.14 ±0.00 62.80 ±0.00
Freq. Amp. Spect. 80.47 ±0.03 70.32 ±0.01 88.23 ±0.02 90.11 ±0.05
Energy (Wavelet) 76.15 ±0.04 65.29 ±0.01 84.14 ±0.01 74.51 ±0.05
FS1:FS9 79.44 ±0.06 69.86 ±0.01 89.64 ±0.01 80.36 ±0.08
Spectrogram 62.24 ±0.01 53.38 ±0.01 60.10 ±0.01 51.91 ±0.08
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Table 11: Testing EERs of Individual Classifiers

Feature set SVM knn LDA NB
RMS 24.81 ±0.04 30.41 ±0.01 16.84 ±0.01 15.81 ±0.01
MAV 24.37 ±0.05 28.66 ±0.02 18.99 ±0.02 18.51 ±0.03
Var 26.62 ±0.05 31.67 ±0.01 19.47 ±0.01 20.51 ±0.05
Freq. (mean) 47.66 ±0.00 47.21 ±0.00 40.44 ±0.00 40.44 ±0.00
Freq. (median) 48.91 ±0.00 47.83 ±0.00 44.43 ±0.00 45.46 ±0.00
IAV 24.37 ±0.05 28.66 ±0.02 18.99 ±0.02 18.51 ±0.03
W. Amplitude 47.98 ±0.00 47.02 ±0.00 41.62 ±0.00 41.15 ±0.00
Freq. Amp. Spect. 25.63 ±0.01 30.50 ±0.01 20.30 ±0.02 17.38 ±0.03
Energy (Wavelet) 31.09 ±0.03 35.37 ±0.01 24.01 ±0.01 28.59 ±0.02
FS1:FS9 27.18 ±0.05 31.22 ±0.01 18.73 ±0.01 21.16 ±0.06
Spectrogram 39.89 ±0.01 46.58 ±0.01 41.75 ±0.00 48.47 ±0.07
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CHAPTER 8

CONCLUSION

This work proposed performing hand gesture recognition from forearm EMG sig-

nals, using a commercial EMG armband (the Myo armband). Once recognized, the hand

gestures can be mapped (using key binding) to certain command shortcuts in CAD soft-

ware (Solidworks). This would provide an alternative to visual or glove-based HGR sys-

tems used in new emerging HMI technologies, such as Virtual Reality (VR) and Aug-

mented Reality (AR).

EMG-based HGR has the advantages of being convenient (more so than glove-

based HGR) and non-invasive, in terms of privacy, compared to visual-based HGR. If

a high classification performance can be achieved, then the EMG-HGR systems could

provide a reliable alternative to the existing HGR systems used in AR and VR.

Several classifiers are evaluated to perform this task, namely the Support vec-

tor Machine, the K-Nearest Neighbor, the Linear (Fisher) Discriminant Analysis, and

the Naive Bayesian Classifier. These 4 classifiers were trained with and evaluated using

11 different feature sets, namely the Root Mean Square, the Mean Absolute Value, the

Variance, the Mean Frequency, the Median frequency, the Integrated Absolute Value, the

Wilson Amplitude, the Amplitude Frequency Spectrum, the Energy of the Approximate

Wavelet Coefficients, a concatenation of the previous 9 feature sets, and the Spectrogram.

A Hand Gesture Taxonomy was used to describe hand gestures in order to define

59



the hand gestures to be used in this work. Then a dictionary of 17 hand gestures was

selected, consisting of 13 American Sign Language (ASL) letter signs and 4 additional

signs. After identifying the possible executable actions in Solidworks, the chosen hand

gestures were assigned to suitable actions in Solidworks.

A data set of the selected hand gestures was collected. It consisted of EMG data

from 12 subjects performing the 17 hand gestures, 180 times per gesture, over the span of

3 visits. There were no restrictions on the time taken to perform each hand gesture sample.

Then the collected data underwent preprocessing and segmentation. The remaining data

set consisted of 10 hand gestures from 10 subjects, each containing 162 samples per

gesture. The previously mentioned feature sets were then extracted from the preprocessed

data set.

The data was divided into training (80%), validation (10%) and testing (10%) in

subject independent scheme. (i.e. 8 subjects for training, 1 for validation, and 1 for

testing.)

A 9-fold cross validation was performed on all the models (4 classifiers + 11 fea-

ture sets). The best validation performance was average AUC of 76.35% and an average

EER of 29.73% using the LDA classifier with the Spectrogram feature set. During testing,

this model achieved an average AUC of 60.1% and average EER of 41.75% (table 12).

The best performing model for testing was the NB classifier with the RMS feature

set, achieving an average accuracy of 92.07% and an average EER of 15.81% (table 13).

For its validation this model achieved an average AUC of 73.26% and an average EER of

31.6%.
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The reported testing results were only for 1 test subject and cannot be used to

infer the model’s real-world performance. A lot more data would need to be collected to

deduce a statistically-sound evaluation of these models in the real world.

Table 12: Best Model (Based on Validation): LDA (Spectrogram)

Set AUC EER
Validation 76.35 ±0.52 29.73 ±0.30
Testing 60.10 ±0.01 41.75 ±0.00

Table 13: Best Model (Based on Testing): NB (RMS)

Set AUC EER
Validation 73.26 ±1.16 31.60 ±0.57
Testing 92.07 ±0.01 15.81 ±0.01

Based on the validation performance, either of the SVM, LDA, or NB models

could be used for EMG-HGR. It is possible that combining these models, at score level,

can yield better classifications results. Different feature set combinations can also be

evaluated, in comparison with performance on individual feature sets.

