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Abstract

Permutations of [𝑛] = {1, 2, . . . , 𝑛} may be represented geometrically as
bargraphs with column heights in [𝑛]. We define the notion of capacity of
a permutation to be the amount of water that the corresponding bargraph
would hold if the region above it could retain water assuming the usual rules
of fluid flow. Let 𝐶(𝑛) be the sum of the capacities of all permutations of [𝑛].
We obtain, in a unique manner, all permutations of length 𝑛+1 from those of
length 𝑛, which yields a recursion for 𝐶(𝑛+ 1) in terms of 𝐶(𝑛) that we can
subsequently solve. Finally, we consider permutations that have a single dam
(i.e., a single area of water containment) and compute the total number and
capacity of all such permutations of a given length. We also provide bijective
proofs of these formulas and an asymptotic estimate is found for the average
capacity as 𝑛 increases without bound.
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1. Introduction

A permutation of [𝑛] is an ordering of the elements of [𝑛]. In recent years, a variety
of different statistics on permutations have been studied in the literature; see, for
example, [1–3, 6–12, 14, 15, 17, 18]. In order to describe our new statistic, we
represent a permutation of [𝑛] as a bargraph with column heights in [𝑛]. The
height of the 𝑖-th column of the bargraph equals the size of the 𝑖-th letter of the
permutation. We define the capacity of a permutation to be the amount of water
the representing bargraph would retain if water is poured onto it from above and
allowed to escape in any direction (if needed) subject to the usual rules of fluid flow.
It is thus a measure of the area in the plane where the water would be retained.
See [16] where the capacity statistic is considered on compositions and finite set
partitions, represented geometrically as bargraphs, and also [4, 5] for further related
results.

The organization of this paper is as follows. In the next section, we find an
explicit formula for the sum of the capacities of all permutations of length 𝑛. In
the third section, we consider the situation in which the retained water is restricted
to a single area, i.e., to a single subsequence of consecutive entries, and refer to
such permutations as having one dam. We then prove an analogous formula for
the total capacity taken over all one-dam permutations of length 𝑛 as well as
an explicit formula for the total number of such permutations by considering a
refinement according to the width of the dam. Some asymptotic estimates as 𝑛
approaches infinity are also found for these quantities, and in the final section,
bijective proofs are provided.

Illustrated below in Figure 1 is the capacity of the permutation 526134 of [6].

WaterWater

5 2 6 1 3 4

Figure 1: Permutation 526134 of [6] with capacity 7
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2. Total capacity of permutations

Let 𝐶(𝑛) be the total capacity of all permutations of [𝑛]. We employ a direct
counting approach in order to obtain a recurrence for 𝐶(𝑛+ 1). This involves the
following procedure. Consider an arbitrary permutation of [𝑛]; from this, we obtain
a unique permutation of [𝑛+ 1] via a simple two-step process:

∙ We raise the permutation of [𝑛] by adding one to each element in the original
permutation. This produces a permutation of the elements of [𝑛+1] ∖ {1} as
illustrated below in Figure 2.

Permutation of [𝑛]

Raising

Figure 2: Raising a permutation of [𝑛] by one

∙ To convert this to an arbitrary permutation of [𝑛+1], we insert the element 1
within the raised permutation in any one of 𝑛+1 possible positions as shown
in Figure 3.

Element 1 added

𝑖− 1

elements
𝑛− 𝑖+ 1

elements

1

Total of 𝑛+ 1 elements

Figure 3: Element 1 added in the 𝑖-th position, 1 ≤ 𝑖 ≤ 𝑛+ 1

We denote the set of all permutations of [𝑛] by 𝒮𝑛. Note that each member of 𝒮𝑛+1

arises uniquely upon applying the above procedure to 𝒮𝑛.
If the element 1 is added in either the first or the last position, there is no

change to the capacity of the original permutation. In general, we will consider
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adding the 1 in all other positions 𝑖, where 2 ≤ 𝑖 ≤ 𝑛, and determine what addition
this makes to the capacity of the member of 𝒮𝑛 from which it arose. Note that the
two-step procedure above is seen to leave the capacity of the precursor permutation
unchanged, except for the additional capacity above the added element 1.

So our method will consist of calculating (see Figure 3) how many times the un-
changed original capacity is to be counted, and secondly what is the total additional
contribution above the 1 over all the possible original permutations of [𝑛].

So let us consider our general case where the 1 is added in the 𝑖-th position.
Let 𝑟 denote the maximum element to the left of 1, where 𝑖 ≤ 𝑟 ≤ 𝑛 + 1. First,
consider the case 𝑖 ≤ 𝑟 ≤ 𝑛, which is illustrated in Figure 4. Then 𝑛 + 1 must
occur to the right of the 1 and hence the additional capacity above the 1 is 𝑟 − 1.
For each maximum 𝑟, the set of numbers to the left of 1 can be chosen, and then
permuted, in

(︀
𝑟−2
𝑖−2

)︀
(𝑖− 1)! ways, while the remaining numbers to the right of 1 can

be permuted in (𝑛− 𝑖+ 1)! ways.

