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Abstract

In this work we rewrote the linear complementarity problem in a formulation based on unknown projector
operators. In particular, this formulation allows the introduction of a concept of “stability” that, in a certain
way, might explain the way block pivotal algorithm performs.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

For a given vector q ∈ Rn and a given matrix M ∈ Rn×n the linear complementarity problem
(LCP) consists in finding vectors z and w in Rn such that

w = Mz + q, (1.1)

wTz = 0,

z � 0; w � 0.

The first and to our best knowledge the only monograph completely dedicated to this problem is
by Murty [1]. In this fundamental work a deep analysis of the LCP has been carried out under
different restrictions on the matrix M . Some applications of this problem to other problems have
been given.

The most typical application of the LCP is the quadratic programming problem. The LCP can
appear naturally from specific properties of a problem or as a necessary optimality condition for a

∗ Corresponding author.
E-mail addresses: mpires@ualg.pt (M. Pires), vkravch@ualg.pt (V.G. Kravchenko).

0024-3795/$ - see front matter ( 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2008.05.029

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/210536605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/laa
mailto:mpires@ualg.pt
mailto:vkravch@ualg.pt


M. Pires, V.G. Kravchenko / Linear Algebra and its Applications 429 (2008) 1810–1822 1811

Quadratic Programming Problem or as a result of establishing the equivalence between the LCP
and the Linear Variational Inequality Problem. In the present paper the main emphasis is on the
case of a matrix M possessing non negative entries only. Problems of this type have applications
for instance in finances (see, e.g. [2]).

In [3] Murty proposed an algorithm for solving the LCP. Murty’s algorithm belongs to the
class of direct methods which are based on single principal pivot operations and search for an
exact solution of the problem. In the same work Murty proves the convergence of his algorithm.
Some years later Kostreva in the work [4] proposed the idea that the direct methods of solution
of the LCP can make use of block pivotal operations.

In the work [5] Murty’s algorithm was generalized onto the case of principal block pivot
operation (BPA) in the way explained below.

We need some notations that are usually used in this kind of problems. A pair of vectors (z, w)

which satisfies the system w = Mz + q and the condition wjzj = 0, j = 1, . . . , n is called a
complementary solution. A pair of vectors (z, w) satisfying the system w = Mz + q, z � 0 and
w � 0 is called a feasible solution.

In what follows xJ will represent the components of a vector x whose indices belong to the
set J and MJK is the submatrix of M whose indices of rows are in the index set J and indeces of
columns are in the index set K . A principal block pivot operation with pivot MJJ transforms the
problem as follows (here K = {1, . . . , n} − J )[

zJ

wK

]
= q̄ + M

[
wJ

zK

]
,

where q̄ =
[ −M−1

JJ
qJ

qK − MKJ M−1
JJ

qJ

]
and M =

[
M−1

JJ
−M−1

JJ
MJK

MKJ M−1
JJ

MKK − MKJ M−1
JJ

MJK

]
.

Let us consider any complementary solution of (1.1) and define two index sets F = {i :
zi is basic} and T = {i : wi isbasic}. As we have a complementary solution, then F ∩ T = ∅
and F ∪ T = {1, . . . , n} at each iteration. If one could find a set of indices F leading to the
solution of the problem, that is such that z � 0 and w � 0, then it would be possible to recover
from the above formulas the values of the vectors z and w corresponding to the solution. Indeed, as
the components of the vectors wF and zT are non-basic variables then wF = 0 and zT = 0, and we
have zF = q̄F � 0 and wT = q̄T � 0. If F is not the right set of indices, at least one component of
zF or wT is negative. The set H = {j : wj < 0 ∨ zj < 0} = {j : q̄j < 0} is called the infeasibility
set. Whenever we can remove one index from this set we say that one infeasibility is removed.

Murty’s algorithm, at each iteration, chooses the maximum index j ∈ H and performs a single
principal pivot operation with pivot m̄jj . This is equivalent to interchanging j from F to T or
from T to F according to the circunstances.

Block pivotal algorithm (BPA), at each iteration, performs a block principal pivot operation
with pivot MHH . This is equivalent to interchanging all the indeces of H ∩ F from F to T and
all the indeces of H ∩ T from T to F .

