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SEARCHING IN A SORTED LINKED LIST AND SORT INTEGERS INTO A LINKED LIST 

 

Hemasree Koganti, Candidate for the Master of Science Degree 

University of Missouri – Kansas City, 2018 

ABSTRACT 

 

The research work consists of two parts. Part one is about Searching for an integer in a sorted 

Linked list. A tree is constructed in O(nloglogm/p+loglogm) time with p processors based on the trie 

with all the given integers. Additional nodes (O(nloglogm) of them) are added to the tree. After the 

tree is constructed, for any given integer we can find the predecessor and successor of the integer, 

insert or delete the integer in O(loglogm) time. The result demonstrates for the searching purpose we 

need not to sort the input numbers into a sorted array for this would need at least O(logn/loglogn) 

time while this algorithm for constructing the tree can run in O(loglogm) time with n processors.  

 

Part two is on sorting integers into a linked list. There are various best algorithms for sorting 

integers. The current research work applies the recent important results of sorting integers in 

(logn/loglogn) time. This algorithm takes “constant time” to sort integers into a linked list with 

nlogm processors and O(loglogm/logt) time using nt processors on the Priority CRCW PRAM 

model. 
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                                                          CHAPTER 1 

                                                     INTRODUCTION 

 

In computer science, algorithms play a crucial role. Time and space complexities are 

major concern in terms of CPU and memory usage, performance and efficiency. The 

performance of the developed system is determined by the efficient algorithm used by it. There 

are various algorithms available for various purposes. It is well know that n objects drawn from 

an arbitrary totally ordered universe can be sorted by n processors in O(log n) time, even given 

a very weak model of parallel computation such as the processor network of bounded degree 

(assuming, of course, that binary comparisons take unit time). This result is optimal in the 

sense that the product of the number of processors and the time used is O(n log n), to be 

compared with a lower time bound of  Ω(n log n) for any sequential algorithm operating 

according to the decision-tree model. Reif obtained a partial solution by giving a probabilistic 

algorithm that sorts n integers in the range {1, . . . . n}, uses O(n/logn) processors, and 

terminates within O(log n) steps with high probability. Some doubt remains as to whether his 

algorithm is able to sort larger numbers, the question hinging on whether the sorting can be 

made stable. We investigate the restricted sorting problem in a deterministic setting. The 

algorithms we have developed has overcome the memory usage and performance issues. To 

achieve this I have used the recent best results of Parallel binary search with delayed read 

conflicts [10] by H.Meijer and S.G.Akl where search can be done in O(logn/logw) time where 

w is the number of bits in a word. The computation model used in both the paper’s is the 

CRCW (Concurrent Read Concurrent Write) PRAM (Parallel Random-Access Machine) 

Model. On the CRCW PRAM memory is shared among processors and multiple processors 
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can read the same memory cell in one step and can write to the same memory cell in one step. 

When concurrent write happens, we use the Priority CRCW PRAM in which when multiple 

processors write the same cell in one step the highest indexed processor wins the write.  

In the part one, we are going to construct a search tree for the sorted n input integers using a 

trie. Such a tree can be constructed in O(nloglogm/p+loglogm) time for n integers in {0, 1, …, 

m-1} using p processors on the CRCW (Concurrent Read Concurrent Write) PRAM (Parallel 

Random-Access Machine) [8]. We will add O(loglogm) nodes for each node in the tree to 

facilitate searching. After the tree is built then searching among these n input integers can be 

done in O(loglogm) time. The technique presented in this paper has been used to achieve an 

O(n/p+loglogloglogm) time CRCW PRAM merging algorithm [7]. 

 

This has been published as a research paper to “International Conference on 

Information Technology 2018, Bhubaneshwar, India”. The paper was accepted to the 

conference with Paper Id 2. 

 

In Algorithm 2, we show that n integers in {0, 1, …, m-1} can be sorted into a linked 

list in constant time using nlogm processors on the Priority CRCW PRAM model, and they 

can be sorted into a linked list in O(loglogm/logt) time using nt processors on the Priority 

CRCW PRAM model.  

