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Resumen 
A continuación, se presenta un breve resumen de cada capítulo: 

Capítulo 1: 
El uso de RMN anisotrópica en el análisis estructural de moléculas pequeñas quirales se ha expandido en 

los años recientes. En la actualidad, las Constantes Dipolares Residuales (CDR) pueden ser aplicadas como 

una herramienta estándar en el mejoramiento eficiente de la determinación de la configuración relativa 

de compuestos de pequeño tamaño mediante RMN estándar. 

En la presente tesis doctoral hemos desarrollado otra metodología de RMN anisotrópica basada en 

medidas de anisotropía de desplazamiento químico residual de protones (1H RCSA) que ha sido aplicada, 

primero a moléculas modelo, estricnina, estrona, retrorsina y a-santonina, y posteriormente a nuevos 

productos naturales: a un meroditerpeno aislado del alga parda Sargassum muticum, a las 

tricloromammindas A y B aisladas del hongo no comestible Tricholoma equestre y, finalmente a un 

briarano de origen marino aislado de la gorgonia Briareum asbestinum recolectada de la penísula de 

Yucatán.  

 

   

Toda esta nueva metodología se ha podido realizar a través de la mejora de nuevos dispositivos de 

compresión y extensión de geles aplicados a tubos de RMN de menos de 5 mm. Este desarrollo de este 

tipo de dispositivos es una herramienta adicional que puede ser utilizada en el futuro por 

espectroscopistas en el campo de RMN anisotrópica.  

Por último, también hemos introducido un nuevo gel deuterado (PMMA-d8) derivado de 

polimetilmetacrilato deuterado como medio alineante.                         
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Capítulo 2: 
La detección y cuantificación de productos naturales presentes en trazas en mezclas complejas es aún un 

campo de investigación activo para los químicos. Desde la introducción en el mercado del detector de 

masas Orbitrap® se iniciado una revolución en las técnicas analíticas de detección. En la presente Tesis 

Doctoral hemos aprovechado esta tecnología para la detección y, en algunos casos, el aislamiento y la 

cuantificación de algunos productos naturales de origen marino de interés biológico.  

Las distintas aproximaciones en las técnicas de LC/HRMS empleadas fueron aplicadas a:  

La detection y el aislamiento de la producción de sideróforos en varias bacteria marinas patógenas: tipo 

vancrobactina en tres especies de Vibrio, tipo piscibactina en una cepa mutante de Vibrio alginolyticus, el 

sideróforo producido por las bacterias Edwardsiella tarda y Photobacterium damselae subsp. damselae. 

Detección y cuantification de AHLs en tres especies patógenas de Vibrio. 

Detección de (TTX) en el pez Diodon hystrix recolectado en El Salvador. 

 
 

vancrobactina  divancrobactina 

 

 

                             piscibactina   vibrioferrina 

 

 

 

TTX 
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Resumo 
A continuación amósase un resumo de cada capítulo. 

Capítulo 1 
O uso da RMN anisotrópica na análise estrutural de moléculas pequenas quiraies, expandiuse nos anos 

recentes. Na actualidade, as Constantes Dipolares Residuais (CDR) poden ser aplicadas como unha 

ferramenta estándar na millora eficiente da determinación da configuración relativa de compostos de 

pequeno tamano mediante RMN estándar. 

Na presente Tese Doutoral desenvolvemos outra metodoloxía de RMN anisotrópica baseada en medidas 

de  anisotropía de desprazamento químico residual de  protones (1H RCSA) que foi aplicada, primeiro a 

moléculas modelo, estricnina, estrona, retrorsina e -santonina, e posteriormente a novos produtos 

naturais: a un  meroditerpeno illado do alga  parda Sargassum  muticum, ás  tricloromammindas A e  B 

illadas do fungo non comestible Tricholoma equestre e, finalmente a un  briarano de orixe mariña illada 

da  gorgonia  Briareum  asbestinum colleitada da penísula de Iucatán: 

 

 

Toda esta nova metodoloxía púidose realizar a través da mellora de novos dispositivos de compresión e 

extensión de xeles aplicados a tubos de RMN de menos de 5 mm. Este desenvolvemento deste tipo de 

dispositivos é unha ferramenta adicional que pode ser utilizada no futuro por  espectroscopistas no campo 

de RMN anisotrópica.  

Por último, tamén introducimos un novo xel deuterado (PMMA-d8) derivado de  polimetilmetacrilato  

deuterado como medio  alineante. 
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Capítulo 2 
A detección e cuantificación de produtos naturais presentes en trazas en mesturas complexas é aínda un 

campo de investigación activo para os químicos. Desde a introdución no mercado do detector de masas 

Orbitrap® #iniciar unha revolución nas técnicas analíticas de detección. Na presente Tese Doutoral 

aproveitamos esta tecnoloxía para a detección e, nalgúns casos, o illamento e a cuantificación dalgúns 

produtos naturais de orixe mariña de interese biolóxico.  

As distintas aproximacións nas técnicas de LC/HRMS empregadas foron aplicadas a:  

A detection e o illamento da produción de  sideróforos en varias bacteria mariñas  patógenas: tipo  

vancrobactina en tres especies de Vibrio, tipo piscibactina nunha cepa  mutante de  Vibrio  alginolyticus, 

o sideróforo producido polas bacterias Edwardsiella tarda e Photobacterium  damselae  subsp.  damselae. 

Detección e cuantification de AHLs en tres especies patóxenas de Vibrio. 

Detección de (TTX) no peixe Diodon hystrix colleitado no Salvador. 

 

 

 

vancrobactina  divancrobactina 

 

 

                             piscibactina   vibrioferrina 

 

 

 

TTX  
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ABSTRACT 
A summary of each chapter shall be presented below. 

Chapter 1: 
 

The use of anisotropic NMR in the structural analysis of chiral small molecules has expanded in 

recent years. Currently, Residual Dipolar Constants (RDC) can be applied as a standard tool in 

the efficient improvement of the determination of the relative configuration of small-sized 

compounds by standard NMR. 

In the present Thesis dissertation, we have developed another methodology of anisotropic NMR 

based on measures of anisotropy of residual chemical proton displacement (1H RCSA) that has 

been applied, firstly to compound-models, strychnine, estrone, retrorsine and -santonin, and 

subsequently to new natural products: to an isolated meroditerpene of the brown alga 

Sargassum muticum, the trichloromaminades A and B isolated from the non-edible fungus 

Tricholoma equestre and, finally to a briarane of marine origin isolated from the gorgonian 

Briareum asbestinum collected from the peninsula of Yucatan (México). 

 

 

Chapter 2: 
The detection and quantification of natural products present in traces in complex mixtures is still an active 

field of research for chemists. Since the introduction of the Orbitrap® mass detector into the market, a 

revolution in analytical detection techniques has begun. In this Doctoral Thesis we have taken advantage 

of this technology for the detection and, in some cases, the isolation and quantification of natural 

products of marine origin of biological interest. 

The different approaches in the LC / HRMS techniques used were applied to: 
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Detection and isolation of siderophore production in several pathogenic marine bacteria: vanchrovatin 

type in three Vibrio species, piscibactin type in a mutant strain of Vibrio alginolyticus, the siderophore 

produced by the bacteria Edwardsiella tarda and Photobacterium damselae subsp. damselae 

Detection and quantification of AHLs in three pathogenic Vibrio species. 

Detection of TTX in the fish Diodon hystrix collected in El Salvador. 
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1.1 An introduction to basic concepts of Anisotropic NMR 
 

NMR anisotropy have recently found a wide range of applications in high-resolution NMR of 

natural products. A nonisotropic orientational distribution of a molecule in a weak alignment 

media results in nonzero average dipolar coupling constants.  

Residual dipolar couplings, chemical shift anisotropies and quadrupolar couplings provide 

information about the orientation of inter-spin vectors and the anisotropic contribution of the 

local environment to the chemical shifts of nuclei, respectively. Structural interpretation of 

these observables requires parameterization of their angular dependence in terms of an 

alignment tensor. Information can be used to refine local structure, it can make a unique 

contribution in determining the relative orientation of remote parts of molecules, which are 

locally well structured, but poorly connected based on NOE data. Analysis of dipolar couplings 

in terms of Saupe order matrices provides a concise description of both orientation and motional 

properties of locally structured fragments in these cases. 

Both RDCs and RCSAs provide three-dimensional restraints relative to a global reference frame 

and, therefore are complementary to conventional, distance-constrained NMR measurements 

of NOE (or ROE) or J-couplings. In comparison to RDCs, RCSAs have the further advantage of 

providing placement information on quaternary carbons, which otherwise can only be reached 

through less sensitive long-range RDC measurements. The ability to address the orientation of 

quaternary carbons is especially important for proton-deficient, drug-like molecules where NOE, 

J-coupling, and one-bond RDC data may be insufficient. 

 

1.1.1 An introduction to basic concepts of Anisotropic NMR 
 

Dipolar couplings through space are probably the most important interactions in NMR 

anisotropy. This interaction can be understood in a simplistic, classical picture if one considers 

spins as magnets with an inherent rotation at the Larmor frequency. Although spins are not 

oriented directly along the static magnetic field B0, the integration over time of the fast rotating 

magnets yields a secular magnetic moment parallel or antiparallel to B0. (See Figure 1, panel a 

and b) 

 

 

Figure 1. Dipolar interaction between to nucleus. The magnetic field induced by spin I adds up to the static magnetic 
field B0 and leads to a shift of the resonance frequency of the close-by spin S. Since parallel spins (a) and antiparallel 
(b) to the magnetic field are about equally populated, a splitting with twice the dipolar coupling 2DIS is observed (c). 

(a) (b) (c) 
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The magnetic field produced by spin I now adds up to the static magnetic field felt by spin S 

and causes a shift of its resonance frequency, the so-called dipolar coupling. Since the spin I is 

almost equally populated parallel and antiparallel to B0, a dipolar coupled signal shows a splitting 

as shown in Figure 1 (panel c). 

As one can experience by playing with permanent magnets, the interaction between two 

dipoles depends on the distance and on the angle between them. If a north pole gets close to a 

south pole, one feels an attractive force and, similarly, when two identical poles come together, 

one feels a repelling force. Furthermore, with the right angle between two magnets, one can 

also find an arrangement without interaction (Figure 2, panel a). Similar to a classical magnet, 

the magnetic moment of spin I results in a magnetic field with the typical r-3-dependence with 

respect to the distance r to the magnet and with the (3 cos2 Θ - 1)-dependence with respect to 

the angle Θ relative to the axis of the magnetic moment (Figure 2, panel b). Since the magnetic 

moment of the spin is oriented along the static magnetic field B0, this angle is identical to the 

angle with respect to B0. 

 

 

Figure 2 Angular dependence of the dipolar interaction. Depending on the arrangement of two classical magnets the 
dipolar interaction between them might be attractive, repulsive or no interaction might be present (a). Similarly, the 
dipolar coupling between the two spins is directly proportional to the (3 cos2 Θ - 1)-function (b) and can be used as 
angular information relative to the static magnetic field B0. 

 

Therefore strength and sign of this additional magnetic field vary, depending on the distance r 

between the two spins I and S and the angle Θ of their internuclear vector relative to B0. The 

exact formula for the resulting dipolar coupling DIS between two spins in a defined orientation 

is showed in Figure 1 

 

1.1.2 Residual dipolar couplings (RDC) 
 The measurement of residual dipolar couplings by solution state nuclear magnetic 

resonance (NMR) spectroscopy gives information about the alignment of the vectors linking 

pairs of nuclei with non-zero spin relative to the magnetic field. The measured RDC value Dk is a 

function of <cos2(θ(rk,rH))>, where θ(rk,rH) is the angle between the inter-spin vector rK and the 

magnetic field director rH. Specifically, Dk is given as 

 

𝐷𝑘(𝑟𝑘, 𝑟𝐻) = −
𝛾𝑘1𝛾𝑘2𝜇𝑜ℎ

8𝜋3
〈
3𝑐𝑜𝑠2(𝜃(𝒓𝑘 , 𝒓𝐻)) − 1

2𝑟𝑘
3

〉 
Equation 1 

(a) (b) 
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Where ϒK1 and ϒK2 are the gyromagnetic ratios of the two spins, µo is the magnetic permittivity 

of vacuum, h is Planck’s constant, and rk is the distance between the two spins. The averaging in 

Equation 1 encompasses ensemble as well as time averaging. 1 

 

Figure 3. The inter-spin vector rk (green) and magnetic field vector rH (blue) with respect to the molecular frame; 
angles between the interspin vector and the axes of the molecular frame are denoted as α{x,y,z}; angles between the 
magnetic field vector and the axes of the molecular frame are denoted as β{x,y,z} 

 

1.1.3 Residual chemical shift anisotropy (RCSA) 
 

RCSAs report on the orientation of the chemical shielding tensor of individual atoms in the 

molecule. 2 RCSA can be interpreted as a linear combination of two sphero-conics. 2 In order to 

develop a graphical intuition of CSA see Figure 4.  

 

Figure 4.  Orientations of the principal components of 13C-, 15N- and 1H-CSA tensors with respect to a molecule, for 
instance a peptide, the plane are shown in cyan, blue and gray, respectively. δzz is the most- and δxx is the least-
shielded component. For each tensor, one of the components is approximately perpendicular to the peptide plane; 
therefore, the other two components lie on the peptide plane, and are completely defined by the angle Ω (a) The 
wagon wheel shows the CSA tensor components on the peptide plane along with the bond vectors drawn using C´ 
atom as the origin. In principle, 13C-, 15N- and 1H-CSA tensors can be used for structural elucidation. Nevertheless only 
13C and 1H tensor are described. 

 

RCSAs, since they are reflected in the chemical shift, are measured with high sensitivity, thus 

facilitating measurement of minute samples for which RDC measurement would either be much 

more challenging or impossible to detect. This type of NMR observables yields a valuable 

information about the global alignment of atoms and their local environment in a molecule 

relative to a magnetic field and, therefore, indirectly relative to each other. The measured 

(a) (b) 
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anisotropic  contribution 𝛿𝑘
𝑎𝑛 of the local environment to the chemical shift 𝛿𝑘  of a nucleus and 

the residual quadrupolar interaction of nuclei of angular momentum I > ½ with their electronic 

environment have the same angle dependence as RDCs, and can therefore be expressed by the 

same alignment tensor. 

The practical challenge, however, is to reliably eliminate isotropic chemical shift changes 

during molecular alignment. Any viable method must be able to distinguish RCSA shifts due to 

weak alignment from isotropic shifts due to chemical environment variations between different 

alignment conditions. The key to accurately measuring RCSAs is to collect the data without 

altering environmental conditions. 

Formulations of RCSAs In any arbitrary molecular frame, 3 the RCSA of any nuclei i is given by 

 

𝑅𝐶𝑆𝐴𝑖(𝑝𝑝𝑚) = ∑ 𝐴𝛼𝛽𝐶𝑆𝐴𝛼𝛽
𝑖

𝛼,𝛽=𝑥,𝑦,𝑧

 Equation 2 

Where 𝐴𝛼𝛽 (equals 
2

3
𝑆𝛼𝛽, representing the Saupe order matrix) are the molecular alignment 

tensor matrix elements. We annotated the chemical shift tensor elements as 𝐶𝑆𝐴𝛼𝛽 instead of 

δ. The RCSA of a nucleus i was determined as the difference in chemical shift measured under 

the “max” and “min” alignment conditions (Equation 3) with respect to a chosen reference 

nucleus (δref); 4 which is conveniently chosen as the one with the lowest value of chemical shift 

anisotropy (CSA) taken from the DFT file. CSA tensors are calculated from density functional 

theory (DFT) combined with the gauge independent atomic orbital (GIAO) methodology. 5,6 For 

the stretched gel, we used tetramethylsilane (TMS) for internal chemical shift referencing. 

Referencing removes factors that impact all chemical shifts equally, including potential changes 

of the overall effective field due to susceptibility changes as well as misreferencing due to lock 

ambiguity associated with the split 2H signal of CDCl3. Due to the difference character of the 

measurement, RCSA is manifested as ΔRCSA between two alignment conditions as shown in 

Equation 3 

 

∆𝑅𝐶𝑆𝐴𝑖 = (𝛿𝑖
𝑎𝑛𝑖𝑠𝑜 − 𝛿𝑟𝑒𝑓

𝑎𝑛𝑖𝑠𝑜)
𝑚𝑎𝑥

− (𝛿𝑖
𝑎𝑛𝑖𝑠𝑜 − 𝛿𝑟𝑒𝑓

𝑎𝑛𝑖𝑠𝑜)
𝑚𝑖𝑛

 

 

Equation 3 

 

= ∑ [(𝐴𝛼𝛽
𝑚𝑎𝑥 − 𝐴𝛼𝛽

𝑚𝑖𝑛)𝐶𝑆𝐴𝑖,𝛼𝛽 − (𝐴𝑇𝑀𝑆,𝛼𝛽
𝑚𝑎𝑥 − 𝐴𝑇𝑀𝑆,𝛼𝛽

𝑚𝑖𝑛 )𝐶𝑆𝐴𝑇𝑀𝑆,𝛼𝛽]

𝛼,𝛽=𝑥,𝑦,𝑧

 

 

Because TMS is highly symmetric, it has negligible alignment under the conditions used here, 

and therefore, (𝐴𝑇𝑀𝑆
𝑚𝑎𝑥 −̂ 𝐴𝑇𝑀𝑆

𝑚𝑎𝑥) ≈ 0. Furthermore, the carbon of TMS has small chemical 

shielding anisotropy, i.e., 𝐶𝑆𝐴𝑇𝑀𝑆̂ ≈ 0. Consequently, Equation 3 simplifies to the following 

form: 

∆𝑅𝐶𝑆𝐴 = ∑ (𝐴𝛼𝛽
𝑚𝑎𝑥 − 𝐴𝛼𝛽

𝑚𝑖𝑛)𝐶𝑆𝐴𝑖,𝛼𝛽 = ∆𝛿

𝛼,𝛽=𝑥,𝑦,𝑧

 Equation 4 
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Recently the carbon tetrachloride has been indicated as a valid option to replace the TMS.7 

1.1.4 From anisotropic media to Residual Anisotropic Parameters  
 

The desired additional structural information without significant loss, as in solid state, in 

chemical shift resolution, an intermediate state between solid and liquid has to be reached: the 

molecule should be partially aligned. This can be achieved with the help of so-called alignment 

media, which works as an orienting matrix as visualized in Figure 5. Within the alignment 

medium the molecule tumbles almost freely so that most of the anisotropic interactions are 

averaged out over time. However, the interaction with the oriented grid of the alignment 

medium prevents from complete averaging and a net orientation remains.  

 

 

 

Figure 5. Alignment media as a molecular grid. It is badly assumed that solute molecules can tumble almost 
unhindered in the oriented matrix given by an alignment medium. Only a small fraction of time the molecule is 
oriented by the medium which leads to a time averaged net orientation. For practical purposes it is believed that el 
conformational equilibrium, if any exist, is not affect by the alignment medium net. 

 

To use RDCs and RCSAs measured in partially aligned samples and obtain structural information, 

the partial averaging over time due to the tumbling of the molecule and its inherent flexibility 

has to be addressed by an adequate model. The description of the averaging is given in Equation 

1 and Equation 4, respectively. 

 

1.1.5 Description of alignment  
 

In order to extract structural information from RDCs and RCSAs it is necessary to introduce a 

parametrization of the averaged angle dependence in Equation 1 and Equation 4. This is 

achieved by firstly defining a coordinate system (molecular frame), and then, relative to this, the 

orientation of the magnetic field vector rH and the inter-spin vector rk. The alignment of the 

molecule relative to the magnetic field can be then described using an alignment tensor as it can 

be seen on Figure 3 and Figure 4, panel (a) for RDCs and RCSAs respectively. 
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The effect of the anisotropic distribution of molecular orientations is conveniently described by 

a set of order parameters which are known as the alignment tensor or the Saupe order matrix. 

The size of the residual tensorial interactions is a function of both the alignment tensor and of 

the orientation of the individual chemical groups with respect to the alignment tensor’s principal 

axes system; hence, the content of intramolecular structural information. In order to extract this 

information from the measured interaction energies, some knowledge about the alignment 

tensor is a prerequisite. This tensor is characterized by five independent parameters, e.g. its 

largest principal value, the rhombicity, and the three Euler angles describing the orientation of 

the principal axes with respect to the molecular coordinates. 

 

1.1.6 Algorithms 
 

Two algorithms for generating the optimal alignment tensor for a given molecular structure and 

set of experimental data are commonly named in literature; Single Value Decomposition (SVD)3 

and the linear least squares algorithm.8 By using singular value decomposition as a method for 

calculating the order matrices, principal frames and order parameters can be determined 

efficiently, even when a very limited set of experimental data is available. 

 

1.1.7 Alignment Media 
 

An intermediate state between the total alignment in a solid and the isotropic averaging in 

solution must be achieved in order to measure residual dipolar couplings. This partial alignment 

is obtained by a so-called alignment medium, which works as an oriented molecular grid capable 

to constrain the tumbling of the molecule in a way, that a time averaged net orientation remains. 

Three different ways of partially aligning a molecule are known today: alignment in a liquid 

crystalline phase, alignment in a stretched gel, and the orientation via paramagnetic ions. The 

last one is beyond the scope of this thesis. 

 

1.1.8 Data fitting 
 

RDC and RCSA data do can be process and fitted by different software. Being the most prominent 

for small molecule analysis MSpin. 9 The software for the analysis of residual dipolar coupling an 

residual chemical shift anisotropy data. It is specially designed for small molecule analysis, can 

directly read many molecular-modeling and popular chemistry file formats and accept RDC/ 

RCSA values as a simple free-format table.  Isotropic correction for RCSA analysis can be 

automatically done. 10 Alignment tensor can then be computed by SVD. Trial structures are then 

ranked according to their Cornilescu's quality factor (Q) values. Analysis of multiconformational 

problems and fitting of RDC data to relative populations can be accomplished using the single-

tensor approximation. The only disadvantage that can be point out in MSpin is the lack of ability 

to fitting the alignment tensor when data includes long range RDC (nDCH). The software Relax 11 

is the correct chose is that the case. The current research does not include any nDCH 
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1.1.9 Integrated methodology for solving natural products by NMR anisotropy 
 

The overall approach can be divided in: 

(a) Conformers assembling. To describe the molecule equilibrium, a computer assisted 

conformational search is indispensable. Those conformers should satisfy NOESs and 

dihedral angles from J-based couplings restrictions. It is assumed a restricted number of 

conformers to be present and one alignment tensor can be fit to all conformers jointly, 

significantly reducing the amount of linearly independence RCSAs required.12–14  

(b) Experimental anisotropic measurements (RDC and RCSA). Data is completed mainly by 

two methodologies: (i) a stretching device originally used to measure RCSAs in proteins, 

which produces RCSA data free of isotropic shift interference, and (ii) a compression 

device which suffers from isotropic chemical shift interference and the RCSA data must 

be corrected before the fitting. Both devices are available by New Era Company. 15,16  

A crucial factor for a good anisotropic analysis is the choice of the right solvent and 

alignment media. The deuterated solvent should completely dissolve the sample, 

avoiding the formation of aggregates. On the other hand the alignment media must 

provide a degree of order that allows discrimination among the possible configurations. 

The choice for our analysis is a strain-induced alignment in a gel (SAG), where the degree 

of order is gel cross-linking dependent. In recent years, the influence of the background 

signal coming from the polymer as alignment media has been pointed out at microgram 

scales.17 Using a device that reduces the mass of the gel-sticks is highly recommended. 

This is the case of the Hilgenberg’s semi micro stretching device (2.4/1.8 mm) introduced 

in our study (see section 1.3.2.3). This device along with the micro/semi micro 

compression device (1.7 and 3 mm outside diameter respectably) are our 

recommendations over popular 5 mm New Era´s devices. 

(c) DFT-Chemical shift anisotropy tensor (CSA) computation. DFT calculations gives enough 

degree of accuracy when the Gauge-Independent Atomic Orbital (GIAO) method is used. 

Nath et al. have recently demonstrated that the Continuous Set of Gauge 

Transformations (CSGT) approximation can be also used without detriment to the 

results.18 

(d) Calculation of the alignment tensor (�̂�). This step fits all RCSAs to the DFT-computed 

CSA tensor through the singular value decomposition (SVD) method.3  

(e) Comparisons of the fitting Quality factor. The fitting is expressed either by Cornilescu's 

(Q) or Q(CSA) quality factor.19 The latter is computed by scaling both experimental and 

back-calculated ΔRCSA’s by each corresponding atom’s chemical shift anisotropies. 

Quality factors emerge from the formula given below in  
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(f) Figure 6, where 𝐶𝑆𝐴𝑖,𝑎𝑥 equals 𝜎33 − (𝜎22 + 𝜎11) 2⁄  and the chemical shielding 

Eigenvalues σ11−33 are obtained from DFT.  

 

 

 

 𝑅𝐶𝑆𝐴𝑖(𝑝𝑝𝑚) = ∑ 𝐴𝛼𝛽𝐶𝑆𝐴𝛼𝛽
𝑖

𝛼,𝛽=𝑥,𝑦,𝑧

 

 

𝐷𝑘(𝑟𝑘, 𝑟𝐻) = −
𝛾𝑘1𝛾𝑘2𝜇𝑜ℎ

8𝜋3
〈
3𝑐𝑜𝑠2(𝜃(𝒓𝑘, 𝒓𝐻)) − 1

2𝑟𝑘
3

〉 

 

Ensemble of structures   

 
(

𝜎𝑥𝑥 ⋯ 𝜎𝑥𝑧
⋮ ⋱ ⋮
𝜎𝑧𝑥 ⋯ 𝜎𝑧𝑧

) 

 

 

 

  

 

 

𝑄𝐶𝑆𝐴 =

√
  
  
  
  
  
 

(
𝑅𝐶𝑆𝐴𝑖,𝑎𝑥

𝑒𝑥𝑝
− 𝑅𝐶𝑆𝐴𝑖,𝑎𝑥

𝑐𝑎𝑙𝑐

𝐶𝑆𝐴𝑖,𝑎𝑥
)

2

∑(
𝑅𝐶𝑆𝐴𝑖,𝑎𝑥

𝑒𝑥𝑝

𝐶𝑆𝐴𝑖,𝑎𝑥
)

2  

 

 

 

𝑄 = √
(𝑅𝐶𝑆𝐴𝑒𝑥𝑝 − 𝑅𝐶𝑆𝐴𝑐𝑎𝑙)

2

𝑅𝐶𝑆𝐴𝑒𝑥𝑝
2

 

 

𝑄 = √
(𝑅𝐷𝐶𝑒𝑥𝑝 − 𝑅𝐷𝐶𝑐𝑎𝑙)

2

𝑅𝐷𝐶𝑒𝑥𝑝
2  

 Calculate Q(QCSA) for each configuration and compare them 

Lowest Q(QCSA) will give the best fitting : Correct Answer   

 

Figure 6. General strategy used in RDC and 13C and 1H RCSA analysis for resolving the relative configuration of 
flexible small molecules. 

 

1.1.10 NMR Experiments for measurement of direct carbon-proton residual 

dipolar coupling 1DCH 

 

1.1.10.1 CLIP/CLAP-HSQC 
 

Heteronuclear residual dipolar one-bond couplings of organic molecules at natural abundance 

are most easily measured using t2 coupled HSQC spectra. However, inevitably mismatched 

transfer delays result in phase distortions due to residual dispersive antiphase coherences in 

such experiments. CLIP/CLAP-HSQC experiment, slightly modified t2 coupled HSQC experiments 

with clean inphase (CLIP) multiplets are introduced which also reduce the intensities of 

undesired long-range cross peaks. With the corresponding antiphase (CLAP) experiment, 

Back-calculate RCSAs 

�̂� 

(d) 

(c) 

(e) 

Single Value Decomposition 
(SVD) 

(a) 

(a) 

Experimental RCSAs and RDCs 

CST (GIAO) 
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situations where α and β components overlap can be resolved for all multiplicities in an IPAP 

manner. 

 

Figure 7 CLIP and CLAP-HSQC spectra of a methylene group of 6-methyl-2-phenyl-1-oxa-spiro[4,4]non-2-en-4-one 
dissolved in CDCl3 and recorded at 600 MHz proton frequency (a). After combining the two spectra in IPAP manner 
(b), coupling constants of the overlapped signals can be determined from the corresponding α and β subspectra (c). 
Residual long-range signals are marked with asterisks in (b). i 

 

It is worth mentioning, the recently development Real-time broadband proton-homodecoupled 

CLIP/CLAP-HSQC. 20 The new real-time pure shift CLIP/CLAP-HSQC experiments are designed to 

speed up coupling constant determination, to increase the sensitivity of measurement, and to 

simplify the extraction of accurate one-bond heteronuclear couplings from pure in- or anti-

phase doublets using automatic peak picking. 

 

1.1.10.2 J-Resolved HSQC 
 

The accurate and precise measurement of one-bond scalar and residual dipolar coupling (RDC) 

constants is of prime importance to be able to use RDCs for structure determination. 

 

 

 

 

Figure 8 Section of the C9 methyl group of (+)-IPC in isotropic solution and corresponding extracted columns from x1-
coupled HSQC (a and b)  and BIRD-HSQC (c and d) spectra recorded under traditional sampling scheme (a and c) and 
using NUS with 30% of 4k (30%/4k/1228) complex points (b and d). 

 

                                                           
i Taken from Re. 112 

(a) 
(a) 

(+)-Isopinocampheol 
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Coupling constants extraction from the indirect dimension of HSQC spectra has a significant 

saving of measurement time can be achieved by non-uniform sampling (NUS). 21 This is the 

approached used in the experiments used in this research 

1.1.11 NMR Experiments for measurement of Residual Chemical Shift Anisotropy 

 

1.1.11.1 Carbon de coupling  
 

An appropriate and robust way to measured 13C RCSA is thru an 1D sequence with decoupling 

using 30 degree flip angle.4 In the recent methodology published by Nath et al. 22 is the 

experiment chosen to solve several molecules of increasing complexity. Its use is displayed in 

Figure 9 

 

 

 

Figure 9 13C RCSAs obtained with stretching and compression devices. Stretching device: Panels a−d show resonances 
extracted from the 13C-{1H} 150 MHz NMR spectra of estrone in the narrow-bore (blue) and wide-bore (red) sections 
of the tube. Compression device: Panels e−h show resonances from the 13C-{1H} 225 MHz NMR spectra from estrone 
observed under minimum (red) and maximum (blue) compression. The C8 resonance shown in panel e was used as 
the reference resonance. Note the presence of both isotropic (marked with an asterisk) and anisotropic signals for 
some carbons. Spectra recorded with minimum alignment were recorded under almost complete relaxation of the 
PMMA gel had approximately 67% of the analyte in the gel. Maximum compression (ΔνQ = 48 Hz) increased the molar 
fraction of the gel residing population to 85%. ii 

 

                                                           
ii See Ref. 22 
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A recently published article from Márco et al.23 applies an 1D Psyche, Carr-Purcell-Meiboom-Gill 

sequence (CPMG) in a pure shift HSQC experiment24,25 during the measurement of  residual 

chemical shift anisotropy (Figure 10).  

In the present Thesis dissertation, the practical use of this sequence will be presented for the 

first time. Initially as proof of concept in a series of molecules and then in the resolution of a 

new natural products from marine and terrestrial origin. 

 

 

Figure 10 Expanded 1D multiplets corresponding to the 600.13 MHz (A) conventional 1H spectrum of an isotropic 
sample of strychnine in CDCl3, and (B) CPMG and (C) homodecoupled PSYCHE experiments of an anisotropic sample 
of strychnine dissolved in a compressed PMMA/CDCl3 gel (2H ΔδQ(CDCl3) = 33.6 Hz). Note that Δδ (1H) > 1.5 Hz can 
be determined for those resonances showing differentiated isotropic and anisotropic singlet signals in the 
homodecoupled spectrum. 

 

1.1.11.2 1D Psyche pure shift 
 

Broadband homodecoupling techniques in NMR, also known as “pure shift” methods, aim to 

enhance spectral resolution by suppressing the effects of homonuclear coupling interactions to 

turn multiplet signals into singlets. Such techniques typically work by selecting a subset of 

“active” nuclear spins to observe, and selectively inverting the remaining, “passive”, spins to 

reverse the effects of coupling. 26 Pure Shift Yielded by Chirp Excitation (PSYCHE) is one such 

method; it is relatively recent, but has already been successfully implemented in a range of 

different NMR experiments. 25 
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Figure 11  Normal 1H NMR (a) and PSYCHE (b) spectra of a 72 mM sample of azithromycin in DMSO-d6. Pure shift 
pulse‐sequence greatly improve resolution, but often at a high cost in sensitivity. Here in new class of pure shift 
experiments (PSYCHE) was used; with superior sensitivity, spectral purity, and tolerance of strong coupling.iii 

 

1.1.11.3 Real-time pure shift HSQC 
 

Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into 

multiplets due to the effect of homonuclear scalar couplings. Although these effects are often 

hidden in NMR spectroscopy by low digital resolution and routine apodization, behind the 

scenes homonuclear scalar couplings increase spectral overcrowding (Figure 12). 27 Pure Shift 

NMR Spectroscopy suppresses the effects of homonuclear coupling, allowing HSQC spectra to 

be produced that contain chemical shift only in both dimensions. Real-time pure shift acquisition 

provides a major improvement in resolution, and a modest sensitivity enhancement, compared 

to the conventional g-HSQC experiment. 24 

 

 

Figure 12 1H–15N HSQC-SE spectra of unlabeled mutant PAFD55N (3) in 95 % H2O/5 % D2O without (black, lower) and 
with (red, upper) real-time pure shift gBIRD acquisition. The pure shift spectrum is shifted in the nitrogen dimension 
for easier comparison. The top right inset shows two overlapping peaks  iv 

                                                           
iii See reference 26 
iv See reference 27 

(a) 

(b) 
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1.2 Main Objectives 
 

The use of anisotropic NMR in the analysis of the structure elucidation of chiral small molecules 

has been expanded in the recent years. Nowadays, Residual Dipolar Constants (RDC) can be 

applied as a standard tool for the efficient improvement in the elucidation of the relative 

configuration of small compounds determined by standard NMR data. 

In this chapter 1, we want to further explore the use of another anisotropic NMR method based 

on residual chemical shift anisotropy (RCSA) measurements, as well as the utilization of a new 

compression and stretching NMR tubes to be applied also as an additional NMR tool available 

for spectroscopists.  

To complete this main goal, we will address these new methodologies as follows: 

 Development of the approach for the measurement of 1H-RCSA. Demonstration as proof 
of concept with to known compounds: strychnine, estrone and retrorsine. 

 Assembly of new alignment devices for the measurements of 13C/1H RDC and 13C/1H 
RCSA. Those include:  

1. A new device for shimming and locking to be used in anisotropic media 
2. A new universal compression device for 3 mm NMR tube. Application to a 

known terpene, α-santonin, and to a flexible compound with restricted rotation 
the meroditerpene 1 

3. Application to the total resolution of new natural compounds with 
conformational flexibility with 1H and 13C RCSA and 13C RDC using a HSQC pure 
shift and NUS: the case of the tricholomaminde A and B.  