The aim of both methods is to reduce the number of infeasibilities from iteration to iteration.
Cycling examples of the BPA with P matrices have been constructed [6,1].
A proof of convergence of BPA for diagonal dominant matrices of order 3 is presented in [6]

and a proof of its convergence for Minkowski matrices is presented in [7]. In spite of the fact
that other convergence conditions for BPA have not yet been obtained, the method is in use and
nobody has ever reported the existence of cycling with strictly diagonal dominant matrices. As
it can be seen in [5] computational experience shows the exceptional superiority of BPA when
compared to single pivotal algorithms.
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Single pivotal methods, such as Murty’s method [3] begin with F = φ, and remove one infea-
sibility at each iteration. Block pivotal algorithm (BPA) [5] begins with F = {i : qi < 0} and at
each iteration tries to remove all the infeasibilities. In the present work a modification of the BPA
is proposed which improves the initial set of the iterative algorithm.

In Section 2 we present a formulation of the LCP (1.1) based on the use of orthogonal com-
plementary projection operators and in Section 3 we study the case when the matrix M does not
have negative entries. Based on the analysis from Section 2 we propose a modification of BPA
which we call Algorithm 1. As our computational experience shows, Algorithm 1 has generally
a better performance. In the table presented in Section 3 it is possible to see that the initial set
that is found using Algorithm 1, most of the times, is the solution set of the problem. But there
are some cases where the number of systems to solve is the same as with the conventional BPA
algorithm. Nevertheless the dimensions of the systems are smaller. Only problem P14 does not
follow this pattern.

In order to clarify this behavior of Algorithm 1 in Section 4 we introduce a certain concept
of stability (Definition 4.1) which helps to separate these “bad”, nonstable (in the sense of our
definition) cases. Moreover, this concept representing, in our opinion, independent interest and
leads us naturally to Algorithm 2. With the aid of this algorithm it is possible to find an initial set
closer to the right set in the sense of the symmetric difference of sets.

2. Formulation of the LCP using projection operators

Let F be a subset of the index set N = {1, 2, . . . , n}. By PF and QF we denote two projection
matrices such that

PF = (pi,j ), where pi,j =
⎧⎨
⎩

pii = 1, i ∈ F,

pii = 0, i /∈ F,

pij = 0, i /= j,

and QF = I − PF .

With these definitions the LCP (1.1) can be written as follows:

MPF x − QF x = g, x � 0, (2.1)

where in order to simplify notations, g = −q.
Observing that

det(MPF − QF ) = (−1)(n−#F) det(PF MPF ),

the equation

MPF x − QF x = g

has a unique solution for any set F .
The constrain x � 0 implies that the main work to be done in order to solve the LCP is to find

the orthogonal complementary projection operators PF and QF such that the problem (2.1) has
a nonnegative solution.

Under the condition that M is a PD matrix, the LCP (1.1) has a unique solution and so this
pair of operators PF and QF exists and is also uniquely determined by the set F . Such set F that
determines the solution of the problem will be called the solution set.

Let

M = (� + B − A), where � = diag(m11, m22, . . . , mnn); A, B � 0.
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Due to the fact that the diagonal elements of a PD matrix are all positive, �−1 exists. As PF +
QF = I , PF QF = QF PF = 0 and �−1 commutes with PF and QF , the following equality
holds:

(� + B − A)PF − QF = �[(I + �−1B − �−1A)PF − QF ][PF + �−1QF ].
This shows us that (2.1) is equivalent to the following problem:

(I + �−1B − �−1A)PF x − QF x = �−1g, x � 0. (2.2)

Without loss of generality it is possible to suppose that � = I .
It is easy to verify that

[(I + B − A)PF − QF ][PF − QF ][I − QF (B − A)PF ] = I + PF (B − A)PF .

Thus, if y∗ is a solution of the equation

y∗ + PF (B − A)PF y∗ = g,

then

x∗ = [PF − QF ][I − QF BPF + QF APF ]y∗
= PF y∗ − QF y∗ + QF BPF y∗ − QF APF y∗

is a solution of the system (2.1).
It is easy to see that the vectors x∗ and y∗ are also related by the equation

y∗ = (I + QF BPF − QF APF )(PF − QF )x∗.
The vector y∗ must satisfy the following equalities:

QF y∗ = QF g,

PF y∗ + PF BPF y∗ = PF g + PF APF y∗.