 

We use a trie of height logm to sort integers into a linked list. We use A[i][j] to represent 

the j-th node of the trie at level i. When i=0, A[0][j] is a node at a leaf. When i>0 then A[i-

1][2j] is the left child of A[i][j] and A[i-1][2j+1] is the right child of A[i][j]. 0 is labeled on the 
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edge from a parent to its left child and 1 is labeled on the edge from a parent to its right child. 

The label reads from the root of the trie to leaf A[0][j] is the binary representation of j.  Without 

loss of generality we assume that logm is a power of 2 as when this is not true we use the 

smallest power of 2 greater than logm in place of logm.  

When nt processors are used the trie with height logm is divided into t section’s and 

each number a at the leaf of the trie will use 1 of the t processors (concurrently with processors 

for other leaves of the trie) to write into the A[ilogm/t][a div 2ilogm/t], i=1, …, t. 

  



                                                                           4 
 

 

CHAPTER 2 

 

SEARCHING IN A SORTED LINKED LIST 
 

2.1    Introduction 

 
 

This chapter explains the algorithm 1 of my research. Under the guidance of Dr. Yijie 

Han I have submitted the paper to “The International Conference on Informational 

Technology, Bhubaneshwar, India”. The paper was accepted and presented in the conference 

with Paper Id 2. In next sections lets understand our work on this topic. 

 

Many researchers have studied the search problem [1][2][3]5][9][10]. It is well 

known to find the predecessor and successor of a number in a sorted array of n numbers in 

O(logn) time use binary search. If these numbers are integers, then faster algorithms are 

known. When numbers are integers search can be done faster. In [10] it is shown that search 

can be done in O(logn/logw) time where w is the number of bits in a word and in [3] it is 

shown that search can be done in 𝑂 (√
𝑙𝑜𝑔𝑛

𝑙𝑜𝑔𝑙𝑜𝑔𝑛
) time. 

 

In this paper we are going to construct a search tree for the sorted n input integers using 

a trie. Such a tree can be constructed in O(nloglogm/p+loglogm) time for n integers in {0, 1, 

…, m-1} using p processors on the CRCW (Concurrent Read Concurrent Write) PRAM 

(Parallel Random Access Machine) [8]. We will add O(loglogm) nodes for each node in the 

tree to facilitate searching. After the tree is built then searching among these n input integers 

can be done in O(loglogm) time. The technique presented in this paper has been used to achieve 

an O(n/p+loglogloglogm) time CRCW PRAM merging algorithm [7]. 
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2.2 Building the Search Tree 

 

We build a binary tree for the m  input integers based on a trie. A trie is a full binary 

tree with m=2k leaves 0, 1, …, m-1. Each edge of the trie is labeled with a 0 or a 1. The labels 

on the edges from the root to leaf e is the binary representation of e. An internal node e of the 

trie is labeled by the labels reads from the root to e. Thus the trie has height k=logm. The level 

of a node e in the trie is the length of the path from e to one of its leaves. Integer i will be 

placed at bucket i in the trie. After we place all input integers at the leaves of the trie we can 

delete all internal nodes of the trie that has only one child (except the root), then the resulting 

tree is the base tree we want to construct. 

For example, let m=16 and the input integers are 3, 6, 10, 11. The trie is shown in fig. 1. 

                                                            fig.1:  Example of a Trie 



                                                                           6 
 

A parallel algorithm is given in [6] to shown how to sort input integers into a linked 

list in O(loglogm) time using n processors on the CRCW PRAM. Sorting integers into a 

linked list is to link the integers in the increasing order. The basic structure of the algorithm 

in [6] is built on a trie. Let m=2k.  The algorithm in [6] use the m leaves of the trie as buckets 

and first drop the n input integers into buckets and thus integer i is dropped into bucket 

A[0][i]. One processor is associated with each input integer. Then integer i tries to write into 

node A[logm/2][i div 2^{(logm/2)}] in the trie. This node is in the middle level of the trie. 