1

𝑟
−

1

𝑟

𝑛
+
1

Total of 𝑛+ 1 elements

Figure 4: Additional capacity above the element 1, 𝑖 ≤ 𝑟 ≤ 𝑛

Thus, the total additional capacity is
𝑛∑︁

𝑖=2

𝑛∑︁

𝑟=𝑖

(︂
𝑟 − 2

𝑖− 2

)︂
(𝑖− 1)!(𝑛− 𝑖+ 1)!(𝑟 − 1). (2.1)

Now let us consider the case 𝑟 = 𝑛+ 1. The sketch for this case is in Figure 5.
Here, by the pigeonhole principle, we have 𝑛− 𝑖+ 2 ≤ 𝑠 ≤ 𝑛, and by a similar

argument as for equation (2.1), the total additional capacity in this case is

𝑛∑︁

𝑖=2

𝑛∑︁

𝑠=𝑛−𝑖+2

(︂
𝑠− 2

𝑛− 𝑖

)︂
(𝑛− 𝑖+ 1)!(𝑖− 1)!(𝑠− 1). (2.2)

Expression (2.2) is equivalent to (2.1), which can also be realized by applying the
reversal operation.

4 A. Blecher, C. Brennan, A. Knopfmacher, M. Shattuck



1
𝑟
=

𝑛
+
1

𝑠

Total of 𝑛+ 1 elements
𝑖− 1 𝑛− 𝑖+ 1

Figure 5: Additional capacity above the element 1

Thus, the total additional capacity over all permutations is

2

𝑛∑︁

𝑖=2

(𝑖− 1)!(𝑛− 𝑖+ 1)!

𝑛∑︁

𝑟=𝑖

(︂
𝑟 − 2

𝑖− 2

)︂
(𝑟 − 1)

= 2

𝑛∑︁

𝑖=2

(𝑖− 1)(𝑖− 1)!(𝑛− 𝑖+ 1)!

(︂
𝑛

𝑖

)︂

= 2𝑛!

𝑛∑︁

𝑖=2

(𝑖− 1)(𝑛− 𝑖+ 1)

𝑖

= 2𝑛!
𝑛∑︁

𝑖=1

(︂
−𝑖+ (𝑛+ 2)− 𝑛+ 1

𝑖

)︂

= 2𝑛!

(︂(︂
𝑛

2

)︂
+ 2𝑛− (𝑛+ 1)𝐻𝑛

)︂
,

where 𝐻𝑛 is the 𝑛-th Harmonic number
∑︀𝑛

𝑖=1
1
𝑖 .

So the recursion is

𝐶(𝑛+ 1) = (𝑛+ 1)𝐶(𝑛) + 2𝑛!

(︂(︂
𝑛

2

)︂
+ 2𝑛− (𝑛+ 1)𝐻𝑛

)︂
, 𝑛 ≥ 1,

with 𝐶(1) = 0.

We solve this first order linear recursion and obtain the following result.

Theorem 2.1. The total capacity 𝐶(𝑛) over all permutations of [𝑛] is

𝐶(𝑛) =
𝑛!

2
(𝑛(𝑛+ 7)− 4(𝑛+ 1)𝐻𝑛) .
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The values of 𝐶(𝑛) for 1 ≤ 𝑛 ≤ 12 are

0, 0, 2,28, 312, 3384, 37872, 446688, 5595840, 74617920, 1058711040, 15958667520.

To illustrate, we list all the permutations of length 4 and their respective capacities
in the table below. Note that the total is indeed 28, shown in bold in the list above.

Permutation 1234 1243 1324 1342 1423 1432

Capacity 0 0 1 0 1 0

Permutation 2134 2143 2314 2341 2413 2431

Capacity 1 1 2 0 2 0

Permutation 3124 3142 3214 3241 3412 3421

Capacity 3 2 3 1 1 0

Permutation 4123 4132 4213 4231 4312 4321

Capacity 3 2 3 1 1 0

Using the asymptotic expansion of 𝐻𝑛, we obtain the following estimate.

Corollary 2.2. The average capacity for permutations of [𝑛] is

1

2
(𝑛(𝑛+ 7)− 4(𝑛+ 1)𝐻𝑛) =

𝑛2

2
− 2𝑛 ln𝑛+

(︂
7

2
− 2𝛾

)︂
𝑛− 2 ln𝑛+𝑂(1)

as 𝑛 → ∞, where 𝛾 is Euler’s constant.

3. Total capacity in the one-dam situation

For permutations of [𝑛], we have computed the total capacity 𝐶(𝑛). We now
determine the total capacity of permutations having exactly one dam defined as
follows.

A permutation 𝜎 = 𝜎1𝜎2 · · ·𝜎𝑛 of [𝑛] is said to have exactly one dam if there
exists only a single connected area of water containment. More precisely, we define
the one-dam situation as that in which all of the water retained by a permutation
𝜎 is contained within a subsequence of 𝜎 of the form 𝑟𝜎𝑖𝜎𝑖+1 · · ·𝜎𝑗𝑠, where 2 ≤
𝑟, 𝑠 ≤ 𝑛 and 𝜎𝑖, 𝜎𝑖+1, . . . , 𝜎𝑗 < min{𝑟, 𝑠}. Moreover, the contribution of each 𝜎ℓ for
1 ≤ ℓ < 𝑖 or 𝑗 < ℓ ≤ 𝑛 towards the capacity is zero.

For example, the permutation 𝜎 = 463152 of [6] has only one dam, with 𝑟 = 6
and 𝑠 = 5, whereas the permutation in Figure 1 above has two. We give, in Figure 6
below, a symbolic sketch of a generic permutation having a single dam.

Let us define the dam width 𝑝 of a one-dam permutation as the number of letters
𝑝 that actually contribute to the capacity, i.e., the aforementioned

𝜎𝑖𝜎𝑖+1 · · ·𝜎𝑗 has 𝑗 − 𝑖+ 1 = 𝑝.