This work proves that it is feasible to use forearm EMG signals for HGR and

that it shows potential of becoming an alternate modality for HGR. Although promising,

the EMG-HGR models need to achieve much better classification results in order to be

considered as a reliable input modality for HMI. To be able to infer anything statistically

significant, much more data would need to be collected and used to train and evaluate the

HGR models.
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CHAPTER 9

POSSIBLE FUTURE DIRECTIONS

As mentioned in 2.4, to have highly effective, intuitive EMG-HGR systems there

is a need to accelerate research in ML with EMG signals. An integral factor in this would

be to establish a benchmark data set for comparing results in EMG-HGR. Such a bench-

mark would have a statistically-significant number of subjects as well as an extensive

hand gesture vocabulary, all collected by means of agreed upon data collection standards

for forearm EMG signals. The data set collected in this study, although small, could serve

as a beginning of such a benchmark, or at least a stepping stone towards one.

Future plans include making this data set available to public, which could help

other researchers to apply their unique ideas to EMG signals without needing to worry

about collecting the data themselves. With some modifications to the data collection

script, it can also be uploaded online as a stand-alone package to allow other researchers

to contribute to the data set’s growth or even to for live EMG data streaming from the

Myo armband to evaluate their own ML models in real time.

One significant addition to the data collection script would be to add a motion

tracking system (glove/visual/etc.) to track the hand and finger digit movements. The

finger kinematics data could be used to ease the segmentation process. It would also

enable the possibility of attempting regression on the EMG signals to generate the hand

kinematics.
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EMG Data can also be collected from amputees in order to analyze it and compare

it with able-bodied subjects’ data to see how the same ML models perform on both data

types. This could help create more IPC models.

In addition to that, other EMG features can be extracted, and different feature

combinations can be evaluated through methods of feature subset selection. Other models

(e.g. Neural Networks and their variations) can be trained and compared or their scores

fused to find the best performing model. In addition to that, different committees can

be created from the models and then evaluated to attempt achieving better classification

results.
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APPENDIX A

TABLES AND FIGURES

Table A.1: Gesture Mapping and Description - Part1

Category Manipulate 3D Draw
Task Orientation Revolve Revolved

Cut
Group 1: Nature Manipulative Pantomimic Pantomimic
Gesture Form Static Static Static
Mapping Binding World-

Indep.
World-
Indep.

World-
Indep.

Temporal Discrete Discrete Discrete
Context n n y

Group 2: Dimension. 6-axis
Physical Complexity Simple Simple Compound
Characteristics Body Part hand+arm Hand Hand

Handedness Dom. hand /
Bimanual

Dom. hand Dom. hand

Hand
Shape

5-finger
pinch

ASL - O ASL - O,V
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Table A.2: Gesture Mapping and Description - Part2

Category Actions
Task Confirm Undo Cancel Exit

Sketch
Toggle
Mouse

Mouse
Click

Group 1: Nature Symbolic Abstract Abstract Abstract Pointing Pointing
Gesture Form Static Static Static Static Static Static
Mapping Binding World-

Indep.
World-
Indep.

World-
Indep.

World-
Indep.

World-
Indep.

World-
Indep.

Temporal Discrete Discrete Discrete Discrete Discrete Discrete
Context n n n n n n

Group 2: Dimension.
Physical Complexity Simple Simple Simple Simple Simple Simple
Characteristics Body Part Hand Hand Hand Hand Hand Hand

Handedness Dom.
hand

Dom.
hand

Dom.
hand

Dom.
hand

Dom.
hand

Dom.
hand

Hand
Shape

thumbs
up

ASL - Y ASL - W ASL - B ASL - G ASL - X

Table A.3: Gesture Mapping and Description - Part3

Category Editing (1)
Task Fillet/

Chamfer
Trim Extend Move

Group 1: Nature Pantomimic Pantomimic Pantomimic Manipulative
Gesture Form Static Static Static Static
Mapping Binding World-

Indep.
World-
Indep.

World-
Indep.

World-
Indep.

Temporal Discrete Discrete Discrete Discrete
Context n n n n

Group 2: Dimension.
Physical Complexity Simple Simple Simple Simple
Characteristics Body Part Hand Hand Hand Hand

Handedness Dominant
hand

Dominant
hand

Dominant
hand

Dominant
hand

Hand
Shape

ASL - U ASL - V ASL - L 3-finger
pinch
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Table A.4: Gesture Mapping and Description - Part4

Category Editing (2)
Task Copy Delete Scale Smart Di-

mensions
Group 1: Nature Symbolic Pantomimic Manipulative Abstract
Gesture Form Static Static Static Static
Mapping Binding World-

Indep.
World-
Indep.

World-
Indep.

World-
Indep.

Temporal Discrete Discrete Discrete Discrete
Context no no no no

Group 2: Dimension. - - 1-Axis -
Physical Complexity Simple Simple Simple Simple
Characteristics Body Part Hand Hand hand+arm Hand

Handedness Dominant
hand

Dominant
hand

Dominant
hand /
Bimanual

Dominant
hand

Hand
Shape

ASL - C ASL - Q ASL - F ASL - I
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Figure A.1: Validation AUCs of Individual Classifiers
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Figure A.2: Validation EERs of Individual Classifiers
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Figure A.3: Testing AUCs of Individual Classifiers
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Figure A.4: Testing EERs of Individual Classifiers
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APPENDIX B

IRB APPROVAL AND CONSENT FORMS
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