4. A new 3 mm stretching device for the measurements of 13C/1H RCSA and RDC. 
Application to a known steroid, progesterone 

 Application of the developed methodologies for the submicrograms structural 
elucidation with deuterated gels: the diterpene briarane-3. 
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1.3 Unequivocal determination of 3D molecular structures 

including relative configuration using proton residual chemical 

shift anisotropy (RCSA) 
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1.3.1 The proton Residual Chemical Shift Anisotropy (1H RCSA) 
 

1.3.1.1 State of the art 
Given the enormous diversity of natural products, the elucidation of the relative and absolute 

configurations, is the main objective of exhaustive investigations by chemists and molecular 

structural biologysts.28 It is well known that different stereoisomers (eg starch and cellulose) 

show different biological and pharmacological properties. 

Currently, an increasing number of chiral drugs have been clinically approved as a single 

configuration, since one of the enantiomers is either less active or has side no desired effects.29 

This is one of the reasons why pharmaceutical research critically relies on the correct 

determination of the relative and absolute configurations of stereogenic centers in a molecule.  

A latest SciFinder search under the keyword “structure revision” brings to light that there 

were more than 1200 wrong structural reports in the period 1991 and 2016, with There are even 

39 wrong structural reported in 2016. It is important to notice that these are just the known 

incorrect structures not including the unknown ones. Therefore, once the molecular constitution 

is known, the determination of the relative configuration of the stereogenic centers in a natural 

product is essential.28 However, so far any method is time-consuming and error-prone.30 Total 

synthesis, probably the most laborious and time consume approach, is considered to be the gold 

standard to establish a final configuration.28 Yet, total synthesis of mefloquine and ulapualide, 

for instance, provided a wrong absolute and relative configuration assignation, respectively, as 

it has been reported.31–33 While X-ray crystallography is a standard technique for crystalline 

compounds, Nuclear Magnetic Resonance (NMR) is the method of choice to determine the 

relative configuration when a suitable crystal is not available.  

Conventionally isotropic NMR restraints viz., Nuclear Overhauser effect (NOE)34 and J-

couplings35 are used to establish 3D features of molecules. However, the combination of these 

two restraints proves to be insufficient for configuration determination in most cases, 

specifically when either stereoclusters of chiral centers are separated by several bonds or the 

molecule presents a highly degree of flexibility (Figure 13) 

 

 

 

 

Figure 13 . Halioxepine was isolated from an Indonesian sponges of the genus Haliclona, represents an example of   
two separated stereoclusters (a). The pentacyclic polyether, Nivariol, isolated from Laurencia viridis  a molecules 
with potential flexibility with a high number of quaternary carbon atoms that it contains make its configurational 
assignment very difficult (b) 

 

(a) (b) 
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Anisotropic NMR along restraints NOE36 methods and J-based coupling analysis (JBCA)37 have 

contributed in a crucial way how to resolve new chemical entities.38,39 Residual dipolar coupling 

(RDCs)14,40–44 and residual chemical shift anisotropy (RCSA) are two anisotropic NMR parameters 

employed specifically for nuclei with spin 1/2.4,10,16,22,45,46 While, in the past decade, it has been 

found that RDCs, principally the one-bond 1DCH, have become essential to determine the 

configuration of small molecules, 13C RCSA can be robustly measured only since 2016.22 Yet, 1H 

RCSAs, that should be measurable even for minute quantities of compound because of the high 

natural abundance of 1H, have not been introduced to determine the configuration of small 

molecules.  

 

1.3.1.2 Alignment media 
 

Measurement of anisotropic NMR parameters requires partial ordering of the molecules in 

alignment media such as aligning gels and liquid crystals.38,47–53 Although RDC has become the 

most common anisotropic data, their sensitivity turn out to be problematic if the available 

amount of sample is below of few hundreds of micrograms.54 On the other hand, to overcome 

the difficulty of RCSA measurements due to isotropic shift changes upon molecular alignment,  

robust 13C RCSA data have been recently reported by using constrained PMMA 

(polymethylmethacrylate) gel either by compression or stretching.10  

 

 
 

 

Figure 14. Alignment media has evolved so far until a point where almost solvents or any polarity can be used during 
anisotropy NMR.  Polymethylmethacrylate gel (PMMA) is the It is the preferred choice for those molecules CHCl3 
compatibles (a) poly-ϒ-(benzyl-L-glutamate) (PBLG) is another valid option for non-polar solvents, spatially those that 
yield small amount alignment as CH2Cl2. It is highly recommended in direct RDC measurement, due the high values of 
1DCH found (b) DMSO-d6 is a valuable solvent, especially in drug design/development. Poly-HEMA offers compatibility 
with DMSO-d6: Moreover, RDCs and RCSAs  can be measured by using it (c). 

 

Same as RDCs, RCSAs allowed the determination of the relative configuration for molecules 

with several stereogenic centers from a pool of all possible other relative configurations. 13C 

RCSAs were also extracted recently from PMMA gel with 3% cross linker density using another 

type of stretching device developed by Ad Bax and his coworkers for proteins. 7,55 Very recently, 
13C RCSA were also measured from the mesophase of a poly-ϒ-(benzyl-L-glutamate) (PBLG) that 

involves three steps sample preparation.56 However, 13C RCSA measurement from 1D 13C-{1H} 

spectra is a daunting task due to low sensitivity of carbon if the sample is available around 10 

micrograms. 

As mentioned above, 1H RCSAs despite being the most sensitive anisotropic NMR parameter, 

have not been yet measured to determine the configuration of small molecules.   

 

(a) (b) 
(c) 
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1.3.1.3 Specific objectives 
 

Accurate 1H RCSA measurement bears the promise to the spectroscopists that minute 

amounts will allow determination of relative configuration. In the section of this chapter, we will 

introduce two independent tools to robustly obtain 1H RCSA data: 

 

a) In one implementation, RCSA will be collected on several rigid and flexible 

molecules by using stretchable PMMA and poly-HEMA (polyhydroxyethylmethacrylate) 

gels.  

b) In another implementation, 1H RCSAs will be measured from polyacetylene 

based liquid crystal prepared in chloroform solvent. 

 

Different alignment strategies by will be tested varying strength and temperature in order to 

achieve best gel performances. This methodology will not need any special tube or piston 

mediacy, therefore, the measurement will be performed in a 1.7 mm, 3 mm or in standard 5 mm 

NMR tubes unlike with the constrained gels that require special devices.22 The measured RCSAs 

will be later employed in determining the relative configuration of several molecules.  

It is noteworthy that polymer 1H NMR resonances will dominate the spectrum and, very 

often, it will mask sample signals when the amount is less than 100 µg. This problem will be 

circumvented by the use of a deuterated gel (i.e. PMMA-d8), as it will be demonstrated for 10 

µg of strychnine. 

 

1.3.1.4 Methodology: description 
 

For a liquid crystalline sample, molecular alignment varies with the temperature. The 

dependency of the chemical shift is small and relatively constant over tens of degrees. 

Therefore, 1H RCSAs can be measured by varying the alignment of the sample inside a 5 mm 

NMR tube at certain temperatures. One way to measure 1H RCSAs is to record two different 1H 

NMR spectra in anisotropic and isotropic phase, respectively. The 1H chemical shift differences 

of both phases provide a set of uncorrected RCSAs, which can be corrected by calculating the 

temperature-induced isotropic shift using a second 1D 1H NMR spectrum recorded at another 

temperature in the isotropic media. If the liquid crystal is anisotropic at 300K and isotropic at 

305K and 310K, then the RCSA of nuclei “i” was determined from the following equation:  

 

   300 305 305 310 300 305 3102K K K K K K K

i i i i i i i iRCSA                Equation 5 
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where ‘i’ is 1H and δi is the chemical shift of proton “i”. This equation assumes that the 

temperature gradient for the isotropic shift behaves linearly between 300 and 310 K, such that 

the anisotropic shift can be separated from the temperature dependent isotropic shift. 

In case that there are no two conditions yielding isotropic phases in the temperature range that 

is accessible in the spectrometer, the RCSA can be also measured correctly by measuring the 

anisotropic and isotropic spectra at two temperatures e.g., 300K and 315K using the following 

equations: 

 

DRCSAi = [(di

300K -dref

300K )aniso - (di

315K -dref

315K )iso] 
Equation 6 

 

 

where, 𝛿𝑟𝑒𝑓 is the chemical shift for any chosen reference nucleus. Reference nucleus is chosen 

in the bases of it CSA value, those with the lowest value are the best to be used as Reference. 

For stretchable gels, the molecular alignment is induced by elongating the gel through a 

radial mechanical force. During this process, the concentration of analyte is kept constant and 

hence, no correction due to isotropic chemical shift changes is required. For such a gel, the RCSA 

of a nucleus “i” is derived from the following equation:10 

 

DRCSAi = [(di -dref )
max - (di -dref )

min ] Equation 7 

 

In this case, one of the nuclei is taken as reference atom, and RCSA’s are measured as 

chemical shift differences between the maximum (Max) and minimum (Min) alignment 

conditions. 

The anisotropic distribution of orientations of the compound under alignment conditions is 

described by the alignment tensor �̂� that contains five independent parameters and therefore 

requires minimally five linearly independent RCSAs.3,57 Furthermore, the chemical shift tensors 

necessary for RCSA analyses can be obtained at low computational cost by using density 

functional theory (DFT) calculations in Gaussian 09.58,59 These DFT methods are very powerful 

and reliable in determining the various NMR parameters from optimized geometries. In practice, 

they can be calculated in parallel in a time frame that is usually chosen for the measurement of 

experimental data, thereby speeding up the structure elucidation process. 

The proton chemical shifts can be calculated with appropriate accuracy by using DFT methods 

with a larger basis set or by using Møller-Plesset perturbation (for example MP2) theory. 

Contrarily to carbon chemical shifts theoretical calculations, which are marginally influenced by 

solvent, proton RCSAs are noticeably affected by the solvent. In view of this, we performed 

calculations in two steps: 
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 Firstly, proton chemical shifts were computed at different DFT functional models and 

MP2 level with various medium to larger size basis sets. This step enables the 

selection of the best theoretical model.  

 The impact of the different solvent models on the CSA values were also tested on 

this model. 

For methyl groups all three proton RCSA tensors are calculated and then an average tensor 

is estimated. 

The experimentally measured RCSAs are fitted to an alignment tensor using a Singular Value 

Decomposition (SVD) model as is implemented in the MSpin program.9 The quality of the fit is 

represented with the following Q factors; sometimes referred to as QUNSCALED. 

 

Q=
(RCSAexp - RCSAcal )

2å
RCSAexp

2å
 

 

Equation 8 

 

and 

 

QCSA =
[(RCSAexp - RCSAcal )/CSA]2å

(RCSAexp /CSA)2å
 

 

Equation 9 

 

in which, CSA, the axial anisotropy of the tensor equals σ33-(σ22+σ11)/2, and the chemical 

shielding Eigen-values σii are obtained from DFT calculations. 

 

1.3.1.5  1H RCSA to a rigid molecule: strychnine 
 

Alignment media using a stretching gel 

 

We measured 1H RCSA’s for a well-studied model system, strychnine. For alignment media 

we used separately a polyacetylene based liquid crystal and a stretched PMMA gel using 

formulae represented by Equation 6 and Equation 7, respectively and they are subsequently 

utilized for the configuration analysis.  

Initially, 8 mg of strychnine were aligned in PMMA/CDCl3 gel by using a special NMR tube that 

has an inner diameter of 3.2 mm for maximum alignment and of 4.2 mm for the minimum 

alignment. The measured RCSAs ranged from 2.1 to 8.4 Hz at 700 MHz. For the analysis, from 

the observed 1H RCSAs and DFT determined CSA tensors an alignment tensor was determined 

through least-squares SVD fitting for different relative configurations by using the MSpin 

program. The quality of the fit is measured through Q factors. Ideally, for the correct 
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configuration, the Q factor should be 0. Only 13 out of 32 possible configurations are 

energetically feasible due to the multicyclic constitution of strychnine.  

These 13 configurations were used in the analysis and their chemical shift tensors were 

computed by DFT at B3LYP/6-311+g(2d,p) level by using the ICF-PCM solvent continuum model 

with CHCl3 as a solvent in Gaussian09.58,59 The configurations were labelled via the R or S 

configuration of carbons C7, C8, C12, C13, C14, and C16 respectively, for example RSSRRS for 

the correct configuration. 

We found for the correct configuration RSSRRS a Q factor 0.253 and for the configuration 

RSRRRS a similar Q factors 0.256. These two configurations also showed the best fittings based 

on 13C RCSA with Q factors 0.050 and 0.100, respectively. 16 CSA tensors for protons, including 

the axial component, varied over a large range. For instance, the variation was from 10.2 ppm 

for H18b to 3.4 ppm for H8.  

As an example, axial anisotropies for aromatic protons viz., H1, H2, H3 and H4 were 10.2, 4.9, 

4.4 and 9.3 Hz, respectively, while those for the aliphatic protons 11Hb, 13H, 20Ha, 15Hb and 

18Ha were 4.7, 2.9, 9.4, 10.2 and 11.0 Hz, respectively. It was also observed that the CSA of the 

diastereotopic proton H18 was 11.0 Hz while for the other pair was 5.7 Hz. This large variation 

for diastereotopic protons was also observed for other such pairs. Due to the large variation of 

CSA tensors (similar to the approach taken for the evaluation of carbon RCSAs) 22 QCSA (Equation 

9) scales the RCSA errors of each nucleus with the axial value of the CSA. This makes the 

contribution of the RCSAs independent of their respective sizes and then it weighs each RCSA 

more equally. Indeed, the mentioned configurations RSSRRS with a QCSA=0.256 and RSRRRS with 

a QCSA=0.276 could be distinguished by this Q factor. Similarly to 13C RCSAs, 1H RCSAs furnished 

the lowest Q and QCSA factors for the correct configuration. The Q RCSA and QCSA factors 

computed for the thirteen energetically favorable configurations are listed with a bar diagram 

in Figure 15: 
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Figure 15. The QCSA factors (red bar) for the two closest configurations RSSRRS and RSRRRS are 0.256±0.03 
and 0.274±0.03, respectively. The unscaled Q factors are reported with the blue bars. The two 
configurations RSSRRS and RSRRRS were also the two with the lowest Q factors in the 13C RCSA analysis.  

 

 

Alignment media using a liquid crystal 

 

 We explored the measurement of 1H RCSA’s of strychnine in a lyotropic liquid crystal made 

of L-valine derived polyacetylene and chloroform that uses different temperatures to induce 

dissimilar alignment conditions necessary for RCSA measurement. 12 mg of strychnine is aligned 

in the liquid crystal in 5 mm NMR tube. The sample provided maximum alignment at 300 K and 

minimum alignment at 315K.  The RCSAs were measured by using Equation 7 and RCSAs have 

values in between -12 and 10.4 Hz. In this case, both 13C and 1H RCSA analysis furnished a slightly 

higher  Q factors for the correct configuration (0.122 and 0.343) as compared to 1H RCSA data 

collected in PMMA gel.10 The Q (QCSA) factors are 0.343 (0.439) for RSSRRS and 0.414 (0.455) 

for the next best RSSSRS configuration. The results obtained for different configurations of 

strychnine in liquid crystal 1H RCSA data is represented in the bar diagram in Figure 16 below.  

 

 

Figure 16. The unscaled Q factors (blue bar) and QCSA factors (red bar) are reported for thirteen configurations of 
strychnine aligned in polyacetylene liquid crystal. 

 

1.3.1.5.1 Improving the method sensitivity using a deuterated gel 
 

The sample for the above-discussed molecule contained 8 mg strychnine. Regarding high 

sensitivity of proton detection, 1H RCSAs should be measurable down to a few micrograms of 

the sample embedded in a PMMA gel. However, the signals of the protons of the gel overshadow 

large regions in the spectrum to an extent that T2 filters and solvent suppression do not work 

efficiently. The best way to exclude the solvent signal is using deuterated gels that can be made 

from commercially available deuterated monomers along with a protonated cross-linker, which 

unfortunately is more difficult to obtain in a deuterated form. However, the protonated cross-
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linker does not pose a problem, as it constitutes only a very small fraction of the gel. The 

prominent signals that are usually observed in the protonated gels are efficiently suppressed in 

deuterated gels and is presented in the supplement material (see Figure 17) 

 

Figure 17 compares the 1D 1H NMR spectrum of 300 µg of strychnine, which was acquired by 

using a stretchable protonated PMMA gel (Figure 17, panel a), with that of 80 µg of strychnine 

aligned in deuterated PMMA gel (PMMA-d8) (Figure 17, panel b). Note that in PMMA-d8, the 

polymer signals are suppressed completely allowing the extraction of 20 1H RCSAs of strychnine. 

In contrast, in the protonated gel, only a few signals of strychnine are visible with low intensities 

and many of the 1H resonances are masked by very intense polymer signals. It is noteworthy 

that significant suppression of polymer signal is possible from PMMA gels by using a 1.7 mm 

compression device (see the supplementary material). The preparation of each deuterated gel 

sample cost 16 USD more than that of a protonated gel (see supplementary material). The range 

of RCSA shifts of the resonances using the stretching device was approximately -0.8 to 3.4 Hz in 

a 800 MHz spectrometer. When the 1H RCSAs were SVD-fitted into a single tensor, it furnishes a 

Q (QCSA) factor of 0.199 (0.220) for RSSRRS and 0.264 (0.299) for the next best RSRRRS 

configuration. The other 11 configurations have even higher Q (QCSA) factors (see Table S4 and 

S5 in the supplementary material) 

 

(a)  

 

(b)   
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Figure 17. 1D 1H NMR spectrum (128 scans) of 300 µg of strychnine in protonated gel. Note that few peaks are visible 
(indicated by the blue arrows) and many signals are masked by the polymer signals (a). 1D 1H NMR spectrum (8 scans) 
of 80 µg of strychnine in deuterated PMMA gel (b). Both the spectra were recorded in a Bruker 800 MHz NMR 
spectrometer. Use of a stretching device that has an inner diameter of 4 mm for minimum and 3.2 mm for maximum 
alignments. 

 

Encouraged by the above-mentioned results for 80 µg of sample, we decided to explore the 

limitation of the technology in terms of sample amount. Therefore, we aligned only 10 µg of 

strychnine in PMMA-d8 gel. 1D 1H NMR spectra were recorded for maximum and minimum 

alignment conditions using a stretching device with 4.2 and 3.2 mm inner diameters in a 800 

MHz NMR spectrometer. 8192 scans were necessary to observe the signals with sufficient signal-

to-noise ratios. 12 1H RCSAs were measured and compared to 20 RCSAs collected for 80 µg 

sample because of overlap with gel signals. When the 1H RCSAs were SVD-fitted into a single 

tensor, it provided a Q (QCSA) factors of 0.092 (0.090) for the RSSRRS configuration and 0.116 

(0.100) for the next best RSRRRS configuration, with other 11 configurations exhibiting higher Q 

(QCSA) factors. 

 

1.3.1.6 Epimers discrimination by 1H-RCSA: estrone and 13-epi-estrone. Establishing the 

right functional in the DFT calculations 
 

In order to find a DFT benchmarking in determining the effect of solvents in the computation 

of the anisotropy of CSA tensors, we were looking for the right combination of robust functional 

along with the basis set. CSA tensors were calculated in functionals such as B3LYP, MPW1PW91 

and MP2 in different solvents.  

3 mg of estrone were aligned in a poly-HEMA/DMSO-d6 gel by using a special NMR tube with 

an inner diameter of 3.0 mm for maximum alignment and 4.2 mm for the minimum alignment. 

The measured RCSAs range from -1.6 to -6.4 Hz in an 800 MHz spectrometer. The analysis was 

made for two different configurations, estrone and 13-epi-estrone. While 13C RCSA data 

collected in DMSO did not reach a correct configuration45, 1H-RCSAs proved to be most robust 

assigning the right epimer: the SVD-fitted 1H RCSA data analysis provided the lowest Q / QCSA 

factors of 0.276/0.319 while for 13-epi-estrone, they were 0.396/0.419, respectively. The 

difference of 0.120 and 0.100 for Q and QCSA factors showed that the configuration 

differentiation is possible using just 1H RCSA. It is worth mentioning that 13C RCSA data acquired 

in PMMA gel gave Q factors of 0.09 and 0.13 for estrone and 13-epi-estrone, respectively.  

The Q factors obtained for estrone and 13-epi-estrone are tabulated in Table 1. We find that 

the results are consistent in different theoretical models. It is noteworthy that proton CSA values 

for different models follow the identical trends (see supplementary material) with the exception 

of computation with smaller basis sets. The Q factors are provided in the bar diagram in Figure 

18. 
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Table 1. Calculated Q factor for estrone and 13-epi-estrone in different theoretical combinations 
functionals-basis sets/solvents. 

Method/basis set Solvent Q factor for estrone Q factor for 18-epi-estrone 

MPW1PW91/ 6-311+G(2d,p) DMSO 0.279 0.444 
B3LYP / 6-311+G(2d,p) DMSO 0.280 0.430 
B3LYP / 6-311+G(2d,p) CHCl3 0.309 0.430 

MPW1PW91/ 6-31+G(2d,p) DMSO 0.300 0.456 
B3LYP / 6-311+G(2d,p) Methanol 0.280 0.433 

MPW1PW91/ 3-21+G(2d,p) DMSO 0.303 0.435 
MP2/ 6-311+G(2d,p) CHCl3 0.289 0.467 

 

 

 

Figure 18. Unscaled Q factors (blue bar) and QCSA factors (red bar) for estrone and 13-epi-estrone 

 

1.3.1.7 Retrorsine, a flexible molecule 
 

Retrorsine is a good model to emphasize how complicate can be the structure elucidation of 

a molecule with several chiral centers, along with a high degree of flexibility in a fragment of the 

molecule. This compound has been also used in the past as a model for the total structure 

elucidation through RDC’s. Authors observed that the methodology could not discriminate 

structures with different stereochemistry at the position C11 because the lack of information in 

this carbon with no hydrogens attached.60 With the purpose to cover this experimental flaw, we 

would like to demonstrate that 1H RCSA’s extracted from a PMMA gel are able to discriminate 

even molecular situations with large flexibility. 
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For configuration analysis of retrorsine, the complete structural motifs that are compatible 

with the NMR data, need to be considered. In this way, all conformers that are energetically 

feasible were obtained by a conformational search in a molecular modeling calculations using 

the force field MMFF94 as is implemented in the Macromodel program.61,62 Other type of 

programs, such as Maestro61 of PCMODEL63 can be also used for this purpose.  

The four chiral carbons at C2, C3, C10, and C1, implies 8 diasteroisomers to be considered. 

All possible configurations were treated with a similar approach: conformational search, 

election of conformers, geometry and NMR properties DFT calculations followed by a final Q 

fitting using MSpin. The experimental RCSAs were fitted to a single tensor.  

Therefore, 2 mg of retrorsine was aligned in the gel by using a stretching device and RCSAs 

were measured in an 800 MHz spectrometer. The RCSA analysis provided Q (QCSA) factors of 

0.326 (0.408) and 0.406 (0.438) for configurations RRRS and RRRR, respectively. It may be notice, 

that these two configurations presented the lowest scores when 13C RCSA analysis was 

performed with Q factors 0.184 and 0.216, respectively. At this point is easy to realize that the 

Q factor difference and ratio is larger, i.e. discrimination between the configurations is more 

obvious using 1H RCSA (Figure 19). 

 

 

 

Figure 19. The unscaled Q factors (blue bar) and QCSA factors (red bar) for the eight possible relative configurations 
for the retrorsine. 



 

-32- 

 

  



 

-33- 

 

 

Sample amount: looking for the minimal amount of sample 

 

We also wanted to investigate what was the minimum amount of sample required to reliably 

extract 1H RCSA’s, in PMMA gels and polyacetylene-based liquid crystal. To meet this goal we 

made all the measurements in a stretching device that has inner diameters of 4.2 and 3.2 mm 

to induce maximum and minimum alignment conditions. We were able to collect data to just 

10 µg of strychnine in a PMMA-d8 gel and 1.2 mg for a PMMA gel. However, for liquid crystal 1 

mg of strychnine is required for a good RCSA measurement when a standard 5 mm NMR tube 

was used. However, by the combined use of a deuterated polyacetylene liquid crystal and 1.7 

mm tubes, one might further reduce this amount. The minimum amount of sample, which is 

necessary for different types of aligning gels under various stretching conditions and also for 

liquid crystal, can be found in the supplementary material. 

 

1.3.1.8 Partially deuterated gel obtained by radical polymerization of 2,2′-azobis(2-

methylpropionitrile) and monomer methylmethacrylate-d8 to measure RCSA’s 

and other anisotropic parameters 
 

Deuterated gels used as anisotropic alignment media, have the best performance a 

concentration fixed of monomer set to 70 % v/v, meanwhile a molar concentration of the cross 

linker of either 0.04 or 0.05 mol % EGDMA is recommended. The radical polymerization process 

is suitable for both the New Era’s stretching device (4.2/3.2; 3.0 mm) 16,22 and for the 

Hilgenberg’s stretching device (2.4/1.8 mm).18 

 

The radical initiated polymer reaction of methylmethacrylate (MMA) cross-linked with 

EGDMA is well described in literature.64 Free radical polymerization of MMA-d8 using 2,2′-

azobis(2-methylpropionitrile) (AIBN) at high temperature mainly goes through a termination by 

disproportionation and a final incorporation of the butyl group of the initiator into the polymer 

chains.65,66 The network of the cross-linked PMMA structure has been reported before,67,68 We 

critically assume that in the case of deuterated monomer (MMA-d8) the main network present 

in the polymer is the normal cross-linked (Figure 20), nevertheless other possibilities are also 

possible.67 
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Figure 20. Normal cross-link chemical structure of EGDMA-cross-linked PMMA-d8 

Both 1H and 13C spectra of protonated PMMA (70/0.04) are given in Figure 21. The signal at 

0.772 ppm corresponded to the methyl protons in alpha position to the carbonyl group, the two 

small peaks in the olefinic proton region at 6.086 and 5.569 ppm are assigned to the vinyl 

methylene protons at the chain formed through the disproportionation reaction (Figure 21 b). 

We did not find any evidence of the terminal olefinic methine proton (Figure 21 c), expected at 

6.5-7.0 ppm, 69 yet we do not rule out its present, they can be overlapped with the broad peak 

with a chemical shift of 3.519 ppm correspond to the pending methoxy group in the side chain. 
13C spectrum (Figure 21 e) was assigned in basis of an HSQC experiment (SI) and matched with 

previous reported data. 

Two versions of the stretchable PMMA-d8 were prepared (70/0.04 and 70/0.05) and both 

showed suitable properties to be used as alignment media in the determination of 1H RCSA. The 

70/0.04 gel was prepared with a 5% of protonated MMA while the 70/0.05 one uses only MMA-

d8 leaving only as a source of protons those presents in the cross linker (EGDMA). This strategy 

allowed us to fully assign the signals in both polymers. a and b show both 1H spectra on PMMA-

d8 70/0.04 and 70/0.05 respectably. In the two spectra we can observe signals corresponding to 

the methyl groups (1.47 -2.17 ppm) from the initiator (AIBN), while the gel PMMA-d8 70/0.04 

showed two signals with moderate intensity at 0.772 ppm and 1.198 ppm corresponding to the 

α–CH3 and –CH2- from the protonated MMA. As expected those signal are absents in the PMMA-

d8 70/0.05 gel (b). On c) and d), signals from 3.0 to 6.7 ppm due to the remaining protons in the 

monomeric units are present on both deuterapolymers. 

On Figure 23 we can observe all the spectra overlapped for the described gels. We believe 

that it will allow to have stronger signals from analytes because the absence of protons from the 

gel, and therefore a most easy measurement of 1H RCSA’s. Another anisotropic parameters like 

long range 1H-1H RDC and direct RDCs will be also easier to extract from 1D spectra. 

Relative hydrogen content of the synthesized PMMA gels was determined by integrating the 

relative intensity of the signal of interest to the signal due to the partially undeuterated 

chloroform present in the lock solvent (Table 2). Protonated gel shows the highest number of 

protons as the only source of deuterium derives from the interchangeable proton in CD3OD, as 

a matter of fact is demonstrated that is included in the polymer network yet is meaning less in 

this case.66,70 Both deuterated polymers showed –CH3 groups from the mentioned 

disproportionation step, with similiar order of magnitude, while PMMA-d8 the α-CH3 and –CH2- 
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moieties are present just in the PMMA-d8 (70/0.04), which contains 5 % of MMA-H8. No signs of 

these methyl or methylene groups are observed in the PMMA-d8 (70/0.05).  

 

Table 2. Relative proton contend in AIBN cross-linked methyl Methacrylate using protonated and deuterated 
monomer 

Polymer -CH2- from 
protonated 
monomer 

α-CH3 from 
protonated 
monomer 

-OMe from 
protonated 
monomer 

-CH3 from 
AIBN 

-CH3 from 
AIBN 

PMMA-H8 
(70/0.04) 

11.000 28.000 69.000 NR NR 

PMMA-d8 (*) 
(70/0.04) 

670 690 188 1300 2100 

PMMA-d8 

(70/0.05) 
- - 123 1400 1350 

(*) Contains 5 % of protonated monomer. We badly assigned a value of 3000 to the signal due to the partially 

undeuterated chloroform. NR not readable. (-) Not present 

 

We would like to point out that the presence of those signals does not cause major 

inconveniences, even measuring samples at micrograms levels. Furthermore, the importance of 

using fully deuterated methanol as solvent on the polymer reaction; it has been reported the 

introduction of a proton from methanol as terminal methine that produces a singlet at 2.57, 

which is not present in any of our gels 65 

Spectra and assignment of all the chemicals used were done based on spectra measured in a 

Bruker 700 MHz equipped with a cryo-probe with CDCl3 as locking solvent; 1H, 13C and HSQC 

were recorded using 32, 256 and 4 scans and an spectral with respectively. All the chemical were 

inside specified purity. 

  



 

-36- 
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Figure 21. 1H (a) NMR and 13C (b) spectrum of protonated PMMA cross-linked with EGDMA prepared with AIBN (CDCl3) 

 

 

Possible termination in the polymer 

chain after the disproportionation 

reaction 

(b) (c) 
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Figure 22. 1H NMR spectrum of PMMA-d8 (70/0.04) and PMMA-d8 (70/0.05) cross-linked with EGDMA measured in a 
Bruker 700 MHz (CDCl3). 

 

 

Figure 23. Overlapping of 1H spectrum of stretching compatible protonated and deuterated PMMA (CDCl3) measured 
in a Bruker spectrometer at 700 MHz. Protonated PMMA 70/0.04 (red line), PMMA-d8 70/0.04 (blue line) and PMMA-
d8  70/0.05 (green line). First and second gel are suitable for the New Era’s stretching device (4.2/3.2 mm) and the last 
one is compatible with the Hilgenberg’s semi micro stretching device (2.4/1.8 mm). All measurements were done at 
relaxed state. 
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1.3.1.9 Conclusions 
 

Determination of 3D molecular structure remains challenging for natural products or organic compounds 

available in minute amounts. While the constitution can be derived from proton/proton and 

proton/carbon correlations, J couplings and NOEs are used to determine the relative configuration 

oftentimes supported by one-bond 1H-13C RDCs or by 13C RCSAs. However, these RDCs or carbon RCSAs 

rely on 1% natural abundance of 13C preventing their use when only 10 µg of a compound are available. 

We introduce here the highly sensitive 1H RCSA’s measurements that provides spatial orientation of 

structural moieties within a molecule, yet with µg amounts required. In this thesis section, robust 

measurement of 1H RCSAs is shown using constrained aligning gels or liquid crystals.  3D molecular 

structures of molecules with varying complexity are determined. Deuterated alignment media allows for 

observation of RCSAs of around 10 µg of analyte and determine a previously unknown relative 

configuration with this amount. Therefore we can cloncude:  

 

a) The 1H RCSA’s, a highly sensitive NMR anisotropic observable, can be robustly measured in 

chloroform and DMSO swollen chemically cross-linked polymer gels and liquid crystals. 1H RCSA’s 

are very powerful parameters as they complement conventional J-couplings, and NOEs, without 

the necessity of using one bond and long range 1H-13C RDCs or 13C RCSA’s. For microgram amounts, 

we showed that deuterated gels provide clean spectra of the sample down to 10 microgram 

quantities.  

b) Through three examples of rigid and flexible molecules, strychnine, estrone and retrorsine, we 

have demonstrated that 1H RCSAs can be successfully employed to determine the correct relative 

configuration using Q or QCSA values. In addition, spectroscopists not well trained in NMR, may find 

it more appealing to use RCSAs than RDCs since RCSAs can be easily read from the 1D 1H or 13C-

{1H} spectra while RDC measurements require some training with 2D spectroscopy.  

c) The analysis tools are available in the Mestrelab software and CSA tensor calculation in Gaussian. 

Therefore, measurement of 1H RCSA will open up new avenues for the structural analysis of 

synthetic and natural products that are hitherto not solvable due to their limited amount down to 

1 digit microgram quantities. 
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1.3.2 Accurate Measurement of RDC and RCSA for Natural Product 

Configuration Analysis Using Semi micro Stretching and 

Compression Devices 
 

1.3.2.1  Development of a shimming optimization device for the measurement of 

anisotropic parameters on micro compression device (1.7 mm OD) 
 

Measurement of 13C RCSA at minute amount was robustly achieved on 2016 by using a micro-

compression device (MCD) in a highly sensitive 1.7 mm cryoprobe.17 The MCD follows the same principle 

as in the commercially available 5 mm compression device from New Era Company, with different 

alignment conditions induced by moving a piston located in the device. Despite the fact that MCD is a valid 

option for the analysis of small molecules in minute amounts, it shows significant issues during the locking 

and shimming in the most common 5 mm cryoprobes. The space between the capillary tube and the shim 

coils contains a tiny amount of deuterated solvent inside the sample tube (40 µL) that is responsible for 

such drawbacks.  

To avoid this situation, we introduce here a locking/shimming device that overcomes such mentioned 

difficulties. The locking/shimming device (LSD) can be described as a 3 mm tube coat containing deuterated 

solvent for calibration and to make the lock signal shaper and to guarantee a proper shimming. The in-

house device has been designed in Teflon® (Figure 24) and it is provided with two rubber bands which 

secures the fixation of the sample to the capillary tube and the outsider 3 mm tube. 

Gels in our MCD are used to make the same reaction of polymerization explained on section 1.3.1.8 for 

stretched gels at 70/0.05 ratios (monomer v/v; molar % cross-linker concentration). After the reaction 

occurred, the PMMA crude gel was cut into 2.2 cm long sticks and used after solvent cleaning, showing 

the same mechanical properties as the gels prepared for a 3 mm NMR tube. Washing, pre-swelling and 

dialysis were done as before to prepare the gel for measurement43, giving a maximum 2H splitting (∆HQ) in 

the range of 4 to 4.8 Hz. For the final measurement, the compression was done by means of the dialyzed 

gel in 40 μL of chloroform inside a 1.7 mm NMR tube using a MCD. In this way, 1H-RCSAs can be efficiently 

shimmied and measured at two different compressions, using the locking/shimming device in a 5 mm cryo 

probe. 

