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Abstract 

Despite the extensive research demonstrating the importance of child executive functioning (EF) 

for school adjustment, little longitudinal work has formally examined developmental change in 

EF during the early school years. Based on a sample of 106 mother-child dyads, the current 

longitudinal study investigated patterns of growth in child performance on three executive tasks 

between kindergarten and Grade 3, and the predictive role of earlier mother-child attachment 

security in these patterns. The results suggest that early elementary school is a period of 

significant developmental improvement in child EF, although child performance on different EF 

tasks follows distinct trajectories across time. The study also provides evidence for a sustained 

relation between children’s early attachment security and their ongoing acquisition of executive 

skills.  
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school 

 

 



Attachment Security and Developmental Patterns of Growth in Executive Functioning during 

Early Elementary School 

Entry into elementary school is a critical developmental period characterized by many 

contextual and social changes (Cowan & Heming, 2005; Sameroff & Haith, 1996), and some 

children are better equipped than others to handle the challenges associated with this transition. A 

growing body of research supports the critical role of child executive functioning (EF) in school 

readiness (Bierman, Nix, Greenberg, Blair, & Domitrovich, 2008; Blair & Raver, 2015; Ursache, 

Blair, & Raver, 2012). EF is a set of top-down neurocognitive processes involved in self-

regulation that can be broadly conceived as serving the conscious, goal-directed control of 

thought, action and emotion (Zelazo & Carlson, 2012). This set of cognitive self-regulatory skills 

is foundational for children’s successful functioning in classroom and school contexts, in that it 

underlies many aspects of cognition and behavior that are crucial for academic success (Blair & 

Raver, 2015). Despite the extensive research demonstrating the importance of child EF for school 

adjustment, and the widespread assumption that executive skills grow throughout school age (De 

Luca & Leventer, 2008), surprisingly little longitudinal work has formally examined 

developmental patterns of change in EF during the early school years. This dearth of research 

dramatically limits our understanding of the normative development of EF skills and precludes 

the identification of the factors that may promote or hinder this development at a time when EF 

skills are of critical importance for children’s daily functioning. This study tackled this gap by 

modeling intra-individual developmental patterns of growth in child performance on three tasks 

measuring different EF skills between kindergarten and Grade 3, and examining the capacity of 

early attachment security, one of the most promising social influences on child EF, to predict 

individual differences in these growth patterns. 

 



Patterns of Growth in Child EF 

Early elementary school is largely believed to be a period of marked developmental 

improvements in EF skills. Indeed, literature reviews largely support this view (Best & Miller, 

2010; De Luca & Leventer, 2008) by summarizing the results of numerous cross-sectional studies 

that demonstrate relatively large age-related differences in EF during this developmental period. 

However, cross-sectional designs do not allow for examination of true developmental patterns of 

change (Clark et al., 2013), and little longitudinal work has formally examined patterns of change 

in child EF (Garon, Bryson, & Smith, 2008). Moreover, the majority of longitudinal studies have 

examined change in EF across time through mean-level consistency and continuity in rank order 

(i.e., inter-individual stability). While conceptualizing and analyzing change with these 

approaches is important, it does not provide information about intra-individual developmental 

patterns of change (i.e., within-person changes across time). Considering the importance of child 

EF for school success and adaptation, more multi-wave longitudinal studies examining intra-

individual developmental change in EF in the early school years are needed. 

Moreover, there is still debate in the literature concerning the fractionated or unified 

structure of child EF (Garon, Smith, & Bryson, 2014). Because proponents of a fractionated 

structure approach argue that developmental trajectories of different EF skills may be distinctly 

dissimilar (Garon et al., 2008), it has been proposed that examining developmental patterns of 

growth in children’s performance on separate EF tasks may critically contribute to advancing the 

debate on the fundamental nature of EF (Clark et al., 2013). A recent longitudinal study using a 

cohort-sequential design to examine performance on several EF tasks from early elementary 

school to adolescence reported task-specific differences in age-related changes during this time 

period using a series of multivariate analysis of variance (Lee, Bull, & Ho, 2013). While these 

results suggest that distinct patterns of growth in child performance might be expected for 



different EF tasks during elementary school, intra-individual developmental patterns of change 

were not examined using contemporaneous growth modeling approaches.  

Recent statistical advances have made the examination of intra-individual developmental 

patterns of growth feasible. These methods can now be used to enhance our understanding of the 

developmental course of different EF skills during early elementary school. Using such a 

contemporaneous growth modeling approach, the present study focusing on the early school 

years examines intra-individual patterns of change in child performance on three tasks that were 

developed to measure basic EF skills: inhibitory control, working memory, and set-shifting 

(Miyake et al., 2000). Inhibitory control refers to the voluntary inhibition of an automatic 

prepotent response (Best & Miller, 2010). Working memory concerns the ability to hold in mind 

and mentally manipulate information over short periods of time (Miyake et al., 2000). Set-

shifting concerns the ability to flexibly switch between sets of behaviors, tasks, or rules (Best & 

Miller, 2010). Set-shifting and inhibition support the behavioral skills necessary for self-

regulated learning, such as following classroom rules, sitting still, resisting distraction, and 

switching attention (Blair, 2002), while working memory plays an important role in the 

development of mathematical abilities and reading comprehension, among others (Alloway & 

Alloway, 2010). In light of the critical importance of these executive skills for children’s 

successful functioning in classroom and school contexts, it appears vital to get a better 

understanding of their respective growth patterns across the early school years.  

Recently, longitudinal studies (albeit generally conducted with preschoolers) have begun 

to investigate developmental patterns of change in different EF skills across time with 

contemporaneous growth modeling approaches (Bindman, Hindman, Bowles, & Morrison, 2013; 

Camerota, Willoughby, Cox, Greenberg, & Family Life Project Investigators, 2015; Clark et al., 

2013; Hackman et al., 2014; Wiebe, Sheffield, & Espy, 2012; Willoughby, Wirth, & Blair, 2012). 



To our knowledge, however, only two studies have used growth modeling approaches to examine 

developmental change in child EF during the early school years (Hackman, Gallop, Evans, & 

Farah, 2015; Roskam, Stievenart, Meunier, & Noël, 2014). These studies reported, respectively, 

significant improvement in child performance on tasks tapping working memory (Hackman et al., 

2015) and inhibitory control (Roskam et al., 2014). Whereas a deceleration in the rate of growth 

was found for working memory across early elementary school (Hackman et al., 2015), non-

linear patterns of change in inhibitory control were not examined (Roskam et al., 2014). 

