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Abstract

Despite the fact that bone mineral density (BMD) is an important fracture risk predictor in
human medicine, studies in equine orthopedic research are still lacking. We hypothesized that BMD
correlates with bone failure and fatigue fractures of this bone. Thus, the objectives of this study were
to measure the structural and mechanical properties of the proximal phalanx with dual energy X-ray
absorptiometry (DXA), to correlate the data obtained from DXA and computer tomography (CT)
measurements to those obtained by loading pressure examination and to establish representative
region of interest (ROI) for in vitro BMD measurements of the equine proximal phalanx for predic-
ting bone failure force.

DXA was used to measure the whole bone BMD and additional three ROI sites in 14 equine
proximal phalanges. Following evaluation of the bone density, whole bone, cortical width and area in
the mid-diaphyseal plane were measured on CT images. Bones were broken using a manually control-
led universal bone crusher to measure bone failure force and reevaluated for the site of fractures on
follow-up CT images. Compressive load was applied at a constant displacement rate of 2 mm/min
until failure, defined as the first clear drop in the load measurement.

The lowest BMD was measured at the trabecular region (mean ± SD: 1.52 ± 0.12 g/cm2; median:
1.48 g/cm2; range: 1.38-1.83 g/cm2). There was a significant positive linear correlation between trabel-
cular BMD and the breaking strength (P=0.023, r=0.62). The trabecular region of the proximal
phalanx appears to be the only significant indicator of failure of strength in vitro. This finding should
be reassessed to further reveal the prognostic value of trabecular BMD in an in vivo fracture risk
model.
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Introduction

Stress fractures are considered as one of the most
significant causes of economic losses in race horse
industry. According to large retrospective studies,
80% of musculoskeletal injuries in the US (Johnson
et al. 1994) and 60% in the UK (Vaughan et al. 1975)
are fatal in racehorses. Fractures of the proximal
phalanx are one of the most common incidences dur-
ing training (Vaughan et al. 1975) and during the
daily fracture repair at equine clinics as well (Smith
2010). The most severe longitudinal and comminuted
fractures are also observed in the first phalanx
(Rooney 1969). Most fractures appear “sponta-
neous” despite that they are the summation of com-
plex processes with numerous factors involved (Bax-
ter and Turner 2002).

The density of bony structures correlate to skel-
etal strength and stiffness, which can be estimated by
DXA (dual energy X-ray absorptiometry) in people
(Genant et al. 1994, Genant et al. 1996, Grier et al.
1996). Further, as a quantitative method, DXA also
has the ability to reveal and monitor changes in bone
structural properties in humans and in various in vivo
animal models (Griffin et al. 1993, Turner et al.
1995, Grier et al. 1996). Previous research in horses
focused on the structural and mechanical properties
of the third metacarpal bone (Bynum et al. 1971, El
Shorafa et al. 1979, Nunamaker et al. 1989) and the
proximal sesamoid bones (Young et al. 1991), al-
though little is known about the biomechanical prop-
erties of the first phalanx (Thompson et al. 1996,
Dzierzęcka and Charuta 2012).

Thus, the objectives of this study were to corre-
late the data obtained from DXA and CT (computer
tomography) measurements to those obtained by
loading pressure examination. Further, this experi-
ment aimed to establish representative ROI (region
of interest) of the equine proximal phalanx for pre-
dicting bone failure force. We hypothesized that
bone failure force correlates to bone mineral density
(whole bone; medial, lateral and trabecular region)
and to the morphometric parameters of the proximal
phalanx (cortical width, cortical area, total bone
width).

Materials and Methods

Samples

Proximal phalanges of the frontlimbs were in-
volved in the study. The horses were euthanised un-
related to muscolosceletal injuries at Szent István
University, Faculty of Veterinary Science, Clinic for

Large Animals, Üllö, Hungary. After dissection and
manual removal of all soft tissue, the bones were
stored in ethyl-alcohol at room temperature until
measurements as previously validated (Beaupied et al.
2006). The horses were: 5 ± 3 years old (mean ± SD,
median: 5.29 years). There were 4 Lipizzaners, 1 Hun-
garian half-blood, 1 Hungarian sporthorse, 1 Arabian.
Gender distribution was the following: 5 mares, 1 stal-
lion and 1 gelding. Horses were used for either pleas-
ure (n=3. 42%), carriage-driving (n=2. 29%) or
breeding (n=2. 29%) purposes.