 On Figure 25, 70 µg of strychnine were aligned, shimmed and locked and a T2 filtered 1H NMR spectrum 

was run to demonstrate that a very good signal to noise can be achieved. 
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Figure 24. Locking/shimming device (LSD) (a) detail of the head of the LSD (b) Complete assemble as it was used during 1H RCSA 
experiments (c and d).  Plans and measurements of the Locking shimming device (e) 

 

 

Figure 25. 1H NMR spectra of 70 µg of strychnine sample in a micro compression device MCD (1.7 mm NMR tube) in a protonated 
PMMA gel (70/0.05) in which no polymer signal suppression was applied (red color). Signal suppression by using a T2 filtered was 
also applied (blue color). 

(a) (b) (c) (d) 

(e) 
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1.3.2.2 Development of a universal 3 mm compression device for measuring RDC and RCSA 
 

In this section we will describe the use of a semi micro compression device (SMCD) for measuring any 

NMR anisotropy parameter in high concentrations of analyte. The USMCD is a 5 mm version of the New 

Era compression device, which operates following the same principles.43,22 Therefore, it will efficiently align 

strain induced swollen gels, either in polar or nonpolar media, by mechanically compressing strengths. 

These approaches have been extensively used in the elucidation of natural product structure in the past 

decade. 

In our hand, we have found that SMCD is suitable for a rapid and reversible gel compression to collect 

anisotropic NMR parameters such as RDCs, 1H and 13C RCSA’s and subsequently use them for 

diastereoisomers stereo-discrimination. Additionally, besides the uses of the device in measuring 1H RCSA 

in swollen PMMA-d8 gel in CH2Cl2, we also describe its usage for other compatible gels in other organic 

solvents. 

A Teflon® made plunger (outer diameter 2.0 mm) is placed inside the clamping head (see Figure 26), 

which is provided with two fastening screws that keep the system integrated and permits the accurate 

measurement of different anisotropic parameters with rapid and reversible variation of the alignment 

strength. It engages the well described stretched polyacrylamide gels (SAG) method, which mainly consists 

of swelling the gel until equilibration of 24 h. After the equilibration the sample is dissolved in the swelling 

solvent/gel media and then is allowed to diffuse into the gel during a period of approximately 5 minutes. 

Specific details in how to use this device are described in the Experimental Part.  

Herein, we present a SAG approach that overcomes the principal experimental problems of the 

currently existing 1.7 and 5 mm devices as reduced mass of gel, improved capabilities of shimming and 

locking.  

 

 

(a) 

 

 

(b) 

 

 

 

(c) 

Figure 26. Experimental arrangement needed for the 3 mm semi-micro compression device. (a) Complete alignment 
system including the 3 mm NMR tube, a swallowed gel, and the SMCD. (b) Fully relaxed swallowed gel colored by a 
pigment. (c) Head detail of the SMCD; fastening screws allow the compression system to keep the tube attached to 
the 3 mm glass NMR tube. Pigment used is from a commercial maker from the German company Faber Castell 
Company. 

 

Fastening screw 

Swallowed gel stick 

Compression plunger 

Clamping head 

Locking nut 
Clamping head 
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The polymer sticks were cut into 22-mm-long pieces and placed into a 5-mm NMR tube, and then were 

allowed to swell in a suitable deuterated solvent (600 µL). After 24–48 h, the gel was carefully transferred 

to a 3-mm NMR tube. At this point the gel has almost reached the NMR tube walls (Figure 26 a), the SMCD 

was attached to the 3-mm NMR tube by adjusting the fastening screw. A fully relaxed gel of approximately 

40 mm in length showed a quadrupolar splitting (∆HQ) 0 Hz, yet after compression in the vertical direction 

was applied it revealed a non-zero ∆HQ. Several values of ∆HQ (see  Table 3) can be achieved by either 

changing the gel´s chemical composition or the amount of compression over the gel stick. The parameters 

showed in Table 3 are the result of optimizing critical parameters to guarantee the right flexibility and 

highest ∆HQ. We anticipate that ∆HQ was linearly scalable as a function of the degree of compression (ε), 

yet it hasn’t been measured so far. 

During the sample preparation, sample was dissolved in 75 µL of deuterated solvent and firstly added 

to the 3-mm NMR tube in which anisotropic data was collected. The swallow gel stick was then carefully 

pulled in by using the Teflon plunger. At this point, the gel behaves like a sponge and the compound to be 

analyzed is sucked inside the gel in a few minutes after repeated compression and decompressed 

maneuvers with a gentle pumping action of the plunger.  

The methodology allowed the determination of several anisotropic parameters as RDCs and RCSA by 

tuning the alignment in easy and robust way. So far, we have successfully reused the PMMA-d8 (70/0.27) 

at micro-gram scale to collect 1H RCSA’s for two different compounds over 3 weeks choosing CD2Cl2 as 

locking solvent. However, more tests must be done before establishing a rule of use. 

The background signal in the protonated gel was less intense due the mass reduction in the alignment 

media from 42 mg to 22 mg, and it can be diminished by filtering with a Carr-Purcell-Meiboom-Gill 

sequence (CPMG). 23  Moreover, background can be almost completely nullified, not only in the 1D 1H-

NMR spectrum as well as in the 13C and HSQC experiments with the introduction of PMMA-d8. 

 

Correction of the chemical shift anisotropy by compression 

 

The use of the compression device for measuring RCSAs, implies that the polymer/solvent ratio changes 

upon compression. Thus, the change on the isotropic contribution to the chemical shift must be corrected. 

Equation 10, described by Nath et al22, allows the calculation of corrected RCSAs. Extrapolating those 

conclusions regarding the CSA tensor of carbon atoms, we proposed here that the proportionality constant 

c (Equation 11), could be determined assuming a sufficiently large number of protons attached to sp3 

carbons, their associated CSA tensor principal frame equally span all the space, and as a consequence, 

their mean RCSA should be zero.  
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(a) 

(b) 

(c) 

 

∆𝑅𝐶𝑆𝐴𝑖 = ∆𝛿𝑚𝑎𝑥
𝑖 − ∆𝛿𝑚𝑖𝑛

𝑖 − 𝑐(∆𝛿𝑚𝑖𝑛
𝑖 − ∆𝛿𝑖𝑠𝑜

𝑖 ) Equation 10 

𝑐 =
∆𝛿𝑚𝑎𝑥

𝑖 − ∆𝛿𝑚𝑖𝑛
𝑖

∆𝛿𝑚𝑖𝑛
𝑖 − ∆𝛿𝑖𝑠𝑜

𝑖
 

Equation 11 

 

However, the conditions are not always fulfilled in small molecules. The problem has been recently 

solved 10 and implemented in MSpin9 in an automatic way. 28 The automatic isotropic correction method 

will be the one used in our study. 

 

Device limitations 
  

So far, we have solved three natural product using anisotropic parameters with the 3 mm compression 

device (at micro gram scale), yet the main drawback is the limited amount of pressure one can applies 

over the gel before the tube gets broken. We are currently developing a dedicated 3 mm compression 

device that allows to compress the gel even more, without the risk of the tube to collapses. It shall be 

available soon in   https://www.hilgenberg-gmbh.de 

 

  

 

 

 

 

 

 
 

 

Figure 27.  Hilgenberg´s 3 mm NMR tube shows suitable properties to be used in combination with the SMCD, 

nevertheless in extreme compression the tube can broke (a). Hilgenberg Company has recently manufactured a 3 

mm compression tube (b), which should solve the situation as it includes a section in the top that can hold the press 

ion caused by the gel stick during the compression. 

sp3 

sp3 
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Conclusions 
 

We have presented a version of the compression device to measure anisotropic NMR parameters of 

small organic molecules, mainly natural product at micro-gram scale:  

 

a) Experimental arrangement does not require a complex device but just a compatible polymer gel 

stick of 1.6 mm diameter and 2.2 mm length, a regular 3-mm NMR tube, and the compression 

device described herein. A variety of gel for this device have been prepared so far, extending 

anisotropic measurement to other solvents as CDCl3, CD2Cl2 and CD3OD.  

b) The device did not present any issues with shimming and locking at the spectrometer. Besides, 

when the methodology was combined with our recently introduced PMMA-d8 gel, there was no 

interference of the background signal at microgram scale. 1H RCSA’s data collection as well as RDCs 

can be accurately measured at minute amount of approximately 550 µg.  

c) Although deuterated gels preparation is worth nearly 16 $ more expensive for each stick, recycling 

is possible. The same gel can be reused, at least 2 times, as long as it is thoroughly washed after 

each experiment.  

d) On other hand the SMCD has considerably facilitated the collection of RCSAs and RDCs at 

microgram level, and has been used to solve the structure of three natural products. 

 

Table 3. Value of quadrupolar splitting (∆HQ) for several alignment media compatibles with the universal semi micro 
compression device (3 mm O.D). 

Gel´s chemical composition Solvent Quadrupolar splitting (Hz) 

PMMA 70/0.27 CHCl3 40.7 

PMMA-d8 70/0.27 CH2Cl2 4.6 

Poly-DEGMEMA 75/0.3 CD3OD 4.4 

SAG polymers are named usually as: PMMA 70/0.27. Where PMMA is the monomer´s name, 70 is the monomer concentration in v/v concentration 

and 0.27 is the cross linker concentration in %molar. 

 

1.3.2.3  Application to a rigid molecule: α-Santonin 
 

As a proof of concept of the utility of USMCD, we will study the α-Santonin, 71 which RDC 72 and 13C 

RCSA10 have been recently reported. α-Santonin (Figure 28), is a wide spread sesquiterpene lactone, found 

in plants from genus Artemisia. 73,74 Used in the past as an anthelminthic agent,75 its use has been banned 

because of the side effects that have been found in humans.76  
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Figure 28 Structure of α-Santonin 

 

Four stereocenters are present in the compound, therefore 8 diastereomers are possible. As usual, all 

the possible relative configurations were labelled via the R or S nomenclature at C3, C3a, C5a and C9b 

respectively. For instance (3S,3aS,5aS,9bS) for the correct configuration. A conformational search was 

performed for all relative configurations of α-Santonin by using the Discovery Studio – Accelrys package.77  

Structures were then refined at HSEH1PBE/CC-pvdz level, and chemical shift tensor were computed at 

PBE1PBE/aug-CC-pvdz (CSGT)78–80 and the IEFPCM81 solvation model with CH2Cl2 parameters. DFT 

calculation were carry on by using Gaussian09 suite software.59 

4.0 mg of α-Santonin was aligned in PPMA-d8 gel (70/0.27) swollen in CD2Cl2 using the 

compression/relaxation method43 with our developed USMCD. Pure shift 1D-1H NMR Psyche 23,25,82 were 

acquired with both fully relaxed and with the compressed gel at quadrupolar splitting of 4.6 Hz. 1H RCSA’s 

extraction was done after superimposing the 1D Psyche on the H7 signal (Figure 30). 

Data were fitted in units of Hz to get reasonable weight4 and 1H RCSA from methyl groups were 

averaged as previously described. In order to yield minimum Q factor, 83 all fittings minimize the Q factors 

were computed both with the isotropic automatic compensation and without it, where are the RCSA fitting 

was done by SVD. 3 Quality of the fits was scored in terms of the Cornilescu quality factor (Q)84 and 

Chemical Shift Anisotropic quality factor Q(QCSA).22 

RCSAs analyzed data was obtained with 2H ∆νQ of 4.6 Hz at maximum alignment. When RCSAs were 

used uncorrected as ∆δmax-∆δmin differences, fitting resulted in large quality factors and discrimination was 

dramatically reduced, nevertheless is still present (Figure 29, left panel).  

The corrected values of RCSAs were in a range of -0.141 and 1.729 Hz (Table 4). Data were fitted to 

each configuration, and c factor optimized to its minimum in the software MSpin. When using the 

automatic isotropic correction procedure, the quality factors drops for all the configurations, and the 

correct diasteroisomer for α-Santonin (5aS,9bS,3aS,3S), presented the lowest Q(QCSA) = 0.154 (0.167) but 

with an small differences with (5aS,9bR,3aS,3S) Q(QCSA) = 0.200 (0.181) (Figure 29, right panel). 

Nevertheless, it increased the Q(QCSA) difference with the other six configurations, thus discrimination was 

improved.  

When analyzing Cornilescu´s Q factor for the data 1H RCSA, is worth mentioning that absolute 

difference between the two closest configurations is 0.046 where as in a recent study 10, where RDC and 
13C RCSA were combined, the two closest configurations is 0.023. This illustrates the potentialities of 1H 

RCSA as a tool for stablish the relative configuration of small molecular systems with several diastereotopic 

protons. 
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In summary, we have stablished the suitability of our SMCD, which has been used to measure 

anisotropic RCSA’s data using, for first time, a deuterated compressed compatible PMMA gel swallowed 

in CD2Cl2. 

 

Table 4. Proton residual chemical shift anisotropies (Hz) data for α-Santonin 

# H 1H RCSA (exp. in Hz) 1H RCSA (calc.in Hz) 

H6 1.628 1.262 

Me-C3 0.000 0.099 

Me-C5a 1.528 1.321 

H5b 0.342 0.202 

Me-C9 0.000 0.100 

H9b 1.186 1.331 

H3 1.548 1.564 

H4b 1.668 1.86 

H5a 1.688 1.797 

H3a 1.347 1.641 

H7 Ref Ref 

 

 

  

Figure 29 Proton Residual Chemical Shift Anisotropy (1H RCSA) quality factors for the eight possible diastereomeric 
configurations of α-Santonin. Uncorrected 1H RCSA data Q (left) and optimizing scale factor (right) Q(QCSA). 
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Figure 30. Pure shift 1H NMR (1D Psyche experiment) of α-santonin measured in a 800 MHz Bruker spectrometer equipped with 
a 5 mm Cryo-Probe (blue line). Sample contained 4.0 mg of α-santonin in fully relaxed PMMA-d8 gel swallow in CD2Cl2 using the 
3 mm compression device (red line). At milligram scale deuterated PMMA does not shows any background signals, although the 
use of 1D Psyche is need due the present of the isotropic signal. 
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1.3.3 Absolute stereochemistry of two isolated stereoclusters combining 1H-RCSA and 

DFT methods: The case of a meroditerpene from the brown alga Sargassum 

muticum  
 

The sea weed Sargassum muticum, collected in the southern coast of Galicia, yielded a new compound 

with a chemical structure of meroditerpene. The complete elucidation was made by using HRMS and NMR 

spectra, being the Proton Residual Chemical Shift Anisotropy (1H RCSA) along with NOESY measurements, 

key tools to elucidate for first time the relative configuration of this natural compound.  

 

1.3.3.1 Identification and structure elucidation of the plane structure of compound 1. 
 

Compound 1, was obtained as a greenish amorphous solid, HRESIMS m/z 441.2975 [M + H ]+ (calcd for 

C28H41O4, 441.3000 Δ m/z 5.7 ppm), and its plane structure was characterized on basis of standard 1D and 

2D-NMR (HSQC, HMBC and COSY) experiments along with comparison of its spectroscopy data with 

reported values.85,86 UV max (CH2Cl2) nm (ε): 294 (6800), 250 (15000). The ECD spectrum of compound 1 

recorded in CH2Cl2 (2.88x10-4 M) in the 225-470 nm range showed a positive Cotton Effect (CE) at 252 nm 

(Δε = 6.4x103) and two negative CE at 290 nm (Δε = -1.26x103) and 330 nm (Δε = -4.54x103) ESI(+)MS, 70 

eV, m/z (rel. int.): 463 [M+Na]+ (100); 423 [M-H2O+H]+ (72); 903 [2M+Na]+ (60); 441 [M+H]+ (13); (Figure 

32) 13C and 1H NMR (CD2Cl2) and Table 5. 

As it is shown in Table 5 the chemical shift and relevant NOESY allowed us to assign all protons and 

carbons of this compound,87 (see also Figure 39 to Figure 41). Therefore, 1 was identified as a 

tetraprenyltoluquinol chromane meroterpenoid as is presented on Figure 31. A diasteroisomer related to 

1 was recently reported as an epimeric mixture, presumably at C3, and with both methyl groups attached 

to C7 and C11 in a cis relatioship.85 Herein we want to report the isolation of this compound, in a pure 

form as is supported by integration of the 1H spectrum (Figure 35) and by the fact that there is no 

duplication of signals in the 1D-pure shift and the 13C spectra (Figure 36 and Figure 38). Moreover, H8b 

and H9 were assignment using a pure shift 1H NMR (Figure 37). 

 

 

Figure 31. Chemical structure of the tetraprenyltoluquinol chromane meroterpenoid isolated from Sargassum muticum. 
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Table 5. 1H, 13C and NOESY correlations of Compound 1 (CD2Cl2) 

Position δC, mult. a,b δH, mult. c NOESY Correlations d 

1 23.10 CH2 2.780 (t, 6.9) H3' (s) 

2 34.10 CH2 H2a: 1.864 (dt, 13.5, 6.9) H4b 

H2b: 1.811 (dt, 13.5, 6.9) H4b 

3 76.83 qC   

4 45.21 CH2 H4b: 2.518 (d, 13.7)  

H4a: 2.710 (d, 13.7) H1; H2a 

5 155.05 qC   

6 44.82 CH2 H6b: 3.035 (d, 18.7)  

H6a: 2.227 (d, 18.7) H4a 

7 45.28 qC   

8 35.43 CH2 H8a: 1.520 (m) H6b 

H8b: 1.759 (m) H6a 

9 19.36 CH2 1.744 (m)  

10 30.07 CH2 H10a: 1.947 (td 12.0, 
11.9, 6.8) 

 

H10a: 1.448 (ddd, 13.1, 
8.4, 3.1) 

 

11 55.46 qC ‐  

12 209.30 qC ‐  

13 133.52 qC ‐  

14 40.43 CH2 H14b: 2.572 (d, 14.3)  

H14a: 2.514 (d, 14.3)  

15 71.17 qC   

Me16‐ 31.94 CH3 1.241 (s) H14a (s); Me16 

Me17‐ 29.14 CH3 1.046 (s) H10b; H14b (s); H14a; H4b (s) 

Me18‐ 21.55 CH3 1.111 (s) H10b; H6b (s); H8b 

Me19‐ 22.75 CH3 0.811 (s) H10a; H6a; H8a (s) 

Me20‐ 24.31 CH3 1.231 (s) H1 (s); H14b (s); H1b; H1a; H4b (s); H6b (w); H6a 

1’ 145.81 qC   

2’ 121.19 qC   

3’ 111.63 CH 6.456 (d, 3.0)  

4’ 153.19 qC   

5’ 115.68 CH 6.569 (d, 3.0)  

6’ 127.47 qC   

MeO‐4’ 56.01 CH3 3.707 (s) H3' (s); H5' (s) 

Me‐6’ 17.11 CH3 2.172 (s) H5' (s); H6b 
a Multiplicities inferred from DEPT and HSQC experiments. Solvent as internal standard s: singlet d: doblet; dd: doble double; t: triplet; m: multiplet. 
b Measured at 100 MHz. c Measured at 950 MHz. d Measured at 800 MHz. 

 

1.3.3.2 Conformational study of compound 1. 
 

Compound 1 (Figure 31) presented three chiral centers at C3, C7 and C11 resulting in 4 possible 

diasteroisomers. NOESY correlations (Figure 42) allowed us to rule out those configurations with a cis 

orientation between the methyl groups attached to carbons 7 and 11. Therefore two configurations as 

valid possibilities were considered, (3S,7R,11S)-1 and (3R,7R,11S)-1. In our conformational study we used 

the assumption that both chromane and the bicyclo[4.3.0]nonane moieties are expected to be rigid, and 

chances on conformational equilibrium can arise just from staggered conformations of the bound between 

both sections C3 to C5 and the side chain attached to C13.  



 

-51- 

 

The bicyclo[4.3.0]nonane moiety relative configuration was clearly deduced by NOESY correlations: the 

absence of any correlation between Me18 (s, 1.111) and Me19 (s, 0.811) indicated a clear trans 

orientation. Besides correlations from both methyl groups to pairs of diastereotopic protons H6a/H6b, 

H8a/H8b, and H10a/H10b allowed us to unambiguously assign the alfa or beta sides of the molecule. At 

this point, it is important to notice that the trans configuration deduced in our compound, clearly is 

opposed to previous reported similar compounds, being compound 1 a new natural compound.  

Correlations from MeO- (3.700 ppm) to both aromatic protons in the chromane moiety indicates a free 

rotation in the bound with to H3’ (6.450 ppm), based on signal intensity. H2a and H2b presented medium 

and strong NOESY correlations, respectively with Me20, consequently H2b should be in the same plane 

that Me20, with the tetrahydropyran ring in an enveloped conformation. Besides, Me20 displayed NOESY 

correlations as well as to H6a (2.227), H4b (2.709) and H14a (2.5140), denoting that compound 1 adopts 

a preferred disposition. Nevertheless, H4b showed a NOESY correlation with both protons attached to C2 

(1.864 and 1.811) and Me17 (1.045). On the other hand, Me17 presented NOESY correlation to both 

protons in C14, and Me16 only showed proximity with H14a, indicating a staged configuration with the 

side chain. Finally H10b presented a NOESY correlation with Me17 showing a spatial vicinity between the 

side chain and five member ring in the bicyclo[4.3.0]nonane moiety. 

With all this NMR data, relative configuration of compound 1 by connecting all the stereocenters by 2D 

NMR clearly failed, therefore another approximation is needed. This fail is a opportunity in using 

anisotropic measurements to complete the structure elucidation of 1. (Figure 33). 
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Figure 32. Experimental ECD (a) and UV (b) Spectrum of 1 in CH2Cl2 (0.000288 M). MS and ESI(+)HRMS Spectrum of 
1. MS: [2M+Na]+ = 903; [M+Na]+ = 463; [M+H]+ = 441; [M-H2O+H]+ = 423 (c). Total ion chromatogram of FH in a RP-
C18 column (d) Extracted mass chromatogram (m/z 441.20 to 441.38) showing a peak with retention time of 14.35 
min (e) (+)-HRESIMS of the peak at tR of 14.35 min identified as compound 1: m/z 441.2975 ([M+H]+). Calc. for 
C28H40O4

+, 441.3000 (Δ m/z: 6 ppm) (f) Chromatographic conditions: XTerra® column (3x100 mm, 5 μm) (Waters); 13 
min gradient from 30 to -1 

. 

 

Figure 33. Relevant NOESY correlations observed in Compound 1 which evidence the rotation round C3-C5 and the side chain 
attached to C13. NOESY experiment was done in a Bruker Spectrometer running at 800 MHz 
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1.3.3.3 Establishing the relative configuration of the meroditerpene 1 by NMR anisotropy 
 

 

1.3.3.3.1 Computational details: building a conformational space 
 

As it was described before, NOESY analysis reduced the possibilities to two configurations for 

compound 1, either (3R,7R,11S)-1 or (3S,7R,11S)-1. However, we wanted to include an extra (3R,7R,11R)-

1 configuration because previous reports for this type of compounds also considered a trans disposition 

between Me18 and M19, and also with the purpose of definitively ruling out this possibility.  

 

 

Figure 34. Three different relative configurations were considered for the anisotropic study of the meroditerpene 1. (3R,7R,11R)-
1, (a); (3S,7R,11S)-1 (b) and (3R,7R,11S)-1 (c).  

 

The conformers of each plausible diasteroisomer (Figure 34) were created by rotating the flexible 

bounds (C3-C5 and C13-C14) to alternated positions and to be, subsequently minimized by deeper 

computational methods. MeO group was established with a value dihedral angle Me-O-C4´-C3´ (θ) of 90°, 

with freely movement until a minimum energy structure was achieved. Conformers found for each 

diastereoisomer are displayed from Figure 43 to Figure 45. All conformers were geometrically optimized 

following Pescitelli’s protocol for ECD calculation and Bremond’s recommendation.88,89  

Thus, a three-step optimization was used: 

a) Semi-empirical level (PM6),90  
b) DTF calculations using the Heyd-Scuseria-Ernzerhof functional (HSE06)91 with the Dunning's 

correlation consistent basis sets (double zeta) (cc-pvdz).79  
c) DFT Hybrid Functional from the Truhlar’s group (SOGGA11X)92 in combination of one of the basis 

sets of Ahlrichs and coworkers (def2tzvp)93 using as density fitting Def2TZV and Ultra-Fine 
integration grid. Frequency calculation was carrying on using the last level of theory in order to 
check a real minimum.  

(c) (a) (b) 
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Figure 35. 1H NMR spectrum of compound 1 (CD2Cl2), measured in a 950 MHz Bruker spectrometer.  

 

 

 

 

Figure 36. Pure shift 1H NMR spectrum of compound 1 (CD2Cl2), measured in a 800 MHz Bruker spectrometer 
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Figure 37. Detail of the 1H NMR spectrum of 1 (CD2Cl2) measured at 800 MHz. (a) Pure-Shift (b) Multiplet 
which correspond to protons H8b and H9 collapsed in two singlets. 

 

 

 

 

 

Figure 38. 13C NMR spectrum of compound 1 (CD2Cl2), measured on an 800 MHz Bruker spectrometer. 
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Figure 39. Pure Shift-HSQC spectrum of compound 1 (CD2Cl2), measured on an 800 MHz Bruker 
spectrometer. NUS (25%/512/128) 

 

 

 

 

 

Figure 40. HMBC spectrum of compound 1 (CD2Cl2), measured on an 800 MHz Bruker spectrometer 
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Figure 41. 1H-1H-COSY spectrum of compound 1 (CD2Cl2), measured on an 800 MHz Bruker spectrometer. 

 

 

 

 

 

 

Figure 42. NOESY spectrum of compound 1 (CD2Cl2), measured on an 800 MHz in a Bruker spectrometer. 
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Figure 43. Geometry optimized DFT conformers for (3R,7R,11R)-1. Conformers that fulfilled the NOESY constrains are: C1, C2, C3, C7, C8, C9, C10, C11 and C12. 
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Figure 44. Geometry optimized DFT conformers for (3R,7R,11S)-1. Conformers that fulfilled the NOESY constrains are: C1, C2, C3, C9, C10 and C11 
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Figure 45. Geometry optimized DFT conformers for (3S,7R,11S)-1. Conformers that fulfilled the NOESY constrains are: C1, C2, C3, C4, C5, C6, C9, C11  and C12
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1.3.3.3.2 Measurements of the NMR anisotropy parameters: Establishing the 

relative configuration of 1 by 13C RCSA and RDCs analysis  
 

 

1.3.3.3.2.1 Carbon RCSA analysis of meroditerpene 1 
 

A first attempt to establish the relative configuration of meroditerpene 1 by 13C RCSA 

involved the use of a 4 mg (sample in protonated PMMA swallowed in CD2Cl2 using the New 

Era´s compression device (5 mm OD). Several signals were either obscured or buried under the 

gel signal, reducing the discrimination capabilities of 13C RCSA’s. Therefore, we decided to 

establish the relative configuration of meroditerpene 1 with the assistance of our recently 

introduced PMMA-d8 (70/0.25).  

PMMA-d8 and PMMA swallowed in CD2Cl2 has the same degree of alignment, 2H ∆νQ 

approximately 4.0 Hz. Although, PMMA-d8 70/0.25 has not been yet tested with CDCl3, we 

expected a similar mechanical and chemical behavior than the protonated PMMA. Although 

PMMA-d8 70/0.25 gel exhibited a low degree of alignment resulting in a small values of 

anisotropic parameters. 

NOESY analysis over 1 indicated that more than one conformation is present. Therefore, to 

establish the relative configuration by conventional NMR methods was not possible as it was 

discussed before (Pag. 50). Therefore we want to add our compound to the few collection of 

flexible natural products which have been solved with RDCs41 and RCSAs.56  

Conformers emerged from the conformational searches which were in agreement with 

NOESY correlations, were used in the RDC fitting using of a multiconformer single tensor (MCST) 

approach and the population fitted by a combined Levenberg–Marquardt algorithm (see Figure 

43 to Figure 45). The significant assignment of a molecular-fixed-axis system was chosen in such 

a way that it fulfilled Eckart Condition.  

RCSA’s data obtained with a 2H ∆νQ of 4.1 Hz at maximum alignment, were analyzed. Q fitting 

and c factors were optimized to its minimum in the software MSpin. In that way we could 

determine twenty-seven 13C RCSAs for meroditerpene 1 in PMMA-d8/CD2Cl2 gel using an in-

house 3 mm compression device. This result was not achieved by using 4.0 mg of sample in a 5 

mm New Era´s compression device with protonated PMMA/CD2Cl2. Values of 13C RCSA’s ranged 

from -7.13 to 2.62 Hz (see Table 6). 

Figure 46 shows some significant variations of carbon chemical shifts in the oriented media 

in 1. Certain amount of isotropic analyte was always observed because the gel in the 

compression device did not completely fill the entire sample space, even under maximum 

compression (Figure 46 panel a). As before, the isotropic signals are easily distinguishable from 

the corresponding anisotropic signals as their intensities decrease upon compression. As it can 

be seen in panel b) and d) in Figure 46, 13C RCSA’s can takw either positive or negative values. 

13C RCSAs were able to discriminate between both plausible diastereomers (3S,7R,11S)-1 and 

(3R,7R,11S)-1 establishing the connection among the stereocenter at C3 and the stereocluster 

C7-C11 located at four bounds distance.  
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We decided to study the (3R,7R,11R)-1 as a plausible option, because, as it was mentioned 

before, similar meroditerpenes were reported having a cis orientation in both methyl groups 

present at the bicyclo[4.3.0]nonane moiety.86 Good agreement was achieved between 

experimental and back calculated 13C RCSAs for (3S,7R,11S) configuration (𝑄(𝑄𝐶𝑆𝐴) = 0.119 

(0.163)) as compared with both (3R,7R,11S) (𝑄(𝑄𝐶𝑆𝐴) = 0. 214 (0.333)) and the (3R,7R,11R) 

configuration  (𝑄(𝑄𝐶𝑆𝐴) = 0.213 (0.336)). (Figure 47, panel a). 

Including the chemical shfit anisotropy (CSA) contribution in the computation of the 13C RCSA 

quality factor (𝑄𝐶𝑆𝐴) makes the discrimination capabilities of the technique more evident.  

 

Table 6. Carbon residual chemical shift anisotropies (Hz) data for meroditerpene 1 measured in a Bruker 
spectrometer running at 200 MHz 

#C 13C RCSAexp (Hz) Gel shift (Hz) Error 13C RCSAexp (Hz) 13C RCSAcalc (Hz) 

Me20- 1.27 20.43 0.21 1.175 

Me17- 2.27 20.23 0.18 2.888 

C2 0.83 5.13 0.24 1.193 

C6 0.64 5.86 0.20 0.563 

MeO- 1.21 7.45 0.66 1.537 

C15 2.62 14.96 0.12 1.573 

C2' -4.01 9.4 0.13 -3.623 

C6' -4.39 2.86 0.18 -4.411 

C1' -5.09 8.66 0.15 -4.941 

C5 -3.89 -0.2 0.16 -3.427 

C5' -1.87 11.66 0.22 -1.749 

C3' -2.21 13.09 0.16 -2.178 

C3 1.93 13.85 0.16 2.101 

C13 -0.58 12.98 0.03 -0.988 

C11 1.17 8.52 0.16 1.033 

C10 2.25 11.66 0.14 2.115 

C8 2.25 12.94 0.27 2.309 

C4 0.97 3.16 0.21 0.923 

Me-C6' 1.69 11.66 0.58 1.975 

Me16- 1.45 9.82 0.13 1.104 

Me19- 0.93 11.66 0.17 0.497 

Me18- 1.25 13.11 0.20 1.173 

C4' -4.71 12.96 0.25 -4.734 

C12=O -7.13 -17.64 0.14 -7.488 
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C9 2.62 11.66 0.32 2.483 

C1 1.79 11.66 0.27 1.912 

C14 was used as references in 13C RCSA calculation.  

 

 

 

 

 

 

 

  

 

Figure 46. 13C RCSA’s obtained with compression devices (3 mm).  Panels a)-d) show resonances from the 13C-{1H} 200 MHz NMR 
spectra for meroditerpene 1 under minimum (red) and maximum (blue) compression. The C14 resonance shown in panel a), was 
used as the reference resonance. Note the presence of both isotropic (marked with an asterisk) and anisotropic signals for some 
carbons. Spectra recorded with minimum alignment were recorded under complete relaxation of the PMMA-d8 gel. Maximum 
compression (ΔνQ = 4.2 Hz) increased the molar fraction analyte in the gel, therefore isotropic correction was applied. 
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Figure 47. The Q(QCSA) factors for the configurations (3S,7R,11S)-1; (3R,7R,11S)-1, and (3R,7R,11R)-1 are 0.119(0.163), 0.214(0.333) 
and 0.213(0.336), respectively. The unscaled Q factors are reported (violet columns). As expected QCSA made the discrimination 
more evident (orange columns) (a). Anisotropic data fitting (13C RCSA) of meroditerpene 1 measured at 800 MHz for in PMMA-
d8/CD2Cl2 gel. Fitting for carbon residual chemical shift anisotropies of diastereoisomers (3S,7R,11S)-1 (b), (3R,7R,11S)-1 (c) and 
(3R,7R,11R)-1. (d) Free parameter c found for each diasteroisomer was 0.091, 0.121 and 0.122 respectably. Correlation coefficient 
for the fitting of (3S,7R,11S)-1 is 0.9858. Back calculated 13C RCSA for Me20 in the configuration (3R,7R,11S) was 2.886 Hz. 
Meanwhile, 1.175 Hz was found for the configuration (3S,7R,11S). Me20 in the fitting corresponding to (3R,7R,11S) appeared as an 
outlier (green circle), supporting the robustness of the 13C RCSA to distinguish between either R or S configuration. 

Discrimination was not only supported by (𝑄(𝑄𝐶𝑆𝐴), but also for the linearity fitting  

(Figure 47, panels b-d). It is important to notice, how Me20 emerged as an outlier when R 

configuration was considered at carbon 3 (Figure 47, panel c). 

13C RCSA capabilities to distinguish among the three possible configurations of a flexible 

molecule was checked with retrorsine.17 Alignment conditions involved the use of PMMA, 

swollen in CDCl3. Obtained RCSA’s, depends, among other parameters, depends on the side of 
2H ∆νQ (4.1 Hz) at maximum alignment. The main source of error in chemical shift determination 

is due the uncertainty in peak position. Therefore, acquiring a 13C spectrum with a good signal-

to-noise ratio is mandatory.39,94  

As 13C RCSA’s were rather small, deviation in 13C δ were expected to be significant, thus a 

Montecarlo Bootstrapping analysis was performed over the data. Chemical shift error (error 13C 

RCSAexp) was independently calculated for each nucleus (Table 6), as the quotient of peak line 

width between signal to noise ratio. RCSA’ss Standard deviation was calculated using wrror 13C 

RCSAexp (σ Error 13CRCSAexp = 0.13 Hz). Gaussian bell curves95 derived from Bootstrapping analysis 

clearly indicates that 13C RCSAs data collected unambiguously assigned (3S,7R,11S)-1 as the 

correct configuration (Figure 48). 
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Figure 48. Alignment vectors emerged after Bootstrapping analysis for (3S,7R,11S) configuration. a) Gaussian bell 
curves for (3S,7R,11S)-1; (3R,7R,11S)-1 and (3R,7R,11R)-1 are indicated in blue, orange and red respectively. 
Inspection of bell curves derived from Bootstrapping, as retrorsine 13C RCSA analysis, made discrimination between 
diastereoisomers evident (b and c). Conservative error of two times σ was used in a 256 sample point Gaussian 
distribution. 