Moreover, patterns of growth in set-shifting were not examined. The goal of the present study 

was to move beyond previous findings by examining different shapes of growth in inhibitory 

control, working memory, and set-shifting skills as measured by different EF tasks.  

In light of the importance of EF skills for school adjustment, it appears also vital to 

identify the origins of individual differences in intra-individual developmental patterns of change 

in child EF during elementary school. Among potential influences, the quality of early attachment 

relationships with primary caregivers has been emerging as a promising predictor of child EF, but 

it has yet to be investigated in relation with growth patterns of child EF at any age. 

EF and Parent-Child Attachment Relationships 

Longitudinal studies spanning over more than 20 years of development (see Grossmann, 

Grossmann, & Waters, 2005), as well as meta-analytic reviews (e.g., Fearon, Bakermans-

Kranenburg, Van IJzendoorn, Lapsley, & Roisman, 2010) have shown that the security of parent-

child attachment relationships is a reliable predictor of children’s developmental pathways. Given 

the consensus that EF is susceptible to environmental influences (Fay‐Stammbach, Hawes, & 

Meredith, 2014), it should then also be susceptible to the influence of parent-child attachment 

relationships. Indirect support for this hypothesis stems from studies that have found the quality 

of parenting behaviors to relate to child EF (see Fay‐Stammbach et al., 2014 for a review) and to 



patterns of growth in child EF (Bindman et al., 2013; Camerota et al., 2015; Hackman et al., 

2015; Roskam et al., 2014). One may expect links between EF and parent-child attachment to be 

at least as strong, given that child attachment is conceptualized, in some ways, as being a result of 

parental behavior as observed in the child’s own behavior, providing a window into the portion of 

caregiving relationships to which the child has been sensitive (Bernier, Carlson, Deschênes, & 

Matte‐Gagné, 2012). Accordingly, securely attached children are expected to outperform their 

insecurely attached counterparts on EF tasks. This hypothesis is supported by studies showing 

that children who were more securely attached to their mothers in toddlerhood showed better 

performance on EF tasks at age 3 (Bernier et al., 2012) and 5 (Bernier, Beauchamp, Carlson, & 

Lalonde, 2015). However, to date, studies have only used correlational and regression analyses to 

examine these associations. Thus, it remains unknown whether early attachment security sets 

children on a trajectory of EF development that results in persistent disparities over time, if the 

disparities observed early on narrow, perhaps as a result of schooling compensating for early 

experience, or if they widen, due to accumulating effects of the benefits of secure attachment. 

According to Fraley, Roisman, and Haltigan (2013), data collected across multiple waves are 

necessary to tease apart transient and enduring effects of early experience, because two-wave 

analyses do not reveal the patterns of associations that unfold over time. To gain a true 

understanding of the associations of early attachment security with EF development during early 

school years, we need multi-wave longitudinal data, allowing for the examination of attachment 

security as a predictor of patterns of growth in child EF. 

The Present Study  

 The current longitudinal study set out to investigate linear and non-linear intra-individual 

developmental patterns of change in child performance on tasks that involve different EF skills 

between kindergarten and Grade 3, as well as the predictive role of earlier mother-child 



attachment security in these patterns of growth. Developmental improvement in child EF was 

expected. However, given the scarcity of previous studies, specific hypotheses about the shape of 

these improvements could not be formulated. Furthermore, toddlers more securely attached to 

their mothers were expected to show consistently superior EF performance across time. 

Method 

Participants 

The sample consisted of 106 mother-child dyads (46 boys and 60 girls) living in a large 

Canadian metropolitan area. Families were recruited from birth lists randomly generated and 

provided to the research team by the Ministry of Health and Social Services. Families received a 

letter describing the project and were then contacted by phone; 39% of contacted families agreed 

to participate. Criteria for participation were full-term pregnancy (i.e., at least 37 weeks of 

gestation) and the absence of any physical or mental disability known to the parents at the outset 

of the study (7 months). Socio-demographic and obstetric information, such as maternal 

education, family income, and child birthweight, were gathered upon recruitment (7 months) with 

a self-report questionnaire completed by the mothers. Mothers had 16 years of education on 

average (varying from 8 to 23), with 60% of mothers holding a college degree (while 63.3% of 

parents living in the same province hold a college degree; www.stat.gouv.qc.ca). Family income 

was based on categorical scores distributed as follows: 1 (N = 2) < 20K$; 2 (N = 12) = 20-39K$; 

3 (N = 9) = 40-59K$; 4 (N = 25) = 60-79K$; 5 (N = 16) = 80-99K$; 6 (N = 38) = 99K$ and over 

(4 did not report). Mean family income for the sample was 4.4 (SD = 1.5), near the mean family 

income in Canada, which was $74,600 for the years of data collection. 

The 106 families with EF data at 5 years (thus constituting the sample on which EF 

patterns of growth were estimated) were part of a larger sample of 152 families who had 

attachment data at 15 months and/or 2 years. Of those 106 families, 11 subsequently left the 



study between kindergarten and Grade 1, 3 between Grades 1 and 2, and 2 between Grades 2 and 

3. Due to the method used to handle the missing data, described below, all 106 families were 

used in analyses, and thus constitute the current study’s sample. Attrition analyses revealed that 

families who left the study were not different from others on demographic or main variables.  

Procedure  

The families took part in two toddlerhood visits and four early school-age visits. Children 

were assessed at 15 months (T1; M = 15, SD = 0.83, Range = 13-18) and 2 years of age (T2; M = 

26 months, SD = 1.20, Range = 22-28), as well as in kindergarten (T3; M = 72 months, SD = 

2.55, Range = 67-78), Grade 1 (T4; M = 85 months, SD = 3.31, Range = 80-92), Grade 2 (T5; M 

= 94 months, SD = 3.73, Range = 87-102) and Grade 3 (T6; M = 105 months, SD = 3.39, Range 

= 98-112). All visits were conducted in the families’ homes, and lasted 70 to 90 minutes. The two 

toddlerhood visits, aimed at assessing mother-child attachment security, were modeled after the 

work of Pederson and Moran (1995). These visits were purposely designed to create a situation 

where maternal attention was being solicited by both the research tasks and the toddler’s 

demands. This was intended to reproduce the need for multi-tasking that is inherent to caring for 

a toddler in daily life. Both visits included child-centered tasks, a brief interview with the mother, 

a videotaped mother-child interactive sequence, and questionnaires that mothers had to complete 

while the toddler was not looked after by the research assistant. Observations performed 

throughout the visits were rated using the Attachment Behavior Q-Sort (AQS). The other home 

visits (T3 to T6), mainly consisted in the administration of the EF tasks described below. 