Multiple leaves could write into the same node and concurrent write is used to allow the 

highest index processor that attempts to write into the node succeeds in writing and other 

processors fail. This partition the sorting problem in the trie into multiple partitions. The 

integers win the write will move up and work on the upper trie with height logm/2. The 

integers lose the write will move down and work on the lower tries, as shown in fig.2. 

  

             fig.2: Trie with Step numbers  
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Recursion is then used to solve the sorting problem in the upper trie and in the lower 

tries. When recursion return’s we assume that nodes in the upper trie is linked into a linked list 

and the nodes in each lower trie also have been linked into a linked list. If there are nodes in a 

lower trie then one of them, integer e, went up in the concurrent write before. e is now 

compared with all the integers in this lower trie. Because all the remain integers in this lower 

trie have been linked into a linked list and therefore e can find its insertion point in the linked 

list. The linked list in the upper trie is then used to link the linked lists in the lower tries into 

one linked list. Except the recursion the time used in the previous paragraph and this paragraph 

is constant with n processors. Because there are loglogm levels of recursion this algorithm [6] 

sorts n integers into a linked list in O(loglogm) time.  

 

To build the tree needed by us we can, in the recursion, build the tree in the upper trie 

and each of the lower tries. Then we have to insert the integer e that wins the write and went 

up in the upper trie into the tree built in the lower trie. This is done by first inserting e into the 

linked list in the lower trie. Then compare e with its two neighbors b1 and b2 in the linked list. 

We do   c1=e XOR b1 and c2=e XOR b2, where XOR is the bitwise exclusive-or operation. If 

c1< c2 we will let c=c1 and b=b1 else let c=c2and b=b2. Let the i-th bit (counting from the least 

significant bit starting at 0th bit) of c be the most significant bit of c that is 1. Then we need to 

insert the node 𝑑 = 𝐴[𝑖 + 1]⌊𝑏/2𝑖+1⌋ in the trie as the parent of e into the tree. d’s other child 

is the ancestor of b at the highest level less than i+1.  
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2.3 Augmenting the Tree 

 

The tree we built in Section 2.1 needs to be augmented for the searching purpose. Let 

e be a node in the tree and p(e) be its parent. Let e be at level l(e) of the trie and p(e) at level 

l(p(e)) of the trie. If l(p(e))-l(e)=2kand l(e) mod 2k=0 then we do not need add any node between 

e and p(e). If 2k< l(p(e))-l(e) < 2k+1 or l(p(e))-l(e)=2k and l(e) mod 2k 0 then we need to add 

additional nodes between e and p(e). Let a1 be the node with l(a1) mod 2k =0 and a1 is a 

descendent of p(e) and an ancestor of e in the trie. We add a1 as the child of p(e) and the parent 

of e into the tree. Let b=bkbk-1bk-2…b1b0 be the binary representation of l(p(e))-l(a1). Let bt1be 

the most significant bit of b that is 1. We will add node a2 with l(a2)=l(a1)+2bt1 and in the trie 

a2 is a descendant of p(e) and an ancestor of a1 to the tree. p(e) will become the parent of a2 

and a1 will become the child of a2. Let bt2 be the second most significant bit of b that is 1. We 

will add a3at level l(a1)+2bt1+2bt2 and in the trie a3 is a descendant of p(e) and an ancestor of a2 

into the tree. a2 will become the child of a3 and p(e) will become the parent of a3, and so on. 

Thus if there are c bits in b that are 1’s then we will added c nodes between e and p(e). (for the 

least significant bit in b that is 1 we do not need to add a node because this node is p(e).) We 

have thus added at most loglogm nodes for each node e in the tree. When we use n processors 

these nodes can be added in O(loglogm) time. 