Bone mineral density (BMD) measurement

Bones were examined post mortem with a den-
sitometer (Norland XR-26a) at the First Department
of Medicine, Semmelweis University of Medicine,
Budapest, Hungary. Imitation of soft tissue around
the bone was required for the software algorithm used
to measure the BMD. Therefore, a 20 mm plexiglass
was used as a substitution for soft tissue as described
in detail elsewhere (Tóth et al. 2010). Bones were
measured once from dorsopalmar direction (Tóth et
al. 2010). As the first step, the BMD of the whole
bone was measured followed by selection of three 1x1
cm ROIs. The ROIs were the entire bone; the medial
cortex (CM), the lateral cortex (CL) at the level of the
horizontal axis of the mid-third of the bones and the
trabecular region of the sagittal plane of the proximal
third, 3 mm under the level of the deepest point of the
metacarpophalangeal joint surface of the proximal
phalanges (T) as shown in Fig. 1.

Fig. 1. DXA image of a proximal phalanx from dorsopalmar
direction. Region of interests (ROIs) of the first phalanx.
T: trabecular or cancellous bone, MC: medial cortex, LC:
lateral cortex.
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Computer tomographic (CT) measurements

Bones were scanned with a commercially available
computer tomography unit (Siemens Somaton Emo-
tion 6 Multislice CTb) using the following settings: 130
kV, 20 mAs, slides: 2 mm; at Kaposvár University,
Institute of Diagnostic Imaging and Radiation Oncol-
ogy, Kaposvár, Hungary. Morphometric parameters
of the proximal phalanx were taken at mid-diaphyseal
plane using a Siemens SIENETb software. Cortex
width was measured from dorsal, lateral, medial and
palmar sides, then the bone total width in either dor-
sopalmar and lateromedial directions (Fig. 2). Corti-
cal area was calculated from these data using an equa-
tion described by Sherman et al (1995). CT images
were repeated after loading test to reveal the fracture
sites.

Fig. 2. Transverse CT image at the level of the mid-dia-
physeal region of a proximal phalanx. DT: diameter trans-
versa; DS: diameter saggittalis; CM: cortex palmaris;
CL: cortex lateralis; CD: cortex dorsalis; CM: cortex me-
dialis.

Loading test

Biomechanical properties of proximal phalanges
were assessed at Budapest University of Technology
and Economics, Laboratory of Biomechanical Re-
search. For loading pressure examination a universal
bone crusher (ZD-20c universal testing machine) was
used. Due to the lack of previous ex vivo data regard-
ing the first phalanx’s breaking force measurements,
the machine was arbitrarly set for human lumbar spi-
nal preset due to the similar cuboid shape. In order to
position the bone properly during measurements, the
proximal and distal articular rimms of the P1 bones
were removed at the level of the deepest point of the
metacarpophalangeal (proximal) and proximal inter-

phalangeal joint (distal) articular surfaces of the
proximal phalanges by a bandsaw (Fig. 3). The bones
were subjected to loading pressure from a proximodis-
tal direction, due to the convex shape of the
latero-medial site, which would have prevented accu-
rate pressure loading. Bone failure strength was cal-
culated from loading pressure values.

Fig. 3. ZD-20 universal testing machine. The bones were
subjected to loading pressure from a proximodistal direc-
tion. The proximal and distal articular rimms of the P1
bones were removed at the level of the deepest point of the
metacarpophalangeal (proximal) and proximal interphalan-
geal joint (distal) articular surfaces of the proximal
phalanges by a bandsaw.

Statistical Analysis

Statistical analysis of the data was performed with
a commercially available program (Minitab 16d).
Mean, standard deviation, median and range were
calculated for bone mineral density, cortical area, cor-
tex width, bone width, loading pressure, and breaking
force. Distribution of the data was assesed with the
Shapiro-Wilk test. Pearson’s linear correlation was
used to reveal any association between bone mineral
density values (whole bone BMD, traecular BMD, lat-
eral cortical BMD, medial, cortical BMD), cortical
area, cortical width (lateral, medial, dorsal, and pal-
mar regions), bone width (saggittal, transversal) and
bone breaking strength and loading pressure. Statisti-
cal significance was set at P«0.05 and an adequate
linear correlation was assumed if regression coeffi-
cient was greater than 0.6 (r>0.6).