The equalities

PF x∗ = PF y∗, (2.3)

QF x∗ = QF BPF y∗ − QF y∗ − QF APF y∗

imply that the constrain x � 0 is equivalent to the following conditions:

PF y∗ � 0,

QF BPF y∗ � QF y∗ + QF APF y∗
or

PF y∗ � 0,

QF BPF y∗ � QF g + QF APF y∗.

3. Case A = 0

In this case the previous conditions can be simplified to

QF y∗ = QF g, (3.1)

PF y∗ + PF BPF y∗ = PF g,

PF y∗ � 0,

QF BPF y∗ � QF g.
(3.2)
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As PF BPF y∗ � 0 we have

PF y∗ � PF g. (3.3)

Let u ∈ Rn; πj (u) = uj , j ∈ N ; N+ = N+(g) = {j ∈ N : πj (g) > 0}.
According to the second equality in (3.1) j ∈ F ⇒ πj (g) � 0. Then F ⊆ N+.
As

πj (g − BPN+g) = πj (g − BPF g) − πj (BPN+
�F g) � πj (g − BPF g),

then

πj (g − BPN+g) � 0 ⇒ πj (g − BPF g) � 0 ∀j ∈ F. (3.4)

From the second inequality in (3.2) together with the inequality (3.3) we get

πj (g − BPN+g) � 0 ∀j /∈ F.

Denote

N+
0 = {j ∈ N+ : πj (g − BPN+g) > 0}.

From (3.4) it is obvious that N+
0 ⊆ F ⊆ N+

Thus, it makes sense to suggest N+
0 as a starting set for the BPA. Besides it is useful to include

in the BPA a step (see the following step 1) in which the condition QF BPF g − QF g � 0 is
verified.

We also observe that, as the matrix M does not have negative elements, it is clear that whenever
gi < 0 the corresponding variable wi must be a basic variable. So, defining T = {i : gi < 0} at
each iteration we must have T ⊆ T .

Algorithm 1

Step 0. Define T = {i : gi < 0};
Determine u = (B − I )g;
Define F = {i : ui < 0}.

Step 1. Evaluate ν = QF∪T(BPF − I )g

If ν � 0 go to step 2
Otherwise make F = F ∪ {i : νi < 0} and repeat step 1

Step 2. Evaluate x = ((I + B)PF − QF )−1g.
If x � 0 stops. The solution is zF = PF x; zT = 0; wF = 0; wT = QF x

Otherwise go to step 3
Step 3. Define H1 = {i ∈ F : xi < 0} ; H2 = {i ∈ T : xi < 0}
Step 4. Make F = (F − H1) ∪ H2 and go to step 1.

In Table 1 we present some computational results corresponding to randomly generated symmetric
diagonal dominant matrices of dimension 700. The diagonal was defined to be equal to the sum
of the absolute values of the entries of the corresponding row plus a small positive perturbation,
to be sure that no singular matrices are obtained. We constructed the vector g starting from a
randomly generated solution (z, w) with a given percentage of basic z-components.

In certain examples the application of step 1 leads directly to the solution of the problem as it
can be seen in Table 1.

Computational experience showed that application of step 1 could reduce the number of pivot
operations of BPA. In the cases of a worse behavior the number of pivot operations did not change
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Table 1
A comparison between the dimensions of systems solved by the BPA and by Algorithm 1

Problem BPA Algorithm1
# Sytems Dimensions # Sytems Dimensions

P1 3 700 150 89 1 89
P2 2 700 605 1 605
P3 3 700 155 70 1 70
P4 3 700 196 142 1 142
P5 3 700 236 211 1 211
P6 3 700 281 275 1 275
P7 2 700 339 1 339
P8 2 700 408 1 408
P9 2 700 474 1 474
P10 2 700 534 2 533 534
P11 4 700 386 4 310 500

340 339 354 339
P12 4 700 291 3 175 187

183 178 178
P13 4 700 224 3 68 71

83 70 70
P14 4 700 517 5 427 700

503 502 517 503
502

P15 2 700 339 1 339
P16 2 700 178 1 178
P17 2 700 70 1 70
P18 2 700 502 1 502
P19 2 700 605 1 605

but the dimensions of the systems to solve were smaller. The only exception was problem P14.
We realized that for the problems for which the algorithm had a worst performance (P11 to P14)
the values of positive variables in the solution are very close to 0.