 

1.3.3.3.2.2 RDC analysis of meroditerpene 1 
 

It is well-known that proton-proton dipolar signal gets broader under anisotropic conditions, 

becoming a mayor experimental problem during RDC’s measurement. This problem is 

commonly overcome using the F1 1H-coupled version of the HSQC experiment.21,96 Nevertheless, 

we decide to explore the PMMA-d8 (70/0.25) capabilities to provide accured RDC values, as 

sharp lines during RDC analysis when CLIP/CLAP HSQC experiment was used. Resolution was 

further enhanced by the use of a low viscosity solvent, CD2Cl2, and deuterated polymer as 

demonstrated in Figure 49. 
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Figure 49. CLIP/CLAP HSQC at maximum compression during RDC’s measurement in meroditerpene 1. a) Extraction 
of CH coupling (1TCH and 1JCH) from the experimental data collected with the CLIP/CLAP HSQC experiment. b) Expanded 
region of C6-H6b cross-peak with the isotropic spectrum shown in red and the anisotropic in blue. Note that the 
deuterated PMMA yielded very sharp lines in anisotropic conditions (c). Peak width 35.1 Hz and Signal-to-Noise ratio 
showed a value of 244.2, therefore 1DCH ± ∆ is -1.281 ± 0.144 

 

Before the collection of anisotropic data with a protonated gel in small molecules, we advise 

check both solvent compatibility and background signal coming from the polymer. Solvent 

chosen for the analysis was CD2Cl2 as meroditerpene 1 decomposes in CDCl3.
85 PMMA-d8 

performed very well at milligram scale (1.6 mg) showing almost no interferences from 

background signal (Figure 49, panel b). Nevertheless, two RDC could not be accurately extracted 

because the signal gets broader after polymer compression. In our own experience handling 

PMMA-d8, RDC determination can be performed at amounts as low as 1.7 mmol/L.  

Even with a low degree of alignment of 1, resulting in small 1DCH values (maximum and 

minimum value of 3.04 and -6.72 Hz respectably), 17 RDC’s were measured with great accuracy 

due to the narrow spectral lines (Table 7). Consequently, we have overcome the proton-proton 

dipolar broadening signal under compression conditions, using PMMA-d8 gel. A very important 

consequence is deduced by this approximation: we were able to measure 1DCH by using a F1 1H-

coupled version of a HSQC! 

One-bond proton-carbon RDCs (1DCH) are reported as the difference between the signals 

splitting observed under anisotropic and isotropic condition (1TCH = 1JCH + 1DCH).97 (Table 7). NOESY 

correlation gather from meroditerpene 1 indicated that presents a conformational equilibrium 

in the aliphatic chain connecting both chromane and bicyclo[4.3.0]nonane moieties. 

RDC fitting data of the three possible diastereomers, alignment tensor determination, and 

calculation of Cornilescu’s quality factor (Q) were carried out in MSpin software. Error bars 

showed in fitting curve and Q factor-bar plot was expresses a 3 times standard deviation, which 

is expected to contain around 96 % of the data.95 Standard deviation, was computed by using 

Montecarlo Bootstrapping module in MSpin software. 

1TCH=1DCH+1JCH 

1JCH 

1DCH 
(b) 

(C) 
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Table 7. Meroditerpene 1, scalar coupling constant 1JCH, total splitting 1TCH = 1JCH + 1DCH and experimental 
(exp) and calculated (calc) 1DCH values with their corresponding experimental error. 

# C δ13C (ppm) δ1H (ppm) 1TCH (Hz) 1JCH (Hz) Exp DCH (Hz) Calc DCH (Hz) Error (Hz) 

C1 23.1 2.7830 124.64 129.37 -4.72 -4.26 0.036 

C2 34.1 Ha:1.864 127.12 128.77 -1.64 -2.79 0.081 

Hb:1.811 126.32 128.81 -2.48 -2.53 0.207 

C4 45.2 Ha: 2.518 120.40 127.12 -6.72 -6.41 0.092 

Hb: 2.710 124.34 125.72 -1.38 -0.61 0.115 

C6 44.8 Ha: 2.227 127.40 129.0 -1.62 -1.37 0.080 

Hb: 3.035 124.60 125.9 -1.28 -0.75 0.144 

C8 35.4 Ha: 1.527 126.04 131.81 -5.76 -5.47 0.234 

Hb:1.760 * 129.09 * 1.21 - 

C9 19.3 1.7445 125.88 131.05 -5.16 -5.52 0.190 

C10 30.1 Ha: 1.951 131.61 129.81 1.80 1.93 0.350 

Hb: 1.448 130.17 132.57 -2.40 -3.74 0.296 

C14 40.4 Ha: 2.514 125.58 127.04 -1.46 -0.42 0.058 

Hb: 2.572 * 125.48 * 8.19 - 

Me16- 29.1 1.241 125.48 125.20 0.28 -0.53 0.001 

Me17- 31.9 1.046 124.56 125.12 -0.56 -2.03 0.010 

Me18- 21.5 1.1115 130.65 127.60 3.04 1.88 0.013 

Me19- 22.7 0.8112 127.16 125.44 1.72 1.74 0.012 

Me20- 24.3 1.2311 128.65 126.32 2.32 1.94 0.010 

Me-C6´ 17.1 2.1720 127.12 127.20 -0.08 0.08 0.003 

MeO- 56.0 3.707 142.86 143.30 -0.44 -0.77 0.003 

C3' 111.6 6.462 157.22 156.14 1.08 0.24 0.013 

C5' 115.7 6.575 158.47 156.38 2.08 1.54 0.012 

Error (Hz) is the experimental error associated with each DCH
39

.  

 

By using 1DCH RDC, configuration (3R,7R,11S) and (3R,7R,11R) were certainty eliminated. The 

efficacy of the RDC’s NMR technique was demonstrated for establishing the relationship 

between two distant stereoclusters of meroditerpene 1 separated by 4 rotatable covalent 

bonds. Configuration (3S,7R,11S) showed a Q of 0.243 meanwhile (3R,7R,11S) and (3R,7R,11R) 

presented a Q 0.768 and 0.822, respectively. Discrimination was supported not only for degree 

of linearity between experimental and back calculated 1DCH RDC, but also for Bootstrapping 

Analysis (Figure 50 panel b) carried out on a sample side of 256 (see Table 8, and all alignment 

tensor found are shown in Figure 50 panel a). 

 

Table 8. Results of the Bootstrapping analysis over 1DCH RDC collected from meroditerpene 1 

Configuración Average Q Mínimum Q Máximum Q Q Standard deviation 

3S,7R,11S 0.243 0.217 0.267 0.009 

3R,7R,11S 0.768 0.748 0.787 0.007 

3R,7R,11R 0.822 0.803 0.849 0.008 
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Figure 50. Alignment vectors emerged after Bootstrapping analysis for (3S,7R,11S)-1 (a). RDC fitting curve of 
(3S,7R,11S)-1 (b) and Q factor found for each configuration (from left to right (3S,7R,11S); (3R,7R,11S) and 
(3R,7R,11R)) (c). Experimental error in both panel b) and c) is equivalent to 3 times standard deviation of RDC, 
calculated with the bootstrapping module of MSpin by using a Gaussian distribution is a size of 256. 

 

1.3.3.3.2.3 Structural refinement by 13C RCSA 
 

Dipolar couplings have proven to provide long range restraints to solve the structure of 

proteins98 and natural products,99 helping to establish not only the relative configuration but 

also molecular spatial orientation. 

We want to unambiguously establish the relative configuration of the meroditerpene 1 

already established by independent 13C RCSA and 1DCH RDC measurements as (3S,7R,11S), by 

using a structure refinement of meroditerpene 1 within carbon residual chemical shift 

anisotropy (13C RCSA). We expect that all orientation restraints provided by this refinement on 

the internuclear vectors and the principal axes of chemical shift anisotropy (CSA) tensors it´s 

enough. RCSA have been used before in peptides and in proteins.2,100 however its application on 

small molecules is scare. 

Conformers used in this research were created by staged rotation on routable bonds (see 

Figure 34) following by DFT geometry optimization. Dihedral angle Me-O-C4´-C3´ (θMe-C3´) was 

set as 90° and let it to freely evolve during the optimization process. Value of θMe-C3 was around 
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180° in all the conformers, for all the different diastereoisomers (see from Figure 43 to Figure 

45). Nevertheless, NOESY analysis clearly indicated that the MeO group showed correlation with 

H5´and H3´, meaning that the group is rather rotating than rigid. Moreover, a slice taken from 

NOESY experiment make us think that the MeO- rather point out to H3´than to H5´ (Figure 51, 

panel b).  

13C RCSA fitting data was performed again as described before but taken those conformers 

which contribute mostly to the 13C RCSA fitting. θMe-C3 was changed from 180° to 0° and then DFT 

geometry optimization and GIAO CST calculation was done as before. Back calculated data is 

displayed in Table 9. As a consequence of the MeO- rotation Q(QCSA) factor drops from 

0.119(0.163) to 0.105(0.148) and linearity fitting also improves (Figure 51, panel c). 
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Table 9. Carbon residual chemical shift anisotropies (Hz) data for meroditerpene 1 measured in a Bruker spectrometer 
running at 200 MHz after structural refinement. 

#C 13C RCSAexp (Hz) Gel shift (Hz) Error 13C RCSAexp (Hz) 13C RCSAcalc (Hz) 

Me20- 1.27 20.43 0.21 1.16 

Me17- 2.27 20.23 0.18 2.67 

C2 0.83 5.13 0.24 1.16 

C6 0.64 5.86 0.20 0.58 

MeO- 1.21 7.45 0.66 1.51 

C15 2.62 14.96 0.12 1.87 

C2' -4.01 9.4 0.13 -3.91 

C6' -4.39 2.86 0.18 -4.15 

C1' -5.09 8.66 0.15 -5.02 

C5 -3.89 -0.2 0.16 -3.34 

C5' -1.87 11.66 0.22 -1.84 

C3' -2.21 13.09 0.16 -2.18 

C3 1.93 13.85 0.16 2.24 

C13 -0.58 12.98 0.03 -0.99 

C11 1.17 8.52 0.16 1.24 

C10 2.25 11.66 0.14 1.92 

C8 2.25 12.94 0.27 2.35 

C4 0.97 3.16 0.21 0.97 

Me-C6' 1.69 11.66 0.58 1.88 

Me16- 1.45 9.82 0.13 1.15 

Me19- 0.93 11.66 0.17 0.51 

Me18- 1.25 13.11 0.20 1.06 

C4' -4.71 12.96 0.25 -4.65 

C12=O -7.13 -17.64 0.14 -7.52 

C9 2.62 11.66 0.32 2.54 

C1 1.79 11.66 0.27 2.07 

C7 - - - 0.860 

C14 was used as references in 13C RCSA calculation. (-) Not readable, overlapped with polymer background signal 

 

The main goal of this experience was to validate the 13C RCSA as an exceptional option on the 

refinement of structure of natural products, even at low degree of alignment, like in this case. 

At the present moment, we understand that 13C RCSA technique is called to capitalize its unique 

ability to build the alignment vector from carbon chemical shifts, and systems lacking in 

hydrogens will be greatly benefited.101 
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Figure 51. 1H-1H NOESY spectra measured on an 800 MHz Bruker spectrometer, showed a clear correlation between 
the MeO group and both aromatic protons H3´and H5´ (a). Moreover, a slice taken from the 2D NOESY, showed that 
θMe-C3 value around 0° is structural more favorable (b) Fitting of (3S,7R,11S)-1 after rotation around θMe-C3 was taken 
in account increasing its linearity; correlation coefficient went from 0.9858 to 0.9889, and the c free parameter 
showed a value of 0.088. Major populated conformers for (3S,7R,11S)-1 acording 13C RCSA data, after structural 
refinement, are displayed in panel (d). 
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1.3.3.3.2.4 Low concentration analysis 
 

Some natural products are available in amounts below 200 µg, making its assignment a 
laborious task.54,102,103 Anisotropic parameters like 1DCH, 3DHH RDC or 13C RCSA are quite difficult 
to register and interpret. To overcome these challenges, we propose 1H RCSA as a valid tool to 
determine the relative configuration of natural products available at microgram levels. We 
demonstrated the ability to solve a sample of 10 µg strychnine as proof of concept in the New 
Era´s stretching device (5 mm ID). (Page. 27) 

Encouraged by the resulted found with the New Era´s stretching device and liquid crystal 
media, we decide to study the 1H RCSA’s from our 3 mm compression device prototype with a 
PMMA-d8 (75/0.25; CD2Cl2) using a concentrated α-santonin sample (vide supra). Throughout 
the data analysis we understood that isotropic shift correction, described by Nath et al.,22 was 
also required in 1H RCSA analysis along with the use of a Pure-Shift 1H NMR Psyche for accurate 
1H RCSA data extraction. 

Having established the relative configuration of meroditerpene 1 (1.6 mg) by independent 
measurements of 13C RCSA and 1DCH RDC as (3S,7R,11S)-1 (vide supra); we decided to explore 
the capabilities of the data analysis approach described for α-santonin.  

PMMA-d8 compression compatible gel used here belongs to the last generations of 
deuterated PMMA gel produced by our research group, where background signal rises only for 
the cross linker, a radical initiator and non-deuterated monomer. At microgram scale, the 
background signal becomes an important issue, and some signal are either to broad or very weak 
to be used (see Figure 52). 

 
 

 

 

 

  

 
Figure 52. Isotropic 1H NMR spectrum of meroditerpene 1 (230 µg) measured in an 800 MHz Bruker spectrometer.  
Number of scans 448. Sample was swollen in PMMA-d8 (CD2Cl2) (a). Extraction of isotropic peak is not straightforward 
(b). Polymer background signal becomes an important issue, causing some disturbance in compound signal at 
microgram level within 1.4 to 2.2 ppm section where Me-C6´signal resonates (c). Moreover, complexity of some 
multiples makes RCSAs extraction too intricate, leaving the doubt of whether or not the isotropic signal is present (d). 
Therefore, we recommend the use of Pure shift 1H NMR despite the detriment of sensitivity. 

Solvent signal 

(a) 

(b) (c) H6b  
H6a H6a Polymer 

H10b (d) 
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Similar to PMMA-d8 stretching compatible gel, above described, at low concentration (230 

g) background signal becomes almost visible and overlapping with the analyte signals is likely 

within a limited region (1.1-2.1 and 3.4-3.7 ppm). Pure Shift 1H NMR 1D-Psyche allowed the 

extraction of 20 independent 1H RCSAs by both collapsing the complex multiplet patterns to 

singlets and minimizing the influences of the traces of protonated material in the deuterated 

polymer. (Figure 53). Nevertheless, some RCSAs were not extracted either due signal broadening 

or lack of intensity. Figure 53 shows some significant proton chemical shifts of meroditerpene 

1. As in the case of α-santonin, during the use of the compression device certain amount of 

isotropic analyte was always present in the compression device as the gel does not fill the entire 

sample space (Figure 53 b). As before, the isotropic signals are easily distinguishable from the 

corresponding anisotropic signals, as their intensities decrease upon compression. Some signals 

do not show visible isotropic peaks at relaxed gel position as H3´ (Figure 53, panel a). 
1H RCSA fitting was carried out by following a similar procedure as described before. 1H RCSAs 

could be distinguished between the three proposed diastereomers ((3S,7R,11S)-1; (3R,7R,11S)-

1 and (3R,7R,11R)-1) establishing the connection among the stereocenter at C3 and the C7-C11 

stereocluster in meroditerpene 1. 

RCSA’s obtained with 2H ∆νQ of 4.5 Hz at maximum alignment were analyzed by Data fitting, 

and c factor optimized calculated to its minimum in the software MSpin. It was possible to 

determine twenty 1H RCSAs for meroditerpene 1 in PMMA-d8/CD2Cl2 gel using an in-house 3 mm 

compression device from a 2.9 mmol. L-1 sample. Being RCSA from H14a, H10a, H8b, H8a and 

Me16 either obscured polymer signal or too weak to be measured. RCSAs were in a range of -

1.36 and 1.12 Hz (Table 10).  
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Figure 53. 1H RCSAs obtained with compression devices (3 mm) from a 230 µg sample.  Panels a-d show resonances 
from the 1D pure shift 800 MHz NMR spectra from meroditerpene 1 observed under minimum (red) and maximum 
(blue) compression. The H6b resonance shown in panel b, was used as the reference resonance. Note the presence 
of both isotropic (marked with an asterisk) and anisotropic signals for some protons (panel c & d), while other shows 
only anisotropic signal. Proton RCSA can take either negative (a) or positive (d) values. Spectra recorded with 
minimum alignment were recorded under complete relaxation of the PMMA-d8 gel (70/0.25). Maximum compression 
(ΔνQ = 4.5 Hz) increased the molar fraction analyte in the gel, therefore isotropic correction is applied. 

 

Table 10. Proton residual chemical shift anisotropies (Hz) data for meroditerpene 1 measured in a Bruker 
spectrometer running at 800 MHz. Sample was swallow in PMMA-d8 (70/0.25)/CD2Cl2 

#H 1H RCSAexp (Hz) Gel shift (Hz) 1H RCSAcalc (Hz) 

H5´ 0.16 -8.17 -0.033 

H3´ -0.24 -8.17 -0.125 

MeO 0.48 -3.84 0.499 

H1 0.00 -3.36 0.234 

H4b -1.36 -8.17 -1.111 

H4a -0.32 -8.17 -0.163 

H14a *  0.589 

H6a -0.72 -3.60 -0.699 

Me-C6´ 0.56 -1.84 0.594 

H10a *  0.488 

H2a 0.32 -8.17 0.156 

H2b -0.32 -8.17 -0.209 

H8b *  0.535 

H8a *  2.564 

H10b -0.24 -8.17 -0.382 

Me16- *  1.483 

Me20 0.40 -8.17 0.282 

Me18 0.88 -4.08 0.732 

Me17 0.72 -3.60 0.819 

Me19 1.12 -1.60 1.203 
1H RCSA was computed using H6b as reference. (*) Not readable, and back calculated after the fitting  

 

(a) 

H3´ 

H6b (Ref) 

H1 Me19 

(b) (c) (d) 

(*) (*) 
(*) 
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A good agreement between experimental and back calculated 1H RCSAs for (3S,7R,11S)-1 

configuration was achieved (𝑄(𝑄𝐶𝑆𝐴) = 0.1.93 (0.189)) as compared with both (3R,7R,11S)-1 

(𝑄(𝑄𝐶𝑆𝐴) = 0. 262 (0.265)) and the (3R,7R,11R)-1 (𝑄(𝑄𝐶𝑆𝐴) = 0. 341 (0.359)). (Figure 54). 

Including the chemical shit anisotropy (CSA) contribution in the computation of the 𝑄𝐶𝑆𝐴 

increases the discrimination capabilities.  

 

 

Figure 54. Proton residual chemical shift anisotropy Q(QCSA) bar plot for meroditerpene 1 
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We would like to close the study of meroditerpene 1, pointing out the importance of considering 

the quality of fitting. A visual inspection of the fitting curve always will be necessary to be 

checked, both its linearity and the presence of outliers or any other kind of anomaly (Figure 55) 

 

 

 

 

 

 

Figure 55. Fitting curve is an important component during the anisotropic study of a small molecule. One not only 
should take in account the final value of Q(QCSA) but also a reasonable linear behavior most be shown by the 
experimental and back calculated data. Fitting curve for relative meroditerpene 1 configurations 3S,7R,11S; 3R,7R,11S 
and 3R,7R,11R are showed in panel a, b and c respectably. 
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1.3.3.3.2.5 Potential applicability of PMMA-d8 

 

Two-bond proton-proton residual coupling are also a valuable anisotropic parameter in 

structural determination. They can be used for structural refinement of macromolecules104 and 

small molecules.105 As in 1H-13C RDC, the angle-dependent dipolar interactions of 1H-1H RDC 

averages to zero, owing to the uniform distribution of all orientations. Measurement of two-

bond proton-proton coupling constants (2JHH) in prochiral CH2 groups in protonated alignment 

media is not easy due to the usual presence of complex multiplet J patterns, line broadening 

effects and strong coupling artifacts.106 Although, the study on small molecules by 1H-1H RDC, 3 

bounds or even beyond, analysis is outside the scope of this Thesis Dissertation, nevertheless it 

is worth mentioned due the fact that line bordering is almost zero in the majority of signals at 

maximum compression, making the extraction of germinal and long range 1H-1H RDC 

straightforward from a 1D proton spectrum (see Figure 56). 

 

 

 

 

 

   

 

Figure 56. 1D proton spectrum obtained at maximum compression in the semi micro compression device (1.6 mg). 
Panels a-c show proton resonances from the 1D 800 MHz NMR spectra from meroditerpene 1 observed under 
minimum (red) and maximum (blue) compression. Spectrum recorded with maximum compression (ΔνQ = 4.2 Hz) 
shows almost none distortion allowing straight forward 1H-1H RDC extraction. 160 scans. 
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1.3.3.3.2.6 Experimental section 
 

 

Methods and materials 
 

Electric Circular Dichroism (ECD) and ultra Violet (UV) spectra were recorded on a JASCO J-815 

CD spectrometer (JASCO). 1H and 13C spectra were recorded on Bruker spectrometers at 950 and 

200 MHz, respectively; 13C multiplicities were determined by DEPT spectra and 1H RCSA were 

recorded on Bruker spectrometers at 800 MHz. All other chemicals were of analytical-reagent 

or HPLC grade. TLC were performed on silica gel (Merck, Kieselgel 60 F254) plates; the spots were 

visualized by exposure to UV light (254 nm). Column chromatography was carried on silica gel 

(Merck, Kieselgel 60). ECD spectra of meroditerpene 1 (Compound 1) was recorded in the region 

from 225 to 470 nm at a concentration of 2.88 x 10-4 M in CH2Cl2 in a 1 mm cell; a total of 5 

accumulations at scanning speed 20 nm/min and a temperature of 25 °C. Isolation and 

purification was done at Centro de Investigacións Científicas Avanzadas (CICA) –Spain. Mass 

spectra ESIMS was recorded on a LC-Q-q-TOF Applied Biosystems QSTAR Elite and LC-HRMS 

spectra were done in a LTQ-Orbitrap Discovery coupled to a U-HPLC Accela Thermo Fisher Sci in 

Servizos de Apoio á Investigación - Universidade da Coruña – Spain. ECD, DFT calculation and 

both isotropic and anisotropic NMR experiments were carry on at Max Planck Institute for 

Biophysical Chemistry Facilities, Gottingen-Germany at Griesinger´s Group. 

 

Data processing  
Experimental and calculated ECD and UV data were handled with SpecDis V 1.7.107 NMR data 

were processed and analyzed in Bruker TopSpin Software V 3.1. Graphics were carried out on 

Microsoft Excel 365. Geometrical optimization and TDSCF calculation were carried out with the 

Gaussian 09 suite of programs. Molecular structures were made in ChemDraw V 12.0 and 

Avogadro V 1.0. Orbitrap files were processing using Xcalibur™ Software - Thermo Fisher 

Scientific, and its chemical molecular generator module was employed to provide elemental 

formula. Details regarding anisotropic data processing are elaborated below 

 

Detection of meroditerpenes (Compound 1) by LC-FTMS (Fourier transform 

spectrometer) 
 

LC-HRMS detection of compound 1 was achieved using a LTQ-Orbitrap XL MS coupled to an LC 

Accela pump from Thermo Scientific, equipped with an electrospray ionization (ESI) source setup 

operated in positive ionization mode (full scan); separated through a column Terra® (3x100 mm, 

5 μm) (Waters) with the following conditions: 13 min gradient from 30 to 95% of MeOH in H2O 

(1 % TFA) and 7 min at 95% MeOH; flow rate 350 µL min-1. Mass tolerance is reported in terms 

of the difference between the theoretical and the measure value of the masses (Δ m/z ppm).108 
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Sample preparation 
 

Extraction. The sea weed Sargassum muticum (SM) was collected in a rocky shore of the 

southern coast of Galicia, Praia da Mourisca (Alcabre, Spain) during the summer of 2011 and 

methanol extract was prepared as described in literature.85 

Fractionation and isolation. The raw methanolic extract (4.9 g) was dissolved in methanol/water 

(1:10) and subsequently partitioning with: n-hexane (FH), dichloromethane (FD), n-butanol (WB) 

and water (WW). Fractions were concentrated under reduced pressure (temp: 32 °C) yielded FH 

0.2 g, FD 0.2 g, WB 0.3 g and WW 2.1 g. The FH (1.1 g) was subjected to NMR-guided fractioning 

through flash silica gel column chromatography (25 x 2 cm; 80 mL/min) using a stepwise gradient 

of H/Et2O and Et2O/AcOEt to produce 30 fractions, which were grouped by TLC. Fractions 19 (Fr. 

19) shown doublet (d) belonging to two meta-coupled aromatic protons (protons 3’ and 5’) in 

an aromatic ring part of the bicycling system (6.412 – 6.5327 ppm; J = 2.7 Hz) characteristic of 

the meroditerpens (Figure 57, a). Fr. 19 was afterward purified by RP-HPLC to yield a pure 

compound 1.  

 

 

Figure 57. 1H Spectrum (300 MHz, CD2Cl2) of fraction 19 from flash chromatography column (a), 
characteristic doublet (d) belonging to two meta-coupled aromatic protons from the meroditerpene 
skeleton (b) 

 

Purification of F.19 (80.3 mg) was further purified by semipreparative HPLC (Atlantis RP-C18 

column 10 x 100 mm; 4.6 mL/min) equipped with a Wavelength Detector (VWD) at 320 nm, an 

Agilent pump supplying the following solvent profile:  2.2 min isocratic step (80 v/v ACN/H2O) 

and 12.3 min gradient step (from 80 to 100 v/v ACN/H2O) to afford compound 1 (27.4 mg; Rtime 

= 5.17 min) (Figure 58) 

 

(a) 

(b) 
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Figure 58. Isolation by HPLC of compound 1 (5.17 min) from Fr. 19. Red line indicated the solvent 
gradient 

 

Measurements of anisotropic parameters. 
 

Molecular geometries were optimized at the SOGGA11X/DEF2TZVP92,93 level using the 

IEFPCM109 solvent model with CH2Cl2 parameters. On these geometries, chemical shielding 

tensor (CSTs) were calculated usign GIAOs80 at the MPW1PW91/6-311+g(2g,p)110 in vacuo. The 

Gaussian UltraFine integration grid was used for all geomtry optimizations, and non imaginary 

frequency were found. Single Value Decomposition3 (SVD) fitting of the experimental data was 

performed on the DFT geometry optimized structures and to the previously calculated CSTs.  

To measure RDCs and RCSAs, the compund was disolved in CD2Cl2 (sample A 1.6 mg) and 

(sample B 230 µg) prepared as described for α-santonine in our SMCD prototype (3 mm I.D). 

(Page 45) 

RCSA data were adquiered in fully relaxed PMMA-d8 (70/0.25) gel, under maximun 

compression (around 22 % of its length) by usign 1D 13C-NMR (Zgdc30) and 1D Pure shift 

Psyche25,111 experiments for 13C RCSAS and 1H RCSA respectively. 1JCH were measured in solution 

(Isotropic conditions) meandwhile 1TCH were measured under the same condition before 

described by using F2 coupled CLIP/CLAP HSQC112. 

RCSA’s analysis was done using the method described by Nath Et al.22 Anisotropic values are 

expressed in Hz in order to have a significant weight. Gel isotropic shift contribution was 

automatic compensated10 and SVD population fitting of the experimental data to the structures 

and to the calculated chemical shift tensors was performed in MSspin.9  

Meroditerpene 1 was described by a rather restricted ensemble (vide supra), the NMR data 

was fitted using a single tensor 12 and population fitted using a combined Levenberg–Marquardt 

algorithm83. RDCs were optined from the total spliting (1TCH) observed in the anisotropic spectra  

and from the 1JCH observed in isotropic solution also using the CLIP/CLAP HSQC experiment 

experiments using non-uniform sampling (TD2: 1.6K; TD1: 1K; FnTYPE: NUS 26.6%; 136; 24 

transients; 2 s recycle delay).21 

The relation 1TCH = 1JCH + 1DCH was employed to obtain 1DCH. RDCs and RCSAs experimental 

errors were calculated by Kontaxis et al. 94 Error was study by using Monte Carlo’s 

Bootstrapping113 module in MSpin software, and RCSAs standard deviation error was calculated 

over experimental values and used during the error analysis.95 1DCH RDC’s for methyl groups were 

averaged as described by Sanchez-Pedregal et al., 114 and methylene group are individually 

reported. 1H RCSA’s of methyl groups and enantiotopic methylene protons were averaged as 

Compound 1 
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described by Nath et al. 18 Conformers were oriented to the Eckart frame.115 Quality of the fits 

was scored in terms of the Cornilescu quality factor (Q)84 and Chemical Shift Anisotropic quality 

factor Q(QCSA) 22 

 

PMMA-d8 compression compatible (70/0.25) gel 
 

Gel was prepared as decribed by Nath Et al.22 Nevertheless monomer was sutituided by Methyl 

methacrylate-d8 ( 70 % v/v) and cross-link density ajusted to 0.25 molar %, in order to make the 

gel compatible with the 3 mm compression device. The compound thus prepared is named 

PMMA-d8 70/0.25 
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1.3.4 Structure elucidation of a new natural products with 

conformational flexibility. Using 1H, 13C RCSA’s and RDC along 

with pure shift HSQC experiments with NUS methodology to 

find out the relative stereochemistry of tricloromanmindes A 

and B 



 

-85- 

 

  



 

-86- 

 

 

1.3.4.1 Introduction 
 

Structural elucidation is an important task for natural product chemists and small molecules 

researchers involved in the fields of new drug discovery or medicine development. Therefore, 

the precise assessment of the stereochemical features is critical because all chemical or 

biological properties are entirely dependent on the chirality of the substance. This difficult task 

becomes a challenge, and sometimes this is the bottleneck in the full characterization, when a 

compound contains flexible moieties, such as poly substituted open chains. In this regard the 

use of anisotropic parameters (RCSA and RDC) provide three dimensional arrangements of 

relative stereochemistries between different diasteroisomers, that clearly diminishes undesired 

incorrect structure assignments. 

Tricholoma equestre has been identified to be related with numerous cases of severe 

rhabdomyolysis, a serious syndrome due to a direct or indirect muscle injury that results from 

the death of muscle fibers and release of their contents into the bloodstream, 116 occurred in 

France, Lithuania after meals that included the edible wild mushroom. .117,118 The diagnosis was 

preceded by typical symptoms fatigue, nausea without vomiting and muscle pain, profuse 

sweating without fever, and respiratory insufficiency occurred. Most recently, has been found 

that effects of prolonged consumption in mice causes myo-, cardio- and hepatotoxic effects. 119 

In this section of this thesis dissertation, we will present the structure elucidation of two new 

compounds, tricholomaminde A and B, associated with the toxicity of T. equestre which were 

isolated by Professor Liu´s Research Group at Kunming Institute of Botany, Chinese Academy of 

Sciences (KIB/CAS). Their absolute configurations at stereogenic centers, a toxic and flexible 

natural products, were elucidated as 2S6S2´S and 2S4R6S2´S, respectively by the combination 

of J-based configuration analysis (JBCA), advanced Marfey’s method, density-functional theory 

calculations (DFT) and electronic circular dichroism (ECD). Moreover, relative configuration of 

tricholomaminde A and B was confirmed by residual dipolar coupling (RDC) and residual 

chemical shift anisotropy (13C RCSA and 1H RCSA) respectively; anisotropic measurements were 

done in our recently introduced universal 3 mm compression device. 
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1.3.4.2 Isolation and structure elucidation of tricholomaminde 

A and B  
 

1.3.4.2.1 Isolation of tricholomaminde A and B  
 

The isolation of tricholomaminde A and B, along with the absolute configuration of C-2´ were 

carry on by Professor Liu´s Research Group at School of Pharmaceutical Sciences, South-Central 

University for Nationalities, Wuhan, 430074, Hubei, PR China. 

Tricholoma equestre (Figure 59), were collected from Arcachon in southwestern France in 

December 2012 and identified by Prof. Zhu-Liang Yang of Kunming Institute of Botany, Chinese 

Academy of Sciences. A specimen (No. KIB20121205.11) was deposited at the Kunming Institute 

of Botany, Chinese Academy of Sciences. 

 

 

Figure 59. Specimen of Tricholoma equestre. Cap of this species measures between 6 to 8 cm, and the 

stem is round 7 to 10 cm long and its diameter 1.5 cm. Figure taken from Bedry et al.117 

 

The air-dried fruiting bodies of T. equestre (1.5 kg) were extracted three times using 70% 

MeOH, in a 24 h period each extraction. After filtration and concentration under vacuum, the 

extract was partitioned in EtOAc and water. The water layer was subjected to a cation exchange 

resin column chromatography. After washed with deionized water, the total amino acid extract 

(ACE, 7.4 g) was obtained by eluting with 10‒20% ammonia solution. The ACE was separated by 

using Sephadex LH-20 ® column (eluted with 60% MeOH) to give five fractions. Fraction B (800 

mg) was purified by HPLC equipped with a PC-HILIC column, which was eluted with MeCN/H2O 

from 85% to 65% in 30 min to afford tricholomamides A (1) and B (2) (Figure 60). 
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Figure 60. Chemical structures of tricholomaminde A (right) and B (left) isolated from the wild 
mushrooms Tricholoma equestre. 

 

1.3.4.2.2 Structural elucidation of the stereochemistry at carbon 2′ B 
 

The configuration at C-2′ in the glutamic acid of tricholomaminde A was determined as S by 

an advanced Marfey’s method. 120,121 Tricholomaminde A (0.5 mg) was dissolved in 1 mL HCl (6 

N) and heated at 120°C/20 h. Afterwards, the hydrolysate was concentrated to dryness under a 

stream of N2 and 50 µL of a 1% solution of 1-fluoro-2-4-dinitrophenyl-5-L-alanine amide (L-FDAA) 

in acetone and 10 µL of NaHCO3 (1 mol/L) were added, and the mixture was heated at 40 °C for 

45 min. The standard amino acid L-Val and D-/L-Leu were treated the same way, and all the 

reactions were stopped by addition of HCl (5 μL, 2 mol/L). When all these solvents were 

evaporated, The N[(dinitrophenyl)-5-L-alanine amide] derivatives were redissolved in 

MeCN/H2O (1:1) followed by HPLC analysis with an Agilent 1100 liquid chromatography system 

equipped with a Zorbax SB-C18 column (4.6 mm × 150 mm). Solvents: (A) water + 0.05% TFA, 

(B) MeCN; linear gradient: 0 min 10%, 40min 50%, 1 mL/min). HPLC analysis tricholomaminde A 

´s hydrolysate showed the presence of L-glutamic acid. Same method was employed for 

determine the absolute configuration at C-2´ of tricholomaminde B; which was also established 

as S. 