6 A. Blecher, C. Brennan, A. Knopfmacher, M. Shattuck



𝑝
𝜎
𝑖−

1
=

𝑟

𝜎
𝑗
+
1
=

𝑠

𝑛
+
1

sub-permutation 𝜎𝑖 · · ·𝜎𝑗

with elements
from [2, 𝑟 − 1]

single dam

𝑡1 elements

𝑡 2
el

em
en

ts

sub-permutation

with no water

sub-permutations

with no water

Figure 6: Permutation with one dam only, after raising but before
adding 1

Let 𝐶1(𝑛, 𝑝) be the total capacity taken over all permutations of [𝑛] with one
dam of width 𝑝. Now let us obtain all one-dam permutations of [𝑛 + 1] of width
𝑝 + 1 from all possible precursors in 𝒮𝑛. Each one-dam member of 𝒮𝑛+1 of width
𝑝+1 can be obtained in a unique way from a certain subset of 𝒮𝑛 by the following
modified two-step procedure:

∙ Raising such permutations by one,

∙ Adding 1 to these permutations in every possible way that results in a one-
dam permutation of [𝑛+ 1].

Let us first write a recursion for 𝐶1(𝑛+ 1, 1). We consider the following cases:
First case, where we add the element 1 to any raised unimodal permutation

at all points other than the ends.
Second case, where there is a single dam of width one both before and after

adding the element 1 to either end of a raised permutation.

So for the first case, we fix a raised unimodal permutation. The total contribu-
tion of adding the element 1 in any of the specified positions is

1 + 2 + 3 + · · ·+ (𝑛− 1) =

(︂
𝑛

2

)︂
.

There are precisely
(︂
𝑛− 1

0

)︂
+

(︂
𝑛− 1

1

)︂
+ · · ·

(︂
𝑛− 1

𝑛− 1

)︂
= 2𝑛−1
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unimodal permutations of length 𝑛. Hence, the contribution towards 𝐶1(𝑛+ 1, 1)
is 2𝑛−1

(︀
𝑛
2

)︀
.

For the second case, the contribution is seen to be 2𝐶1(𝑛, 1). Combining the
prior two cases, we have the recurrence

𝐶1(𝑛+ 1, 1) = 2𝐶1(𝑛, 1) +

(︂
𝑛

2

)︂
2𝑛−1, 𝑛 ≥ 1,

with the initial condition 𝐶1(1, 1) = 0, which yields the following result.

Proposition 3.1. The total capacity of all one-dam permutations of [𝑛] with dam
width 1 is

𝐶1(𝑛, 1) =
2𝑛 𝑛

24
(𝑛− 1)(𝑛− 2).

We now write a recurrence for 𝐶1(𝑛 + 1, 𝑝 + 1) where 𝑝 ≥ 1. For this, note
that obtaining all one-dam permutations of length 𝑛+1 having width 𝑝+1 entails
either

i) Adding 1 to any of the permutations counted in 𝐶1(𝑛, 𝑝) (after first raising
them) in any of the 𝑝+ 1 positions available inside the dam, or

ii) Adding 1 to either end of a permutation counted by 𝐶1(𝑛, 𝑝 + 1) (after
raising).

Now for case i) above, let 𝑟 be the left bound of the dam in a one-dam permu-
tation and 𝑠 be the right bound. Assume for now that 𝑟 < 𝑠 where 𝑠 ≤ 𝑛. (The
case 𝑠 = 𝑛 + 1 must be considered separately.) The width of the dam is 𝑝. Let
there be 𝑡1 increasing parts to the left of 𝑟 and 𝑡2 + 1 increasing parts to the right
of 𝑠 of which the last part must be 𝑛+ 1.

We note the following restrictions:

1 ≤ 𝑝 ≤ 𝑛− 3,

0 ≤ 𝑡1 ≤ (𝑟 − 1)− (𝑝+ 1) = 𝑟 − 2− 𝑝,

0 ≤ 𝑡2 ≤ 𝑛− 𝑠.

After raising and inserting the 1, we see that

𝑝+ 1 < 𝑟 ≤ 𝑛− 1

(because all 𝑝+ 1 elements of the new wider dam must be < 𝑟).
When we add 1 to the dam (in any of the 𝑝+1 possible positions), the additional

capacity above the 1 is 𝑟 − 1. There are
(︀
𝑟−2−𝑝

𝑡1

)︀
and

(︀
𝑛−𝑠
𝑡2

)︀
ways to choose 𝑡1

and 𝑡2 elements, respectively, to form the increasing sequences. There are
(︀
𝑟−2
𝑝

)︀
𝑝!

ways to choose and order the 𝑝 elements in the dam prior to inserting 1. Thus,
the additional contribution for permutations enumerated by 𝐶1(𝑛, 𝑝) with given
parameters 𝑟 and 𝑠 as stated is

𝑟−2−𝑝∑︁

𝑡1=0

𝑛−𝑠∑︁

𝑡2=0

(︂
𝑟 − 2

𝑝

)︂
𝑝!(𝑟 − 1)(𝑝+ 1)

(︂
𝑟 − 2− 𝑝

𝑡1

)︂(︂
𝑛− 𝑠

𝑡2

)︂
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=

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)(𝑝+ 1)!2𝑛−𝑠

𝑟−2−𝑝∑︁

𝑡1=0

(︂
𝑟 − 2− 𝑝

𝑡1

)︂

=

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)(𝑝+ 1)!2𝑛−𝑠 2𝑟−2−𝑝. (3.1)

Summing (3.1) over all possible values of 𝑠 yields

𝑛∑︁

𝑠=𝑟+1

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)(𝑝+ 1)!2𝑛−𝑠+𝑟−2−𝑝

= (𝑝+ 1)!