4. Algorithm 2

Let ρ ∈ R and � ⊆ N+. We shall denote

Nρ(�) = {j ∈ N+ : πj (g − BP�) � ρ},
N

ρ
−(�) = {j ∈ N+ : πj (g − BP�) < ρ}

and consider two sets � and � such that � ⊆ � ⊆ N+.
We have

πj (g − BP�g) = πj (g − BP�g) − πj (BP���g) � πj (g − BP�g),

so

πj (g − BP�g) � ρ ⇒ πj (g − BP�g) � ρ,

πj (g − BP�g) < ρ ⇒ πj (g − BP�g) < ρ,

which implies the validity of the following statement.
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Proposition 4.1. If � ⊆ � ⊆ N+, then

Nρ(�) ⊆ Nρ(�), (4.1)

N
ρ
−(�) ⊆ N

ρ
−(�).

Let

F
ρ
1 = Nρ(N+),

· · ·
F

ρ
k = Nρ(F

ρ
k−1),

· · ·

Proposition 4.2. Both sequences F
ρ
2 , F

ρ
4 , . . . , F

ρ
2k, . . . and F

ρ
1 , F

ρ
3 , . . . , F

ρ
2k+1, . . . are conver-

gent and the following equalities are valid:
F

ρ

odd = lim F
ρ
2k+1 ⊆ F

ρ
even = lim F

ρ
2k. (4.2)

Besides, if F
ρ
2k = F2k0 ∀k � k0, then F

ρ
2k+1 = F

ρ
2k0+1 ∀k � k0.

Proof. As F
ρ
m ⊆ N+, ∀m, we have the following inclusions:

F
ρ
1 ⊆ F

ρ
m+1 ⇒ F

ρ
m+2 ⊆ F

ρ
2 ⇒ F

ρ
3 ⊆ F

ρ
m+3 ⇒ F

ρ
m+4 ⊆ F

ρ
4 ⇒ F

ρ

5 ⊆ F
ρ

m+5 ⇒ · · ·
or

F
ρ
1 ⊆ F

ρ
3 ⊆ F

ρ

5 ⊆ · · · ⊆ F
ρ
2k+1 ⊆ · · · ⊆ F

ρ
2k ⊆ · · · ⊆ F

ρ
4 ⊆ F

ρ
2 ⊆ N+.

Thus, the sequences

F
ρ
2 , F

ρ
4 , . . . , F

ρ
2k, . . .

and

F
ρ
1 , F

ρ
3 , F

ρ

5 , . . . , F
ρ
2k+1, . . .

are both convergent and we can deduce the relation (4.2). �

We also observe that

lim
ρ→+∞ F

ρ

odd = lim
ρ→+∞ F

ρ
even = ∅ and lim

ρ→−∞ F
ρ

odd = lim
ρ→−∞ F

ρ
even = N+.

Let ρ and � ⊆ N+ be such that Nρ(�) /= ∅ and � ⊆ Nρ(�). Consider the sequence

�ρ
1 = Nρ(�),

· · ·
�ρ

k = Nρ(�ρ
k−1),

· · ·
According to (4.1) for any k we can establish the following properties:

�ρ
2k ⊆ �ρ

2k+1,

�ρ
2k ⊆ F

ρ
2k,

F
ρ
2k+1 ⊆ �ρ

2k+1.
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In fact,

� ⊆ �ρ
1 ⇒ �ρ

2 ⊆ �ρ
1 ⇒ �ρ

2 ⊆ �ρ
3 ⇒ �ρ

4 ⊆ �ρ
3 ⇒ · · ·

� ⊆ N+ ⇒ F
ρ
1 ⊆ �ρ

1 ⇒ �ρ
2 ⊆ F

ρ
2 ⇒ F

ρ
3 ⊆ �ρ

3 ⇒ · · ·
From the definition of the set Nρ(�) it is possible to conclude that if one of the sequences

�ρ
2 , �ρ

4 , . . . ,�ρ
2k, . . .

or

�ρ
1 , �ρ

3 , . . . ,�ρ
2k+1, . . .

is convergent, then the other converges also. Moreover, if the sequences are convergent and

�ρ

odd = lim �ρ
2k+1; �ρ

even = lim �ρ
2k,

then

�ρ
even ⊆ �ρ

odd,

F
ρ

odd ⊆ �ρ

odd and �ρ
even ⊆ F

ρ
even.