Bone mineral density (BMD)... 5



Results

Samples

14 proximal phalanges from 7 cadavers were used
in the study. 1 phalanx was excluded from the statisti-
cal evaluation because following loading test examin-
ations the fracture site could not be located on the CT
images.

Bone mineral density (BMD) measurement

Total bone BMD (g/cm2), lateral cortex BMD,
medial cortex BMD, trabecular BMD were as shown
in Table 1.

Table 1. Descriptive statistical data of the variables meas-
ured across the 13 proximal phalanges in this study.

Variable N Mean SD Median Range

Whole BMD (g/cm2) 13 1.91 0.14 1.96 1.68-2.13

CL BMD (g/cm2) 13 2.19 0.15 2.2 1.95-2.51

CM BMD (g/cm2) 13 2.1 0.13 2.05 1.93-2.35

T BMD (g/cm2) 13 1.52 0.12 1.48 1.38-1.73

Compression strength
(MPa) 13 74 15.56 72.56 49.96-100

Breaking force (kN) 13 72 13.36 74 45-92

CM (cm) 13 0.97 0.47 1.09 0.22-1.44

CL (cm) 13 0.83 0.45 1 0.15-1.34

CD (cm) 13 0.39 0.13 0.43 0.15-0.59

CP (cm) 13 0.53 0.23 0.63 0.09-0.8

DT (cm) 13 4.66 0.299 4.75 4.17-5.18

DS (cm) 13 2.8 0.55 2.6 2.28-3.78

Area (cm2) 13 5.4 1.90 6.06 2.47-8.1

BMD – bone mineral density, DT – diameter transversa,
DS – diameter saggittalis, CM – cortex palmaris, CL – cortex
lateralis, CD – cortex dorsalis, CM – cortex medialis,
T – trabecular or cancellous bone, SD – standard deviation).

Computer tomographic morphometric
measurements

Data are summarized in Table 1 as means of three
consecutive measurements of each parameter. Frac-
ture lines were identified in the sagittal plane in 13
(92.86%) of 14 specimens. In 5 of 13 (38.46%) cases
the fracture lines were located in the proximal and
mid-third, in 6 of 13 (46.15%) cases the fracture lines
were located in the mid and distal-third and in 2 of 13
(15.38%) cases fracture lines were located in the
mid-third in the sagittal plane.

Loading test

Values of compression force and failure force are
summarized in Table 1.

Correlations

Significant positive linear correlation was found
between trabelcular BMD and the breaking force
(P=0.023, r=0.62). Other parameters did not signifi-
cantly correlate with the breaking force or compres-
sion force as shown in Table 2.

Table 2. Pearson’s linear correlations.

Breaking Compression
force [kN] strength [MPa]Variable

Whole bone BMD [g/cm2] P=0.068 n/a P=0.224 n/a

CM BMD [g/cm2] P=0.055 n/a P=0.377 n/a

LC BMD [g/cm2] P=0.479 n/a P=0.267 n/a

T BMD [g/cm2] P=0.023 r=0.62 P=0.514 n/a

CL width [cm] P=0.533 n/a P=0.746 n/a

CM width [cm] P=0.576 n/a P=0.921 n/a

CD width [cm] P=0.681 n/a P=0.587 n/a

CP width [cm] P=0.787 n/a P=0.564 n/a

DS [cm] P=0.482 n/a P=0.611 n/a

DT [cm] P=0.690 n/a P=0.1 n/a

Area [cm2] P=0.581 n/a P=0.868 n/a

r value is only indicated if P<0.05).
BMD – bone mineral density, DT – diameter transversa,
DS – diameter saggittalis, CM – cortex palmaris, CL – cortex
lateralis, CD – cortex dorsalis, CM – cortex medialis,
T – trabecular or cancellous bone, n/a – not applicable).