 

The fig. 3 shows an example how the tree is augmented. Each node e in the tree has to 

know the smallest leaf (leftmost leaf) and the largest leaf (rightmost leaf) for the subtree 

rooted at e. We can use two passes to gain this information. The first pass will build the 

linked list and in the second pass when integers in a lower trie try to write the node in the 
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middle level of the trie we will let the smallest leaf and the largest leaf on the linked list in 

the subtrie write. This will have the leftmost and rightmost leave in the subtree write the 

information to the root of the subtree.   

 

 

2.4  Searching 

After the tree is built, for a given input integer e we can find the predecessor of e, the 

successor of e in the tree in O(loglogm) time. We can also insert e into the tree or delete e from 

the tree in O(loglogm) time. To find the predecessor (successor) for e, we first visit 𝐴[𝑖 

𝐴[𝑖 + 1]⌊𝑒/2(𝑙𝑜𝑔𝑚)/2⌋ in the trie. That is, we visit the node that is the ancestor of e in the 

middle level of the trie. If there is a tree node there we then go down and visit ⌊𝑒/2(𝑙𝑜𝑔𝑚)/4⌋,else 

we then go up andvisit⌊𝑒/2(3𝑙𝑜𝑔𝑚)/4⌋. Each time the range of the levels of trie will be cut by 

half. Thus, in O(loglogm) time we will find the node b in the tree that e branches out. If e 

branches to the right, then the rightmost leaf r of the tree rooted at b is the predecessor of e and 

the successor of r is the successor of e. If e branches to the left then the leftmost leaf r of the 

tree rooted at b is the successor of e and the predecessor of r is the predecessor of e. To delete 

node e, we first find e in the tree in O(loglogm) time. We then delete e. The supplemental 

nodes added for e should also be deleted. Now e’s parent p(e) should have another descendant 

b and supplemental nodes added for b. These supplement nodes and p(e) need to be deleted if 

2k l(p(e))-l(b) <2k+1 and l(p(e)) mod 2k 0. Now O(loglogm) nodes may need to be added 

between b and b’s current parent. To insert a node e, we first find the predecessor p of e and 

the successor s of e. We then insert e in to the tree just as we insert the integer that went up and 

to be inserted into the lower trie. 

  



                                                                           10 
 

                          

 

        fig.3: Final Trie  
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CHAPTER 3 

SORT INTEGERS INTO A LINKED LIST 

 

3.1 Introduction 

 

It is well known that (logn/loglogn) is a time lower bound for sorting integers [1]. However, 

if we sort integers into a linked list this lower bound needs not hold. Sorting integers into a 

linked list is to let smaller integers precedes larger integers in the linked list. As in approximate 

sorting [23][24] we may allow padding when sort integers into a linked list. It is known that n 

0-1’s can be sorted into a linked list by chaining 0’s into a linked list and 1’s into another linked 

list. This can be done in α(n) time using n/α(n) processors [25], where α(n) is the inverse 

Ackermann function. Sort padded 0-1 into a linked list takes constant time with n processors. 

This can be done by making a dummy 0 for each 1 and a dummy 1 for each 0 and then chaining 

0’s and dummy 0’s into a linked list and 1’s and dummy 1’s into another linked list. Sort 

integers into a linked list has resulted faster and efficient parallel algorithms for sorting integers 

in an array [19]. In this paper we show that n integers in {0, 1, …, m-1} can be sorted into a 

linked list in constant time using nlogm processors on the Priority CRCW PRAM model, and 

they can be sorted into a linked list in O(loglogm/logt) time using nt processors on the Priority 

CRCW PRAM model. The computation model used in this paper is the CRCW (Concurrent 

Read Concurrent Write) PRAM (Parallel Random-Access Machine) Model [8]. On the CRCW 