Definition 4.1. The set � ⊆ Nρ(�) is called a ρ-stabilization set (in relation with the pair
(B, g)), if the sequences {�ρ

2k} and {�ρ
2k+1} are convergent and

�ρ

odd = �ρ
even.

In this case we denote

�ρ
s = �ρ

odd = �ρ
even.

The ρ-stabilization set � ⊆ N+(�) is a ρ-stable set (in relation with the pair (B, g)), if

�ρ
s = �.

As the sequences {�ρ
2k} and {�ρ

2k+1} are monotone, the set � is a ρ-stable set iff

� = Nρ(�) (4.3)

If there is at least one ρ such that � = Nρ(�) we shall simply say that the set � is a stable set.
We denote

ρmin(�) = min
j∈�

{πj [g − BP�g]} and ρmax(�
c) = max

j∈N+
��

{πj [g − BP�g]} (4.4)

Proposition 4.3. There is a ρ such that � is a ρ-stable set iff

ρmax(�
c) < ρmin(�). (4.5)

Proof. If ρmax(�c) < ρmin(�) and ρ ∈ (ρmax(�c), ρmin(�)), then

Nρ(�) = {j ∈ N+ : πj (g − BP�g) � ρ} = �

and the set � is a ρ-stable set.
If � is a ρ-stable set, then Nρ(�) = �. So, πj (g − BP�g) < ρ for all j ∈ N+

�� and
ρmax(�c) < ρmin(�) must hold. �
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In the linear space of all the pairs (B, g) we define the norm

‖(B, g) − (C, f )‖ = ‖(B − C, g − f )‖ = max{‖B − C‖, ‖g − f ‖}.

Proposition 4.4. If the set � is a stable set in relation to the pair (B, g), then there is a positive
ϑ such that the set � is a stable set in relation to any pair (C, f ) that satisfies the following
inequality:

‖(B, g) − (C, f )‖ < ϑ.

Proof. Let � be a ρ-stable set in relation with the pair (B, g). From the inequality (4.5) it follows
that

ρ ∈ (ρmax(�
c), ρmin(�)).

If we choose ϑ such that

ϑ <
1

2 + ‖(B, g)‖ min

{
ρmin(�) − ρ

2
,
ρ − ρmax(�c)

2

}
,

then, from the equality

πj (f − CP�f ) = πj [g + f − g − BP�(f − g + g) + (B − C)P�f ],
we obtain

πj (f − CP�f ) � ρmin(�) − ϑ(2 + ‖(B, g)‖) ∀j ∈ �

and

πj (f − CP�f ) < ρmax(�
c) + ϑ(2 + ‖(B, g)‖) ∀j ∈ (N+

��)

As

ρmin(�) − ϑ(2 + ‖(B, g)‖) > ρmax(�
c) + ϑ(2 + ‖(B, g)‖),

then there is a ρ̃ such that

πj (f − CP�f ) � ρ̃ ∀j ∈ �

and

πj (f − CP�f ) < ρ̃ ∀j ∈ (N+
��).

Thus, � is a ρ̃-stable set in relation with the pair (C, f ). �

If N+ is a ρ-stabilization set, then we denote

F
ρ

odd = F
ρ
even = Fρ

s .

Using the former ideas it is possible to establish the following lemma.

Proposition 4.5. Let ρ be such that nonempty ρ-stabilization sets exist.

(1) If � ⊆ Nρ(�) is a ρ- stabilization set, then

F
ρ

odd ⊆ �ρ
s ⊆ F

ρ
even.

(2) If � ⊆ Nρ(�) is a ρ-stable set, then

F
ρ

odd ⊆ � ⊆ F
ρ
even. (4.6)
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(3) If N+ is a ρ-stabilization set, � ⊆ Nρ(�) and the sequences {�ρ
2k} and {�ρ

2k+1} converge,
then

�ρ
even ⊆ Fρ

s ⊆ �ρ

odd

(4) If N+ is a ρ-stabilization set and � ⊆ Nρ(�) is a ρ-stable set, then

� = Fρ
s .