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)2𝑛−2−𝑝

(︀
1− 2𝑟−𝑛

)︀
. (3.2)

Finally, summing (3.2) over all possible values of 𝑟, the total additional capacity is

𝑛−1∑︁

𝑟=𝑝+2

(𝑝+ 1)!

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)2𝑛−2−𝑝

(︀
1− 2𝑟−𝑛

)︀

= (𝑝+ 1)!2𝑛−2−𝑝
𝑛−1∑︁

𝑟=𝑝+2

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)

(︀
1− 2𝑟−𝑛

)︀
. (3.3)

Now for the case 𝑠 = 𝑛+ 1, the restrictions are

1 ≤ 𝑝 ≤ 𝑛− 2,

0 ≤ 𝑡1 ≤ (𝑟 − 1)− (𝑝+ 1) = 𝑟 − 2− 𝑝.

Considering all possible values of 𝑟 and 𝑡1, the additional contribution for permu-
tations in the case 𝑠 = 𝑛+ 1 is

𝑛∑︁

𝑟=𝑝+2

𝑟−2−𝑝∑︁

𝑡1=0

(︂
𝑟 − 2

𝑝

)︂
𝑝!(𝑟 − 1)(𝑝+ 1)

(︂
𝑟 − 2− 𝑝

𝑡1

)︂

=
𝑛∑︁

𝑟=𝑝+2

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)(𝑝+ 1)!2𝑟−2−𝑝. (3.4)

Finding the total capacity requires taking into account the cases when 𝑟 > 𝑠
and exploiting the obvious symmetry (i.e., multiplying by 2). Thus, by (3.3) and
(3.4), the total additional capacity in case i) above is

(𝑝+ 1)!2𝑛−1−𝑝
𝑛−1∑︁

𝑟=𝑝+2

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)

(︀
1− 2𝑟−𝑛

)︀

+
𝑛∑︁

𝑟=𝑝+2

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1)(𝑝+ 1)!2𝑟−1−𝑝

Capacity of permutations 9



= (𝑝+ 1)!2𝑛−1−𝑝
𝑛∑︁

𝑟=𝑝+2

(︂
𝑟 − 2

𝑝

)︂
(𝑟 − 1) = (𝑝+ 1)(𝑝+ 1)!2𝑛−1−𝑝

(︂
𝑛

𝑝+ 2

)︂
, (3.5)

where we have made use of [13, p. 174] to obtain the last equality.
The original total capacity from i) is

(𝑝+ 1)𝐶1(𝑛, 𝑝). (3.6)

Case ii) leads to a contribution towards 𝐶1(𝑛+ 1, 𝑝+ 1) of

2𝐶1(𝑛, 𝑝+ 1). (3.7)

So adding (3.5), (3.6) and (3.7), we have the recurrence:

𝐶1(𝑛+ 1, 𝑝+ 1) = 2𝐶1(𝑛, 𝑝+ 1) + (𝑝+ 1)𝐶1(𝑛, 𝑝)

+ (𝑝+ 1)(𝑝+ 1)!2𝑛−1−𝑝

(︂
𝑛

𝑝+ 2

)︂
. (3.8)

We have the following explicit formula for 𝐶1(𝑛, 𝑝).

Theorem 3.2. The total capacity of all one-dam permutations of [𝑛] with dam
width 𝑝 is

𝐶1(𝑛, 𝑝) =
𝑝

𝑝+ 2
2𝑛−2−𝑝 𝑛!

(𝑛− 2− 𝑝)!
,

for 1 ≤ 𝑝 ≤ 𝑛− 2.

Proof. We prove the result for a given 𝑛 ≥ 3 and all 𝑝 ∈ [𝑛− 2] by induction on 𝑛.
The 𝑛 = 3 case is clear since 𝐶1(3, 1) = 2. If 𝑛 ≥ 3 and 𝑝 ≥ 1, then the formula for
𝐶1(𝑛+ 1, 𝑝+ 1) follows from (3.8) and the induction hypothesis, upon considering
separately the cases when 𝑝 ≤ 𝑛−3 and 𝑝 = 𝑛−2. By Proposition 3.1, the formula
holds for 𝑝 = 1 and all 𝑛 ≥ 3, which fully establishes the 𝑛+ 1 case and completes
the induction.

Remark 3.3. From Theorem 3.2, we obtain the generating function

∑︁

𝑛≥𝑝+2

𝐶1(𝑛, 𝑝)𝑥
𝑛 =

𝑝(𝑝+ 1)!𝑥𝑝+2

(1− 2𝑥)𝑝+3
, 𝑝 ≥ 1.

Below is an array of values for 𝐶1(𝑛, 𝑝) for small 𝑛 and 𝑝:

[𝐶1(𝑛, 𝑝)]𝑛≥3,𝑝≥1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0
16 12 0 0 0 0
80 120 72 0 0 0
320 720 864 480 0 0
1120 3360 6048 6720 3600 0
3584 13440 32256 53760 57600 30240

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Corollary 3.4. The total capacity of one-dam permutations of [𝑛] is

𝐶1(𝑛) =
𝑛−2∑︁

𝑝=1

𝑝

𝑝+ 2
2𝑛−2−𝑝 𝑛!

(𝑛− 2− 𝑝)!
.

The values of 𝐶1(𝑛) for 1 ≤ 𝑛 ≤ 12 are

0, 0, 2, 28, 272, 2384, 20848, 190880, 1871808, 19832448, 227360256, 2814303232.