1.3.4.2.3 Absolute Configuration of tricholomaminde A by standard NMR 

approximation 
 

Workflow used for the determination of absolute configuration of tricholomaminde A and B is 

described in Figure 61 ECD calculations were carried out by using the protocol established by 

Pescitelli et al.88 
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Figure 61. Following the workflow to assign the absolute configuration on flexible molecules by NMR 
and electronic circular dichroism calculations. Case: tricholomaminde A and B 

 

Carbon and proton chemical shift in CD3OD of tricholomaminde A are shown in Table 12. As 

it has been noticed on section 1.3.4.2.2, the absolute configuration of the C2' chiral center was 

previously assigned as 2'S based on the application of the advanced Marfey’s method that was 

performed by Professor Liu´s Research Group at School of Pharmaceutical Sciences, South-

Central University for Nationalities, PR China.  

Thus, out of the possible eight theoretically stereoisomers of tricholomaminde A (3 chiral 

centers), 4 diastereoisomers with R configuration at C2’ were excluded from the analysis (see 

Table 11). The characteristic NOE cross peaks (Figure 67) between H6/Hpro-S4 and CH3-1/Hpro-R4 

suggested that the relative configuration at C2 and C6 should be either 2S6S or 2R6R. The 

observed NOE correlations between H2/H9a, H2/H9b, and H2/CH3-10 indicate that H2 proton is 

lying in the plane of the olefinic double bond of the cyclopentene ring. The strong NOE between 

H6/H9a and H6/H9b indicate the close proximity of these protons. Based on these observations, 

the relative configuration of tricholomaminde A is either 2S6S2'S or 2R6R2'S. 

 

 

 

In order to map the entire potential energy surface (PES), 2S6S2'S and 2R6R2'S configurations 

of tricholomaminde A were subjected to an extensive conformational search using PC Model 
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version 10.0 from Serena software.63  As a result 30,000 conformers in a 3.5 kcal/mol window 

were generated, minimized using MMX force field and further subjected to DFT calculations. 

The intrinsic flexibility of tricholomaminde A makes it necessary to undertake special 

considerations during the DFT calculations. A two-step DFT optimization was carried out using 

the reliable and robust Heyd-Scuseria-Ernzerhof functional (HSE06)122 and the latest functional 

from Head-Gordon and coworkers123 and Ahlrichs’93 basis sets, respectively.89 The first and 

second DFT optimizations were done with the combinations HSE06/CC-PVDZ and 

WB97XD/DEF2TZV level of theory, respectively. Vibrational frequencies calculated with 

Gaussian09 showed no imaginary frequencies after the second DFT optimization step for the 

conformers, suggesting that they are true minima on the PES space.  

The DFT optimized conformers of tricholomaminde A that were consistent with the 

experimental NMR (NOESY/J-couplings) data were used for the simulation of ECD spectrum by 

using Time-Dependent Density Functional Theory (TDDFT).124 The ECD of the conformers of 

tricholomaminde A with 2S,6S,2'S and 2R,6R,2'S relative configurations was evaluated with two 

families of functionals, namely B98 125 (hybrid functional) and CAM-B3LYP 126 (range-separated 

hybrid functional, it combines the hybrid qualities of B3LYP and long-range correction) with 6-

311++G(3d,p) and 6-311++G(3d,2p) basis sets,127 respectively.  

TDDFT calculated ECD files were processed with SpecDis V. 1.70.1.107 The conductor-like 

polarizable continuum model (CPCM) 128 with methanol as solvent was employed for the ECD 

calculations. Figure 72 b showed a good agreement between the experimental and the TD-DFT 

calculated (Boltzmann-weighted) ECD of tricholomaminde A. This results strongly supports that 

the absolute configuration of tricholomaminde A must be 2S,6S,2'S. Furthermore, the ECD of all 

the individual conformers with 2S,6S,2'S configuration are in good agreement with the 

experimental ECD of tricholomaminde A. However, the TD-DFT calculated (individual as well as 

Boltzmann-weighted) ECD of tricholomaminde A with 2R,6R,2'S relative configuration (Figure 73 

b) resulted in an enantiomeric ECD compared to the experimental ECD of tricholomaminde A in 

methanol.  

In summary, based on the NMR (NOESY/J-couplings) and ECD analysis, the absolute 

configuration of tricholomaminde A is determined as 2S,6S,2'S. 
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Table 11. Possible relative configurations of tricholomaminde A. 

 

C-2 C-6 C-2' Remarks 

S S S Absolute configuration: in excellent agreement with the NOESY/J-couplings 

and ECD 

R R S Excluded, inconsistent with ECD 

R S S Excluded, inconsistent with NOESY 

S R S Excluded, inconsistent with NOESY 

R R R Excluded, Marfey’s method analysis 

R S R Excluded, Marfey’s method analysis 

S R R Excluded, Marfey’s method analysis 

S S R Excluded, Marfey’s method analysis 

NOESY: Nuclear Overhauser Effect Spectroscopy, ECD: Electronic Circular Dichroism 

 

 

 

 

 

 

Figure 62. Chemical structure and observed NOE correlations (red arrows) of tricholomaminde A. 
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Table 12. NMR data of tricholomaminde A in CD3OD (298 K, 700 MHz for 1H and 175 MHz for 13C) 

 

Position δC (ppm) δH (ppm) JHH (Hz) JCH (Hz) 

NH - 8.30, d, 1H NH/2 = 7.0 - 

6 79.0 5.17, m, 1H - - 

2 46.8 5.11, m, 1H - C3/H2 = 4.4, C1/H2 = 5.0, C7/H2 = 2.4, C5'/H2 = 2.7 

2' 56.2 3.56, t, 1H 2'/3' = 5.8, 5.8 C1'/H2' = 5.4, C3'/H2' = 4.1, C4'/H2' = 5.6 

9b 35.9 2.80, dq, 1H 9b/9a = 18.0 
9b/10 = 7.2, 7.2, 7.2 

C8/H9a = 5.9, C10/H9a = 4.2 

9a 35.9 2.66, dq, 1H 9a/9b = 18.0 
9a/10 = 7.2, 7.2, 7.2 

C8/H9a = 5.3, C10/H9a = 4.2 

4pro-R 31.5 2.64, m, 1H - - 

4' 33.2 2.40, m, 2H - - 

4pro-S 31.5 2.31, m, 1H - - 

5a 33.8 2.29, m, 1H - - 

3' 28.4 2.05, td, 2H 3'/4' = 7.2, 7.2 
3'/2' = 5.8 

- 

5b 33.8 1.66, m, 1H - - 

1 19.4 1.32, d, 3H 1/2 = 7.2 - 

10 8.3 1.07, t, 3H 10/9 = 7.2, 7.2 - 

7 140.1 - - - 

3 161.8 - - - 

1' 174.3 - - - 

5' 174.9 - - - 

8 204.1 - - - 

 

 

 

Table 13. Boltzmann-weighted populations in both the possible conformations of tricholomaminde A 
(298.15 K) 

 

(2R,6R,2'S)‐tricholomaminde A           
Conformer Boltzmann population 

(%)* 
Boltzmann population CPCM 

(%)** 
Boltzmann population IEFPCM 

(%)** 

Conf. 1 12.1 2.9 3.2 

Conf. 2 0.0 1.0 1.0 

Conf. 3 1.2 24.0 25.5 

Conf. 4 1.8 4.0 4.4 

Conf. 5 84.8 68.1 65.9 

(2S,6S,2'S)‐tricholomaminde A 
Conf. 1 98.6 76.3 78.0 

Conf. 2 0.4 6.3 6.1 

Conf. 3 0.1 9.0 8.3 

Conf. 4 0.0 0.5 0.5 

Conf. 5 0.3 1.4 1.4 

Conf. 6 0.6 6.5 5.7 

*Calculated from Gibbs free energy **Methanol as solvent 
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Figure 63. 1H NMR spectrum of tricholomaminde A in CD3OD (298 K, 700 MHz). 

 

 

 

 

 

Figure 64. 13C NMR spectrum of tricholomaminde A in CD3OD (298 K, 175 MHz). 
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Figure 65. 2D-DQFCOSY (Double-quantum Filtered Correlation Spectroscopy) spectrum of 
tricholomaminde A in CD3OD (298 K, 700 MHz). Experimental parameters: TD (F2) = 2048, TD (F1) = 512, 
NS = 32, DS = 16, D1 = 2. 
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Figure 66. 2D-NOESY (Nuclear Overhauser Effect Spectroscopy) spectrum of tricholomaminde A in 
CD3OD (298 K, 700 MHz). Experimental parameters: TD (F2) = 8192, TD (F1) = 512, NS = 32, DS = 32, D1 = 
2, mixing time (D8) = 500 ms. 
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Figure 67. Expanded regions of 2D-NOESY spectrum of tricholomaminde A: the observed characteristic 

NOE cross peaks between CH3-1/Hpro-R4 (a), H6/Hpro-S4 and H6/H5a (b), H6/H9a (c), and H6/H9b (d) 

protons. 

 

 

Figure 68. a) 1H NMR spectrum of tricholomaminde A (CD3OD, 298 K). b), and c) are selective 1D-NOESY 

at 3.56 ppm, and 5.11 ppm, respectively. (1D NOESY parameters, acquisition time = 1 sec, mixing time = 

500 ms, NS = 1024, DS = 32, D1 = 2). 

 



 

-97- 

 

 

 

Figure 69. 2D-HSQC (Heteronuclear Single Quantum Correlation) spectrum of tricholomaminde A in 
CD3OD (298 K, 700 MHz for 1H and 175 MHz for 13C). Experimental parameters: TD (F2) = 2048, TD (F1) = 
256, NS = 4, DS = 64, D1 = 2. 
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Figure 70. 2D-HMBC (Heteronuclear Multiple Bond Correlation) spectrum of tricholomaminde A in 
CD3OD (298 K, 700 MHz for 1H and 175 MHz for 13C). Experimental parameters: TD (F2) = 8192, TD (F1) = 
512, NS = 16, DS = 16, D1 = 2, SW (F2) = 9 ppm, SW (F1) = 240 ppm, JCH-long range = 8 Hz. 
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Figure 71. 2D-HSQMBC (Heteronuclear Single Quantum Multiple Bond Correlation) spectrum of 

tricholomaminde A in CD3OD (298 K, 700 MHz for 1H and 175 MHz for 13C). Experimental parameters: TD 

(F2) = 6144, TD (F1) = 512, NS = 64, DS = 128, D1 = 2, SW (F2) = 7 ppm, SW (F1) = 258 ppm, JCH = 145 Hz, 

JCH-long range = 2 Hz, 180° shaped pulse length for inversion = 500 μs, 180° shaped pulse length for 

refocusing = 2000 μs. 
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Table 14. Comparison between experimental and TD-SCF DFT calculated ECD at CAM-B3LYP/6-
311++G(3d,2p) level of theory for individual conformers of (2S,6S,2'S)-tricholomaminde A. 
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Table 15. Comparison between experimental and TD-SCF DFT calculated ECD at CAM-B3LYP/6-
311++G(3d,2p) level of theory for individual conformers of (2R,6R,2'S)-tricholomaminde A. 
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Figure 72. Superimposition of 6 minimum energy conformers of (2S,6S,2'S)-tricholomaminde A that are 
consistent with the experimental NMR data. b) Comparison between experimental (black solid line) and 
TD-SCF DFT calculated (Boltzmann-weighted) ECD of tricholomaminde A. Blue and red solid lines are the 
calculated ECD of tricholomaminde A at CAM-B3LYP/6-311++G(3d,2p) and B98/6-311++G(3d,p) level of 
theory, respectively. Inset shows good agreement between the calculated and experimental ECD spectra 
of tricholomaminde A. 
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Figure 73. a) Superimposition of 5 minimum energy conformers of (2R,6R,2'S)-tricholomaminde A that are 
consistent with the experimental NMR data. b) Comparison between experimental (black solid line) and 
TD-SCF DFT calculated (Boltzmann-weighted) ECD of tricholomaminde A. Blue and red solid lines are the 
calculated ECD of tricholomaminde A at CAM-B3LYP/6-311++G(3d,2p) and B98/6-311++G(3d,p) level of 
theory, respectively. Inset shows poor agreement between experimental and calculated ECD of 
tricholomaminde A. 
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1.3.4.2.4 Absolute configuration of tricholomaminde B by standard NMR 

approximation  
 

The structure and relative stereochemistry of tricholomaminde B were assigned by using 1D 

(1H, 13C, and sel-NOESY) (Table 17) and 2D-(COSY, ROESY, HSQC, HMBC, J-HMBC, and HSQMBC) 

NMR analysis (see Figure 76 to Figure 84). The absolute configuration of tricholomaminde B was 

unambiguously determined by using Electronic Circular Dichroism (EDC) analysis. NMR 

experiments were measured in CD3OD at 298 K. Chemical shifts were referenced to CD3OD (δH 

3.31 ppm for 1H and δC 49.1 ppm for 13C) solvent. A complete set of nJCH couplings of 

tricholomaminde B was extracted by using J-HMBC and HSQMBC experiments. NMR and ECD 

data were processed using Bruker Topspin V 4.0 and SpecDis Version 1.71,107 respectively. 

With the standard NMR data on hand, we were able to build the planar structure of 

tricholomaminde B as is depicted in Figure 74. Like its counterpart tricholomaminde A, and 

based on the chiral HPLC analysis by means of the advanced Marfey’s method we obtained the 

absolute configuration at C2 assigned as S.  

 

 

Figure 74 Planar structure of tricholomaminde B 

 

In this second compound, the carbonated skeleton contains 4 chiral centers, indicating 16 

theoretically possible stereoisomers of tricholomaminde B, incluing 8 stereoisomers with 2'R 

configuration, which are removed from the analysis (Table 16). The observed NOE cross peaks 

between H4/H6, H4/H5β, and H6/H5β suggested that these protons are oriented in the same 

side of the cyclopentene ring. Hence, the relative configuration at C4 and C6 should be either 

4R,6S or 4S,6R. Therefore, 4 out of 8 plausible stereoisomers with either 4R,6R or 4S,6S 

configurations were removed from the analysis. Besides we observed a characteristic NOE 

correlation between CH3-1 and CH3-12 protons strongly suggested that the methyl groups are in 

spatial proximity. Based on these observations, the relative configuration of tricholomaminde B 

should be either (2S,4R,6S,2'S) or (2R,4S,6R,2'S) (Figure 75). 
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Figure 75. Two possible chemical structures for (2S*,4R*,6S*,2'S)-tricholomaminde B left and 
(2R*,4S*,6R*,2'S)-tricholomaminde B (right). Observed characteristic NOE correlations are shown as red 
arrows 

 

Having deduced the relative configuration of tricholomaminde B, we proceeded with the ECD 

calculations by using a TD-SCF(DFT) approximation to establish the absolute configuration of the 

tricholomaminde B.129 Prior to DFT calculations, two different conformational searches were 

carried out on (2S,4R,6S,2'S)-tricholomaminde B and (2R,4S,6R,2'S)-tricholomaminde B using 

MMX force field in the PC Model V10.0.130 The conformers were fully optimized and vibrational 

frequencies were calculated at DFT level using the Gaussian09 program, with HSE06/CC-

PVDZ/AUTO79,91 as functional/basis set. The final conformers showing consistency with the 

experimental NMR data were obtained using NOE derived distances and J-couplings derived 

dihedrals as post-processing filters (Figure 85).  

The ECD (solvent: methanol, model: CPCM)131,132 spectra of both diasteroisomeric 

configurations were calculated with the B98 functional and the 6-311++G(3d,p) basis set for 

energies minimization and the combination CAM-B3LYP/6-311++G(3d,p)125,126 (number of states 

50) for ECD calculations. The theoretical ECD curves showed a λshift less than ± 30 nm (see Table 

18 and Table 19), exhibiting a good agreement between the experimental and the Boltzmann-

weighted ECD spectra of (2S,4R,6S,2'S)-tricholomaminde B as is shown in  Figure 86. The 

calculated Boltzmann-weighted ECD spectrum for the diasteroisomeric configuration 

(2R,4S,6R,2'S)-tricholomaminde B resulted in curve which seemed an enantiomeric ECD 

spectrum in comparison with the experimental of the natural product (Figure 87). 

In summary, we propose the absolute configuration of tricholomaminde B as (2S,4R,6S,2'S), 

on basis of the NMR (NOESY, J-couplings) and ECD analysis.  
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Table 16. Discrimination table for the different configuration of tricholomaminde B 
C-2 C-4 C-6 C-2' Remarks 

S R S S Absolute configuration is in excellent agreement with the NOESY/J-couplings 
and ECD analysis 

R S R S Excluded, inconsistent with ECD analysis 

R R S S Excluded, inconsistent with NOESY correlations 

S S R S Excluded, inconsistent with NOESY correlations 

R S S S Excluded, inconsistent with NOESY correlations 

S S S S Excluded, inconsistent with NOESY correlations 

S R R S Excluded, inconsistent with NOESY correlations 

R R R S Excluded, inconsistent with NOESY correlations 

R R R R Excluded, Marfey’s method analysis 

R R S R Excluded, Marfey’s method analysis 

R S R R Excluded, Marfey’s method analysis 

S R R R Excluded, Marfey’s method analysis 

S R S R Excluded, Marfey’s method analysis 

R S S R Excluded, Marfey’s method analysis 

S S R R Excluded, Marfey’s method analysis 

S S S R Excluded, Marfey’s method analysis 

 

  



 

-107- 

 

 

 

 

Table 17 NMR spectral data of tricholomaminde B in CD3OD (298 K, 800 MHz for 1H and 200 MHz for 13C) 

Position δC (ppm) δH (ppm) 3JHH (Hz) nJCH (Hz) 

NH - 8.34 - - 

4 76.4 5.47, dd 4/5α = 5.3 
4/5β = 7.9 

C2/H4 = 1.6, C3/H4 = 5.3, C5/H4 = 1.4, C6/H4 = 
1.9, C7/H4 = 4.4, C8/H4 = 1.4, C11/H4 = 3.5 

6 73.9 4.99, dd 6/5α = 5.3 
6/5β = 7.1 

C3/H6 = 6.6, C4/H6 = 7.1, C7/H6 = 4.4 

2 46.5 4.80 - C3/H2 = 3.9, C4/H2 = 7.4, C7/H2 = 2.6, C5'/H2 
= 2.5 

2' 55.7 3.57, t 2'/3' = 5.8, 5.8 C1'/H2' = 5.5, C3'/H2' = 4.7, C4'/H2' = 5.7 

5β 41.2 2.86 - C3/H5β = 4.5, C4/H5β = 1.2 

9a 35.3 2.85, dq 9a/9b = 18.4 
9a/10 = 7.2, 7.2, 7.2 

C8/H9a = 5.6, C10/H9a = 4.8 

9b 35.3 2.69, dq 9b/9a = 18.4 
9b/10 = 7.2, 7.2, 7.2 

C8/H9b = 6.3, C10/H9b = 4.7 

4'a 32.8 2.40 - - 

4'b 32.8 2.36 - - 

12 21.2 2.11 - C4/H12 = 1.2, C11/H12 = 7.2 

3' 27.7 2.05 - C2'/H3' = 4.7, C4'/H3' = 4.7 

5α 41.2 1.50, dt 5α/5β = 13.9 
5α/4 = 5.3 
5α/6 = 5.3 

C3/H5α = 1.2, C4/H5α = 8.1, C6/H5α = 7.4, 
C7/H5α = 1.2 

1 20.4 1.45, d 1/2 = 7.2 C2/H1 = 4.6, C3/H1 = 4.5, C5'/H1 = 1.1 

10 7.6 1.08, t 10/9 = 7.2, 7.2 C8/H10 = 5.3, C9/H10 = 4.9 

7 143.2 - -  

3 154.6 - -  

11 172.3 - -  

1' 173.8 - -  

5' 175.0 - -  

8 203.7 - -  
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Figure 76. 1H NMR spectrum of tricholomaminde B in CD3OD (298 K, 800 MHz) 

 

 

 

 

 

Figure 77. 13C NMR spectrum of tricholomaminde B in CD3OD (298 K, 200 MHz).
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Figure 78. 2D-COSY (Correlation Spectroscopy) spectrum of tricholomaminde B in CD3OD (298 K, 800 MHz). 
Experimental parameters: TD (F2) = 4096, TD (F1) = 512, NS = 16, DS = 8, D1 = 2, Experimental time = approx..6 hrs. 
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Figure 79. 2D-ROESY (Rotating-frame Overhauser Effect Spectroscopy) spectrum of tricholomaminde B in CD3OD (298 
K, 800 MHz). Experimental parameters: TD (F2) = 8192, TD (F1) = 512, NS = 40, DS = 16, D1 = 2, ROESY spin-lock pulse 
length = 250 ms, Experimental time = ~16 hrs. 
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Figure 80. a) and b) are the 1D selective NOESY spectra of tricholomaminde B irradiated at 5.47 and 1.45 
ppm, respectively, in CD3OD (298 K, 800 MHz). Acquisition time = 1 sec, NOESY mixing time = 500 ms, NS 
= 1000, DS = 16, D1 = 2, Experimental time = ~1 hr. 
 



 

-112- 

 

 

Figure 81. 2D-HSQC (Heteronuclear Single Quantum Correlation) spectrum of tricholomaminde B in CD3OD (298 K, 
800 MHz for 1H and 200 MHz for 13C). Experimental parameters: TD (F2) = 2048, TD (F1) = 512, NS = 8, DS = 8, D1 = 2, 
Experimental time = ~2 hrs. 
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Figure 82. 2D-HMBC (Heteronuclear Multiple Bond Correlation) spectrum of tricholomaminde B in CD3OD 
(298 K, 400 MHz for 1H and 100 MHz for 13C). Experimental parameters: TD (F2) = 4096, TD (F1) = 512, NS 
= 32, DS = 16, D1 = 2, SW (F2) = 10 ppm, SW (F1) = 240 ppm, JCH-long range = 8 Hz, Experimental time = 
~12 hrs. 
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Figure 83. 2D-J-HMBC (JCH-coupled Heteronuclear Multiple Bond Correlation) spectrum of 
tricholomaminde B in CD3OD (298 K, 800 MHz for 1H and 200 MHz for 13C). Experimental parameters: TD 
(F2) = 4486, TD (F1) = 512, NS = 48, DS = 64, D1 = 2, SW (F2) = 10 ppm, SW (F1) = 250 ppm, JCH-long range 
= 1 Hz, 1JCH (min) = 125 Hz, 1JCH (max) = 165 Hz, 180° shaped pulse length for inversion = 500 μs, 180° 
shaped pulse length for refocusing = 2000 μs, Experimental time = ~20 hrs. 
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Figure 84. 2D-HSQMBC (Heteronuclear Single Quantum Multiple Bond Correlation) spectrum of 
tricholomaminde B in CD3OD (298 K, 700 MHz for 1H and 175 MHz for 13C). Experimental parameters: TD 
(F2) = 6144, TD (F1) = 512, NS = 64, DS = 32, D1 = 2, SW (F2) = 7 ppm, SW (F1) = 212 ppm, JCH = 145 Hz, JCH-
long range = 6 Hz, 180° shaped pulse length for inversion = 500 μs, 180° shaped pulse length for refocusing 
= 2000 μs, Experimental time = ~24 hrs. 
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Figure 85. Superimposition of 4 DFT optimized conformers of (2S,4R,6S,2'S)- tricholomaminde B (left) and 
(2R,4S,6R,2'S)-tricholomaminde B (right) that are consistent with the experimental NMR restraints. 

 

 

 

Table 18. Parameters obtained (SpecDis V1.71) for the comparison between experimental and 
calculated ECD spectra of LFTE-33 (2S,4R,6S,2'S). 

(2S,4R,6S,2'S)-tricholomaminde B CAM-B3LYP/6-311++G(3d,p) B98/6-311++G(3d,p) 

σ (eV) 0.16 0.16 

λshift (nm) 2 -23 
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Figure 86. a) and b) are the comparison of Boltzmann-weighted ECD spectra calculated with CAM-
B3LYP/6-311++G(3d,p) and B98/6-311++G(3d,p) level of theory, respectively, with the experimental ECD 
spectrum of tricholomaminde B in methanol. Inset: The comparison of expanded regions of small positive 
CD band (between 260 and 380 nm) shows good agreement between the experimental and calculated 
ECD spectra of tricholomaminde B. 
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Table 19. Parameters obtained (SpecDis V1.71) for the comparison between experimental and 
calculated ECD spectra of (2R,4S,6R,2'S)-tricholomaminde B. 

(2S,4S,6R,2'S)-tricholomaminde B CAM-B3LYP/6-311++G(3d,p) B98/6-311++G(3d,p) 

σ (eV) 0.16 0.16 

λshift (nm) 3 -23 

 

 

 

Figure 87. a) and b) are the comparison of Boltzmann-weighted ECD spectra calculated with CAM-
B3LYP/6-311++G(3d,p) and B98/6-311++G(3d,p) level of theory, respectively, with the experimental ECD 
spectrum of tricholomaminde B in methanol. 
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1.3.4.2.4 Establishing the relative configuration of tricholomamide B by 13C 

and 1H RCSA’s 
 

1.3.4.2.5 Alignment media: preparation of poly-DEGMEMA (di(ethylene glycol) 

methylethermethacrylate) 
 

Poly-DEGMEMA gel was prepared as previously described in the literature.60 Hilgenberg’s 2 

mm NMR tubes (internal diameter 1.6 mm) used in the synthesis were either pre-silanized with 

a 10% (v/v) solution of 1,1,1,3,3,3-hexamethyldisilazane in toluene for 24 hrs or by using 

Sigmacote® for 15 minutes. Subsequently, the tubes were emptied and dried in an oven (40 ºC/ 

24h). Both polymerization inhibitor, potentially present in the monomer (DEGMEMA) form, and 

the cross-linker EGDMA (ethylene glycol dimethacrylate) were removed over a basic alumina 

column. 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (V-70) was used as initiator for 

polymerization. Three stock solutions were prepared:  

 Solution A: 1.4 mL of DEGMEMA monomer and 0.6 mL of MeOH.  

 Solution B: 200 μL EGMDA and 1240 μL DEGMEMA.  

 Solution C: 14 mg of V70 in 1 mL of MeOH.  

In a falcon tube were mixed: 2 mL of stock solution A, 20 L of solution B and 32 μL of solution 

C. After exhaustive mixing of the above constituents the solution was transferred to the silanized 

NMR tubes, which were subsequently capped and kept in a water bath at 50 °C for 6 hrs. After 

polymerization, tubes were opened, and then the gel was allowed to dry. The polymer gels were 

carefully removed from the NMR tubes and washed three times in methanol (24 hrs each) in 

order to remove any residual monomer. Poly-DEGMEMA gels were dried on a glass surface 

turning out in a sticky and flexible material. All the gels were handled with extreme care and we 

observed a change in their proportions during the drying/swelling processes.  

For RDC, 13C and 1H RCSAs measurements, 2.4 cm gel sticks were used and swollen in CD3OD 

inside a Hilgenberg’s 3 mm NMR tube (part number 2001749) for at least 24 hours. The gel used 

in the present study showed a 2H quadrupolar splitting of 5.9 Hz (Figure 94), at maximum 

compression. All the chemicals were purchased from Sigma Aldrich and V-70 was obtained from 

Wako Chemicals. 

1.3.4.2.5.3 NMR sample preparation for 13C and 1H RCSAs measurements 
800 µg of tricholomamide B were dissolved in 50 μL of CD3OD and transferred to a 

Hilgenberg’s 3 mm NMR tube. A pre-swelled fully relaxed poly-DEGMEMA gel was gently pushed 

inside the tube, adding some microliters of solvent until fully cover the gel. Diffusion of the 

sample inside the gel was achieved by pumping gently several times with a 2 mm O.D glass 

plunger.43 Anisotropic conditions were induced by our designed 3 mm compression device 

prototype (Our SMCD not only reduces the mass of the alignment media, but its background 

signal, been fully compatible with the commercially available 3 mm NMR tubes. 
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Tricholomamide B (Figure 60 right) was aligned in poly-DEGMEMA/CD3OD gel (75/0.3) using 

the variable compression/relaxation method with an in-house 3 mm compression device 

(USMCD). HSQC pure shift experiments were acquired with the fully relaxed and compressed gel 

(at a 2H quadrupolar splitting of 5.9 Hz, 2H NMR spectra were recorded on a 800 MHz Bruker 

Avance III spectrometer operating at 122.89 MHz for 2H, with accumulation of 8 transients. NMR 

experiments for tricholomamide B were recorded on a 800 MHz Bruker Avance III spectrometer 

operating at 800.53 MHz and 201.32 MHz for 1H and 13C, respectively. Carbon and Proton 

Residual chemical shift anisotropies (13C, 1H- RCSAs) were simultaneously measured using real-

time pure shift HSQC experiments with non-uniform sampling (TD2: 1.4K; TD1: 512; FnTYPE: NUS 

31.2%; 512; 64 transients; 2 s recycle delay).21,24,27,133 1J = 135 Hz and sine squared window 

function was applied in both F1 and F2 dimensions prior to Fourier transformation. 

1.3.4.2.5.4 Computational details: 
Carbon and Proton CSA parameters were computed using the Perdew-Wang exchange as 

modified by Adamo and Barone combined with PW91 correlation (mPW1PW91),110 paired with 

the 6-311+G(2d,p) in vacuum. This combination provided accurate prediction of isotropic δC and 

δH prediction in small molecules and an acceptable mean absolute error. 134 All DFT calculations 

were carried out using Gaussian09 suite program. 

 

1.3.4.2.5.5 13C and 1H RCSAs analysis of tricholomamide B: 
13C and 1H RCSAs were obtained by using the methodology described by Nath et al., and 

Marco et al.,18,22,23 which anisotropic data is measured directly from an HSQC experiment. In our 

case C4 and H4 were chosen as carbon and proton references, respectively and the remaining 

data was extracted from a real-time pure shift HSQC experiments. 

Alignment tensors were calculated through the singular value decomposition module (SVD)3 

provided in MSpin-program.9 1H and 13C RCSAs values were expressed in Hz.4 Tricholomamide B 

are described by a rather restricted ensemble (Figure 85), the NMR data was fitted using a single 

tensor 12 and population fitted using a combined Levenberg–Marquardt algorithm. 83 

Conformers were oriented to the Eckart frame.115  

1H RCSAs of methyl groups and enantiotopic methylene protons were averaged as described 

by Nath et al.18 The isotropic contribution correction parameter 𝑐 was optimized until the 

minimum 𝑄 factor was achieved using the procedure recently described by F. Hallwass et al.10,22 
13C and 1H RCSAs were fitted separately and quality of the fits was scored in terms of the 

Cornilescu quality factor Q  and 𝑄𝐶𝑆𝐴. 19 Finally we show the fitting as a combination of 1H and 
13C RCSA’s using Equation 12. We are rather trusting on 𝑄𝐶𝑆𝐴 for the fit of RCSAs data, since it 

removed the large size variation of the 13C and 1H chemical shift tensors.22 

 

Q1H RCSA+13C RCSA = √Q13C RCSA
2 + Q1H RCSA

2 Equation 12 
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As it was mentioned before, absolute configuration at C2´ of tricholomamide B was assigned 

as S based on the chiral HPLC analysis (vide supra). NMR analysis (NOEs and J-couplings) indicates 

that the relative configuration of tricholomamide B should be either (2S,4R,6S,2'S) or 

(2R,4S,6R,2'S) 36,135,136 An extensive computational study over the diastereomers yielded 5 and 4 

conformers for (2S,4R,6S,2'S) and (2R,4S,6R,2'S) configurations, respectively (Figure 85). 

Tricholomamide B are both flexible and demand the use of a multi conformer single tensor 

(MCST) approach with fit to populations for the possible configurations and their conformers. 

The significant assignment of a molecular-fixed-axis system is needed, allowing a proper 

separation of the internal motion and reorientation in the molecule. This coordinate system was 

chosen in such a way that it fulfils Eckart Condition, 137 preventing that the nuclear displacements 

results in the movement of the center of mass and excluding any contribution of the 

displacements to an overall rotation of the molecule. 41 Configurations 2S,4R,6S,2'S and 

2R,4S,6R,2'S show envelope conformations, some with C5 down and others with C5 up; 

therefore C5 is excluded from Eckart frame (Figure 85) We assumed as has always been done 

that conformational equilibrium is not significantly affected by the alignment media.  

13C-RCSAs proved to be promising NMR structural parameters for the assignment of 

structure and relative configuration of rigid as well as flexible small molecules. Both the relative 

configuration of strychnine and the flexible alkaloid retrorsine were unambiguously determined 

by 13C-RCSAs in poly(methyl methacrylate) gel and also in liquid crystal poly-ϒ-(benzyl-L-

glutamate) 22,56 to induces the need weak alignment. 

Ten 13C RCSAs were determined for tricholomamide B in poly-DEGMEMA/CD3OD gel using 

a in-house 3 mm compression device from a Pure shift HSQC experiment (Figure 90 a), with a 

range of 21.4 Hz. The remaining signals are either obscured by the large gel background signal 

or belonging to quaternary carbons (Figure 90 a), with a range of 21.4 Hz. The remaining signals 

are either obscured by the large gel background signal or belonging to quaternary carbons 

(Figure 92) 

Despite the fact that we have only 10 13C RCSAs, from protonated carbons, we can 

complement them below with 1H RCSAs, we conducted a study whether these RCSAs are already 

able to assign the relative configuration.  

13C RCSAs were able to discriminate between both the diastereomers and establish the 

connection among all the stereocenters in tricholomamide B (Figure 90 c). ). Good agreement is 

achieved between experimental and back calculated 13C RCSAs for 2S,4R,6S,2'S configuration 

(𝑄(𝑄𝐶𝑆𝐴) = 0.095 (0.123)) as compared to 2R,4S,6R,2'S configuration (𝑄(𝑄𝐶𝑆𝐴) = 0.186 (0.214)) 

of tricholomamide B. Proportionality constant c for 2S,4R,6S,2'S and 2R,4S,6R,2'S has a value of 

0.249 and 0.271 respectably. As is described in the literature 22, including the chemical shit 

anisotropy (CSA) contribution in the computation of the 13C RCSA quality factor (𝑄𝐶𝑆𝐴) increases 

the discrimination capabilities of the technique. 

The efficacy of 1H RCSA NMR technique is also demonstrated for establishing the 

relationship between two distant chiral centers C2 and C2' of tricholomamide B separated by 5 

rotatable covalent bonds. In the 1H RCSA, huge polymer background hinders the extraction of 

proton RCSAs for C9 and C5 carbons (Figure 93), respectively. 1H RCSA tricholomamide B are 

shown in Figure 91 c 
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Data consistency was checked by computation on the intertensor angle 57,138 (θ1H-RCSA,13C-RCSA) 

resulting in an angle of 3.1°; which is in agreement with the expected indicating that A1H-RCSA 

and A13C-RCSA are to a very high degree collinear. 