Measures 

Mother-child attachment security. Child attachment was assessed at both 15 months 

and 2 years using the AQS (Waters, 1995), which was completed immediately after the home 

visits. The AQS is comprised of 90 items describing potential child behaviors. Items are sorted 



by an observer into nine piles, reflecting the degree to which the items resemble the child under 

observation. The observer’s sort is then correlated with a criterion sort provided by the authors of 

the instrument, representing the prototypically securely attached child. Attachment scores can 

thus vary from -1 = most insecure to 1 = prototypically secure. Prototypical security represents a 

fluid balance between exploration of the environment and appropriate reliance on the caregiver 

for support when needed. At T1, inter-rater reliability was conducted for 22% of the dyads and 

was found to be satisfactory (Intraclass Correlation [ICC] = .71). At T2, it was conducted for 

19% of the dyads and was also satisfactory (ICC = .70). Meta-analytic data (Van IJzendoorn, 

Vereijken, Bakermans-Kranenburg, & Riksen-Walraven, 2004) suggest that the observer-AQS 

shows excellent construct validity, with scores converging with maternal sensitivity, attachment 

assessed with the Strange Situation, and child adaptation. The AQS also shows moderate 

temporal stability (meta-analytic r = .28; Van IJzendoorn et al., 2004). In the current study, the 

correlation between scores at 15 months and 2 years was r = .22, p < .05. The moderate stability 

across time suggests that combining the two assessments might reduce measurement and 

situational error and yield a more accurate picture of children’s average level of attachment 

security across toddlerhood. Thus, the two AQS scores were averaged into a global score that 

represents overall mother-child attachment security during toddlerhood. The mean and standard 

deviation for attachment security at 15 months (M = 0.49, SD = 0.26) and 2 years (M = 0.50, SD 

= 0.24) were almost identical. Consequently, in 13 cases where the AQS score was missing at 

either 15 months or 2 years, the available score was used in analyses.  

Child executive functioning. Children’s EF was assessed yearly during early elementary 

school with three behavioral tasks capturing three core aspects of early childhood EF: inhibitory 

control, working memory, and set-shifting (Garon et al., 2008; Zelazo et al., 2013). 



Flanker. This computerized measure of inhibitory control in the context of visual 

selective attention was adapted from the Attention Network Task (Rueda et al., 2004) by Zelazo 

and colleagues (2013) and administered at T3, T4 and T5 in the current study. A monitor 

depicted fish in a line, and either they were all facing in the same direction (congruent trials) or 

the middle fish was facing in the opposite direction (incongruent trials). Following a brief 

practice period, children were instructed to use one of two arrow keys on the keyboard to indicate 

which direction the middle fish was pointing (left or right; 25 trials). If they succeeded on at least 

5 out of the 9 incongruent trials in this block (all children in this sample did), they proceeded to a 

final block in which the fish were replaced with smaller arrows (thus making it more challenging) 

for 25 more trials. Accuracy (percent correct of total trials) was used in data analyses. The 

Flanker task shows excellent test-retest reliability (ICC = .95) and convergent validity with the 

Block Design subtest of the WPPSI–III (Carlson & Harrod, 2013; Zelazo et al., 2013). This task 

was not administered at the last assessment of the current study, given that the developmental 

trend from T3 to T5 suggested that many children’s performance would probably be at ceiling at 

T6 (Table 1; see below for formal analysis of the possible ceiling effects at T3 through T5).  

Backward word/digit span (Carlson, Moses, & Breton, 2002). Backward digit span was 

administered at T4 to T6. In order to take into account children’s numerical skills that are still 

developing, which might inadvertently impact their task performance (Carlson et al., 2002), 

Backward word span was administered at T3. Following Davis and Pratt (1996), children were 

asked to repeat a list of single-digit numbers (digit span) or single-syllable, familiar, yet non-

semantically related words (word span) in the reverse order. Children were given a 2-digit or 2-

word practice trial, corrected if wrong, and then proceeded to the test trials. List size increased (2, 

3, 4, 5 and 6 digits or words) with each level succeeded (success corresponds to getting one of the 

three trials of a given level correct) and the task ended when the child erred three consecutive 



times at a given level. The number of succeeded test trials, ranging from 0 to 15, was used in data 

analyses. Backward span tasks are common measures of working memory that are widely used 

and have good test-retest reliability (ICCs between .64 and .67; Müller, Kerns, & Konkin, 2012). 

The Backward word span and Backward digit span tasks have been found to correlate highly with 

each other (rs > .70) and with other measures of working memory (Alloway, Gathercole, & 

Pickering, 2006; Carlson et al., 2002; Müller et al., 2012).  

Dimensional Change Card Sort (DCCS; Zelazo, 2006). This task was selected as the 

measure of set-shifting. The experimenter showed children a card depicting a red truck, and a 

card depicting a blue star, and explained that they would play a sorting game with two boxes, 

which were labeled with a blue truck and a red star (thus in contrast with the test cards). In the 

first round, children were instructed to classify the cards handed to them by shape (6 trials). In the 

second round, they were instructed to switch rules and sort the cards by color (6 trials). In the 

third round (the actual test phase), children had to sort by either shape or color, based on whether 

or not there was a border around the card – they had to sort by color when handed a card with a 

border, and by shape if handed a card with no border. At T3, we used the paper version of the 

DCCS, with six trials in this last round. At T4 to T6, the equivalent computerized version was 

used, which entails 30 trials in the last round. Percentage of accurate responses (relative to total 

trials) was used in data analyses. The DCCS has excellent test-retest reliability (ICC = .92) and 

convergent validity with the Block Design subtest of the WPPSI–III (Zelazo et al., 2013). 

Analytic Strategy  

To describe and predict intra-individual patterns of change in child EF across time,  

growth curves were fitted in Mplus 7.4 using a multilevel modeling (MLM) framework also 

known as Hierarchical Linear Modeling (HLM). MLM was chosen here (instead of a structural 

equation modeling framework) because it can easily handle the difficulties generated by specific 



conditions encountered in the present study, such as small samples (groups as small as 30–50 are 

sufficient with up to five predictors), partially missing data, unequally spaced time points, and 

data collected across a range of ages within any one occasion (Burchinal, Nelson, & Poe, 2006; 

Singer & Willett, 2003). Multilevel growth modeling treats repeated observations as nested 

within individuals and models change over time on two levels: a Level-1 component representing 

individual (within-person) change over time and a Level-2 component representing the extent to 

which change differs across individuals (between-persons; Singer & Willett, 2003). To eliminate 

the need to delete individuals with missing data, and consequently increase statistical power, full 

information maximum likelihood (FIML) estimation was used.  