4. Total number of one-dam permutations

In this section, we find the number of permutations of [𝑛] that have exactly one
dam. Let 𝑁(𝑛, 𝑝) be the number of one-dam permutations of size 𝑛 with width 𝑝.
In order to obtain a recursion for 𝑁(𝑛+1, 𝑝+1) in terms of 𝑁(𝑛, 𝑝), we apply the
same two-step procedure as before. We again consider separately the cases 𝑝 = 1
and 𝑝 > 1.

4.1. Case where 𝑝 = 1

First, we add 1 at all points other than the ends to a raised unimodal permutation;
then the contribution to the number of permutations is (𝑛− 1)2𝑛−1.

Next, we add 1 to the ends of a one-dam permutation, which yields a contribu-
tion of 2𝑁(𝑛, 1). Combining the prior cases gives

𝑁(𝑛+ 1, 1) = (𝑛− 1)2𝑛−1 + 2𝑁(𝑛, 1), 𝑛 ≥ 1,

with initial condition 𝑁(1, 1) = 0.
Solving this first order linear recursion gives the following result.

Proposition 4.1. The number of one-dam permutations of [𝑛] with dam width 1
is

𝑁(𝑛, 1) = 2𝑛−3(𝑛− 1)(𝑛− 2).

4.2. Case where 𝑝 > 1

First, we add 1 to a permutation counted in 𝑁(𝑛, 𝑝) in any of the 𝑝+ 1 positions
within the dam, which gives a contribution of (𝑝+ 1)𝑁(𝑛, 𝑝). Otherwise, add the
1 to either end of a permutation counted by 𝑁(𝑛, 𝑝+ 1).

Thus, the recursion (3.8) is replaced by

𝑁(𝑛+ 1, 𝑝+ 1) = (𝑝+ 1)𝑁(𝑛, 𝑝) + 2𝑁(𝑛, 𝑝+ 1). (4.1)

One then has the following explicit formula for 𝑁(𝑛, 𝑝).

Capacity of permutations 11



Theorem 4.2. The number of one-dam permutations of [𝑛] with dam width 𝑝 is

𝑁(𝑛, 𝑝) =
1

𝑝+ 1
2𝑛−1−𝑝 (𝑛− 1)!

(𝑛− 2− 𝑝)!
,

for 1 ≤ 𝑝 ≤ 𝑛− 2.

Proof. This is shown by induction on 𝑛 as before using (4.1) and Proposition 4.1.

Remark 4.3. From Theorem 4.2, we obtain the generating function

∑︁

𝑛≥𝑝+2

𝑁(𝑛, 𝑝)𝑥𝑛 =
2𝑝!𝑥𝑝+2

(1− 2𝑥)𝑝+2
, 𝑝 ≥ 1.

Below are the values for 𝑁(𝑛, 𝑝) for small 𝑛 and 𝑝:

[𝑁(𝑛, 𝑝)]𝑛≥3,𝑝≥1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0
12 4 0 0 0 0
48 32 12 0 0 0
160 160 120 48 0 0
480 640 720 576 240 0
1344 2240 3360 4032 3360 1440

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Corollary 4.4. The number of permutations of [𝑛] with one dam is

𝑁(𝑛) =
𝑛−2∑︁

𝑝=1

1

𝑝+ 1
2𝑛−1−𝑝 (𝑛− 1)!

(𝑛− 2− 𝑝)!
.

The values of 𝑁(𝑛) for 1 ≤ 𝑛 ≤ 12 are

0, 0, 2, 16, 92, 488, 2656, 15776, 105696, 806592, 6974592, 67573504.

5. Asymptotics for 𝐶1(𝑛) and 𝑁(𝑛)

5.1. Asymptotics for 𝐶1(𝑛)

In order to find the asymptotic average capacity for one-dam permutations of [𝑛],
we need asymptotic estimates of the quantities 𝐶1(𝑛) and 𝑁(𝑛) in Corollaries 3.4
and 4.4.

We first find the maximum value of 𝐶1(𝑛, 𝑝) over 𝑝 for a fixed 𝑛. For this, we
compute the ratio 𝐶1(𝑛, 𝑝+ 1)/𝐶1(𝑛, 𝑝) and determine where it is greater than or
less than one.

By the formula 𝐶1(𝑛, 𝑝) =
𝑝

𝑝+22
𝑛−2−𝑝 𝑛!

(𝑛−2−𝑝)! from Theorem 3.2, we have

𝐶1(𝑛, 𝑝+ 1)

𝐶1(𝑛, 𝑝)
=

(𝑛− 2− 𝑝)(𝑝+ 1)(𝑝+ 2)

2𝑝(𝑝+ 3)
.
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Since (𝑝+1)(𝑝+2)
𝑝(𝑝+3) > 1, the ratio 𝐶1(𝑛,𝑝+1)

𝐶1(𝑛,𝑝)
exceeds 1 if 𝑝 ≤ 𝑛 − 4. Comparing

directly 𝐶1(𝑛, 𝑛 − 3) = 2(𝑛−3)𝑛!
𝑛−1 and 𝐶1(𝑛, 𝑛 − 2) = (𝑛 − 2)(𝑛 − 1)!, we have

𝐶1(𝑛, 𝑛 − 3) > 𝐶1(𝑛, 𝑛 − 2) if 𝑛 ≥ 4, which we will assume. Thus, the size of the
largest term is given by 𝐶1(𝑛, 𝑛− 3).