Finally, we simultaneously used 13C-RCSAs and 1H-RCSAs and evaluate the quality of the fit 

with a combined quality factor that combines Cornilescu Q-factor and QCSA for 13C, 1H-RCSAs 

keeps the assignment of tricholomamide B as 2S,4R,6S,2'S; as expected including the CSA 

contribution in the quality factor improves the discrimination (Figure 88). 

 

 

Figure 88. RCSA-based stereochemical analysis of both possible configuration of tricholomamide B, 
measured in our 3 mm compression device prototype. The quality of the fit is expressed as a combined 
quality factor (Q13C RCSA + 1H RCSA) where the correct configuration has the lowest Q value 
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In summary, the conformation and absolute configuration of a new natural product 

with a flexible side chain attached to a partially rigid five member ring were unambiguously 

determined by using a combination of isotropic (NOEs and J-couplings)/anisotropic (13C and 1H 

RCSAs) NMR analysis and DFT calculation of ECD. Therefore, the absolute configuration of 

tricholomamide B is 2S4R6S2'S. 

 

 

 

Figure 89. Absolute configuration of tricholomamide B 
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Carbon Exp (Hz) Comp (Hz) 

C6 2.25 2.381 

C2 -3.72 -4.551 

C2' -13.000 -12.099 

Me10- 3.04 2.275 

Me1- 0.24 0.473 

Me12- 0.3 0.078 

C3' 1.91 2.304 

C4' 4.06 4.167 

C5 8.38 8.822 

C4 Ref Ref 

 

 

 

 

 

Alignment tensor information: 

A'x=-1.986e-01 

A'y=-6.956e-01 

A'z= 8.942e-01 

 
 

Configuration Q QCSA 

(2S,4R,6S,2'S)* 0.095 0.123 

(2R,4S,6R,2'S)* 0.186 0.214 

 

Figure 90. Anisotropic data fitting (13C RCSA) of tricholomamide B measured at 800 MHz for 1H in poly-DEGMEMA/CD3OD gel. Experimental and back calculated carbon residual chemical shift anisotropies (13C-RCSA) 
(a), extracted carbon RCSA are green marked and reference carbon is red marked (b), quality factor 13C RCSA information for tricholomamide B for both possible configuration 2S,4R,6S,2'S and 2R,4S,6R,2'S (c) Alignment 
tensor information of (2S,4R,6S,2'S)* (d), fitting from carbon residual chemical shift anisotropies (13C-RCSA) (e) and Q factor and QCSA of both possible configurations 

 
 

 
 

 

 

 

   

(a) (b) 

(c) 

(d) (e) (f) 
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Proton Exp. (Hz) Comp. (Hz) 

H6 -6.08 -5.088 

H2 -3.6 -2.374 

H2' -3.6 -4.722 

Me10- -1.04 -1.037 

Me1- -4.56 -4.663 

Me12- -3.52 -4.002 

H3' -2.64 -2.459 

H4' -2.88 -2.429 

H4 Ref Ref 

 

  

Alignment tensor information: 

A'x= 1.248e-01 
A'y= 2.475e+00 
A'z=-2.600e+00 

 

 

Configuration Q QCSA 

(2S,4R,6S,2'S)* 0.159 0.165 

(2R,4S,6R,2'S)* 0.216 0.242 

 

Figure 91. Anisotropic data fitting (1H RCSA) of tricholomamide B measured at 800 MHz for 1H in poly-DEGMEMA/CD3OD gel. Experimental and back calculated proton residual chemical shift 
anisotropies (1H-RCSA) (a), extracted anthropic data are green marked and reference proton is red marked (b), quality factor 1H RCSA information for tricholomamide B for both possible 
configuration (2S,4R,6S,2'S)* and (2R,4S,6R,2'S)* (c) Alignment tensor information of (2S,4R,6S,2'S)* (d), fitting for proton residual chemical shift anisotropies (1H-RCSA) (e) and Q factor and 
QCSA of both possible configurations 
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(a) Fully relaxed gel Tricholomamide B (c) Maximum Compressed gel 

 

 

 

 

Figure 92. Real‐time pure shift HSQC experiment of Tricholomamide B; detail of C2 oblique mode of HSQC pure shift of fully relaxed (a) 2D projection HSQC pure shift of fully 
relaxed (b) C2 oblique mode of HSQC pure shift of fully compressed (c) 2D projection HSQC pure shift of fully compressed gel, isotropic peak is missing (d 

Isotropic correction is necessary 

when RCSAs are collected using a 

compression device 

 
13C RCSA uncorrected 

 

1H RCSA uncorrected 
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directly from the HSQC pure shift 
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Figure 93. Isotropic (blue) and anisotropic (red) CLIP-HSQC spectra of tricholomamide B (298.1 K, CD3OD, 

800 MHz for 1H and 200 MHz for 13C)  

 

 

 

Figure 94. 2H spectrum of fully relaxed (blue line) and compressed (red line) poly-DEGMEMA gel (70/0.3) 
used in the present study. 

ΔνQ=5.9 Hz 

Isotropic signal 
Anisotropic signal minimum alignment 

Anisotropic signal maximum alignment 
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1.3.4.2.6. Establishing the relative configuration of tricholomamide 

A by Residual Dipolar Coupling (RDCs) 
 

After successfully established the absolute configuration of tricholomaminde A by NOESY and 

J-based analysis, we decided to test the capabilities of RDCs with a 3 mm compression device 

prototype to connect the 2´ with the stereocluster the group formed by C2 and C6 (Figure 60 

right). The general approach to determine the relative configuration of flexible natural product 

by residual dipolar coupling (RDCs) is depicted in Figure 6.41 

1.3.4.2.6.1 Experimental details 
 

The gel used as alignment media was prepared as described before, as well as the sample 

preparation (the sample mass was 500 µg). Splitting in deuterium channel (ΔνQ), was obtained 

from a 2H NMR spectrum, showing a quadrupolar splitting value (-OD) of (4.4 Hz) at maximum 

compression (Figure 98). 2H NMR spectra were recorded on a Bruker Avance III 800 

spectrometer operating at 122.89 MHz for 2H and 8 transients were accumulated. 

NMR experiments for tricholomamide A were recorded also on a Bruker Avance III 800 

spectrometer operating at 800.53 MHz and 201.32 MHz for 1H and 13C, respectively. Direct 1JCH 

coupling and RDCs were measured from F1 J-scaled BIRD version of HSQC experiment 

(hsqcetgpipjcsp.2) under both isotropic and anisotropic conditions were acquired with a scaling 

factor of 8. Experiment time was speed up by using non uniform sampling (TD2: 1262; TD1: 768; 

FnTYPE: NUS 50%; 192; 112 transients; 2 s recycle delay)21 (Figure 99). A sine squared window 

function was applied in both F1 and F2 dimensions prior to Fourier transformation. RDCs 

experimental error was calculated by Kontaxis et al., 94 (Equation 13) Where; peak line width, 

peak signal to noise ration and J scaling are represented by LW, SN and K respectively.  

 

𝜎 =
𝑙𝑤

𝑆𝑁 ∗ 𝐾
 Equation 13 

 

1.3.4.2.6.2 RDCs analysis of tricholomamide A: 

 

Alignment tensors were calculated through the singular value decomposition method (SVD) 
3 provided in MSpin-program.9 1DCH RDCs value were expressed in Hz. 1DCH RDCs were extracted 

from a CLIP-HSQC experiment using Topspin 3.1.133 Residual dipolar couplings were determined 

as 𝐷 = 𝑇 − 𝐽; where 𝑇 and 𝐽 are the C-H couplings measured from CLIP-HSQC recorded in 

anisotropic (poly-DEGMEMA/CD3OD gel) and isotropic (CD3OD as solvent) conditions, 

respectively.139 As the molecule is described by a rather restricted ensemble, the NMR data was 

fitted using a single tensor 12. Conformers were oriented to the Eckart frame 137 1DCH RDCs of 

methyl groups were averaged as described by Sanchez-Pedregal et al. 114 and Methylene group 

are reported as the average of the coupling of CHa and CHb. The quality of the fits was scored 

in terms of the Cornilescu quality factor Q.19 
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The absolute configuration of C2' chiral center was assigned to be S as in Tricholomamide A. 

NMR analysis (NOEs and J-couplings) indicates that the relative configuration of tricholomamide 

A should be either 2R6R2’S or 2S6S2’S. 36,135,136 An extensive computational study over the 

diastereomers yielded 5 and 6 conformers for 2R6R2’S and 2S6S2’S configurations, respectively 

Tricholomamide A is highly flexible and demands the use of a multi conformer single tensor 

(MCST) approach with and populations Boltzmann averaged for the possible configurations and 

their conformers. The significant assignment of a molecular-fixed-axis system is needed; that 

allows a proper separation of the internal motion and reorientation in the molecule. This 

coordinate system was chosen in such a way that it fulfils Eckart Condition; preventing that the 

nuclear displacements results in the movement of the center of mass and excluding any 

contribution of the displacements to an overall rotation of the molecule 41. Configurations 

2R6R2’S and 2S6S2’S show envelope conformations, some with C5 down and others with C5 up; 

therefore C5 is excluded from Eckart frame (Figure 72 and Figure 73 a). We assumed as has 

always been done that conformational equilibrium is not significantly affected by the alignment 

media. 

The efficacy of the RDCs NMR technique is demonstrated for establishing the relationship 

between two distant chiral centers C2 and C2' of tricholomamide A separated by 5 rotatable 

covalent bonds. In the RDC analysis, extraction of RDCs for C9, C2´ and C4’ carbons was not 

possible. 1DCH RDCs and 1JCH couplings of tricholomamide A are shown in Table 20. The 13C-1H 

RDCs of tricholomamide A buried under the gel signal were back computed after the SVD fitting.  

Eight RDCs were extracted and accurately measured on tricholomamide A, with a range of 

7.2 Hz (Table 20). Correct stereochemistry of tricholomamide A (2S6S2´S) showed the lowest Q 

factor when RDCs experimental values are fitted to the diasteromeric structures. RDCs show a 

good fit, with a Q factor of 0.277 for the correct ensemble of structures, the other proposed 

configuration (2R6R2´S) with a Q factor 0.431. (Figure 96, panel a and c). Discrimination was 

checked by running a Monte Carlo Bootstrapping analysis shown in Figure 96, panel b 

Good configuration discrimination was achieved using RDCs combined with Poly-Degmema 

gel for tricholomamide A. 
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Table 20. Tricholomamide A 13C and 1H chemical shift, scalar coupling constant 1JCH, total splitting 1TCH = 
1JCH + 1DCH and experimental (exp) and calculated (calc) 1DCH values with their corresponding experimental 
error. 

# C δ13C (ppm) δ1H (ppm) 1TCH (Hz) 1JCH (Hz) Exp DCH (Hz) Calc DCH (Hz) Error (Hz) 

6 76.8 5.16 143.25 146.51 -3.25 -3.30 0.49 

2 44.5 5.10 142.53 145.79 -3.26 -3.36 0.60 

2´ 53.8 3.54 - 144.14 - -2.03 - 

9 33.5 a: 2.78 
b: 2.64 

- 125.32 - -0.91 - 

4 29.2 a: 2.63 
b: 2.30 

131.7 128.08 3.62 3.09 0.27 

4´ 30.9 a: 2.39 
b: 2.35 

- 131.21 - -3.90 - 

5 31.6 a: 2.29 
b: 1.64 

128.02 130.69 -2.68 -2.16 0.62 

3´ 26.0 2.04 130.41 130.88 -0.47 0.96 0.22 

1 17.0 1.31 129.77 128.54 1.22 0.55 0.26 

10 6.0 1.06 128.01 127.38 0.63 0.63 0.16 
a Residual dipolar coupling for Methylene group are reported as the average of the coupling of CHa and CHb. (-) Either 

not present or not measurable (overlapping with polymer signal). b The error associated with the measurement of 

coupling splitting T was calculated using 

 

1.3.4.2.6.3 Establishing the relative orientation of H5a and H5b by chemical shift 

tensor calculation 
 

The relative orientation of C5 methylene protons of tricholomamide A was unequivocally 

assigned using chemical shift tensor calculation at DFT level (Table 21) which, however, is not 

possible with the conventional NMR structural parameters such as NOEs and J-couplings; 

following a methodologies well described elsewhere.140 Chemical shift tensor was calculated by 

using MPW1PW91/6-311G+(2d,p) basis set/functional combination110 and referenced to 

tetramethylsilane. Quality of the assignment was estimated based on correlation coefficient 

(R2), mean absolute error (MAE) and root mean square error between theoretical and 

experimental NMR chemical shifts 141. Distinguishing was entirely done based on 1H chemical 

shift calculation by taking into account the Boltzmann distribution of conformers (Figure 97), the 

combined R2 (0.864), MAE (0.433) RMSDs (0.658) between experimental and calculated 1H NMR 

shifts were able to determine the correct assignment of C5’s prochiral protons in 

tricholomamide A (Figure 95)  

In summary, the structure and absolute configuration of a new natural product with a flexible 

side chain attached to a partially rigid five member ring were unambiguously determined by 

using a combination of isotropic (NOEs and J-couplings)/anisotropic (13C-1H RDCs) NMR analysis 

and DFT calculation of ECD. Therefore, the absolute configuration of tricholomamide A was 

proposed as (2S,6S,2'S) (Figure 98, panel a). 
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Table 21 Correlation coefficients (R2) ), mean absolute error (MAE) and root mean square error ( RMSE) between the 
estimated proton chemical shift for both possible combinations of C5’s prochiral protons in tricholomamide A  

Configurations C5 R2 MAE RMSE 

δ 1H (1.66 ppm) δ  1H (2.99 ppm) 

Hα,Hβ-4S6S2’S Hα Hβ 0.833 0.505 0.711 

Hβ,Hα-4S6S2’S Hβ Hα 0.864 0.433 0.658 

 

 

 

 

 
 

Figure 95.  Absolute configuration of tricholomamide A and assignment of the diastereotopics protons of 
C5 by 13C-1H RDCs chemical shift calculation at DFT level (a) correlation curve for configuration Hβ,Hα-
4S6S2´S, showing the highest R2 (0.8636). Bar plot of the indicators used in the assignment of prochiral 
protons attached to C5 (c)   
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Figure 96. Error analysis over the back calculated 1DCH is calculated by the Monte Carlo Bootstrapping module in MSpin 
software: size population was 256 and 1TCH error estimated. RDCs fitting for the expected configuration of 
tricholomamide A (2S6S2´S), including its experimental error (panel a), Bootstrapping analysis for both feasible 
configurations (panel b) showing that RDCs analysis yields a good level of discrimination between for possible 
configurations and RDCs fitting for the other expected configuration of tricholomamide A (2R6R2´S), including its 
experimental error (panel c). it is worth to mention that tricholomamide A -2S6S2´S not only yields the lowest Q 
(0.277) but also the fitting with the best linearity, 0.92 vs 0.72 
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5.05 % (-1071.76272236 Eh) 5.66 % (-1071.76283047 Eh) 

 

 

31.20 % (-1071.76444050 Eh) 22.9 % (-1071.76414863 Eh) 

 

 

35.19 % (-1071.76455416 Eh)  

Figure 97. Energy and Boltzmann averaged population of the conformers of tricholomamide A – 
(2R6R2’S)*. Energy was carry on in Gaussian V 9.0 at DFT level using the functional/ basis set combination 
MPW1PW91/6-311+G(2d,p) 
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Figure 98. 2H spectrum of fully relaxed (blue line) and compressed (red line) poly-DEGMEMA gel (75/0.3) used in 
tricholomamide A study, compressed in 3 mm compression device prototype 

 

 

Figure 99. Extraction of CH coupling (1THC and 1JCH) from experimental data collected with J-scaled IRD 
HSQC (K = 8). Expanded region of C2-H2 Cross-peak with isotropic spectrum shown in blue and 
anisotropic spectrum in blue. Low viscosity of methanol combined with the small amount of gel mass 
(22 mg) provides sharp lines in anisotropic conditions. Experimental error of 1TCH was estimated in 0.60 
Hz by the methodology described by Kontaxis et al., 
 

ΔνQ=4.4 Hz 

1JCH 

1TCH = 1DCH + 1JCH 

1DCH  
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1.3.5 Development of semi micro stretching for measuring 

anisotropic parameters (RDCs and RCSAs) 
 

1.3.5.1 Introduction 
 

Development of new alignment media, improvement of existing NMR pulse sequences and 

applications of non-uniform sampling techniques, and improvement in alignment devices are 

still active research topics with many drawbacks and challenges to be overcome. We show the 

robust extraction of residual dipolar coupling (RDC) of two rigid molecules: progesterone and 

strychnine at micro gram scale ( i.e. 800 µg and 700 µg ,  respectively) using Poly-DEGMEMA and 

PMMA by using micro-stretching device. The use of the 3 mm Hilgenberg stretching devices 

demands some refinement in currently existing recipes, which is also discussed in herein. 

Stretching device introduced herein are the result of a cooperation agreement among our 

research groups QUIMOLMAT-PRONAMAR (Coruña University-Spain), Max Planck Institute for 

Biophysical Chemistry (Göttingen-Germany), Gauhati University (Guwahati-India) and the 

German glass company Hilgenberg (Malsfeld-Germany). Introduction of the stretching device in 

the semi micro scale opens up the possibilities for measuring another anisotropic parameters 

such as 13C  and 1H RCSA when the restricted amount of simple is available. 

 

1.3.5.2 Measurements at low sample concentration 
 

Background polymer signal is one of the main reasons for missing signal during anisotropic 

measurements. Moreover, recently discovered natural products are available only in scare 

amounts 54,142 Four ways can be point out to mitigate the possibilities of buried analyte signal 

under the alignment media background: using sample amount in milligram scales 143, employing 

tailored HSQC pulse sequences as clip/clap experiment 112 or clip/clap broadband proton-

decoupled 144, silencing the background gel signal by deuteration 66,70 and reducing the 

alignment media’s signal to the minimum by using a 1.7 mm diameter compression device  145 

As a first approach, we tested the influence of the polymer mass in signal sensitivity using a 

5 mm New Era´s compression device and our in-house built 3 mm compression device with 

PMMA gel sticks (70/0.25) swelled in CD3Cl. The gel mass used was 45 and 22 mg respectively.  

Figure 100 displays 13C-{1H} spectrum of strychnine (1 mg) in a fully relaxed gel (800 scans in a 

800 MHz Bruker spectrometer equipped with a cryo probe). The panels of the figure displays 

data extraction; for panel C4, isotropic and anisotropic contribution can be extracted from both 

devices. For panel C2, as was described elsewhere, isotropic an anisotropic contribution 

collapses into one signal for some carbons. For panel C23, signals look sharper and well defined 

in the 3 mm semi-micro compression device (SMCD), meanwhile they look broad in the New Era 

compression device device. It is worth to mention that it hinders the extraction of data and 

sometimes leads to miss undertaking and finally the most dramatic is panel C15, where the 
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signal is completely missing in New Era compression device device. In summation, broad and 

missing signals can easily either reduces the discriminate capability or, even worse, guide to 

wrong conclusions. 

 

 

   

 

 

 

 

 

 

Figure 100. 200 MHz 1D 13C-{1H} spectrum of strychnine (1 mg) dissolved in a relaxed PMMA/CDCl3 gel 
displayed the individual isotropic (*) and anisotropic contributions. They were measured in 5 mm New 
Era´s compression device (Blue line) and measured in a 3 mm in house compression device (red line) 

 

1.3.5.3 Hilgenberg 3 mm Stretching device description: 
 

The main goal of developing semi-micro stretching device (SMSD) is to measure RDCs and 

RCSAs at micro gram scale in combination with the deuterated PMMA gels introduced by our 

research group this year only, when other devices suffer from few disadvantages. Device was 

C4 C2 C23 C15 

(*) 

(*) 

(*) 

(*) 

(*) 
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designed at the Max Planck Institute for Biophysical Chemistry (Göttingen) and was 

manufactured by the German glass company Hilgenberg. The device, as the one described by 

Liu et al. 16, consists of an two side open NMR tube, with an outsider diameter of 3 mm. The 

tube provides two sections with different inner diameters for introducing different alignment 

conditions necessary for RCSA measurement. The gel stick is initially swollen in a 5 mL 

Eppendorf, and was delivered into the larger diameter section (2.2 mm). At this point,  gel may 

not get stretched or slightly stretched and provided minimum alignement condition and spectra 

were collected. Afterwards, the swollen gel is moved through the device and pushed into the 

narrower section of the tube and thus maximum alignment condition is obtained .The device is  

now available only with 3 different narrowed section diameters and are compatible with both 5 

mm and 3 mm cryoprobes. This device is provided by the company either with Teflon ® or 

Rubber stoppers, which are compatible with CH3Cl, MeOH and DMSO. So far our research group 

have developed formulation for PMMA, PMMA-D8 and Poly-DEGMEMA gels for these devices 

for CH3Cl and MeOH soluble samples. By using SMSD and PMMA-D8,  , it was possible to 

accurately measure 1H-RCSAs and subsequently determine relative configuration of  Briarane 3, 

a new Diterpene isolated from Briareum asbestinum. Nevertheless, up to now 1DCH has not been 

reported at micro gram levels using SMSD. Herein, we test again the capabilities of the new 

device and report the discrimination among all the possible diastereoisomers of two well known 

small molecules, viz., progesterone (800 g) and strychnine (550 g) by using RDCs 

Gel stick is delivered inside the larger diameter section (2.2 mm) by using a reduced and 

modified version of the New Era´s device, and, the main difference is that the chamber and the 

plunger are made of Teflon and neither metallic parts nor o-ring are used. During the delivery 

of gel, there is a funnel that guides the gel and slightly extrudes from the chamber to the 2.2 

mm tube section. Generally gel is tight enough to be held by the device and does not give any 

deuterium splitting. Sometimes, few drops of deuterated solvent are added from the other end 

of the tube to help the delivery and stretching process.  
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Figure 101. Workflow chart to obtain anisotropic parameters (RCSA and RDC) using the SMSD. 
Representation of the used SMSD used in this study (a). 2H spectra of PMMA (70/0.05)/CDCl3 under 
minimum (b) and maximum(c) alignment conditions.    

RDCs, 1H and  13C RCSAs  

(a) 

(b) 

(c) 

O.D 3 mm 

I.D 2.2 mm 

 

O.D 3 mm 

I.D 1.8 mm 
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Figure 102. Hilgenberg´s Semi micro stretching device.  Family of device has three different inner diameters from 1.5 until 1.8 mm (a), devices are basically an smaller version 
of those manufactured by New Era; a highly resistant boro silicate 3 mm (b.1) glass NMR tubes provided with to open sides and two inner diameters (b.2)  Sample solution is 
swallowed in the gel stick (c.1), in a procedure that takes 24 h, and send inside the SMSD using a dedicated delivery device comprising a chamber (c.2) a piston (c.3) When 
the sample is insede the tube the analysis is carry on as described before in literature, the aligment medium is stretched by pushing if from the wide region of the device (2..2 
mm) into the narrow section (1.8 mm) with a solid glass 2 mm piston. Piston is keeped in its final position by wrping with Teflon® tape (d). Gel used here is a PMMA-H8 
70/0.04 swalloed in CDCl3 with a natural pigment 

1.8 mm       1.6 mm       1.5 mm 

Semi micro stretching device family 
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1.3.5.4 Measuring of RDC in 3 mm Hilgenberg´s Semi Micro Stretching Device: 

The Case of Progesterone 
 

Poly-DEGMEMA gel was prepared using previously described procedures. 60 For their 

synthesis, Hilgenberg’s 1.7 mm NMR tubes (Internal diameter 1.6 mm) were pre-silanized using 

Sigmacote® before carrying out the polymerization reactions. Subsequently, the tubes were 

emptied and dried in an oven (40 ºC/ 24h). Polymerization inhibitor potentially present in the 

monomer (DEGMEMA) and the cross-linker EGDMA (ethylene glycol dimethacrylate) were 

removed by both over a basic alumina column. For polymerization, the initiator employed was 

2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (V-70). Three stock solutions were prepared; 

Solution A: 1.4 mL of DEGMEMA monomer and 0.6 mL of MeOH. Solution B: 200 μL EGMDA and 

1240 μL DEGMEMA. Solution C: 14 mg of V70 in 1 mL of MeOH. In a falcon tube were mixed: 2 

mL of stock solution A, 20 uL of solution B and 32 μL of solution C. After thorough mixing of the 

above constituents the solution was transferred to the silanized NMR tubes, which were 

subsequently capped and kept in a water bath at 50 °C for 6 hrs. After polymerization, tubes 

were opened, and the gel was allowed to dry. The polymer gels were carefully removed from 

the NMR tubes and washed three times in methanol (24 hrs each) in order to remove any 

residual monomer. Poly-DEGMEMA gels were dried on a glass surface and they are sticky and 

flexible, and therefore have to be handled with utmost care. Gels change their proportions 

significantly during the drying/swelling processes. For one bond CH RDC (1DCH) measurements, 

2.4 cm gel sticks were used and swollen in CD3OD inside a 5 mL Eppendorf for at least 24 hours. 

The gel used in the present study shows a 2H quadrupolar splitting of 3.51 Hz, at stretching in a 

Hilgenberg 2.2/1.6 mm. Different amount of alignment are found changing either cross liker 

concentration or the inner diameter in the narrower section of the device (See SI). All the 

chemicals were purchased from Sigma Aldrich and V-70 was obtained from Wako Chemicals. 

Progesterone, is an endogenous steroid and a hormone involved in ovulation, mammary 

gland development, establishment and maintenance of pregnancy in vertebrates and humans 
146,  was used to test the alignment capabilities of Hilgenberg´s 3 mm stretching device (2.2/1.6 

mm) to afford high quality anisotropic data. Different monomer/cross linker concertation were 

to  prepare the Poly-DEGMEMA stretchable Gel, yet the 70/0.2 is most suitable one of the 

2.2/1.6 mm stretching device. This molecule has six stereocenters with the well-established 

configuration 8S,9S,10R,13S,14S,17S (Figure 103) leading 32 possible diastereomer. For clarity, 

the configuration of the stereocenters will be shown including the numbers and following the 

same order for every diastereomer.147  
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Figure 103. Chemical structure of progesterone 

 

Progesterone (800 µg) was dissolved in CD3OD (200 µl) and placed in a 5 mL Eppendorf with 

a Poly-DEGMEMA stick for 28 h and delivered inside the SMSD, using the device shown in Figure 

102 c.1 to c.3.  The solvent deuterium signals show a ΔHQ value of 3.5 Hz for the stretchable gel 

in the 3 mm stretching device 2.2/1.6 mm. Isotropic and anisotropic data was collected as usual, 

by moving the gel from the wide tube section (2.2 mm) to the narrow one (1.6 mm) by the 

assistance of a 2.0 mm glass plunger provided by Hilgenberg. J-scaled BRID HSQC spectra 

(hsqcetgpipjcsp.2) with a scaling factor of 8 were acquired under both isotropic and anisotropic 

conditions. 21 

1.3.5.4.1 Results and Discussion 

Poly-DEGMEMA stretchable gel described here is inexpensive and easy to prepare handle. 

There is no requirement of either laboratory arrangement nor inner gas current  for their 

preparation unlike Poly(acrylonitrile) (PAN) 148 or PMMA gels 43 Polymer background, can 

obscured some sample signals, mainly at low sample concentrations, this can be overcome by 

reducing the weight of gel as in the stretching device introduced hereby.  Supporting information 

shows those section that could be obscured by the polymer signal. Gel mechanical properties 

are compatible with different stretching devices, yet is useless after one use. Sample can be 

recovered with a methanol extraction, as in other gels 149 

Before the collection of anisotropic data in small molecules, one should check not only 

solvent compatibility but also the signal coming from the polymer. DEGMEMA monomer 

deuteration is rather expensive; around 9000 €/gram of monomer according to Polymer Source 

(https://www.polymersource.com/ ). Therefore we recommend overlapping of J-scaled BRID 

HSQC spectra of the sample and the gel before measuring anisotropic data collection, in order 

to evaluate any possible signal missing. Signals between 3.1; 58.0 and 4.5; 72.0 ppm (1H δ;13C δ)  

are expected to be buried under polymer signal. Moreover, while low degree of alignment 

results in small 1DCH values (maximum and minimum value of 4.54 and -1.27 Hz respectably), and 

allows the extractions of 15 RDCs with great accuracy due to the narrow spectral lines. Here is, 

we have overcome the proton-proton dipolar broadening signal under stretching conditions 

using the F1 1H-coupled version of HSQC experiment for RDCs measurements Figure 104 

  

https://www.polymersource.com/
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Figure 104. Extraction of CH coupling (1TCH and 1DCH) from the experimental (800 µg of progesterone) data 
collected with Hilgenberg´s 3 mm stretching device measured in a 800 MHz Bruker Spectrometer. 
Expanded region of C17-H17 isotropic spectrum is shown in blue and anisotropic is spectrum is shown in 
red 

One-bond proton-carbon RDCs (1DCH) are reported as the difference between the signals 

splitting observed under anisotropic and isotropic condition (1TCH = 1JCH + 1DCH) 97 (Table 22). 

Progesterone is a rather rigid molecule, due the low level of flexibility present in its structure; 

therefore non-conformational equilibrium is expected, except the possible rotation associated 

with Me21. RDC fitting data, of all 32 possible diastereomers, alignment tensor determination, 

and calculation of Cornilescu’s quality factor (Q) were carried out in MSpin software 9,19 
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Table 22. Progesterone 13C and 1H NMR chemical shift, scalar coupling constants 1JCH, total splitting 
1TCH=1JCH+1DCH, and experimental (Exp) and calculated (Calc) 1DCH values 

#C δC (ppm) δH (ppm) 1TCH (Hz) 1JCH (Hz) Exp DCH (Hz) Exp Calc (Hz)) 

1 36.97 a: 2.0886 
b: 1.7135 

130.06 128.34 1.72 1.48 

2 34.03 a: 2.3249 
b: 2.5056 

129.73 127.72 2.01 1.81 

3 202.46 - - - - - 

4 124.34 5.7174 159.98 159.28 -0.70 -0.66 

5 175.12 - - - - - 

6 33.36 a: 1.9080 
b: 1.0891 

129.84 127.62 2.23 1.81 

7 34.85 a: 2.2872 
b: 2.4790 

130.46 128.36 2.10 2.17 

8 36.92 1.6455 128.84 124.30 4.54 4.24 

9 55.31 1.0321 127.79 124.02 3.77 4.24 

10 39.88 - - - - - 

11 23.94 a: 2.1417 
b: 1.6942 

NR NR NR 2.35 

12 40.12 a: 2.0939 
b: 1.5018 

128.59 126.81 1.78 1.73 

13 45.22 - - - - - 

14 57.36 1.2385 128.89 124.74 4.15 4.24 

15 25.47 a: 1.7473 
b: 1.2947 

133.76 131.50 2.27 2.42 

16 22.29 a: 1.5070 
b: 1.6786 

128.61 126.31 2.27 1.90 

17 64.68 2.6481 131.43 127.17 4.26 4.20 

18 13.81 0.6780 123.99 125.18 -1.18 -1.33 

19 17.82 1.2385 125.62 126.89 -1.27 -1.19 

20 212.33 - - - - - 

21 31.72 2.1225 126.88 126.92 -0.04 -0.11 

Residual dipolar coupling for CH2 groups are reported as the average of couplings of CHa and CHb (-) quaternary carbons (NR) not 

readable, buried on gel signal  

 

The 32 possible structures were created in Gauss view V 5.0, geometries werr optimized at DFT 

level (6-31+g(d,p))  and saddle point confirmation was done with a frequency calculation at the 

same level of theory. A single structure was considered for each diastereoisomer due to the 

inherent molecule rigidity. Q factor of the correct structure is expressed in terms of the average 

of 2 structures with the same skeleton coordinates but with the expected rotation, of Me21. The 

single tensor approximation with fit populations was used during structure refinement. 

Chemical shift tensor (CSA) calculation was done in Gaussian Suite V 9.0 as well at B3LYP/6-

311G++(2d,p) level. Quality of the fitting is quantified in the form of Cornilescu quality (Q) factor. 

By using 1DCH RDC, all the 31 wrong configuration were certainty eliminated. Structure of 

progesterone, here in used, matches with X-ray structure reported, a refinement over the 

structural bases on the rotation of Me21, resulting in a Q factor of 0.088 for the 

8S9S10R13S14S17S, next two best configuration are 8S9S10R13R14S17R and 

8S9R10S13S14S17S (Q=0.118). Discrimination is supported by a Bootstrapping analysis.  Results 

provide a good agreement between proposed structure of progesterone and RDCs measures, 

vide infra. Goals of this short study were shown the compatibility of Poly-DEGMEMA gel (70/0.2) 

with a stretching device and the utilities of the semi micro stretching device (2.2/1.6 mm) , 

introduced herein as first time as a valid tool for extracting anisotropic parameters at microgram 

scale. In summation, 3 mm Hilgenberg stretching devices up the possibility to afford anisotropic 
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measurements (RDCs,1H & 13C RCSA) at micro gram scale  which reduces in the polymer 

background signal. It is noteworthy that sample concentration inside the gel does not changes 

during the experiment and therefore no isotropic shift correction is required  

 

 

Figure 105. The Q factors bar plot of progesterone and its possible diastereomers, for the two closest 
configurations 8S9S10R13S14S17S and 8S9S10R13R14S17R are 0.088 and 0.118, respectively.  