To ascertain the best-fitting models of growth in child EF, two unconditional models were 

first specified for each EF indicator: 1) Model A (i.e., fixed linear model), which included the 

fixed effect of child exact age in months, coded such that the intercept represented average EF 

performance at the first assessment and the slope represented the average monthly decrease or 

increase in EF performance, and 2) Model B (i.e., random linear model), which included the 

random effect of time (i.e., between-person variability in individual intercepts and slopes). Using 

child exact age in months at each assessment point enabled us to flexibly handle individually 

varying time scores and to estimate change in child EF across a broad range of ages (from 67 to 

112 months of age). Next, a fixed quadratic term was added (Model C: fixed quadratic model) to 

explore whether there was a significant decrease or increase in the slope across time (i.e., 

indicating a decreasing or increasing curvilinear trajectory). A quadratic model can be estimated 

with as few as three time points (Hoffman, 2015). However, the variance of the quadratic term 

needs to be fixed to zero (fixed quadratic model). Thus, the quadratic slope was not allowed to 

vary. Random effects and quadratic terms were retained if the pertinent p-value for the estimates 



were < .05 or if the model’s log likelihood (LL) differed significantly with the addition of the 

random or quadratic slope terms, based on a chi-square difference test.  

Once the trajectory of each EF task performance over time was established, we fit a series 

of nested multilevel models in which we tested the effect of each predictor (potential covariates 

and child attachment security) on the intercept and slope. Continuous predictors were centered on 

their mean for ease of interpretation. Therefore, the intercept represents the estimated initial 

status for an individual with an average value for that predictor. In order to draw conservative and 

specific predictions, potential covariates which are often found to be associated with child 

attachment or EF (maternal education, child gender, and child birthweight), were first added to 

the growth models (Models D). In order to estimate the most parsimonious models, only the 

variables that were significant or that improved the fit of the prediction model (Singer & 

Willett, 2003) were retained. The composite score of child attachment security was entered next 

as predictor of children’s EF intercept and slope (Models E).  

Results 

Descriptive Overview 

 The mean score for attachment security was .50 (SD =.20). Table 1 presents the means, 

ranges, correlations across time points, and inter-correlations among the EF tasks. The low to 

moderate coefficients of stability for EF tasks indicated changes in inter-individual differences 

across time. These changes suggest the presence of between-person differences in intra-

individual patterns of growth in child EF across time, which will be examined next with 

multilevel growth modeling. Higher accuracy on the DCCS task was also found to be associated 

with higher accuracy on the Flanker task at every time point, whereas performance on the 

Backward span task did not correlate with performance on the other tasks between T4 and T6. 

Preliminary screening of the data also revealed the presence of ceiling effects on the Flanker. 



Ceiling effects occur when more than 20% of individuals obtain the maximum score for an 

outcome (Wang, Zhang, MacArdle, & Salthouse, 2009), and thus the true extent of their abilities 

cannot be determined (i.e., because the test has insufficient range, some observed scores 

constitute underestimations). In kindergarten, 27% of the participants performed at ceiling level 

on the Flanker task. Ceiling effects can induce bias in the results, which may lead to incorrect 

model selection and biased parameter estimation (Wang et al., 2009). The Tobit growth curve 

model has been demonstrated to perform very well in dealing with ceiling effects compared to the 

standard growth curve model (Wang et al., 2009). Therefore, as a sensitivity check, the Flanker 

data were analyzed using standard growth models as well as censored growth models and the 

results obtained with these two statistical approaches were compared.  

Describing Child EF Growth Curves  

On the Flanker task, the best-fitting unconditional model was a random linear model (see 

Model B in Table 2), indicating a consistent increase in accuracy across time. On average, child 

accuracy increased by 0.35% (γ10) per month (4.20% per year), starting at 87.65% (γ00) on 

average in kindergarten. The significant negative covariance between the slope and the intercept 

indicated that children with better initial performance displayed slower growth (𝜎01= -13.80). 

However, there was significant between-person variability around the initial status (  = 388.12) 

and the rate of change (𝜎1
2

 = .49). The ICC (.33) indicated that the average stability across time 

was moderate. The impact of ceiling effects was assessed by comparing the results obtained with 

standard and Tobit growth models. The estimated parameters did not differ substantially across 

the two methods. Thus, only the results of the standard growth models are presented in Table 2.  

The best-fitting unconditional model for Backward word/digit span was a fixed quadratic 

model, where growth decelerated over time (see Model C in Table 2). Thus, performance on 



Backward followed an increasing curvilinear trajectory. On average, child accuracy increased by 

0.15 (γ10) per month (1.80 per year), starting at 3.47 (γ00) on average in kindergarten. However, 

there was significant between-person variability around the initial status (  = .84), and there 

was significant decrease in the rate of change with each 1-month increment in age: children’s 

monthly growth in performance decelerated by .004 (𝛾20 = 0.002) per month, corresponding to a 

0.60 decrease in the annual rate of change. The ICC indicated that the relative stability of 

performance on the Backward task across time was low (ICC =.18).  

The best fitting model for the DCCS was a random linear model (see Model B in Table 2). 

The average child experienced an increase of 0.58% (γ10) in performance per month (7% per 

year), starting at 70.96% (γ00) in kindergarten. The significant negative covariance between the 

slope and the intercept indicated that children with better initial performance on the DCCS task 

displayed slower growth (𝜎01= -24.95). However, there was significant between-person 

variability around the initial status (  = 712.61) and the rate of change (𝜎1
2

 = .88). The ICC 

indicated that there was no stability in child performance across assessment waves (ICC =.02).  