PRAM memory is shared among processors and multiple processors can read the same 

memory cell in one step and can write to the same memory cell in one step. When concurrent 

write happens, we use the Priority CRCW PRAM [6] in which when multiple processors write 

the same cell in one step the highest indexed processor wins the write. We use a trie of height 

logm to sort integers into a linked list. We use A[i][j] to represent the j-th node of the trie at 
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level i. When i=0, A[0][j] is a node at a leaf of the trie. When i>0 then A[i-1][2j] is the left 

child of A[i][j] and A[i-1][2j+1] is the right child of A[i][j]. 0 is labeled on the edge from a 

parent to its left child and 1 is labeled on the edge from a parent to its right child. The label 

reads from the root of the trie to leaf A[0][j] is the binary representation of j.  Without loss of 

generality we assume that logm is a power of 2 as when this is not true, we use the smallest 

power of 2 greater than logm in place of logm. A trie of 16 leaves is shown in fig. 5. When nt 

processors are used the trie with height logm is divided into t section’s and each number a at 

the leaf of the trie will use 1 of the t processors (concurrently with processors for other leaves 

of the trie) to write into the A[ilogm/t][a div 2ilogm/t], i=1, …, t, where div is the integer division. 

 

 

3.2 The Algorithm 

 

 

With nlogm processors 

 
Let I be the input array of n integers in {0, 1, …, m-1}. I[i] is first placed in A[0][I[i]] at the 

leaf of the trie. We assume that all input integers are distinct for otherwise we will replace I[i] 

with I[i]*n+i as the input integer. The input integers and processors assigned to them are shown 

in fig. 4.  

 

  fig. 4: Processors assigned to each Input Integer 
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         fig. 5: Example of a Trie 

 

  We will build a tree for the input integers based on the trie. An interior node of the tree 

is a node in trie such that the node has a left child and a right child. Node having a single child 

in the tree is removed. Such a tree is shown in fig 6. The reason such a tree is built is because 

the tree can facilitate searching and finding the predecessor and successor of an integer [26]. 
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     fig.6: The Nodes with one child are removed 

 

This tree is constructed in constant time with nlogm processors on the Priority CRCW PRAM 

and in O(loglogn/logt) time with nt processors on the Priority CRCW PRAM. When we use 

nlogm processors we allocate logm processors for each input integer. I[i] will use the j-th 

processor, 1≤j≤logm, at A[j][I[i] div 2j], where a div b = a/b. Processors at A[i][j] will first 

use concurrent write to write it’s processor id (index) into A[i][j]. Then the processor(s) at 

A[i][j] will check if A[i-1][2j] and A[i-1][2j+1] are written. This determines whether A[i][j] 

has one child or has two children. We will label A[i][j] with 1 if it has two children and label 

A[i][j] with 0 if it has one child. The leaves are always labeled with 1. This situation is depicted 

in fig. 7.  
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    fig 7: All the Nodes are shown 

 

Now for the root of A and each node in A that is labeled with 1 we need to find its 

nearest descendants that are labeled with 1. Say A[i][j] is labeled with 1 and processor p wins 

the concurrent write at A[i][j]. Let A[i’][j’] and A[i’’][j’’] are the two nearest descendants of 

A[i][j] that are labeled with 1’s. If an integer a is a leaf of A[i’][j’] (A[i’’][j’’]) then because 

we use Priority CRCW PRAM the processors associated with a win the write at A[i’][j’] 

(A[i’’][j’’]) and all the ancestors of A[i’][j’] (A[i’’][j’’]) up to A[i][j]. And another integer b at 

the leaf of A[i’’][j’’] (A[I’][j’]) and the processors associated with b win the write at A[i’’][j’’] 

(A[I’][j’]) and all ancestors of A[i’’][j’’] (A[I’][j’]) up to A[i][j]. If the processor associated 

with a (b) wins the concurrent write at A[i][j] then we will use the logm processors associated 

with b (a) to link A[i’][j’] and A[i’’][j’’] to A[i][j].  
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To link A[i’][j’] to A[i][j], these logm processors will form an array of size B[0..logm]. 