We represent the general term 𝐶1(𝑛, 𝑝) for 𝑝 ≤ 𝑛−3 by 𝐶(𝑛, 𝑛−3− 𝑗), where 𝑗
runs from 0 to 𝑛− 4. Thus, the ratio of the general term 𝐶1(𝑛, 𝑝) to the maximum
term 𝐶1(𝑛, 𝑛− 3) is

𝐶1(𝑛, 𝑛− 3− 𝑗)

𝐶1(𝑛, 𝑛− 3)
=

2𝑗(3 + 𝑗 − 𝑛)(𝑛− 1)

(1 + 𝑗 − 𝑛)(𝑗 + 1)!(𝑛− 3)
.

At this stage, the final term where 𝑝 = 𝑛 − 2 is omitted and will be reintroduced
later.

Summing over all possible values of 𝑗 yields
𝑛−4∑︁

𝑗=0

2𝑗(3 + 𝑗 − 𝑛)(𝑛− 1)

(1 + 𝑗 − 𝑛)(𝑗 + 1)!(𝑛− 3)
=

𝑛− 1

𝑛− 3

𝑛−4∑︁

𝑗=0

2𝑗(3 + 𝑗 − 𝑛)

(1 + 𝑗 − 𝑛)(𝑗 + 1)!
. (5.1)

To estimate this sum, we perform a series expansion on the summand

2𝑗(3 + 𝑗 − 𝑛)

(1 + 𝑗 − 𝑛)(𝑗 + 1)!
=

2𝑗

(1 + 𝑗)!
− 21+𝑗

(1 + 𝑗)!𝑛
+𝑂

(︂
1

𝑛2

)︂
.

We shall replace the original summand by 2𝑗

(1+𝑗)! − 21+𝑗

(1+𝑗)!𝑛 .
Thus, consider the sum

𝑛−4∑︁

𝑗=0

(︂
2𝑗

(1 + 𝑗)!
− 21+𝑗

(1 + 𝑗)!𝑛

)︂
. (5.2)

The terms
𝑛−4∑︁

𝑗=0

21+𝑗

(1 + 𝑗)!𝑛

may be ignored as they only make a small contribution for large 𝑛 since

1

𝑛

𝑛−4∑︁

𝑗=0

21+𝑗

(1 + 𝑗)!
<

𝑒2

𝑛
.

Therefore, the sum in (5.2) can be approximated by an infinite sum
∞∑︁

𝑗=0

2𝑗

(1 + 𝑗)!
,

since the terms for 𝑗 ≥ 𝑛−3 are exponentially small. Thus, the sum in (5.2) equals
∞∑︁

𝑗=0

2𝑗

(1 + 𝑗)!
+𝑂

(︂
1

𝑛

)︂
=

𝑒2 − 1

2
+𝑂

(︂
1

𝑛

)︂
.
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Finally, we include the factor 𝑛−1
𝑛−3 from equation (5.1) above that was left out,

multiply by the largest term 𝐶(𝑛, 𝑛− 3) = 2(𝑛−3)𝑛!
𝑛−1 and then add the missing last

term when 𝑝 = 𝑛− 2 to obtain

(𝑒2 − 1)𝑛!

(︂
1 +𝑂

(︂
1

𝑛

)︂)︂
+ 𝑛!

(︂
1 +𝑂

(︂
1

𝑛

)︂)︂
,

which yields the following result.

Theorem 5.1. As 𝑛 → ∞, the asymptotic expression for 𝐶1(𝑛), the total capacity
of all one-dam permutations of [𝑛], is given by

𝐶1(𝑛) = 𝑒2 𝑛!

(︂
1 +𝑂

(︂
1

𝑛

)︂)︂
.

5.2. Asymptotics for 𝑁(𝑛)

One can also find an asymptotic expression for the number of permutations of [𝑛]
with one dam, following the method used for 𝐶1(𝑛). By Theorem 4.2, the ratio
of 𝑁(𝑛, 𝑝 + 1) to 𝑁(𝑛, 𝑝) simplifies to (𝑛−2−𝑝)(1+𝑝)

2(2+𝑝) . Since 2
3 ≤ 1+𝑝

2+𝑝 < 1, we have
𝑁(𝑛,𝑝+1)
𝑁(𝑛,𝑝) ≥ 1 if 1 ≤ 𝑝 ≤ 𝑛 − 5 and 𝑁(𝑛,𝑝+1)

𝑁(𝑛,𝑝) < 1 if 𝑝 = 𝑛 − 3 or 𝑛 − 4. (Note that

there is equality in the inequality 𝑁(𝑛,𝑝+1)
𝑁(𝑛,𝑝) ≥ 1 if and only if 𝑛 = 6 and 𝑝 = 1.)

Thus, the maximum value of 𝑁(𝑛, 𝑝) for 1 ≤ 𝑝 ≤ 𝑛− 2 where 𝑛 ≥ 5 is given by

𝑁(𝑛, 𝑛− 4) =
4(𝑛− 1)!

𝑛− 3
.

This time however there are two cases to add at the end, namely, when 𝑝 = 𝑛−2

and 𝑝 = 𝑛− 3. We consider the ratio 𝑁(𝑛,𝑛−4−𝑗)
𝑁(𝑛,𝑛−4) of the general term to the largest

term for 0 ≤ 𝑗 ≤ 𝑛− 5 and sum over 𝑗 to get

𝑛−5∑︁

𝑗=0

𝑁(𝑛, 𝑛− 4− 𝑗)

𝑁(𝑛, 𝑛− 4)
=

𝑛−5∑︁

𝑗=0

21+𝑗(𝑛− 3)

(𝑛− 3− 𝑗)(𝑗 + 2)!
.