Predicting Child EF Growth Curves  

Table 3 shows the conditional models predicting each EF task trajectory. The results 

indicated a significant relation between child attachment security and the initial status of Flanker 

accuracy, where every one-standard-deviation increase in attachment security was associated 

with a 27.57% (p < .01) increase in Flanker initial accuracy. Child attachment security did not 

interact with time; thus, child Flanker task accuracy remained consistently higher across time for 

children with higher levels of attachment security. In order to better describe this consistency, we 

ran additional analyses in which time was recoded so that the intercept was placed in Grades 1 

and 2. Results indicated that every one-standard-deviation increase in attachment security was 



associated with a 17.34% (p < .001) increase in Flanker performance in Grade 1, and 11.83% (p 

< .001) in Grade 2. Thus, higher child attachment security was associated with higher 

performance on the Flanker task at every age. The potential impact of ceiling effects on the 

relation between attachment and Flanker performance was however assessed by comparing the 

results obtained with standard growth models and Tobit growth models. In the Tobit models, the 

coefficient of the relation between attachment and performance on the Flanker was found to be 

36.41% (p < .01) in kindergarten, 22.33% (p < .001) in Grade 1, and 15.17% (p < .01) in Grade 2 

(see Figure 1). Thus, the relation between attachment and performance on the Flanker was 

underestimated in the normal growth curve model. Examination of the data revealed that the 

performance of children with high attachment security scores (one standard deviation above the 

mean) reached ceiling level, which could have led to underestimation of their real potential and 

of the relation between attachment and Flanker performance. Note, however, that only 9% of 

children obtained an attachment score one standard deviation above the mean. Given also their 

ceiling performance on the Flanker, their trajectory was not illustrated in the figures.  

Child attachment security was also associated with the initial status of Backward 

word/digit span. Every one-standard-deviation increase in child attachment security was 

associated with a 2.37-point (p < .001) increase in Backward word/digit span performance initial 

status. Child attachment security did not interact significantly with time; thus, child performance 

remained consistently higher across time for children with higher levels of early attachment 

security. The relation between attachment security (computed by moving the intercept as 

described above) and the performance on Backward word/digit span was 2.07 (p < .001) in Grade 

1, 1.69 (p < .001) in Grade 2, and 1.37 (p < .001) in Grade 3 (see Figure 2).  

The relation between attachment security and the initial status of DCCS was also 

significant. Every one-standard-deviation increase in attachment security was associated with a 



30.55 % (p < .05) increase in DCCS performance in kindergarten. Although non-significant, the 

negative relation between attachment and the rate of change in DCCS performance approached 

significance (𝛾14 = -1.06, p = .05). This suggests that the relation between attachment and child 

performance might attenuate over time. In order to examine this attenuation, we ran analyses in 

which the intercept was placed in Grades 1, 2, and 3. Results indicated that the relation between 

attachment security and DCCS performance was still significant in Grade 1 (B = 21.45, p < .05), 

marginally significant in Grade 2 (B = 9.82, p = .08) and non-significant in Grade 3 (B = 0.30, 

ns). Thus, higher child attachment security was associated with higher performance on the DCCS 

at younger ages, but this association became non-significant across time (see Figure 3).   

Discussion 

EF skills are likely to set young children on a developmental pathway that may impact 

their school trajectory for years to come (Moffitt et al., 2011). Thus, it is vital to understand 

developmental trajectories of child EF and the environmental factors that may promote those 

trajectories during early elementary school. The aim of this study was to describe developmental 

patterns of growth in EF across early elementary school and to examine the capacity of mother-

child attachment security, assessed almost five years prior to school entry, to predict individual 

differences in these growth patterns. Findings suggested that 1) early elementary school is a 

period of significant developmental improvement in child EF, 2) child performance on different 

EF tasks shows distinct patterns of growth across time, and 3) early attachment security is 

generally associated with higher performance on EF tasks throughout early elementary school.  

Development of Child EF during Early Elementary School 

 Individual differences in EF skills are related to several aspects of human development at 

different ages (Diamond, 2013). Accurate understanding of normal EF development constitutes 

an important target for developmental research, as it can help prevent later developmental 



problems in allowing earlier identification of deviations from normative development, thus 

improving diagnostic capabilities (Anderson, 2002). Consistent with previous studies that have 

examined change in EF during the early school years (Best & Miller, 2010; Hackman et al., 

2015; Lee et al., 2013; Roskam et al., 2014), the results of the present study revealed an overall 

increase in child EF performance between kindergarten and Grade 3. Thus, early elementary 

school appears to be a period of developmental improvement in EF that may provide a 

particularly appropriate window for intervention. However, consistent with the low to moderate 

stability of child EF performance across time found in this and previous studies (Karalunas, 

Bierman, & Huang-Pollock, 2016), findings also indicated significant inter-individual differences 

in patterns of growth in child EF. Rapid pace of maturation may result in variability in inter-

individual differences across time if the rate of development is not consistent across individuals. 

This is congruent with our results indicating that child EF performance increase on average 

across time (significant rate of change) although children do not tend to maintain their position 

relative to other children across time (low correlations) because of different developmental pace, 

as indicated by significant between-person variability around the rate of change.  

Patterns of Growth in Child EF 

 One unique advantage of the present study was the ability to examine developmental 

patterns of growth in child performance on three tasks that measure different executive skills: 

inhibitory control, working memory, and set-shifting. Findings indicated distinct patterns of 

growth in children’s performance on tasks measuring different EF skills. More specifically, we 

found that child performance on the Flanker and DCCS followed an increasing linear trajectory, 

as indicated by a constant rate of change. In contrast, child performance on the Backward 

word/digit span task followed an increasing curvilinear trajectory, indicated by a significant 

decrease in the rate of growth. A significant decrease in the rate of growth in child performance 



on a different task also measuring working memory skills has been found previously between 

kindergarten and Grade 3 (Hackman et al., 2015). These results suggest rapid developmental 

improvement in working memory capacity during the very first years of elementary school 

(perhaps due to schooling itself) that decelerates over time, before levelling off around Grade 3. 

According to previous studies, working memory is the first EF skill to develop (Garon et al., 

2008). Thus, the curvilinear trajectory might reflect the fact that children develop much of this 

ability during the very first years of elementary school and reach a plateau in middle childhood. 

However, adults’ performance on Backward span tasks suggests that working memory continues 

to develop well beyond early school years. Meta-analytic data show that on average, adults reach 

the fifth level on the Backward span tasks (Bopp & Verhaeghen, 2006). In the current study, 

children in Grade 3 reached the third level. Thus, working memory will continue to develop well 

beyond the time period covered by this study, before reaching adult levels.  