B[c], i≤c≤logm, will be set to -1. B[c], 0≤c<I, will be set to c if A[c][j’’’] is labeled with 1, 

where A[c][j’’’] is an ancestor of A[i’][j’] in the trie, it will be set to -1 if A[c][j’’’] is labeled 

with 0. Then we use logm processors to find the maximum in array B. This takes constant time 

with logm processors [2]. The way to link A[i’’][j’’] to A[i][j] is similar. Thus, in constant time 

we build the tree for the input integers. The tree built is shown in fig. 6 

 

To chain the integers into a linked list, we need to let each leaf a in the tree find the 

lowest ancestor in the tree that has a left (right) child which is not an ancestor of a. For leaf a 

to find the lowest ancestor in the tree that has a left child which is not an ancestor of a, we will 

use the logm processors for a, if a’s ancestor at level l in trie is not a node in the tree (i.e. it has 

one child) then processor l will write logm+1 into array B[l]. Processor l will write logm+1 

into B[l] also if the ancestor a’ of a at level l of the trie has its left child which is an ancestor 

of a. Otherwise the ancestor a’ of a at level l of the trie has its left child which is not an ancestor 

of a and processor l will write l into B[l]. Then we need to find minimum in array B which 

takes constant time with logm processors [2]. If leaf a locates b as the lowest ancestor in the 

tree that has a right child which is not an ancestor of a and a’ locates b as the lowest ancestor 

in the tree that has a left child which is not an ancestor of a’’ then we link a to a’. This builds 

the linked list for the input integers in constant time. 

 

Theorem 1: n integers in {0, 1, …, m-1} can be sorted into a linked list in constant time with 

nlogm processors on the Priority CRCW PRAM.  
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As we noted [6] that the tree built here can be augmented to facilitate predecessor and 

successor queries and insertion in O(loglogm) time.                    

 

With nt processors 

When we have nt<nlogm processors, we will assign t processors to each input integer. 

Integer a will be dropped at A[0][a] and the i-th processor for a will write at A[ilogm/t][a div 

2ilogm/t].  Then processors for a will find the highest level in the trie that they win the write. Let 

this level be level l. Then all the t processors allocated to a will move to A[llogm/t][a div 

2llogm/t].  This cuts the trie into t sections as shown in fig. 8. Now the linked list in each subtrie 

is built recursively. 

 

After we return from the recursion the linked list for each subtrie is built. We said that 

processors for integer a was winning at A[llogm/t][a div 2llogm/t] and now the linked list for the 

subtrie (with logm/t  levels) rooted at A[(l-1)logm/t][ a div 2(l-1)logm/t] is built. Now a uses the 

b-th processor and processors for the linked list at the subtrie rooted at A[blogm/t][a div 2blogm/t] 

to insert it into the linked list at the subtrie rooted at A[blogm/t][a div 2blogm/t]. Note that if the 

subtries rooted at A[blogm/t][a div 2blogm/t]  and A[(b+1)logm/t][a div 2(b+1)logm/t]  are empty 

then a will not insert into the empty linked list for the subtrie rooted at A[blogm/t][a div 

2blogm/t]. Then the linked lists at t different levels will be joined into one linked list. This is done 

by letting (the largest (smallest) integer in) each linked list in the subtrie rooted at r’ find the 

lowest ancestor having a leftmost right (rightmost left) child which is not an ancestor of r’. 

Then chaining the linked list as in the previous section. Because there are O(logm/logt) levels 

of recursion and thus we build the linked list for the input integer in O(logm/logt) time.   
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Theorem 2: n integers in {0, 1, …, m-1} can be sorted into a linked list in O(logm/logt) time 

with nt processors on the Priority CRCW PRAM. We can then build the tree for the linked list. 

This is done by assuming that when the recursion returns both linked list and the tree for the 

subtries are built. Because the linked list is built we can then insert the (processor associated 

with the) integer winning the write to the root of the subtrie back into the linked list in constant 

time by comparing all integers in the linked list with this winning integer. After inserting into 

the linked list we can compare this winning integer with its two neighboring integers to 

determining the lowest ancestor of this winning integer with its two neighbors. Thus this 

winning integer can be inserted into the tree in constant time. Then (the largest (smallest) 

integer in) in the tree of the subtrie rooted at r’ find the lowest ancestors a’ (a’’) that has a 

leftmost right child c’ (rightmost left child c’’) which is not an ancestor of  r’. The root of the 

tree in the subtrie rooted at r’ will link to either a’ or a’’, whichever is at lower levels of the 

trie. This builds the tree for the trie. 
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                         fig.8: Trie with ‘a’ sections 