Similar to before, we have

𝑛−5∑︁

𝑗=0

21+𝑗(𝑛− 3)

(𝑛− 3− 𝑗)(𝑗 + 2)!
=

𝑛−5∑︁

𝑗=0

(︂
21+𝑗

(2 + 𝑗)!
+

21+𝑗𝑗

(2 + 𝑗)!𝑛

)︂
+𝑂

(︂
1

𝑛

)︂
.

We approximate this last sum, ignoring the second part, by the infinite sum

∞∑︁

𝑗=0

21+𝑗

(2 + 𝑗)!
=

𝑒2 − 3

2
.
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Multiplying by the largest term and adding the two missing terms for 𝑝 = 𝑛 − 2
and 𝑝 = 𝑛− 3, we have

(︂
𝑒2 − 3

2

4(𝑛− 1)!

𝑛
+

4(𝑛− 1)!

𝑛
+

2(𝑛− 1)!

𝑛

)︂ (︂
1 +𝑂

(︂
1

𝑛

)︂)︂
,

which yields the following result.

Theorem 5.2. As 𝑛 → ∞, the asymptotic expression for 𝑁(𝑛), the number of
permutations of [𝑛] with one dam, is given by

𝑁(𝑛) =
2𝑒2(𝑛− 1)!

𝑛

(︂
1 +𝑂

(︂
1

𝑛

)︂)︂
.

Finally, dividing the result of Theorem 5.1 by that of Theorem 5.2 yields the
following estimate.

Theorem 5.3. As 𝑛 → ∞, the average capacity for the permutations of [𝑛] with
one dam is

𝐶1(𝑛)

𝑁(𝑛)
=

𝑛2

2

(︂
1 +𝑂

(︂
1

𝑛

)︂)︂
.

6. Combinatorial proofs

In this section, we provide bijective proofs of Theorems 3.2 and 4.2 above. Since
our combinatorial proof of the former makes use of ideas from the latter, we first
argue the latter.

6.1. Combinatorial proof of Theorem 4.2.

Equivalently, we show 𝑁(𝑛, 𝑝) = 2𝑛−1−𝑝𝑝!
(︀
𝑛−1
𝑝+1

)︀
. To do so, first let 𝑆 = {𝑠1 < 𝑠2 <

· · · < 𝑠𝑝+1} be an arbitrary subset of [𝑛− 1] of size 𝑝+1. We reorder the elements
𝑠1, 𝑠2, . . . , 𝑠𝑝 according to an arbitrary permutation 𝛼 of [𝑝] as 𝑠𝛼(1), 𝑠𝛼(2), . . . , 𝑠𝛼(𝑝),
which we will denote by 𝛼*. Next, we assign to each member of [𝑛]−𝑆 either 𝑎 or
𝑏. From this configuration enumerated by 2𝑛−1−𝑝𝑝!

(︀
𝑛−1
𝑝+1

)︀
, we create a permutation

𝜋 = 𝜋1𝜋2 · · ·𝜋𝑛 of [𝑛] having a single dam 𝜋𝑖−1𝜋𝑖 · · ·𝜋𝑗𝜋𝑗+1 of width 𝑝 such that
the section 𝜋𝑖 · · ·𝜋𝑗 is a permutation of {𝑠1, . . . , 𝑠𝑝} and 𝑠𝑝+1 = min{𝜋𝑖−1, 𝜋𝑗+1}.
In creating 𝜋, we will first form the subsequence 𝑄 of 𝜋 comprising the elements
of 𝑆 ∪ [𝑠𝑝+1 + 1, 𝑛]; note that 𝑄 must consist of consecutive letters of 𝜋.

Consider the sequence 𝑐 = 𝑐1𝑐2 · · · 𝑐ℓ of letters in {𝑎, 𝑏} assigned to the elements
𝑠𝑝+1 + 1, 𝑠𝑝+1 + 2, . . . , 𝑛, where ℓ = 𝑛 − 𝑠𝑝+1. If 𝑐 = 𝑎ℓ or 𝑐 = 𝑏ℓ, then let 𝑄 be
given by 𝑄 = 𝑛(𝑛 − 1) · · · (𝑠𝑝+1 + 1)𝛼*𝑠𝑝+1 or 𝑄 = 𝑠𝑝+1𝛼

*(𝑠𝑝+1 + 1) · · · (𝑛 − 1)𝑛,
respectively. If 𝑐 = 𝑏ℓ−1𝑎 or 𝑐 = 𝑎ℓ−1𝑏, then let 𝑄 = (𝑠𝑝+1 + 1) · · · (𝑛− 1)𝑛𝛼*𝑠𝑝+1

or 𝑄 = 𝑠𝑝+1𝛼
*𝑛(𝑛 − 1) · · · (𝑠𝑝+1 + 1). So assume 𝑐 starts with 𝑏𝑡𝑎 or 𝑎𝑡𝑏, where
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1 ≤ 𝑡 ≤ ℓ − 2. We consider cases based on the final letter 𝑐ℓ to define 𝑄. First
assume 𝑐ℓ = 𝑎. If 𝑐 starts with 𝑏𝑡𝑎 for some 1 ≤ 𝑡 ≤ ℓ− 2, then let

𝑄 = (𝑠𝑝+1 + 𝑡+ 1)𝛽′𝑛𝛽′′(𝑠𝑝+1 + 𝑡) · · · (𝑠𝑝+1 + 1)𝛼*𝑠𝑝+1,

where 𝛽′ is increasing, 𝛽′′ is decreasing and 𝛽′ ∪ 𝛽′′ = [𝑠𝑝+1 + 𝑡 + 2, 𝑛 − 1], with
membership in the string 𝛽′ or 𝛽′′ dependent on whether 𝑎 or 𝑏 is assigned to the
element in question. If 𝑐 starts with 𝑎𝑡𝑏, then let

𝑄 = (𝑠𝑝+1 + 1) · · · (𝑠𝑝+1 + 𝑡)𝛽′𝑛𝛽′′(𝑠𝑝+1 + 𝑡+ 1)𝛼*𝑠𝑝+1,

where 𝛽′ and 𝛽′′ are as before. Now assume 𝑐ℓ = 𝑏. If 𝑐 starts with 𝑏𝑡𝑎, then let
𝑄 be obtained by reversing the 𝑄 from the corresponding case above when 𝑐ℓ = 𝑎.
Likewise, if 𝑐 starts with 𝑎𝑡𝑏, then reverse 𝑄 from the corresponding case when
𝑐ℓ = 𝑎.