 

1.3.5.4.2 Bootstrapping analysis: 
Q-factor difference between the correct configuration of progesterone (8S,9S,10R,13S,14S,17S) 

and two of the feasible diastereoisomers (8S,9S,10R,13R,14S,17R and 8S,9R,10S,13S,14S,17S) is 

only 0.03. Impact of experimental error in the RDC fitting was evaluated using a Monte Carlo 

bootstrapping113 procedure, with the module present in MSpin. This computer intensive 

resampling method have been widely applicable and allows the treatment of more realistic 

models when the amount of sample point is scare. Basic idea behind of the method is that, in 

absence of any other information about the distribution, the observed sample contains all the 

available information regarding the underlying distribution, and therefore resampling the data 

is the best guide to what can be expected from resampling from the distribution. For 

bootstrapping, 2000 simulated data sets were generated by sampling a Gaussian distribution 

centered on each experimental RDCs with a given standard deviation of 0.08 Hz, around of the 

6% of the minimum RDC value measured, SVD fitting was performed for each set and back 

predicted  RDC values and Q’s were then averaged over the 2000 different computations and 

the corresponding standard deviations were computed. The comparison of the Gaussian curves 

for progesterone and the suspicious Q factors are depicted in Figure 106. The average Q factor 

of progesterone is 0.092±0.007 and 0.121±0.006 for (8S,9S,10R,13R,14S,17R) and 0.121±0.006 

for (8S,9R,10S,13S,14S,17S), respectively. An inspection of the curves allows to see a clear and 

unequivocal discrimination between the possible configurations. 
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Figure 106. Gaussian curves of Monte Carlo bootstrapping of progesterone 8S9S10R13S14S17S (blue 
curve) and two suspicious diastereoisomers 8S9S10R13R14S17R (panel a, orange) and 8S9R10S13S14S17S 
(panel b, green) 

 

1.3.5.4.3 Progesterone structure refinement: 
RDCs induced by anisotropic media are not only a powerful tool for determination of the 

configurations of small molecules but also refinement in its conformation 105. It has even led to 

the development of software by which using RDCs and other experimental NMR restraints 

provide a solution to practical problems as Computer-Assisted 3D Structure Elucidation (CASE-

3D) 150 and  molecular dynamics with orientational constraints technique (MDOC) 151 

Progesterone has a rather rigid ring system. Several staged conformers were created by 

changing the dihedral angel (H17,C17,C20=O,CH3(21)) and lead it move freely during geometry 

optimization at DFT level, afterward Cornilescu’s Q factor was calculated independently for each 

of them. An analysis on the NOESY (noesyph) of progesterone shows strong correlations from 

Me21 to H7, Me18, and weak correlations to both H12a and H12b, nevertheless only H16b 

shows a NOESY correlation meanwhile H16a correlation is absent (Figure 107). Based on this 

evidence Figure 108 shows a proposed structure refinement for progesterone by using RDCs. 
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Figure 107. NOESY correlations observed in progesterone from Me21 are green marked, those missing 
are indicated in red. From left to right; Me21 to Me18 (a), Me21 to H17 (b), Me21 to H16b (c) and Me21 
to H12a and H12b (d) 

 

 

 

 

 

Figure 108. Progesterone structure can be refined based on residual dipolar couplings measured by using Hilgenberg 
3 mm stretching device. Three different conformers of progesterone were find after allowing free rotation of Me21 
(panel a) conformer a and b Q (0.089) (panel b). The existence of conformers a and c is supported by NOESY 
correlation, meanwhile conformer b is ruled out not only by its high Q but also by the absence of the expected H16a 
NOESY correlation 
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Application of 1H RCSA at micrograms scale 

assisted with deuterated gels: The case of briarane-3 
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Next, as a more challenging example, we used 1H RCSA data for the configuration analysis of 

Briarane 3, a briarane diterpenoid isolated and purified from Briareum asbestinum collected in 

Yucatan Peninsula in Mexico. Although the planar structure is known for more than two decades 

using isotropic NMR data, its relative and absolute configuration for the 9 consecutive 

stereogenic centers has not been determined yet.  

Use of NOE distance restraints fixed the relative configuration at C2, C3, C4, C5 and C16 as S, R, 

R, S and R, respectively and leaves the relative configurations at C1, C9, C10 and C14 

undetermined. This provides a total of sixteen configuration and half of them are enantiomers.  

However, there is strong NOE correlation between the methyl group at C10 and C14 indicating 

that these bulky two methyl groups are syn position. The absence of NOE correlation between 

H1 and methyl group at C10 indicates that these proton are anti position. The NOE data also 

supports that H1 and methyl group at C14 are also at anti position. These data leaves the relative 

configurations configuration of C1 and C10 either RR or SS, which is the further corroborated by 

the presence of medium sized HMBC correlations between carbon of the methyl at C10 and H1; 

carbon of the methyl at C14 and H1. This has reduced the number to unknown relative 

configurations to only four (Figure 109). To determine these configurations, we measured 1H 

RCSA of Briarane 3 swollen in PMMA-d8 gel using micro stretching device with 2.2 and 1.8 mm 

inner diameters. The sample amount was only 35 µg and experimental RCSAs range from 1.8 to 

3.2 Hz at a 1H frequency of 800 MHz. The fitting of the 1H RCSA data to three possible 

configurations furnished a lower Q factor of 0.087 for 1S,2R,3R,4R,5S,9R,10S,14R,16R indicating 

it as the correct relative configurations since other configurations have Q factor of 0.137 or even 

higher (Figure 109). Since structural elucidation at micro gram scale is always a concern for 

natural products chemist, Figure 110 displays a 2D HMBC experiment of a 35 ug sample of 

Briarane 3 recorded at 800 MHz NMR spectrometer. In order to prove that capabilities of our 

groups allows such kind of analysis 
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(a)  

 

(b) 

 

(c) 

 

 

Figure 109. Underwater photo of Briareum asbestinum from the Briarane 3 was isolated (a). Structure of Briarane 3; 
the configuration of carbons in the shaded area remains undetermined by the isotropic NMR restraints. (b) Bar plot 
for the RCSA Q factors and the superposition of different conformers for the correct configuration is shown on the 
top of the bar plot (c) 
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Figure 110. HMBC spectrum of 35 ug sample of Briarane 3 recorded at 800 MHz NMR spectrometer in CDCl3 solvent. 
Sample was analyzed in a 1.7 mm OD capillary tube 
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Chapter 2 

Bioactive Marine Natural products: Isolation and detection assisted by 

Liquid Chromatography-High Resolution Mass Spectroscopy 
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2.1. Introduction 
 

The potential of natural products as sources for new drugs is still largely unmapped. Only 

a small percentage of organisms has been rigorously investigated in the search of interesting 

compounds and only few of them were submitted to pharmacological screening. Moreover, 

when a particularly activity has not been tested in the organism, this have to be considered as 

‘uninvestigated’ in relation to any other pharmacological activity. Microorganisms, plants or 

animals contain a huge amount of secondary metabolites. Therefore, any chemical investigation 

of one of them will reveal only a very narrow spectrum of its constituents. 

Searching for novel secondary metabolites in natural sources is a laborious task that 

frequently involves interdisciplinary work from different fields such as botany, pharmacognosy, 

pharmacology, chemistry, toxicology, etc. Secondary metabolites are often minor constituents 

of complex mixtures and their identification is a challenging key step in natural products 

research. Several approaches are used: (a) bio-guided fractionation procedure of bioactive 

extracts which has the problem of isolating known bioactive compounds. In these cases, 

dereplication processes are needed,152,153 (b) search for unique chemical constituents by NMR 

and LC/MS followed by their isolation and a broad evaluation in diverse biological assays, and 

(c) targeted approaches that are focused on the identification and quantification of known 

compounds based on LC-MS and MS/MS data.154,155  

Workflow for detection of biomolecules from natural sources by LC-HRMS 
 

Bioactivity-guided and targeted natural product study by LC/MS implies several steps shown in 

Figure 111.  

Solvent extraction.156 Basically, it progresses through as follows: the solvent penetrates into the 

solid matrix; the solute dissolves in the solvents; the solute is diffused out of the solid matrix; 

the extracted solutes are collected. 

Bio-assay. Metabolite detection in the extract and fractions is achieved by a testing procedure 

for estimating the presence of a bioactive substance. For example, chrome azurol S (CAS) assay 

is used to evaluate the siderophore production in microorganism extracts.157 However, the 

assays in some cases are not applicable to complex matrixes as they are not sufficiently sensitive 

and can suffer from matrix interferences.  

Fractionating. The fractionation depends on the physical or chemical difference of the individual 

natural products. Column chromatography (CC), gel filtration (GF) and solid phase extraction 

(SPE)158 are the most useful ones.  

Metabolite presence confirmation by LC/HRMS. The Figure 111 displayed the workflow chart 

from a raw extract to a bioactive natural products detection that was applied to different natural 

extracts and a variety of bioactive natural products in this chapter. LC/HRMS technique was the 

main strategy for detection and quantification of the selected bioactive natural products. 
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Figure 111. Procedure for detection or quantification of the active principles from natural sources by LC-HRMS 
techniques as strategic analytical screening tools during the natural product searching process. 

 

In the following paragraphs, some special considerations and equipment are described  

 

Sample purification  
 

A previous sample preparation procedure is needed to carry out metabolite detection 

by LC/MS due to the complex matrix interferes with detection. Most of the sample preparation 

techniques include gel filtration, solid-phase extraction and ultrafiltration membrane. Gel 

filtration chromatography (GF), commonly referred to as size exclusion chromatography, is a 

method for the separation of molecules on the basis of their size and shape.159,160 Separation is 

achieved using a porous matrix to which the molecules, for steric reasons, have different 

degrees of access (Figure 112 panel a). Therefore, compounds are eluted from the GF column in 

decreasing order of size. Sephadex ® LH-20, G-10 and G-25 are widely used in natural product 

isolation.161 Solid-phase extraction (SPE) uses solid particles, chromatographic packing material, 

usually contained in a cartridge type device, capable of retaining the target analytes, washing 

away undesired components, and washing off /eluting the desired analytes with another 

solvents into a collection tube.162 SPE sample fractionating consist in four steps (depicted on 

Figure 112 panel b): conditioning, loading sample, washing and eluting. The advantages of SPE 

can be summarized as: simplification of complex sample matrix along with compound 

purification, reduce ion suppression or enhancement in MS applications, capability to 

fractionate sample matrix to analyze compounds by class trace concentration (enrichment) of 

very low level compounds. The application of this technique in the siderophore detection in this 

study allowed us to speed up the process.158,163,164  
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Figure 112. (a) Separation by Gel filtration (GF); (b) The four-step solid-phase extraction (SPE) procedure and (c) 
difference between conventional vs. tangential Flow Unlike conventional filtration where solids and solutes 
immediately accumulate on the membrane surface, tangential flow creates a sweeping (or shearing) force along the 
surface of the membrane to provide for longer filter life and less frequent cleaning cycles under normal operating 
conditions.v 

Tangential ultrafiltration flow (UF), also referred as “cross flow filtration,” is a size-based 

technique in which the sample is constantly recirculated across a permeable membrane, 

progressively concentrating components that do not pass the membrane pores. The main 

difference between filtration and cross flow filtration is shown in Figure 112 panel c. Most 

studies use polysulfone membranes with a nominal size cutoff from 5 to 20 nm and a molecular 

weight of 100–100,000 Da.165 Different types of ultrafiltration membranes can be used to 

separate heavy metals, macromolecules, and suspended solids.166 

 

HPLC equipment set up 
 

Among the current available options for analyte separation using HPLC, the most 

common is reversed phase chromatography (RP). Reversed-phase high-performance liquid 

chromatography (RP-HPLC) involves the separation of molecules on the basis of 

hydrophobicity.167 The stationary phase is composed of porous silica particles linked to alkyl 

chains (C4, C5, C8, C18), where C18 offers better performance.168 The separation depends on 

the hydrophobic binding of the solute molecule from the mobile phase to the immobilized 

hydrophobic ligands attached to the stationary phase, i.e., the sorbent. The solute mixture is 

initially applied to the sorbent in the presence of aqueous buffers, and the solutes are eluted by 

the addition of organic solvent to the mobile phase. A typical mixture consists of two solvents, 

being MeCN/H2O and MeCN/H2O the most commonly used. Elution can proceed either by 

isocratic conditions, where the concentration of organic solvent is constant, or by gradient 

elution, where the amount of organic solvent is increased over a period of time. The solutes are, 

                                                           
v Figures were taken from http://www.mikeblaber.org reference297 and http://synderfiltration.com 
respectably 

(a) (b) (c) 
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therefore, eluted in order of increasing molecular hydrophobicity. Reversed-phase HPLC can be 

improved by the addition of mobile phase modifiers and buffers to control ionization of the 

sample molecules. 

 

Mass analyzers 
 

Mass analyzers play a crucial role in the metabolite detection. It is the component of the 

mass spectrometer where the ionized masses are separated on the basis of their charge to mass 

ratios (m/z) and outputs them to the detector where they are detected and later converted to 

a digital output. Different types of mass analyzers have been combined with HPLC for the 

analysis of natural products:169 quadrupole (Q), ion trap (IT), time-of-flight (TOF), Fourier 

transformer (FT) and Orbitrap.170,171 Each mass analyzer has its own special characteristics, 

specific applications and its own advantages and limitations. I will briefly describe the 

quadrupole (Q), Triple quadrupole and MS/MS techniques because they were used in the 

current study. 

(a) Triple quadrupole and MS/MS 
 

Triple quadrupole analyzers (QqQMS/MS) was selected for tetrodotoxin detection due to its 

high sensitivity and specificity.172 QqQMS/MS is configured so that the ions of interest pass 

through a sequence of three quadrupole mass filters,173,174 as is depicted in Figure 113, panel a. 

The first quadrupole (Q1) selects ions of interest that were generated in the ion source, based 

on its mass-to-charge ratio (m/z); these ions are called precursor (parent) ions. The second 

quadrupole (Q2) is typically used as a collision chamber to generate fragment or daughter ions 

for the precursor ions with the help of an inert gas. The advantage of argon over the nitrogen as 

the collision gas is because argon is heavier and promotes more robust fragmentation. The 

fragment ions with high ion intensity and specificity are, once again, selectively transmitted 

through a mass analyzer. The third quadrupole (Q3) is used to select and conduct specified 

fragment ions to the electron multiplier. The use of Q2 for ion fragmentation is optional and 

allows the user to collect simple MS data or MS/MS data depending upon specific needs. Triple 

quadrupole instruments are quite flexible and allow the user to monitor and collect: (1) simple 

MS ion data, (2) full-scan fragmentation data, (3) specific ion fragmentation data (Selected 

reaction monitoring (SRM) or Multiple reaction monitoring (MRM)), (4) neutral loss data, or (5) 

precursor ion data.175 The major advantages of triple quadrupole analyzers are the relatively low 

cost and small size, robustness, wide dynamic area and ease of use and maintenance 
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Figure 113. Conceptual diagram of the triple quadrupole mass spectrometer showing each component 173 and 
schematic diagram of the SRM operation. Metabolites introduced into the QqQMS/MS are first selected by their 
parent m/z, then fragmented, and finally the selected fragments (transitions) are recorded by their m/z and plotted 
to record abundance.176 

Application of selected reaction monitoring (SRM)176 to multiple product ions from one or 

more precursor ions is kwon as Multiple reaction monitoring (MRM) being the most common 

method for quantitation of analytes by LC/MS/MS. In MRM, ions are selected to make it through 

the first quadrupole and into the collision cell (Figure 113, panel b). These ions are referred to 

as the precursor, or parent, ions and they are fragmented inside the collision cell. Certain 

fragment ions referred to as product, or daughter, ions are selected to make it through the 

second quadrupole. The transition from precursor/parent ion to product/daughter ions is 

referred to as an ion transition.  

 

(b) Hybrid-MS system Liquid chromatography Mass Spectroscopy coupled to 

analyzers Orbitrap 
 

The second mass analyzer used in the present research work was the Thermo Orbitrap®. 

Since its commercial introduction, this hybrid-MS system Liquid chromatography Mass 

Spectroscopy coupled to the high-resolution mass spectrometry analyzers Orbitrap177 

(LC/HRMS) has emerge as a fast, efficient and sensitive tool for exploring new natural 

products.178,179 This technique allowed researches not only the detection and quantification of 

known natural products but also the discovery of new promising structures from plants,180 

animals181 and microorganisms.182 

The Orbitrap analyzer, developed by Makarov,183,184 operates by radially trapping ions about 

a central spindle electrode. An outer barrel-like electrode is coaxial with the inner spindle like 

electrode and mass/charge values are measured from the frequency of harmonic ion 

oscillations, along the axis of the electric field, undergone by the orbitally trapped ions. This axial 

frequency is independent of the energy and spatial spread of the ions. Ion frequencies are 

measured non-destructively by acquisition of time-domain image current transients, with 

subsequent fast Fourier transforms (FFTs) being used to obtain the mass spectra. Mathematical 

Q1  Q2  Q3 

(a) 

 

 

 

(b) 
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behind Orbitrap is beyond the scope of this study, yet it is well described in literature.183 Features 

of the Orbitrap include high mass resolution (up to 150 000), large space charge capacity, high 

mass accuracy (2–5 ppm) and a mass/charge range of at least 6000.171 Figure 114 shows the 

experimental arrangement used by the equipment employed in the current study 

 

 

Figure 114. Orbitrap mass spectrometer´s experimental arrangement. Ions are produced by the 
electrospray ion source (extreme left). Ions then proceed through the source, collision quadrupole, and 
selection quadrupole and then pass into the storage quadrupole. The storage quadrupole serves as an ion 
accumulator and buncher, allowing a pulsed mass analyzer such as the Orbitrap to be coupled to a 
continuous source like an electrospray ionization source. After accumulation and bunching in the storage 
quadrupole, the exit lens (‘Lens 1’) is pulsed low, the ion bunches traverse the ion transfer lens system 
and are injected into the Orbitrap mass analyzer (extreme right). 171 

 

 

LC/HRMS has a high mass resolving power and flexibility and allows the user to monitor 

and collect: (1) Full scan mode, (2) Selected ion monitoring (SIM) and (3) Selected reaction 

monitoring (SRM); among others. All the fore mention were used in the correct study.  

 

Full scan monitoring provides a qualitative picture of the composition of the sample. It 

involves scanning the mass range beginning at the smallest mass of fragment ions to the highest 

mass expected for the fragments.185 When it is not clear the m/z of the biomolecule of interest, 

it is useful to run a full scan of the sample before limiting the search for identification and 

quantification of species of interest in the sample. Parameters affecting the accuracy are analyte 

concentration and complexity of the matrix, therefore a pre concentration or purification of the 

matrix is needed. Unlike the FS, the mass spectrometer operation in Selected ion monitoring 

(SIM) is set in such a way that the abundances of ions of one or more specific m/z values are 

recorded rather than the entire mass spectrum.186 It is employed to minimize matrix 

interferences and to improve detection limits in those cases where the concentration of the 

analyte in the sample is very low.  

 

The last detection mode used with LC/HRMS was Selected Reaction Monitoring (SRM). 

This scan mode has a high potential for detection/quantification of biomolecules that occurs at 
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very low concentration in complex mixtures. In a SRM experiment, data acquired from a 

predefined precursor ion and one of its fragments corresponding to a particular m/z are selected 

by the two static mass filters in the instrument and monitored over time for precise 

quantification. A series of transitions (precursor/fragment ion pairs) in combination with the 

retention time of the targeted molecule can constitute a definitive assay.187,188 The selectivity 

resulting from the two filtering stages combined with the high-duty cycle results in quantitative 

analyses with extreme high sensitivity.   
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2.2 Objectives 
 

The main objective in this chapter is the detection and, in some cases, the isolation and 

quantification of specific bioactive natural products from marine sources using LC/HRMS that 

was crucial in the development of different research projects. The different approaches of 

LC/HRMS techniques employed in each case demonstrate their possibilities and limitations in 

the field of natural products 

More specifically, the aims were  

 Detection/isolation of siderophore production in several pathogenic marine bacteria: 

siderophores type vanchrobactin in three species belonging to Vibrio genus, detection 

of piscibactin in a Vibrio alginolyticus mutant, the siderophore produced by Edwardsiella 

tarda and Photobacterium damselae subsp. damselae. 

 Detection/ quantification of AHLs in three marine emerging pathogenic Vibrio spp. 

 Detection of tetrodotoxin (TTX) in Diodon hystrix collected in El Salvador. 
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2.4 Estudio de los sideróforos de bacterias patógenas de peces de 

acuicultura 
 

2.4.1 Introducción 
 

Los sideróforos, compuestos orgánicos de bajo peso molecular, son producidos por 

muchos microorganismos, como bacterias y hongos, con el fin de vencer la limitación en la 

disponibilidad de hierro existente en la mayoría de hábitats en el que viven.189,190 Dado que el 

hierro es un elemento fundamental, el desarrollo de un sistema de biosíntesis de sideróforos 

influye directamente en su supervivencia.191 Es por ello que en el caso de las bacterias patógenas 

se ha demostrado que los sideróforos constituyen un importante factor de virulencia.192 Poseen 

un gran número de potenciales aplicaciones tanto en clínica como en agricultura.193 

En esta sección de la presente Tesis Doctoral se abordará la identificación de los 

sideróforos producidos por distintas bacterias patógenas en acuicultura. 

 

2.4.2 Detección de vancrobactina en diversas especies del género Vibrio  
 

2.4.2.1 Antecedentes 
 

Nuestro grupo de investigación de la UDC, en colaboración con el grupo de microbiología 

de la USC liderado por el Dr. Manuel L. Lemos, logró aislar y caracterizar vanchrobactina como 

el sideróforo correspondiente al segundo sistema de captación de hierro (III) empelado por la 

bacteria patógena de peces Vibrio anguillarum, responsable de la vibriosis.194 Además, se logró 

determinar que FvtA es la proteína de membrana externa receptora de vancrobactina y 

postulándose que es el sideróforo ancestral de esta especie.195,196 Estudios más recientes 

realizados por Butler y col. encontraron que tanto vancrobactina como su dímero y trímero 

forman parte del sistema de captación de hierro (III) en una cepa de V. campbellii.197 

2.4.2.2 Objetivo 
 

Con el fin de determinar si la biosíntesis de sideróforos de tipo vancrobactina se encuentra 

extendida en otras especies de Vibrio, en esta parte de la presente Tesis Doctoral se planteó 

estudiar su presencia en cuatro especies: V. ordalii, V. metschnikovii, V. harveyi y V. pelagius, 
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2.4.2.3 Materiales y métodos 
 

El procedimiento general para la detección de los sideróforos del tipo vancrobactina en 

las bacterias objeto de estudio se muestra en la siguiente figura. 

 

 

Figure 115 La preparación de la muestra implica eliminación de interferencias en la matriz a analizar (liofilizado) y 
concentración del analito mediante SPE164,198 usando cartuchos de HLB Oasis®. La detección se llevó a cabo utilizando 
Cromatografía Líquida de Alta Eficacia (HPLC) acoplada a espectrometría de masas de alta resolución con ionización 
por electro espray (HRESIMS) que resultó muy eficiente en la detección de sideróforos.199,200 El procesado de datos 
se hizo usando el Software Xcalibur™. 

 

 

Figure 116. Esquema de trabajo utilizado en la detección de sideróforos del tipo vancrobactina mediante SPE-LC/MS 

en cuatro especies del género Vibrio. 
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Estudio de V. ordalii 
 

Un litro de un cultivo libre de células de V. ordalii, cultivado en condiciones deficientes de 

hierro, fue liofilizado para dar 4.642 g de material. Un gramo de dicho material se sometió a una 

extracción en fase sólida (SPE) en un cartucho de HLB Oasis®, empleando como fase móvil agua 

(disolvente A) y acetonitrilo (disolvente B), cada uno conteniendo 0.1% TFA (v/v). En primer 

lugar, el cartucho se acondicionó y equilibró con 60 mL de disolvente B y 60 mL de disolvente A, 

y a continuación se introduce la muestra disuelta en agua (1 g/mL). A continuación, se hizo pasar 

60 mL del disolvente A, 30 mL de una mezcla 1:1 de disolventes A/B y finalmente 30 mL del 

disolvente B, obteniéndose tres fracciones: V48L1, V48L2 y V48L3 (Figure 117), que una vez 

concentradas a sequedad pesaron 193.3, 20.4 y 5.0 mg, respectivamente.198 Los sideróforos 

vancrobactina y divancrobactina se detectaron en la fracción V48L2 mediante LC/HRESIMS con 

un tiempo de retención de 4.68 (Figure 119) y 5.49 min (Figure 120), respectivamente, a partir 

de sus iones [M+H]+ a m/z 398.1676 (calculado para C16H24N5O7, m/z 398.1670) y 777.3162 

(calculado para C32H45N10O13, m/z 777.3162), respectivamente. En ambos casos ∆m/z estuvo por 

debajo del máximo límite permitido.171 

 

 

Figure 117. Diagrama de flujo empleado en la detección de vancrobactina y divancrobactina en los sobrenadantes 
del cultivo libre de células de Vibrio ordalii. 
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Estudios de V. metschnikovii, V. harveyi y V. pelagius 
 

Repitiendo el mismo proceso se logró detectar la presencia de sideróforos tipo 

vancrobactina en las especies V. metschnikovii, V. harveyi y V. pelagius. En la Tabla 23 se muestra 

las fracciones en las que fueron detectadas en cada especie. Los cromatogramas y los espectros 

de masas de alta resolución se muestran en el material suplementario. 

 

Tabla 23. Sideróforos del tipo vancrobactina detectados en las especies V. metschnikovii, V. harveyi y V. 
pelagius. 

 

Bacterias Fracciones Masa de la 
fracción (mg) 

Sideróforo detectado 

Vancrobactina (*) Divancrobactina (**) 

V. metschnikovii V62L1 608.0 - - 

V62L2 35.0 +  + 

V62L3 8.4 - - 

V. harveyi V15L1 728.5 - - 

V15L2 19.3 - - 

V15L3 3.3 + + 

V. pelagius V99L1 633.1 - - 

V99L2 21.2 + + 

V99L3 1.5 + + 
(*) Detectado como [M+H]+ (**) Detectado como [M+H]+ y [M+2H]+ 

 

2.4.2.4 Resultados y conclusión 
 

El análisis químico de los sobrenadantes de los cultivos libres de células de cuatro especies 

de Vibrio, empleando una metodología de SPE desarrollada en nuestro grupo de investigación 

basada en el empleo de cartuchos HLB y la técnica LC/HRMS, permitió detectar la presencia de 

sideróforos tipo vancrobactina en todos ellos. Las propiedades de retención y separación de los 

cartuchos poliméricos HLB se fundamentan en su dual carácter hidrofílico-lipofílico de estas 

resinas. La naturaleza y la altamente área específica superficial de esta resina polimérica permite 

extraer y separar de forma rápida y eficiente metabolitos hidrofílicos a partir de extractos crudos 

usando cantidades mínimas de disolvente.198 El estudio de sideróforos del tipo vancrobactina en 

cuatro especies de Vibrio se llevó a cabo por medio de su detección a partir de 1 g de 

sobrenadante liofilizado del cultivo libre de células de las bacterias objeto de estudio (Figure 

115). Para ello, cada uno de ellos se sometieron a un fraccionamiento mediante extracción en 

fase sólida (SPE) usando cartuchos HLB Oasis® y posterior análisis por LC/HRMS. De esta forma 

se logró detectar, la presencia de vancrobactina y su dímero, divancrobactina, (Figure 118) en 

cepas de V. ordalii, V. metschnikovii, V. harveyi y V. pelagius. De los resultados obtenidos (Tabla 

23) se deduce que la producción de sideróforos de tipo vancrobactina no está restringida a V. 

anguillarum, se encuentran dispersos en muchas especies de este género y que deben de tener 

una larga historia evolutiva asociada al género Vibrio. Se propone que este tipo de sideróforos 

puede ser considerado un marcador del género de Vibrio para la familia Vibrionaceae, al igual 

que la sideróforo catecólico enterobactina, presente en prácticamente todas las 

enterobacterias.201  



 

-168- 

 

 

 

 

Vancrobactina (a) Divancrobactina (b) 

  

Figure 118. Sideróforos tipo vancrobactina identificados en V. metschnikovii, V. ordalii, V. harveyi y V. 
pelagius. 
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Figure 119. (a) Cromatogramas LC-DAD-MS de la fracción de V48L2 (H2O/CH3CN 1:1) obtenida mediante extracción en fase sólida (cartucho OASIS ®HLB) de un cultivo libre 
de células cultivado en condiciones de deficiencia de hierro de V. ordalii; (b) Cromatograma resultante de la monitorización selectiva de los iones de relación m/z 397.66-
398.66; (c) HRMS del compuesto eluído con un tR de 4.68 min e identificado como vancrobactina; (d) Espectro de UV del compuesto eluído con un tR de 4.68 min y que 
coincide con el de vancrobactina. 
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.  

Figure 120. (a) Cromatogramas LC-DAD-MS de la fracción de V48L3 (eluida con CH3CN) obtenida mediante extracción en fase sólida (cartucho OASIS ®HLB) de un cultivo libre 
de células cultivado en condiciones de deficiencia de hierro de V. ordalii; (b) Cromatograma resultante de la monitorización selectiva de los iones de relación m/z 388.66-
389.66; (c) Cromatograma resultante de la monitorización selectiva de los iones de relación m/z 776.81-777.81; (d) HRMS del compuesto eluído con un tR de 5.46 min e 
identificado como el ion [M+H]+2 de divancrobactina; (e) HRMS del compuesto eluído con un tR de 5.46 min e identificado como divancrobactina ; (f) Espectro de UV del 
compuesto eluído con un tR de 5.46 min min.
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2.4.3 Detection of the siderophore piscibactin from 

Photobacterium damselae subsp. piscicida in Vibrio alginolyticus by 

transference of its plasmid-borne pathogenicity island 
 

2.4.3.1 Background 
 

Photobacterium damselae subsp. piscicida (formerly Pasteurella piscicida) is a Gram-

negative rod-shaped marine bacterium that was first isolated in natural populations of white 

perch (Morone americanus) and striped bass (M. saxatilis) in 1963 during a massive epizootic in 

the Chesapeake Bay.202,203 It is the pathogenic bacteria responsible of a septicemia called 

photobacteriosis, one of the most important fish diseases in marine aquaculture due to its 

substantial mortality on infected organisms, its global distribution and its resistance to a variety 

of antibiotics. It is associated with substantial economic losses worldwide like Japan (Seriola 

quinqueradiata),204 Taiwan (Rachycentron canadum),205 among others. Our research group was 

able to identify and isolate the galium (III) complex of the siderophore responsible of the iron 

uptake of P. damselae subsp. piscicida that was named as piscibactin. Its structure was 

supported by DFT calculation (Figure 121).194 Although the total synthesis of piscibactin has not 

been achieved yet, a stereoselective synthesis of prepiscibactin, a possible intermediate in the 

biosynthesis of piscibactin, was recently published by our group.206 

 

 

 

Figure 121 Structures of the siderophore piscibactin and its Ga(III) complex. 

 

A gene cluster that resembles the yersiniabactin high-pathogenicity island (HPI) encodes 

piscibactin biosynthesis. This HPI-like cluster is part of a hitherto-uncharacterized 68-kb plasmid 

named pHDP70 that would encode a complete siderophore system. To test this hypothesis, a 

project was initiated to study whether the conjugative transfer of the pHDP70 plasmid is 

sufficient for piscibactin synthesis and utilization capabilities from P. damselae subsp. piscicida 

to a mollusk pathogenic Vibrio alginolyticus strain. Firstly, the siderophore vibrioferrin synthesis 

was abolished by inactivation of the biosynthetic gene psvA in Vibrio alginolyticus strain AR13 

to give a mutant strain that cannot growth under iron deficient conditions. Then, the conjugative 

transfer of the pHDP70 plasmid to that Vibrio alginolyticus mutant strain restored its capacity to 

produces siderophore and, consequently, to grow under low-iron conditions. In order to confirm 
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these findings, it was necessary to see if the Vibrio alginolyticus pPHDP70 transconjugant strain 

deficient in siderophore vibrioferrin synthesis is able to biosynthesize piscibactin.  

 

2.4.3.2 Objective 
 

The main goal in this case is the detection of piscibactin in a Vibrio alginolyticus pPHDP70 

transconjugant mutant strain deficient in siderophore vibrioferrin synthesis in order to prove 

that the biosynthesis capabilities of piscibactin are transferrable at low frequencies from P. 

damselae subsp. piscicida to a mollusk pathogenic Vibrio alginolyticus (Figure 122). 

 

 

 Figure 122 Infographic representation of procedure used on identification of siderophore piscibactin in Vibrio 

alginolyticus; in a mollusk pathogenic Vibrio alginolyticus strain (a) the siderophore vibrioferrin synthesis was 
abolished (b), afterwards the conjugative transfer of the pHDP70 plasmid was done, creating a mutant strain (c). The 
mutant strain restored its capacity to produces siderophore (d). Siderophore piscibactin presents is established by 
solid phase extraction (e) followed by piscibactin Ga(III) complex detection by LC/HRMS (f) vi 

 

2.4.3.3 Material and methods 
 

A 1.36 L batch of the centrifuged cell-free culture broth of a Vibrio alginolyticus pPHDP70 

transconjugant mutant (AR43)( a mutant strain that was deleted its capability of the production 

of its own siderophore, vibrioferrin207) was concentrated under vacuum to 410 mL (Figure 123). 

A portion of 75 mL was transferred to a round-bottom flask, and 4.0 mg of GaBr3 was added 

slowly over 5 min and gently stirred for another 10 min. After incubation at 4°C for 24 h, the 

solution was passed through an Oasis hydrophilic lipophilic balanced (HLB) cartridge (Waters) 

(35 cm3, 6 g), which was previously conditioned and equilibrated with 60 mL of acetonitrile 

                                                           
vi Iamges were taken as: https://microbewiki.kenyon.edu/index.php/File:Vibalgpol.jpg (a), Reference 219 (b) 
https://community.asdlib.org/imageandvideoexchangeforum/2013/07/24/solid-phase-extraction/ (e) and  
https://www.thermofisher.com (f) 

https://microbewiki.kenyon.edu/index.php/File:Vibalgpol.jpg
https://community.asdlib.org/imageandvideoexchangeforum/2013/07/24/solid-phase-extraction/
https://www.thermofisher.com/
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(solvent B) and 60 mL of water (solvent A). Then, it was eluted with 30 mL of the following 

mixtures of solvent A and solvent B: 1:0, 7:3, 1:1, 7:3, and 0:1. The fraction eluted with a 1:1 

mixture of A/B, named VAPGL3 (3.0 mg), was subjected to high performance liquid 

chromatography (HPLC)-high-resolution electrospray ionization mass (HRESIMS) analysis using 

a Atlantis dC18 column (100 by 4.6 mm, 5 µm) with a 35.0-min gradient from 10 to 100% CH3CN-

H2O, then 5 min at 100% CH3CN, and finally a 10.0-min gradient from 100 to 10% H2O-CH3CN, at 

a flow rate of 1 ml min-1.194 Thus, a compound with retention time (tR) of 8.82 min was detected 

that showed by HRESIMS the [M+H]+ ion at m/z of 519.9943/521.9927 and the distinctive 

gallium isotopic ratio (3:2) in concordance with those of piscibactin-Ga(III) complex (Figure 124). 

 

 

 

Figure 123. Flowchart for the detection of piscibactin as its Gallium (II) complex in the cell free broth of a V. 
alginolyticus mutant strain.  

 

2.4.3.4 Results and conclusions 
 

In order to test if V. alginolyticus pPHDP70 transconjugants is able to produce 

piscibactin, we used the methodology based on HLB cartridges and liquid chromatography-mass 

spectrometry (LC-MS) that we developed for isolation of piscibactin.194 In this way, cell-free 

culture supernatants of strain V. alginolyticus AR43 were incubated with an excess of GaBr3, 

fractionated through HLB cartridges, and submitted to LC-HRMS analysis. This analysis allowed 

to detect the presence of piscibactin. Following its conjugative transfer, the detection of 

piscibactin demonstrated that pPHDP70 restored the capacity of a vibrioferrin mutant of V. 

alginolyticus to grow under low-iron conditions. This result provides strong evidence that 

pPHDP70 encodes the necessary biosynthetic, transport, and regulatory functions to enable 

synthesis and utilization of piscibactin following its conjugative transfer to a different species. 