For both the Flanker and DCCS tasks, growth in child performance followed a linear 

trajectory. Thus, in contrast to the working memory skills measured by the Backward span task, 

the inhibition and set-shifting skills measured by the Flanker and the DCCS tasks grow at a 

constant rate during early school years. The similar shape of growth on the Flanker and DCCS 

might suggest that the skills measured by these tasks are inter-dependent. Consistent with this 

assumption, higher accuracy on the Flanker was linked to higher accuracy on the DCCS at every 

time point. However, DCCS accuracy was approximately 17% below Flanker accuracy in 

kindergarten, and remained consistently lower across time. These differences suggest that 

children develop the capacity to inhibit prepotent responses (such as on the Flanker) earlier than 

the capacity to flexibly switch between sets of behaviors (such as on the DCCS). This is 

consistent with the results of a recent study that found that improvements in inhibitory control 

were more rapid than those in set-shifting during preschool years (Clark et al., 2013). Set-



shifting, assessed here with the DCCS, is considered the most complex EF skill. According to 

Garon et al. (2008), this skill is built on other EF skills. In fact, inhibition plays an important role 

in DCCS performance given that switching sorting criteria in order to perform well on the DCCS 

requires inhibition of the tendency to continue to attend to the initially relevant attribute 

(Diamond, Carlson, & Beck, 2005). In this respect, the ability to perform tasks involving set-

shifting such as the DCCS is expected to develop later than the ability to perform tasks involving 

basic inhibitory control such as the Flanker. This is consistent with the disparities observed here 

between the growth curves of children’s performance on the Flanker and DCCS tasks.  

The results, however, showed that most children reached ceiling around ages 6-7 for the 

Flanker. In order to avoid biased parameter estimation that can result from ceiling effects, Tobit 

growth curves were used in combination with normal growth curves (Wang et al., 2009).The 

results of unconditional models were similar across both statistical approaches. Even if most 

children reached ceiling level across time on the Flanker task, the non-significant quadratic terms 

(found in both the normal and Tobit growth curve models) indicate constant growth in the 

underlying executive skills measured by the Flanker during early school years. Hence, whereas 

the ceiling effects suggest that the specific skills necessary to succeed on the Flanker are 

completely developed by the end of the early school years, the constant rate of change suggests 

that inhibition capacities themselves will continue to develop well beyond this time period. Given 

that the shape of growth in inhibition during school years has never been examined before using 

growth modeling, we cannot rely on previous research to draw stronger or more nuanced 

conclusions. However, the ceiling effects clearly highlight the need to transition to more 

developmentally sensitive EF batteries that can be used across a broad age range, such as the 

recently developed National Institutes of Health Toolbox Cognition Battery (Zelazo et al., 2013). 



In sum, the results of the present study support the idea of distinct patterns of growth in 

children’s performance on tasks measuring different EF skills. This is consistent with the results 

of a recent study that found task-specific differences in age-related changes in EF between early 

elementary school and adolescence (Lee et al., 2013). Combined with factor-analytic work with 

children suggesting that EF can be divided into partially independent components (Miyake et al., 

2000), these results are consistent with the idea that EF consists of a diverse set of loosely related 

skills. However, it is important to mention that firm conclusions about the development of 

specific EF skills per se cannot be drawn using a single task to measure each skill. While it is 

important to examine changes in performance on different EF tasks across time (Clark et al., 

2013; Garon et al., 2008), no task is a pure measure of its intended construct (task impurity). 

Different tasks postulated to measure the same EF skill can involve different underlying 

cognitive processes of different levels of complexity, and task difficulty is often confounded with 

the specific executive skill measured (Miyake et al., 2000). Thus, because only one task was used 

here to assess each putative EF skill, it cannot be ascertained to what extent the observed patterns 

reflect growth in child performance on the specific tasks used or more general developmental 

progression in the EF skills that underlie performance on these tasks. More complex tasks with 

different cognitive requirements that are postulated to measure the same EF skills might show 

different associations and patterns of growth across time. Thus, other tasks measuring inhibition, 

working memory, and set-shifting skills need to be used in future research in order to draw more 

solid conclusions about the patterns of growth in specific EF skills across the early school years. 

Attachment Security as a Predictor 

In line with emerging evidence suggesting that the affective quality of parent-child 

relationships may relate to individual differences in young children’s EF (Kraybill & Bell, 2013), 

the results showed that between-person variability in growth patterns of children’s EF was 



reliably associated with the quality of their earlier attachment relationships. First, children who 

were more securely attached to their mother on average between 15 months and 2 years showed 

superior performance on the Flanker, Backward, and DCCS tasks in kindergarten. The significant 

relations between attachment and child initial performance on three tasks measuring different EF 

skills appear to suggest that secure attachment relationships may promote young children’s global 

executive competence (and/or the skills or structures that subsume all EF skills), rather than have 

specific effects on particular EFs. It is believed that secure attachment relationships provide 

children with repeated experiences of successful dyadic regulation with the support of a 

competent caregiver (Sroufe, 1996). With time, securely attached children are expected to 

gradually internalize the regulatory strategies learned with the caregiver and eventually use them 

independently (Calkins, 2004), such as during EF tasks that require independent self-regulation. 

Hence, secure attachment relationships may provide children with emotional and cognitive skills 

supporting their developing self-regulatory capacities and thus their executive development. 

Furthermore, in the case of the Flanker and Backward tasks, the link between attachment 

and child performance persisted and remained significant throughout the subsequent time points. 

Despite the ceiling effects of the Flanker, this conclusion was corroborated by the Tobit models. 

In contrast, the link between child attachment security and DCCS performance waned gradually 

(as observed by moving the intercept), such that less securely attached children appeared to catch 

up with their more securely attached counterparts, performing equally well in Grade 3. These 

diverging findings may have to do with the relative complexity of the underlying EF skills. The 

DCCS is fairly demanding on executive capacity, and may therefore reasonably be presumed to 

be under the influence of a complex set of factors, of which early attachment may become an 

increasingly modest portion as children grow up. Hence, the narrowing disparities between more 

and less securely attached children across early elementary school on this demanding task might 

http://psycnet.apa.org.acces.bibl.ulaval.ca/journals/dev/51/9/1177.html#c18


be the result of other biological and social influences, as well as schooling itself, compensating 

for earlier parent-child relationship experiences. However, as the negative link between 

attachment and the DCCS slope was only marginally significant, a degree of uncertainty remains 

about the overall attenuation of the effect of attachment. Given that this study is the first to 

examine the enduring associations between early attachment security and patterns of child EF 

development, the current results need to be replicated before one can draw solid conclusions 

about the persistence of the effect of attachment on different EF skills. 