Finally, if 𝑥 ∈ [𝑠𝑝+1]−𝑆, then either place 𝑥 before 𝑄 if 𝑥 is assigned 𝑎 or after
𝑄 if 𝑥 is assigned 𝑏 such that any elements of [𝑠𝑝+1]− 𝑆 before (after) 𝑄 occur in
increasing (decreasing) order. Let 𝜋 be the permutation of [𝑛] obtained by applying
the operations described above. One may verify that 𝜋 contains a single dam of
width 𝑝 and that the procedure above is reversible.

6.2. Proof of Theorem 3.2.
Let 𝒩 (𝑛, 𝑝) denote the set of permutations enumerated by 𝑁(𝑛, 𝑝). To compute
the sum of the capacities of all members of 𝒩 (𝑛, 𝑝), it is enough to consider the
contribution from the first letter of each dam, by symmetry, and multiply the result
by 𝑝. Let 𝜆 ∈ 𝒩 (𝑛, 𝑝) be formed in the manner described above from an ordered
triple (𝑆, 𝛼, 𝑑), where 𝑆 and 𝛼 are as before with 𝑆 = {𝑠1 < 𝑠2 < · · · < 𝑠𝑝+1}
and 𝑑 is a binary sequence in {𝑎, 𝑏} of length 𝑛 − 1 − 𝑝. Let 𝜆′ be the member
of 𝒩 (𝑛, 𝑝) obtained from the triple (𝑆′, 𝛾𝛼, 𝑑), where 𝛾 denotes the complement
operation (i.e., 𝛾(𝑖) = 𝑝 + 1 − 𝑖 for all 𝑖 ∈ [𝑝]) and 𝑆′ = {𝑠𝑝+1} ∪ {𝑠𝑝+1 − 𝑠𝑖 : 1 ≤
𝑖 ≤ 𝑝}. Note that 𝜆 = 𝜆′ if and only if 𝑝 = 1, 𝑠2 is even and 𝑠1 = 𝑠2

2 , which is
permitted. Taken together, 𝜆 and 𝜆′ contribute 𝑠𝑝+1 towards the total capacity
of all members of 𝒩 (𝑛, 𝑝) for all 𝜆 (considering only the contribution of the first
position within a dam). So we must replace

(︀
𝑛−1
𝑝+1

)︀
as the enumerator of 𝑆 with the

sum
∑︀𝑛−1

𝑟=𝑝+1

(︀
𝑟−1
𝑝

)︀
𝑟 =

(︀
𝑛

𝑝+2

)︀
(𝑝 + 1), where 𝑟 denotes 𝑠𝑝+1; this identity is shown

below bijectively. Upon considering separately the cases when 𝜆 = 𝜆′ and 𝜆 ̸= 𝜆′,
it is seen that the contribution of each 𝜆 is counted twice (note that if 𝑝 > 1, then
𝜆 ̸= 𝜆′ for all 𝜆 with the mapping 𝜆 ↦→ 𝜆′ an involution for all 𝑝). Thus, multiplying
by 𝑝, the total capacity of all members of 𝒩 (𝑛, 𝑝) is given by

1

2

(︂
2𝑛−1−𝑝𝑝 · 𝑝!

(︂
𝑛

𝑝+ 2

)︂
(𝑝+ 1)

)︂
=

𝑝

𝑝+ 2
2𝑛−2−𝑝 𝑛!

(𝑛− 2− 𝑝)!
,

as desired.
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For completeness, we provide a bijective proof of the identity

𝑛−1∑︁

𝑟=𝑝+1

(︂
𝑟 − 1

𝑝

)︂
𝑟 =

(︂
𝑛

𝑝+ 2

)︂
(𝑝+ 1), 1 ≤ 𝑝 ≤ 𝑛− 2, (6.1)

used above, since the authors were unable to find such a proof in the literature.
Note that the right side of (6.1) clearly counts members of the set 𝒜 consisting of
“marked” subsets of [𝑛] of size 𝑝+2 wherein one of the elements, not the largest, is
marked. To complete the proof, we construct another set ℬ enumerated by the left
side of (6.1) as well as a bijection between the sets ℬ and 𝒜. Given 𝑝+1 ≤ 𝑟 ≤ 𝑛−1,
let ℬ𝑟 denote the set of configurations wherein the members of [𝑟] are written in a
row, exactly 𝑝 + 1 numbers are circled, among them 𝑟 itself, and a dot is placed
directly prior to some member of [𝑟]. Let ℬ =

⋃︀𝑛−1
𝑟=𝑝+1 ℬ𝑟. To define a bijection

from ℬ to 𝒜, renumber the elements to the right of the dot where the dot now
receives a number (the number assigned the position of the dot will become the
marked element of 𝐴 ∈ 𝒜). Note that the element 𝑟 becomes 𝑟 + 1 and thus the
largest element of 𝐴.
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