In other words, if N+ is a ρ-stabilization set, then F
ρ
s is the unique ρ-stable set.

Conclusion 4.1. If the solution F of the problem (2.2) is a ρ-stable set, then

F
ρ

odd ⊆ F ⊆ F
ρ
even

and, besides, if N+ is a ρ-stabilization set, then

F = Fρ
s

Thus, in some cases, we can find the solution of the problem (2.2) without solving any system.
We shall denote

F+ = {j ∈ F : πj (g − BPF g) > 0}.

Proposition 4.6. If F is the solution of the problem and F = F+, then there exists ρ > 0 such
that F is a ρ-stable set.

Proof. We define ρ = minF {πj (g − BPF g)}. then ρ > 0 and

∀j /∈ F ⇒ πj (g − BPF g) � πj (g − BPF y) � 0 < ρ

From this relation it follows that F = Nρ(F ) and hence F is a ρ-stable set. �

Example 4.1. If the matrix I + B is diagonal dominant, ‖B‖ = σ and

|πj (g − BPF g)| >
σ 2

1 − σ
‖g‖, (4.7)

then F = F+.
As a matter of fact, in this case we have

y = g − PF BPF g + (PF BPF )2y

and if the inequality (4.7) holds, the parcel (PF BPF )2y does not change the sign of πj (g − BPF y)

which must be positive in order that j ∈ F .

We do not know in advance if the solution F of problem (2.2) is stable or not for some ρ. What
we do next is to try to find a ρ such that we can expect that for that ρ the solution F of problem
(2.2) is stable. If actually the solution F of problem (2.2) is a ρ-stable set, then it is reasonable
to choose F

ρ

odd as a starting set. In fact F
ρ

odd must be a better approximation to the solution F

of problem (2.2) than the set N+ or the empty set as it is done usually by BPA or single pivotal
algorithm, respectively.

Let x∗ and F be the solution of the problem. The following lemma establishes conditions under
which F can be a ρ-stable set.
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Denote

ε = min
j⊆F

{πj [BPF (g − x∗)]} and δ = max
j⊆N+

�F
{πj [BPF (g − x∗)]}.

We observe that ε � 0 and δ � 0.
According to (2.3) in this definitions x∗ can be replaced by y∗.

Proposition 4.7. If δ < ε, then there exists ρ such that the solution F is a ρ-stable set.

Proof. The proof follows immediately from the conditions:

j ∈ F ⇐ πj (g − BPF y) > 0

and

j /∈ F ⇐ πj (g − BPF y) < 0.

As a matter of fact, if δ < ε and −ε < ρ < −δ, then
j ⊆ Nρ(F ) ⇒ πj (g − BPF y) = πj (g − BPF g) + πj [BPF (g − y)] � ρ + ε > 0 ⇒ j ∈ F,

andj ⊆ N
ρ
−(F ) ⇒ πj (g − BPF y) = πj (g − BPF g) + πj [BPF (g − y)] < ρ + δ < 0 ⇒ j /∈

F.

Thus, F = Nρ(F ) and F is a ρ-stable set. �

To verify the conditions of this lemma it is necessary to know the solution F and y, but neither
the set F nor the vector y are known when we begin to solve the problem.

From the condition

j /∈ F ⇒ πj (g − BPF g) � πj (g − BPF y) � 0,

it follows that ρmax(F
c) is a non positive number. Then, if ρmin(F ) is a non negative number, the

solution F is a 0-stable set.
Denote

ρmin(N
+) = min

j∈N+{πj [g − BPN+(g)]}.

Proposition 4.8. If the solution F is a ρ-stable set, then there exists ρ0 such that

ρ0 ∈ [ρmin(N
+), 0]

and F is a ρ0-stable set.