Previous studies on this sample when children were toddlers and preschoolers revealed 

that early mother–child attachment security was related to age-specific individual differences in 

subsequent child EF (references masked for blind review). Although we could not statistically 

combine these EF data with the current ones because the EF tasks used were different, connecting 

the current results with the previous ones suggests that the association between early attachment 

security and child EF emerges early on and tends to persist into middle childhood (albeit with a 

declining trend on the DCCS). Moreover, effect sizes were quite substantial on all three tasks: 

with every one-standard-deviation increase in attachment security, children’s kindergarten 

performance increased by over 30% on the DCCS and Flanker, and by more than two succeeded 

trials on the Backward task. As a result, children with high levels of attachment security (one 

standard deviation above the mean) entered kindergarten with the equivalent of a 2- to 3-year 

executive advantage over their peers. Given the well-documented importance of executive skills 

for school adaptation and academic achievement including at school entry (Bierman et al., 2008; 

Blair & Raver, 2015), securely attached children appear likely to enter school embarked on a 

promising trajectory that could have long-lasting implications for their school success. 

Limitations 



Although the multi-wave longitudinal design, the observational measures, and the 

advanced statistical approach used in this study are important strengths, there were also some 

limitations. First, the homogeneous and low-risk nature of the sample limits the generalizability 

of the results. Moreover, the sample was relatively small; however, the growth modeling 

approach used here was chosen based on its demonstrated capacity to yield unbiased and accurate 

estimates with small samples. According to simulation studies, only sample sizes of 50 or less 

can result in biased estimates in multilevel modeling (Maas & Hox, 2005). A different issue is 

that the DCCS and Backward tasks were administered in a slightly different format at age 5 

(kindergarten) compared to latter time points. While this was desirable, given that EF tasks need 

to be adapted to remain age-appropriate (see e.g., the NIH Toolbox, Zelazo et al., 2013), the 

possibility that a change in measures may have led to changes in results cannot be discarded. 

However, the results were very much the same when considering only the three time points 

involving the exact same measurement format – as illustrated, for instance, by the analyses in 

which the intercept was set at the Grade 1 rather than kindergarten assessment, presented above.  

Importantly, the current design was longitudinal yet correlational; therefore, the 

associations observed may not be indicative of causal relations between attachment and EF. 

Consistent with the moderate heritability that has been reported for certain EF skills (Polderman 

et al., 2007), one may argue that genetic characteristics could account for both child attachment 

and EF performance. Although the low heritability reported for attachment (Roisman & Fraley, 

2008) does not support this hypothesis, only genetically sensitive designs could assess it 

formally. Moreover, because the processes underlying these links were not investigated, we can 

only speculate regarding putative causal mechanisms. For instance, secure attachment 

relationships are presumed to favor children’s EF by facilitating the development of the 

underlying neural systems (Glaser, 2000), and research indicates that higher-quality maternal 



behavior in infancy predicts more rapid development of the frontal brain areas that subsume EF 

(Bernier, Calkins, & Bell, 2016). Thus, secure attachment may impact child EF by promoting the 

orderly development of its neural substrates. This hypothesis could, however, not be tested here. 

Conclusion 

Overall, the current findings add importantly to the theoretical case for the important role 

of early parent-child attachment relationships in children’s executive development, and further 

suggest that such a role may be relatively enduring (although not increasing). However, longer 

follow-ups are necessary to continue investigating whether differences in EF performance 

between more and less securely attached children eventually disappear, as would be predicted by 

revisionist scholars (e.g., Bruer, 2002; Lewis, 1997), or rather diminish but persist, as suggested 

by analyses of similar questions with large longitudinal datasets (Fraley et al., 2013). Answers to 

these fundamental questions may, in fact, differ across EF skills, as suggested by the fact that 

significant links between attachment and EF disappeared with time on only one of the three tasks 

used here. In any case, even vanishing initial effects can be consequential, notably because skill 

acquisition builds on already-existing skills, forming developmental cascades (Masten & 

Cicchetti, 2010). Considering also that early social and academic adjustment shows a tendency 

toward stability over several years (Jiang & Cillessen, 2005; Ladd & Troop-Gordon, 2003), the 

residue left by early caregiving experiences on children’s EF may snowball into profound and 

lasting effects on their schooling trajectories (McCartney & Rosenthal, 2000).   
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Table 1 

Descriptive Statistics, Correlations across Time Points, and Inter-Correlations among the 

Executive Function Tasks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

t p < .10,* p < .05, ** p < .01, *** p < .001.   

Age M Range 
Correlations across age   

Inter-correlations 

among tasks 

G1 G2 G3   Backward DCCS 

Flanker 

Kindergarten 87% 22-100% .52*** .41*** --   .30* .25* 

Grade 1 (G1) 91% 63-100% -- .74** --   .15 .35** 

Grade 2 (G2) 95% 75-100% --   -- --   .00 .19* 

Backward 

Kindergarten 4.00 0-8 .25* .11 .28*   -- .25** 

Grade 1 (G1) 4.51 3-9 -- .30** .27*   -- .05 

Grade 2 (G2) 5.16 3-10 -- -- .17   -- .03 

Grade 3 (G3) 5.66 2-9 -- -- --   -- .02 

DCCS 

Kindergarten 70% 0-100% .00 .05 .10   -- -- 

Grade 1 (G1) 76% 50-97% -- .38* .20   -- -- 

Grade 2 (G2) 83% 50-100% -- -- .09   -- -- 

Grade 3 (G3) 88% 37-100% -- -- --   -- -- 
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Table 2 

Unconditional Growth Models of Child EF during Early Elementary School  

t p < .10,* p < .05, ** p < .01, *** p < .001. Note. Standard errors are within parentheses. K = kindergarten; ICC = Intraclass 

Correlation; Par = parameters; LL = log likelihood; AIC = Akaike information criterion; BIC = Bayesian information criterion; Model 

A: fixed linear model; Model B: random linear model; Model C: fixed quadratic model.