Discussion

The lowest BMD was observed in the trabecular
ROI. Both the anatomy and physiology of the
trabecular region differs from cortical region (Good-
ship and Smith 2004). It is composed of small
trabeculae with a lower mineral content. Unlike the
cortical region, the trabecular region is not only under
the regulation of vitamin D, calcitonin or parathyroid
hormone, but local forces can also induce marked re-
modeling (Lawrence 2005) enabling this region to re-
spond to mechanical forces directly. Loss of trabecu-
lar bone induced by immobilization has been well
documented in people (Kazarian and von Gierke
1969) and is characterized by a complete loss or thinn-
ing of trabeculae (Ijiri et al. 1995).

This in vitro study revealed a significant positive
linear correlation between the trabecular region BMD
and failure strength. This result coincides with the cli-

6 P. Tóth et al.



nical evidence that fracture of the trabecular region is
the most common in the proximal phalanx (Nixon
2012). In this study post-fracture CT images revealed
that most fracture lines were located in the sagittal
plane at the proximal or distal trabecular regions,
similarly to an earlier retrospective study (Ellis et al.
1987). Thus, it would be important to focus on this
region in further studies, as the trabecular region ap-
pears to be the key component in sagittal proximal
phalanx fractures. Proximal phalanx fractures are cat-
egorized as sagittal or transverse, the latter extends
across the bone and does not involve articular surfaces
(Ellis et al. 1987). Sagittal proximal phalanx fractures
are categorized as incomplete or complete. Although,
the most common fracture of the proximal phalanx is
the sagittal fracture, breed and usage are important
predisposing factors. Fractures of the palmar/plantar
processes can occur in Standardbreds (Ruggles 2003),
while dorso-frontal fractures can occur both in Stan-
dardbreds (Ruggles 2003) and Throroughbreds
(Stashak 2002) raced on hard surface. Despite the co-
inciding results, it must be emphasized that sagittal
trabecular fractures are currently attributed to the
mechanical effect of the saggital ridge of the third
metacarpal bone (Nixon 2012), which was not part of
our in vitro model. Davies performed proximodistal
loading of equine metacarpal bones with both ends
embedded in fibreglass-impregnated resin (Davies
2009), which also did not account for the mechanical
load of the proximal articular surface. Since neither
Davies’ nor our in vitro approaches are exact models
of in vivo strains, the relationship between the
trabecular region of the proximal phalanx and the sag-
ittal ridge of the metacarpus, and to evaluate the
charectiristics and effects of the subchondral bone un-
der the proximal articular surface of the bone war-
rants further investigation.

During training, microcracks may occur without
evidence of lameness and with complete recovery to
normal function after a short period of rest (Baxter
and Turner 2002). The bone may withstand a particu-
lar strain until remodels or, less frequently, the micro-
cracks progress to macroscopic stress fractures
(Nunamaker et al. 1990). Light work (compared to
regular training load) or immobilization (e.g. longer
peroid of stall rest) will decrease BMD in horses,
while intense training without transition increases the
incidence of bone fractures (Nunamaker et al. 1990).
The bone has a dynamic structure and remodels with
exercise (Riggs 2002). BMD has been shown to de-
crease with inactivity or increase with high level of
training (Sherman et al. 1995). Due to the insidious
nature of stress fractures, there would be a need of an
in vitro diagnostic tool that correlates or predicts
fracure risk in performance horses. Since our results
indicate that there is a significant correlation between

failure of strength and trabecular BMD, this hypoth-
esis could be tested in vivo as well.

Correct positioning of the patient/subject is a criti-
cal part of the densitometry. DXA machine converts
a three-dimensional structure into a two-dimensional
image. Elliptical bones may have different BMD value
depending on the position of the bone (Rozenberg et
al. 1995). In this in vitro experiment bones were meas-
ured once from dorsopalmar direction, as described
previously (Tóth et al. 2010). Nevertheless, in vivo
measurements would require careful limb positioning
and deep sedation.

In conclusion, this study suggests that the
trabecular region is the sole ROI in predicting
failure of strength of the proximal phalanx. In future
studies identification of the fracture lines and
measurement of the BMD of those particular areas
should also be investigated. Further, in vivo experi-
ments are also warranted to reveal whether or not
the trabecular BMD data are useful indicator of frac-
ture risk evaluation of the proximal phalanx in
horses.
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