Proof. It is easy to verify that

ρmin(N
+) � πj (g − BPF g) − πj (BPN+

�F g) � πj (g − BPF g) ∀j ∈ F. �

From the previous analysis we can suspect that in the case when F
ρ

odd = F
ρ
even the solution

F can be stable and F
ρ
s ⊆ F . In the following algorithm we begin by searching the smaller

value for ρ not equal to the trivial situation ρ = ρmin(N
+) such that F

ρ

odd = F
ρ
even. For that

purpose we determine the value ζ = minj∈N+{|πj [(BPF 0
odd

)2(g − BPF 0
odd

g)]|} as an approxima-

tion of the smaller value that causes an alteration in the behavior of the sequences {Fρ
2k+1} and

{Fρ
2k}.
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Algorithm 2

Step1. Evaluate

ρmin(N
+) = min

j∈N+{πj [g − BPN+(g)]} and

ζ = min
j∈N+{|πj [(BPF 0

odd
)2(g − BPF 0

odd
g)]|}.

Make k = 1 and ρ = min{ρmin(N
+) + ζ, 0}.

Step 2. Find F
ρ

odd and F
ρ
even. If F

ρ

odd = F
ρ
even go to step 3, otherwise do k = k + 1 and ρ =

min{ρmin(N
+) + kζ, 0}.

If ρ < 0 repeat step 2, otherwise find F
ρ

odd and go to step 3.
Step 3. Start BPA with F = F

ρ

odd.

In Table 2, we present computational results corresponding to the same problems we considered
in the case of the Algorithm 1. In addition we give the values of ρmin(F ) and ρmax(F

C) that helps

Table 2
Behavior of Algorithm 2

Problem ρmin(F ) ρmax(FC) Stable ρmin(N+) ζ ρ #F
ρ
odd # Systems Dimensions

P1 1.10 −0.0529 Yes −0.479 0.0482 −0.0455 89 1 89
P2 −1.63 −2.55 Yes −3.02 0.988 −2.03 605 1 605
P3 0.969 −0.0337 Yes −0.369 0.0267 −0.0216 70 1 70
P4 0.853 −0.140 Yes −0.742 0.123 −0.126 142 1 142
P5 0.657 −0.312 Yes −1.11 0.272 −0.294 211 1 211
P6 0.432 −0.522 Yes −1.41 0.431 −0.122 275 1 275
P7 −1.06 −1.97 Yes −1.71 0.591 −0.532 339 1 339
P8 −0.272 −1.13 Yes −2.03 0.723 −1.31 408 1 408
P9 −0.638 −1.54 Yes −2.37 0.823 −1.55 475 2 475

474
P10 −1.06 −1.97 Yes −2.68 0.911 −1.77 534 1 534
P11 −0.240 −0.223 No −0.491 0.153 −0.184 334 3 334

347
339

P12 −0.0705 −0.0622 No −0.273 0.0563 −0.0474 176 3 176
179
178

P13 −0.00859 −0.00910 Yes −0.108 0.00748 −0.00286 68 3 68
71
70

P14 −0.523 −0.492 No −0.723 0.252 −0.220 439 5 439
692
516
503
502

P15 3.18 −1.68 Yes −3.66 1.27 −1.13 339 1 339
P16 4.47 −0.462 Yes −1.96 0.413 −0.306 178 1 178
P17 4.93 −0.0777 Yes −0.769 0.0564 −0.0359 70 1 70
P18 1.06 −3.70 Yes −5.40 1.76 −3.63 502 1 502
P19 −0.682 −5.49 Yes −6.48 1.93 −4.55 605 1 605

In last column are the dimensions of the systems solved by algorithm 2.
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to understand the behavior of the algorithm. According to Lemma 3 ρmax(F
C) < ρmin(F ) assures

that there is ρ such that F is stable.
As it should be expected, the value ρmin(N

+) is always less than ρmax(F
C). In algorithm 2,

for the sake of simplicity, we chose to stop the searching for ρ on the first where F
ρ

odd = F
ρ
even,

this sometimes prevents the algorithm to reach the optimal value of ρ. That was precisely what
happened for two F stable problems (P9 and P13), as it is shown in table 2 the value of ρ found
by the Algorithm 2, in these two problems, is not inside the interval defined by ρmax(F

C) and
ρmin(F ). It is interesting to verify that the worst behavior is achieved in this case and in the case of
a non-stable set F . It is interesting to note that in this cases the solutions are “almost” degenerate.

It is a reality that, whenever we could find a ρ ∈ (ρmax(F
C), ρmin(F )) the algorithm BPA had

only to solve a system to verify that Fρ
even was actually the solution set and to determine the values

of the solution vectors.
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