    Child Executive Functioning  

  Flanker (ICC = .33) Backward (ICC=.18) DCCS (ICC=.02) 

 Par Model A Model B Model C Model A Model B Model C Model A Model B Model C 

Fixed effects           

Initial status, π0i           

Intercept 

(K) 
𝛾00 

 

87.29*** 

(1.49) 

87.65*** 

(2.081) 

86.58*** 

(2.29) 

4.00*** 

(0.15) 

4.01*** 

(0.16) 

3.47*** 

(0.20) 

70.80*** 

(2.15) 

70.96*** 

(2.91) 

69.30*** 

(3.41) 

Rate of change, π1i           

Linear slope 𝛾10 

 

0.36*** 

(0.08) 

0.35*** 

(0.08) 

0.57** 

(0.21) 

0.06*** 

(0.01) 

0.06*** 

(0.01) 

0.15*** 

(0.02) 

0.59*** 

(0.10) 

0.575*** 

(0.113) 

0.83** 

(0.29) 

Change in slope 

(quadratic) 
𝛾20   -0.01 

(0.01) 

  -0.002*** 

(0.001) 

  -0.01 

(0.01) 

Variance components           

Within-person 

(residual) 
𝜎𝐸
2

 

 

114.09*** 

(14.94) 

41.05*** 

(7.58) 

39.73*** 

(8.000) 

1.77*** 

(0.17) 

1.72*** 

(0.20) 

1.56*** 

(0.18) 

423.54*** 

(42.82) 

207.11*** 

(23.80) 

201.85*** 

(23.96) 

In initial status 𝜎0
2

 

 

61.61*** 

(19.84) 

388.18*** 

(67.54) 

387.22*** 

(67.43) 

0.48*** 

(0.16) 

0.81* 

(0.41) 

0.84* 

(0.39)  

13.56 

(30.33)  

712.61*** 

(134.23) 

414.20*** 

(133.53) 

In rate of change  𝜎1
2

 

 

 0.49*** 

(0.14) 

0.49*** 

(0.14) 

 0.00 

(0.00) 

0.00 

(0.00) 

 0.88*** 

(0.23) 

0.87*** 

(0.26) 

Slope intercept  

covariance 
𝜎01 

 

  -13.80*** 

 (2.90) 

-13.69*** 

 (2.89) 

 -0.01 

(0.02) 

-0.01 

(0.01) 

 -24.97*** 

(5.23) 

-24.95*** 

(5.16) 

Goodness-of-fit  LL -962.03 -907.93 -904.75    -560.26 -559.66 -548.31 -1341.79 -1305.02 -1301.96 

  AIC 1932.06   1827.86 1823.50  1128.52 1131.33 1110.62  2691.58  2622.04  2617.92 

  BIC 1946.03   1848.82 1847.95  1143.48 1153.76 1136.79  2706.41  2644.28  2643.86 
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Table 3 

Predicting Patterns of Growth in Child EF during Early Elementary School  

t p < .10,* p < .05, ** p < .01, *** p < .001. Note. Standard errors are within parentheses. LL = 

log likelihood; AIC = Akaike information criterion; BIC = Bayesian information criterion; 

Model D: controlling for covariates; Model E: final model including attachment as a predictor. 

  Flanker Backward DCCS 

  Model D Model E Model D Model E Model D Model E 

Fixed effects        

Initial status πoi        

Intercept 𝛾00 79.40*** 

(6.87) 

87.30*** 

(2.07) 

3.22*** 

(0.54) 

3.39*** 

(0.20) 

62.52*** 

(9.96) 

71.60*** 

(2.84) 

Maternal 

education  
𝛾01 1.81t 

(0.96) 

  0.12 

(0.07) 

 1.18 

(1.36) 

 

Child gender  

(being a girl) 
𝛾02 5.48 

(4.24) 

 0.26 

(0.32) 

 4.74 

(6.11) 

 

Birthweight 𝛾03 0.00 

(0.01) 

 0.00 

(0.00) 

 0.00 

(0.01) 

 

Attachment 𝛾04  27.57** 

(10.08) 

 2.37*** 

(0.76) 

 30.55* 

(14.09) 

Rate of change π1i
         

Child age 𝛾10 0.50t 

(0.28) 

0.36*** 

(0.08) 

0.14*** 

(0.03) 

0.16*** 

 (0.02) 

0.65t 

(0.38) 

0.55*** 

(0.11) 

Maternal 

education  
𝛾11 -0.06 

(0.04) 

 0.00 

(0.00) 

 -0.03 

(0.05) 

 

Child gender  

(being a girl) 
𝛾12 -0.10 

(0.17) 

 0.00 

(0.01) 

 -0.03  

(0.23) 

   

Birthweight  𝛾13 0.00 

(0.00) 

 0.00 

(0.00) 

 0.00  

(0.00) 

 

Attachment 𝛾14  -0.79 

(0.39) 

 -0.04 

(0.03) 

 -1.06t 

(0.55) 

Change in slope: 

quadratic term 
𝛾20   -0.002*** 

(0.001) 

-0.003*** 

(0.001) 

  

Variance components         

Within-person:  

residual 
𝜎𝐸
2

 41.17*** 

(7.75) 

40.44*** 

(8.08) 

1.56*** 

(0.18) 

1.57*** 

(0.18) 

206.99*** 

(25.05) 

206.96*** 

(23.72) 

In initial status 𝜎0
2 353.18* 

(66.81) 

373.66*** 

(68.74) 

0.60 

(0.39) 

0.59t 

(0.36) 

662.23*** 

(136.55) 

621.54*** 

(122.22) 

In rate of change  𝜎1
2

 

 

0.48** 

(0.15) 

0.48** 

(0.15) 

0.00 

(0.00) 

0.00 

(0.00) 

0.81** 

(0.30) 

0.77*** 

(0.21) 

Slope intercept  

covariance 
𝜎01 

 

-12.98*** 

(2.99) 

-13.36*** 

(3.06) 

-0.01 

(0.01) 

-0.01 

(0.01) 

-23.11*** 

(5.78) 

-21.83*** 

(4.75) 

Goodness-of-fit LL -848.18 -898.33 -511.22 -539.91 -1231.33 -1294.80 

 AIC 1720.37 1812.65 1048.44 1097.81  2486.67   2605.60 

 BIC 1761.57 1840.56 1096.38 1131.44  2530.50    2635.23 
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Figure 1. Relations between child attachment security and growth in performance on the Flanker 

task. Figure illustrates the estimates derived from Tobit growth models for a child having an 

attachment security score one standard deviation below the mean (low), and within one standard 

deviation of the mean (average). K = kindergarten; G1 = Grade 1; G2 = Grade 2. 

  



GROWTH IN EXECUTIVE FUNCTIONING           39 
 

 

 

Figure 2. Relations between child attachment security and growth in performance on the 

Backward word/digit span task. Figure illustrates the estimates derived from growth models for a 

child having an attachment security score one standard deviation below the mean (low), and 

within one standard deviation of the mean (average). K = kindergarten; G1 = Grade 1; G2 = 

Grade 2; G3 = Grade 3. 
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Figure 3. Relations between child attachment security and growth in performance on the DCCS 

task. Figure illustrates the estimates derived from growth models for a child having an 

attachment security score one standard deviation below the mean (low), and within one standard 

deviation of the mean (average). K = kindergarten; G1 = Grade 1; G2 = Grade 2; G3 = Grade 3. 
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