 

 

3.3  Building a Tree Based on a Trie: An Example 

 

 
We will build a binary tree for the n input integers based on a trie. For suppose we have 6 input 

integers 0,5,3,9,4 and 8 we assign a processor to each integer as shown in Fig. 2. and the 

processor will drop the integer at it’s position as in Fig 4. Priority CRCW approach is used and 

the highest indexed processor will win the write and move upward. The same approach is used 

at every level and the highest index processor with its respective integer will reach the root like 

shown in Fig 2. The height of the trie will be logm. The intermediate nodes are removed and 

only the highest-level node will be placed in the tree as in Fig. 9. 
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  fig. 9: Intermediate levels are removed 

 

For example (4,4) at nodes ‘010’ and ‘00’ can be removed and kept only at node ‘0’. At each 

level a linked list is created if there are any nodes like fig 10. 
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          fig. 10: Linked Lists are formed at the Nodes 

 

The root level processor is responsible for linking it’s child nodes into a linked list. In the fig. 

9, the root node 8 and it’s processor 5 are responsible for linking the next level node (4,4) into 

a linked list. The parent node will be inserted in the child linked list and will connect the tail 

of left child with the head of right child linked list like in figure 11. 
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                            fig.11: Parent node connects all its child Linked Lists  

 

The processors of the integers in the linked list will compare the new integer with its respective 

number and place the new integer in it’s correct position, in that way the linked list is sorted 

and contain all the input integers. Using nlogm processors we can form a sorted linked list in 

constant time with priority CRCW approach.  As another approach the trie is divided into a 

section’s, each section has (logm/t) levels and each section is given with t processors for each 

integer as shown in Fig. 3. Using priority concurrent read concurrent write approach with 

(lglgm/lgt) time the integers can be linked to a linked list in constant time. 
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CHAPTER 6 

CONCLUSION 

 

In both the algorithms an important feature demonstrated by us is that for the searching 

purpose we need not to sort the input integers into a sorted array which need at least 

(logn/loglogn) time. Sorting input integers into a linked list can be done in O(loglogm) time 

with n processors [6]. In fact, if nlogm processors are available n input integers can be sorted 

into a linked list in constant time. On the positive side the algorithm is simple and easy to 

program, it has no hidden factors and is fast in practical terms. It is uniform and robust that is 

for a large value of n this algorithm can efficiently search for the given integer and insert that 

in the tree accordingly in O(loglogm) time. 

 

In algorithm1 for n integers a tree can be constructed in O(nloglogm/p+loglogm) time 

with p processors based on the trie with all the given integers. Additional nodes (O(nloglogm) 

of them) are added to the tree. After the tree is constructed, we can for any given integer, find 

the predecessor and successor of this integer, insert or delete the integer in A in O(loglogm) 

time. This result demonstrates for the searching purpose we need not to sort the input numbers 

into a sorted array for this would need at least O(logn/loglogn) time while this algorithm for 

constructing the tree can run in O(loglogm) time with n processors. If n processors are 

available, m integers can be sorted into a linked list in constant time at each level.  If there is a 

tree node there we then go down and visit ⌊𝑒/2^((𝑙𝑜𝑔𝑚)/4) ⌋, else we then go up and visit 

⌊𝑒/2^((3𝑙𝑜𝑔𝑚)/4) ⌋. Each time the range of the levels of trie will be cut by half. Thus in 

O(loglogm) time we will find the node b in the trie that e branches out. 
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The algorithm in part two demonstrates that if nlogm processors are available n input 

integers can be sorted into a linked list in constant time with priority CRCW approach. We can 

also divide the height of the tree into l sections and with ln processors the chaining can be done 

in (loglogm)/(loga) time with recursive priority CRCW approach. 
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