Cell-free culture broth V. 
alginolyticus (1.36 L)

SPE HLB

H2O:CH3CN  0:1 (30 mL)
H2O:CH3CN  1:1 

(30 mL)

VAPGL3 (3,0 mg)

Piscibactin-GaIII

(LC-MS)

H2O:CH3CN  7:3 
(30 mL)

H2O:CH3CN  1:0 (30 mL)

GaBr3 (4.0 mg)
24 h Incubation at 4 °C
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Collectively, these findings highlight the importance of pPHDP70 and the horizontal transmission 

of this plasmid-borne piscibactin synthesis gene cluster in the marine environment that may 

facilitate the emergence of new pathogens. 

 

 

Figure 124. LC-MS experiments for the detection of the piscibactin-Ga(III) complex. (A) Total ion 
chromatogram (TIC) of the fraction eluted with H2O-CH3CN (1:1) from the Oasis HLB cartridge (VAPGL3) 
containing piscibactin-Ga(III) complex; (B) extracted mass chromatogram (m/z 519.97 to 520.15) showing 
the peak with retention time of 8.82 min; (C) (+)-HRESIMS of the peak at a tR of 8.82 min identified as 
piscibactin-Ga(III) complex: m/z 519.9943/521.9927 ([M+H]+); calc. for C19H21N3O4S3Ga, 
519.9950/521.9941. Chromatographic conditions: Atlantis dC18 column (100 by 4.6 mm, 5 µm) (Waters); 
35-min gradient from 10 to 100% of CH3CN in H2O, then 5 min at 100% CH3CN, and finally 10 min from 
100 to 10% CH3CN in H2O; flow rate, 1 ml min-1. 
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2.4.4 Detection of vibrioferrin as the siderophore produced by 

Edwardsiella tarda 
 

2.4.4.1 Background 
 

Edwardsiella tarda is a Gram-negative pathogenic bacterium that affects a wide range 

of hosts including both freshwater and marine fish.208,209 It is related to the development of a 

disease called edwardsiellosis, a virulent infection that caused acute enteric septicemia, 

associated with significant economic damage in the aquaculture industry worldwide. 210 

Although edwardsiellosis has been studied for many years, however, the major virulence factors 

of E. tarda are still poorly understood.  

 

2.4.4.2 Objective 
 

The main objective in this case was to identify the siderophore responsible of the iron 

uptake of E. tarda as one of the virulent factors of this bacterium. Insights gained on E. tarda 

pathogenesis may prove useful in the development of new methods for the treatment of 

infections as well as preventive measures against future outbreaks.211  

 

2.4.4.3 Materials and methods 
 

A total of 414 g of Amberlite® XAD-4 resin was added to the cell-free culture 

supernatants (2 L) of E. tarda, previously acidified with HCl to pH 2.5 and then stirred for 18 h. 

Afterwards, the mixture was poured into a chromatographic column and then washed with 5.5 

L of water (fraction PDX1), 0.4 L of H2O:MeOH (1:1) (fraction PDX2) and finally 1.2 L de MeOH 

(fraction PDX3) (see Figure 125). These three fractions were lyophilized to obtain 54.8 g of 

fraction PDX1, 30.6 mg of fraction PDX2 and 351.3 mg of fraction PDX3. Siderophore activity was 

evaluated by the colorimetric assay using the Chrome-Azurol S (CAS) dye.212 The active CAS 

fraction PDX1 was submitted to HPLC-HRMS analysis using a Atlantis dC18 (100 x 4.6 mm, 5 µm) 

column (Waters) with a mobile phase consisting of a 35 min gradient from 10 to 100% CH3CN in 

H2O (v/v), then 5 min at 100% CH3CN and finally 10 min from 100% to 10% CH3CN/H2O (v/v), at 

a flow rate of 1 mL min-1.213 All measurements were performed on an ESI ion trap mass 

spectrometer LTQ-Orbitrap Discovery attached to an Accela HPLC system (Thermo Fisher Sci). 

Accurate mass measurements were taken using the FT-MS Orbitrap module at a resolution >30 

000 FWHM (full width at half maximum) for obtaining elemental composition of the [M+H]+ and 

[M+Na]+ ions within ± 1–3 ppm accuracy.  

The extracted mass chromatogram of that siderophore active fraction (m/z 434.12-

436.12) (Figure 127, panel b) showed the presence of a compound with retention time of 1.83 

min that displayed a high-resolution mass spectrum (Figure 127, panel c) that showed the 
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[M+H]+ and [M+Na]+ ions at m/z 435.1249 (calculated for C16H23N2O12, m/z 435.1251) and 

457.1066 (calculated for C16H22N2NaO12, m/z 457.1070), respectively that were in concordance 

to those of vibrioferrin. The extracted mass chromatogram (m/z 388.60-411.80) (Figure 127, 

panel d) showed the presence of a compound with retention time of 2.80 min that displayed a 

high-resolution mass spectrum (Figure 127, panel e) with [M+H]+ and [M+Na]+ ions at m/z 

389.1194 (calculated for C15H21N2O10, m/z 389.1191) and 411.1013 (calculated for 

C15H20N2NaO10, m/z 411.1010), respectively, corresponding to the photoproduct of vibrioferrin 

(Figure 126, right).214 In this way, the siderophore vibrioferrin (Figure 126) was detected by E. 

tarda. 

 

 

Figure 125. Flowchart of vibrioferrin detection in E. tarda by using an Amberlite® resin (XAD-4) and LC/HRMS 
analysis. 

 

2.4.4.4 Results and conclusions 
 

Vibrioferrin (C19H29N2O1), a member of the carboxylate class of siderophores bearing two 

α-hydroxy acid groups, was first reported from the enteropathogenic estuarine bacterium Vibrio 

parahaemolyticus.215,216 The later detection in the dinoflagellate Gymnodinium catenatum213 

suggested that its production is not restricted to genus Vibrio.  

  

Figure 126. Structure of the siderophore vibrioferrin (left) and its photo degradation product (right). 

Free cell culture E. tarda 
(2,5 L)

XDA-4 resin

(414,0 g) x 18 h

MeOH (1,2 L)

PDX3 (351,3 mg)

H2O:MeOH 1:1 
(0,4 L)

PDX2 (30,6 mg) 

H2O(5,5 L)

PDX1 (54,8 g)

[M+Na]+ (LC/MS)
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The structure of vibrioferrin was confirmed by total synthesis.217 It shows a strong 

sequestering ability not only with iron (III) but also with boron (VFB). Production of vibrioferrin 

is highly dependent on the iron concentration of the medium, with increased production 

occurring under low-iron conditions. 

 

As part of a more extensive project in order to find correlations between the presence 

of virulence genes, related with three aspects typically involved in bacterial pathogenesis 

(chondroitinase activity, quorum sensing and siderophore-mediated ferric uptake systems), in 

the genome of E. tarda strains isolated from turbot in Europe and their phenotypic traits, a study 

of the siderophore produced by E. tarda was initiate.  

 

The application of a methodology based on the use of XAD 4 Amberlite resins and 

followed by further RP-HPLC (RP-18 H2O/MeCN) to a cell free culture of E. tarda, allowed to 

identify vibrioferrin as the siderophore responsible of the iron uptake system of this bacterium. 

These results unambiguously confirmed that the siderophore produced by E. tarda ACC35.1 is 

vibrioferrin. Furthermore, we demonstrated for the first time that E. tarda produces the 

siderophore vibrioferrin 
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Figure 127 (a) LC-MS chromatogram of the fraction PDX1 obtained by XAD-4 resin extraction of iron-deficient cell-
free culture of E. tarda. (b) Extracted mass chromatogram (m/z 434.12-436.12) showing the peak at tR = 1.83 min. (c) 
High-resolution mass spectrum of the peak at 1.83 min identified as vibrioferrin. (d) Extracted mass chromatogram 
(m/z 388.60-411.80) showing the peak at tR = 2.80 min. (e) High-resolution mass spectrum of the peak at 2.80 min 
identified as the major photoproduct of vibrioferrin. 
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2.4.5 Identification of the siderophore produced by some strains 

of the Marine Pathogen Photobacterium damselae subsp 

damselae 
 

2.4.5.1 Background 
 

Photobacterium damselae subsp damselae (Pdd) is a Gram-negative bacterium 

(Vibrionaceae) that has a wide pathogenic potential against many marine animals and also 

against humans.218 Our research group could demonstrate that some strains of this bacterium 

acquire iron through the siderophore vibrioferrin.219,220 However, there are other virulent strains 

that do not produce vibrioferrin but they still give a strong positive reaction in the CAS test for 

siderophore production.221 In an in silico search on the genome sequences of this type of strains 

it was no possible to find any gene clusters which could be related to a known siderophore 

system.  

2.4.5.2 Objective 
 

The main goal in this section was to identify the siderophore secreted by a 

Photobacterium damselae subsp damselae (Pdd) strain RM71 which lacks of vibrioferrin 

production. 

 

2.4.5.3 Materials and methods 
 

A 6 L batch of centrifuged cell-free culture broth of Pdd strain RM71 was divided into 

five portions which were loaded onto a XAD-4 resin (Radius Column: 2.8 cm, resin mass: 120 g) 

(Figure 128). After washing with distilled water (1.3 L) with a flow rate of 0.8 mL/min, the resin 

was eluted with a methanol/water (1:1) mixture followed by methanol. The siderophore and 

CAS activities remained in the fraction eluted with water which was then lyophilized to give 86.2 

g of a solid. This solid was washed with MeOH (4 times × 290 mL) to yield, after removal of the 

solvent, 54.53 g of a non-methanol-soluble white solid that was CAS positive and siderophore 

active.222 The material was dissolved in H2O and chromatographed on a Sephadex LH-20 column 

which was eluted with a 9:1 mixture of H2O in MeOH at a flow rate of 1.8 mL/min.156 The 

collected fractions were submitted to CAS assay and the positive fractions were concentrated 

under vacuum to afford a CAS-positive fraction (37.6 g). Part of that fraction (21.0 g) was divided 

in three batches and chromatographed on a Sephadex R G-25 Fine223 column which was eluted 

with 760 mL of H2O using a flow rate of 4.5 mL/min. The eluted fractions were submitted to CAS 

assay and a chloride test for the presence of salts. Fractions displaying an intense color change 

with the CAS reagent (CAS positive) and with a relatively low amount of salts were pooled and 

lyophilized. The lyophilized material (400 mg) was dissolved in H2O and chromatographed on a 

Sephadex R G-10 column using H2O (87 mL) as eluent at a flow rate of 1.6 mL/min. Again, the 



 

-180- 

 

eluted fractions were submitted to the same test as before to afford 53.5 mg of a salt-free and 

CAS–positive fraction. Final purification of this fraction was achieved by HPLC using a Discovery 

R HS F5 (100 × 4.6 mm, 5 μm) column224 with a mobile phase consisting of an isocratic mixture 

of 0.3% of CH3CN in H2O (each containing 0.1% HCO2H) for 1.4 min and then, a gradient from 0.3 

to 6.0% of CH3CN in H2O (each containing 0.1% HCO2H) over 15.8 min at a flow rate of 1.2 

mL/min. The CAS-positive fractions, eluted with a retention time of 2.98 min, were pooled and 

concentrated in vacuum to provide 2.1 mg of a compound which was identified as citrate by its 
1H NMR (500 MHz in D2O)  (ppm): 3.00 (2H, d, J = 15.7 Hz, H-2), 2.84 (2H, d, J = 15.7Hz, H-4) and 

(–)-ESIMS data: m/z 191 [M –H]−. 

 

 

  

Figure 128. Flowchart of the isolation of citrate from the iron-restricted culture supernatants of Pdd strain RM71. 

 

 

2.4.5.4 Results  
 

To identify compounds with siderophore activity secreted by a Pdd strain RM71, the cells 

were grown under iron restricted conditions (CM9 with 35 μM 2,2′-dipyridyl) and the 

supernatant was subjected to a bioguided fractionation based on the CAS reactivity and 

siderophore activity. The cell-free supernatants were submitted to successive column 

chromatographies (Amberlite XAD4 resin and size exclusion on Sephadex LH-20, G-25, and G-
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10) to give a CAS reactive and siderophore active fraction (Figure 128). Finally, HPLC purification 

of that fraction afforded a pure compound which spectral data (NMR, MS) were coincident to 

those of citrate (Figure 129). Hence, the CAS-reactive molecule produced by Pdd strain RM71 

was unequivocally identified as citrate, and no other molecules with siderophore activity could 

be identified in the supernatants. 

 

 

 
Figure 129. Isolation by HPLC and chemical analysis of citrate from the iron-restricted culture supernatants of the 
marine pathogen Photobacterium damselae subsp damselae (Pdd) strain RM71: (a) HPLC chromatogram of the CAS 
active and salt-free fraction eluted from the Sephadex® G-10 column. (b) (−)ESI mass spectrum and (c) 1H NMR 
spectrum in D2O (500 MHz) of the isolated compound identified as citrate. 

 

Although, at neutral pH, citrate has lower affinity for iron than conventional 

siderophores, it is considered a high-affinity iron carrier, and it produces a CAS-positive reaction 

at concentrations above 0.1 mM. 225 Endogenous citrate secretion was described previously in 

other pathogenic bacteria and it is associated to intracellular iron homeostasis. However, while 

most bacteria can use externally supplied ferric citrate to fulfill their nutritional requirement for 

iron, there are two examples of bacteria which secrete citrate in order to get iron: Pseudomonas 

syringae 226 and Bradyrhizobium japonicum.227 One plausible explanation for the use of citrate 

as iron carrier is that since citrate is a precursor for vibrioferrin,228 mutation of a vibrioferrin 

biosynthetic gene would result in the accumulation of precursors, and in this case citrate would 

be exported out of the cell to avoid toxicity. The cell would then use external citrate as an 

alternative iron carrier. The advantages of using citrate or vibrioferrin for iron uptake are 

unclear. From the results described here we could deduce that vibrioferrin use would be a better 
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strategy since all strains that produce this siderophore do not accumulate citrate. However, the 

vibrioferrin affinity constant for iron is not particularly high, with respect to citrate. 214,229 

 

2.4.5.5 Conclusions 
As conclusion, this work shows that although some strains of the marine pathogen Pdd 

produce vibrioferrin as siderophore, most pathogenic strains release endogenous citrate to the 

extracellular environment in response to iron deprivation, and that this trait have a positive 

effect in the cell fitness when it grows under extreme iron-restricted conditions. Although the 

production of another citrate-based or other compounds with siderophore activity cannot be 

completely discarded, our results suggest that endogenous citrate, besides being part of other 

siderophores, can be itself used for iron uptake by Pdd. 

Citrate is produced by most microorganisms via the TCA cycle 230 and, although it is not 

a powerful chelator, it binds Fe(III) forming a ferric-dicitrate complex.229 In this form, citrate can 

be used by many bacteria, including Pdd, as a source of iron.231–234 Furthermore, citrate is a 

common moiety of many polycarboxilic siderophores.235 
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2.5 Detection and quantification of N-acylhomoserine lactones 

(AHLs) in three marine emerging pathogenic Vibrio spp. 
 

2.5.1 Background 
 

Bacterial infectious diseases produced by Vibrio are the main cause of economic losses 

in aquaculture. During recent years it has been shown that the expression of virulence genes in 

some Vibrio species is controlled by a population-density dependent gene-expression 

mechanism known as quorum sensing (QS), which is mediated by the diffusion of signal 

molecules such as N-acylhomoserine lactones (AHLs). QS Disruption, especially the enzymatic 

degradation of signaling molecules, known as quorum quenching (QQ), is one of the novel 

therapeutic strategies for the treatment of bacterial infections.  

 

2.5.2 Objective 
 

The main goal in this case was the detection and quantification of AHLs in three 

aquaculture-related pathogenic Vibrio strains, V. mediterranei VibC-Oc-097, V. owensii VibC-Oc-

106 and V. coralliilyticus VibC-Oc-193 in order to correlate the QS signal molecules to the 

expression of virulence factors in these bacteria. The selection of these bacteria was based on 

their virulence and high production of AHLs. 

 

2.5.3 Material and methods 
 

A liter of whole culture of each strain was grown in MB medium to stationary phase 

(OD600 2.8) and extracted twice with an equal volume of dichloromethane, evaporated and 

resuspended in CH3CN (Figure 131).236 For the analysis, each extract was purified by solid phase 

extraction198 and analyzed by high-performance liquid chromatography coupled with Fourier-

transform and high resolution mass spectrometry (HPLC/FT-HRMS)237 using full scan (FS) and 

selected ion monitoring (SIM) modes in a Thermo Scientific Accela LC system coupled to a LTQ 

Orbitrap. The software Xcalibur 3.0 was used for data processing in both cases. For the HPLC/FT-

HRMS FS mode analysis, the extract was passed through a 0.22 μm PTFE syringe filter before 

injection and 10 μl of each filtered solution was analyzed (mass range from m/z 50 to 500). 

Analyses were carried out using an Atlantis dC18 column (100 mm × 4.6 mm, 5 μm); and a 

gradient mixture of CH3CN (solvent A) and H2O (solvent B) containing 0.1% (v/v) formic acid at 

flow rate of 350 μL/min (Table 24). In the case of the analysis by HPLC/FT-HRMS SIM mode, each 

extract was passed through an Oasis HLB cartridge, which had previously been conditioned and 

equilibrated with 500 μL of CH3CN and 500 μL of H2O. Then, two fractions were eluted with 500 

μL of CH3CN and H2O mixtures (1:1 and 1:0), and 10 μL of the fraction eluted with a mixture of 

CH3CN/H2O (1:0) was analyzed. In this case the analysis was conducted in a Scharlau KromaPhase 

C18 column (150 mm × 4.6 mm, 5 μm) using again a gradient mixture of CH3CN (solvent A) and 

H2O (solvent B), containing 0.1% (v/v) formic acid at flow rate of 80 μL/min (Table 24). Precision 

and accuracy were calculated from the relative standard deviation of the replicates (<15%) and 
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by direct comparison of mean measured levels of spiked analytes with expected concentrations 

for unextracted standards, respectively. The external standard method was used for 

quantification.238 LC-MS/MS peak areas were calculated and used to build calibration curves of 

peak area ratio against analyte concentration using unweighted linear regression analysis 

(Figure 130, see also Supplementary Material) 

 

 

 

 

 

 

 

a  
 

 

 

 

b 

  

 

 

 

 

c 
 

 

 

Figure 130 Selected ion chromatograms of the standards used for the quantification of AHLs by HPLC/FT-
HRMS SIM Mode. 800 ng/mL (a) and 1,000 ng/mL (b and c). External calibration curves by adding C4-HSL, 
C16-HSL, 3-O-C10-HSL, 3-O-C12-HSL, 3-O-C13-HSL 3-OH-C10-HSL, 3-OH-C12-HSL, 3-OH-C13-HSL and 3-
OH-C14-HSL 

 

 The lower limit of quantification was defined as the concentration at which a signal/noise ratio 
of 10:1 was achieved. 
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Figure 131. HPLC/FT-HRMS (full scan and SIM modes) analyses workflow for identification and 
quantification of AHLs from Vibrio mediterranei VibC-Oc-097, Vibrio coralliilyticus VibC-Oc-193, Vibrio 
maritimus VibC-Oc-082 and Vibrio owensii VibC-Oc-106. 

 

Table 24. Chromatographic profiles used in the HPLC/FT-HRMS FS and SIM mode analyses. 

Mode Step Time (min) % CH3CN (0.1% formic acid) 

 
 
 

FS a 

1 0 30 

2 5 80 

3 7 95 

4 12 95 

5 13 30 

6 16 30 

7 18 90 

 
 
 

SIM b 

1 0 0 

2 1 0 

3 1.5 50 

4 5.5 90 

5 8 99 

6 13 99 

7 13.2 0 

8 18 0 
a Flow rate of 80 µL/min 
b Flow rate of 350 µL/min 

 

Identification of AHLs by HPLC/FT-HRMS analysis 
 

Signal molecules produced by V. mediterranei VibC-Oc-097, V. owensii VibC-Oc-106 and 

V. coralliilyticus VibC-Oc-193 were identified and quantified from a large quantity of an early 

stationary phase culture of each strain. 

The identification of AHLs in each strain was initially carried out by HPLC/FT-HRMS SIM 

mode analysis using a mixture of twelve AHL standards (Table 25). Detection of further 

autoinducer molecules was performed by HPLC/FT-HRMS FS mode analysis, which showed the 

[M+H]+ ion peaks of additional AHLs (C9-HSL, C13-HSL, 3-OH-C5-HSL, 3-OH-C6-HSL and 3-OH-C7-

HSL) (Table 26). However, the existence of these AHLs could not be confirmed due to the lack of 

the appropriate standards. Nevertheless, their presence was corroborated by the occurrence in 

their (+)-high-resolution electrospray ionization mass spectrometry analysis [(+)-HRESIMS] of 

the characteristic [102 + H]+ ion peak corresponding to the homoserine lactone fragment and 
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the [M+H-18]+ and [M+H-101]+ ion peaks which correspond to the loss of H2O and the HSL 

moiety 239 (Table 26 and Figure 132. See also Supplementary Material) 

 

 

Figure 132. Chemical structures of AHLs. (A) General AHL structure. (B) Mass spectrometry fragmentation pathway 
of AHLs  

For example, the presence of 3-OH-C6-HSL and C13-HSL in V. owensii VibC-Oc-106 was 

corroborated by HPLC/FT-HRMS FS mode analysis through the detection of the corresponding 

[M-18+H]+ ion peak at m/z 198.1123 (calc. for C10H16NO3, 198.1125) for the first HSL and the 

detection of the [HSL+H]+ ion peak at m/z 102.0549 (calc. for C4H8NO2, 102.0550), for the second 

HSL (Table 26, Figure 133 and Figure. 134). In a similar way, presence of 3-OH-C5-HSL in V. 

mediterranei VibC-Oc-097 was confirmed by HPLC/FT-HRMS FS mode analysis through the 

detection of the corresponding [M-18+H]+ ion peak at m/z 184.0968 (calc. for C9H14NO3
+, 

184.0968) (Table 26 and Figure 135). 
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Figure 133. HPLC/FT-HRESIMS (FS mode) experiments for the detection of N-acylhomoserine lactones from Vibrio 
owensii VibC-Oc-106. (a) Total ion chromatogram. (b) Extracted mass chromatogram (m/z 215.62±216.62) showing 
the peak at tR = 2.90 min. (c) Expanded regions of the (+)-HRESIMS of the peak at tR = 2.90 min identified as 3-OH-C6-
HSL showing the ion peaks [M+H]+ at m/z 216.1228 (calc. for C10H18NO4 216.1230). (d) [M-H2O+H]+ at m/z 198.1123 
(calc. for C10H16NO3 198.1125). (e) Extracted mass chromatogram (m/z 298.10-298.38) showing the peak at tR = 11.00 
min. (f) Expanded regions of the (+)-HRESIMS of the peak at tR = 11.00 min identified as C13-HSL showing the ion 
peaks [M+H]+ at m/z 298.2376 (calc. for C17H32NO3 298.2377). (g) [HSL+H]+ at m/z 102.0549 (calc. for C4H8NO2 
102.0550). 



 

-188- 

 

 

Figure. 134 HPLC/FT-HRESIMS experiments for the detection of N-acylhomoserine lactones from Vibrio owensii VibC-Oc-106. Total 
ion chromatogram (a). Extracted mass chromatogram (m/z 230.13-230.14) showing the peak at tR = 3.82 min (b). Expanded regions 
of the (+)-HRESIMS of the peak at tR = 3.82 min identified as 3-OH-C7-HSL showing the [M+H]+ ion peak at m/z 230.1381 (calc. for 
C11H20NO4 230.1387) (c) 

 

Figure 135. HPLC/FT-HRESIMS experiments for the detection of N-acylhomoserine lactones from Vibrio mediterranei VibC-Oc-097. 
Total ion chromatogram (a). Extracted mass chromatogram (m/z 202.00-202.22) showing the peak at tR = 6.37 min (b). Expanded 
region of the (+)-HRESIMS of the peak at tR = 6.37 min identified as 3-OH-C5-HSL showing the ion peaks [M+H]+ at m/z 202.1073 
(calc. for C9H16NO4 202.1074) (c).  Expanded region of the (+)-HRESIMS of the peak at tR = 6.37 min identified as 3-OH-C5-HSL showing 
the [M-H2O+H]+ ion peak at m/z 184.0968 (calc. for C9H14NO3 184.0968) (d). 
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Figure 136. Concentration of the major AHLs quantified in Vibrio mediterranei VibC-Oc-097, V. owensii VibC-Oc-106 
and V. coralliilyticus VibC-Oc-193 using HPLC/FT-HRESIMS (SIM mode). 

 

The results show a different AHL-profile for each bacterium strain (Table 25 and Table 

26). If the percentage in which the molecules are present in the strains tested is considered, 3-

OH-C12-HSL is the most predominant in V. mediterranei VibC-Oc-097, C4-HSL is the most 

abundant in V. coralliilyticus VibC-Oc-193 and C12-HSL is the most commonly produced by V. 

owensii VibC-Oc-106. Furthermore, the highest concentration of all the identified AHLs 

corresponds to 3-OH-C12-HSL in V. mediterranei VibC-Oc-097 (Table 25 and Figure 135). 

 

Table 25 AHLs identified by HPLC/FT-HRMS SIM mode analysis in Vibrio mediterranei VibC-Oc-097, V. owensii VibC-
Oc-106 and V. coralliilyticus VibC-Oc-193. 

 
AHL identified 

Ion 
quantification 

(m/z) 

Retention time b (min) Concentration of AHLs (nmol L-1) a 

V. mediterranei 
VibC-Oc-097 

V. owensii VibC-
Oc-106 

V. coralliilyticus 
VibC-Oc-193 

C4-HSL 172.0965 3.82 4.00 nq 3.3 

C6-HSL 200.1281 3.53 1.33 0.08 Nq 

C8-HSL 228.1594 3.94 0.15 0.11 Nq 

C12-HSL 284.222 4.87 0.67 4.12 Nq 

C16-HSL 304.2846 4.88 0.64 0.14 0.34 

3-O-C10-HSL 270.17 5.63 Nq 0.03 Nq 

3-O-C12-HSL 298.2013 6.71 0.02 nq nq 

3-O-C13-HSL 312.2169 7.27 1.76 nq nq 

3-O-C14-HSL 326.2326 7.81 Nq nq nq 

3-OH-C10-HSL 272.1856 5.24 0.36 0.25 0.69 

3-OH-C12-HSL 300.2169 6.36 8.08 2.77 0.12 

3-OH-C14-HSL 328.2482 7.53 Nq nq nq 
a Calculations were made from the adjusted peak areas from each strain. Data relate to those AHLs which were 
positively identified against a standard and those that produce a significant quantification ion signal (R>30,000; mass 
tolerance < 1 ppm).  
b Retention time of the standards used in the quantification process. nq not quantifiable (limit of detection of AHLs < 
0.10 ng mL-1) 
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Table 26. AHLs detected by HPLC/FT-HRMS FS mode analysis in Vibrio mediterranei VibC-Oc-097 and Vibrio owensii 
VibC-Oc-106 

Microorganism AHL 
detected 

Retention time 
(min) 

Principal product 
ions (m/z) 

Identity of principal 
product ions 

V. mediterranei 
VibC-Oc-097 

3-OH-C5-HSL 6.37 202.1072 
184.0968 

[M+H]+, 
[M-H2O+H]+ a 

V. owensii VibC-Oc-
106 

3-OH-C6-HSL 2.90 216.1228, 
198.1123 

[M+H]+, 
[M-H2O+H]+ 

3-OH-C7-HSL 3.82 230.1381 [M+H]+ 

C13-HSL 11.00 298.2376 
102.0549 

[M+H]+, 
[HSL+H]+ b 

a [M-H2O+H]+ is the result of a loss of water 
b [HSL+H]+ corresponds to the HSL moiety 

 

2.5.4 Results and conclusions 
 

In the case of pathogens which depend on QS to regulate virulence, such as some species 

of Vibrio, the degradation of the AHL signal molecules through QQ could become a good 

alternative for fighting pathogenicity as pathogen numbers are reduced rather than directly 

being killed.240 For instance, V. coralliilyticus is a highly spread marine pathogen that has been 

associated with disease in a variety of marine species from geographically distinct global regions. 

Moreover, its increasing resistance against antibiotics has been reported in Caribbean region 

and southwest coast of India.241 For example, V. coralliilyticus is extending its host range to 

bivalve species such as the hard clam (Mercenaria mercenaria), the flat oyster (Ostrea edulis), 

the bay scallop (Argopecten irradians), the green-lipped mussel (Perna canaliculus) and the 

naval shipworm (Teredo navalis), constituting a serious threat for the bivalve industry, being one 

of the most important emerging pathogens responsible for larval mortality detected in bivalve 

hatcheries in France, New Zealand, India and the United States.242–244 Other species, such as V. 

owensii and V. mediterranei have also been associated to other organisms apart from coral: 

crustaceans such as the ornate spiny lobster (Panulirus ornatus)245 and mollusks such as the blue 

mussel (Mytilus edulis) or the Manila clam (Venerupis philippinarum).246,247 

In this study, we have carried out an in-depth characterization of the AHL signal 

molecules of three Vibrio strains selected by the analysis of their AHL profiles and the virulence 

capacity of the species to which they are related: V. mediterranei VibC-Oc-097, V. owensii VibC-

Oc-106 and V. coralliilyticus VibC-Oc-193. A previous TLC analysis displayed the existence of a 

high AHL diversity amongst the three selected species.248,249 Since the TLC technique only 

provides limited information concerning the nature of signal compounds present in the extracts, 

HPLC/FT-HRMS analyses was crucial for determining the structures of these potential signal 

molecules.219,237 In this analysis, the whole culture of each strain instead of the cell-free 

supernatant was used to prepare the extract. For this reason, we were able to enhance the 

extraction of long-chain AHLs, because otherwise their low permeability through the cell 

membrane limits their extraction and detection.250 With respect to the organic solvent needed 

for the AHL extraction, dichloromethane was employed, although no differences were detected 

when ethyl acetate was used.251 FT-HRMS analysis showed a high diversity for the production of 

AHLs molecules by the tested strains, the long-acyl chains AHLs being more predominant in 

three of the Vibrio species analyzed.  
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This is the first report where the signal molecules have been characterized in these 

emerging marine pathogens. Furthermore, this study allowed to correlate to presence of AHLs 

with the expression of virulence factors in the emerging pathogenic species V. owensii, V. 

mediterranei and V. coralliilyticus. For example, it was found in this project that the AHL 

defective strains of each selected Vibrio produced a significant reduction of the virulence in vivo 

in brine shrimp (Artemia salina). This research contributes to the development of future 

therapies based on AHL disruption, one of the most promising alternatives for fighting infectious 

diseases in aquaculture. 
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2.6 Detection of tetrodotoxin (TTX) in Diodon hyxtris collected in 

El Salvador 
 

2.6.1 Background 
 

Tetradotoxin (TTX) is a non protein toxic with a molecular weight of 319 widespread in 

either terrestrial vertebrates 252 or invertebrates 253, bacteria 254 and fishes including porcupine 

fish Diodon hystrix.255,256 The lethality of this potent neurotoxin is due to block action potentials 

by binding to voltage gated sodium channels (VGSCs) resulting in respiratory paralysis that 

causes death. 258 The minimum lethal dose (MLD) in human is estimated to be approximately 

10000 mouse unit (MU), approximately 2 mg.259 It has been proposed that TTX production in 

fish is produced by bacteria present in the sea environment. 260,261 

The puffer fish Diodon hystrix (Linnaeus, 1758) (Diodontidae) stands out as one of the 

most powerful shell-crushing predators of mollusks on the world’s tropical coast.262. D. hystrix is 

characterized by having spines on the caudal peduncle, dark spots on the fins and a wide head, 

as well as minor differences in the number of fin rays.263 This fish is widespread in tropical and 

subtropical waters of the Atlantic, Indian and Pacific Oceans:263 Circumtropical eastern Pacific: 

from San Diego in California (USA) to Chile, including Galapagos Island; Western Atlantic: 

Bermuda, Massachusetts (USA), and northern Gulf of Mexico to Brazil. 264 Although D. hystrix is 

distributed in El Salvador throughout its entire coast from estuary of the Rio Paz (13°44’39” N y 

90°07’58” W) to Meanguera Island (87º 46’), this fish is rarely consumed by locals and there was 

not any reported poisoning by ingestion yet. On the other hand, it has been reported that one 

or more species of puffer fish, including D. hystrix, are the most potent ingredients of “zombie 

potions” which contain tetrodotoxin. However, it has been proved that TTX is not the causing 

agent of zombification process in the Haitian practice of Voodoo.265,266 

Some intoxication cases with D. hystrix, showing the symptoms of TTX poisoning, have 

been observed either after consuming in Hawaii (USA) 267 and Papua New Guinea 268 or after 

minor stabs from the spines of a porcupine fish to an aquarium curator in the Netherlands.269 

However, TTX presence was not confirmed by analytical methods.270,271 Most recent studies 

using LC MS/MS quantified TTX presence in some specimens of D. hystrix (Malaysia).272 

Tetrodotoxin (TTX) is found in organisms from warm waters, especially in Asia and Pacific 

Oceans. Tropical Pacific Ocean adjacent to El Salvador is characterized by a high content of 

suspended material, coastal currents and surface temperatures between 26 to 31 °C. These 

conditions favor the occurrence of several tropical species, such as Diodon hyxtris (Diodontidae).  
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2.6.2 Objectives 
 

The main goal in this case is to detect the presence of TTX from Diodon hyxtris collected 

in El Salvador by developing a robust and highly sensitive detection method using LC-MS/MS 

methodology based on a three-stage approach plus a post-acquisition processing (Figure 137): 

(a) Sample screening by multiple reaction monitoring (MRM) analysis to quickly identify 

the possible toxin presence using a API 3200 (Applied Biosystems) equipped with a triple 

quadrupole MS/MS  

(b) LC-ESI(+)-HRMS-full scan analysis using an ion trap-Orbitrap instrument (LTQ 

Orbitrap XL, Thermo Scientific) to collect high resolution mass data. 

(c) and Selected Reaction Monitoring (LC-ESI(+)-HRMS2). 
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Figure 137. Infographic representation of procedure used on identification of tetrodotoxin on Diodon hystrix. 

 

2.6.3 Materials and methods 
 

Specimens 
Specimens of three female, one male and two undefined gender each of Diodon hystrix 

(Table 27) were collected on October 1st, 2014 at Punta Chiquirín in La Union, El Salvador 

(13°17'31.01'' N, 87°47'03.60'' O) (Figure 138). Samples of D. hystrix were separated by gender, 

dissected to obtain organs of liver, muscle, ovary/testis, kidney and skin and they were 

immediately kept on ice, transported to the laboratory and kept frozen below -20°C. 
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Table 27. Characteristics of the Diodon hystrix specimens collected. 

Gender Mass (g) Average 
Length 
(mm) 

Extract Liver (g) Gonads (g) 
(**) 

Kidney 
(g) 

Skin (g) Muscle 
(g) 

Female 913.9 (*) 199.3 Organs 82.9 17.7 8.5 87.2 95.4 
Raw extracts 10 7.6 3.4 10.0 10.0 

Ultra-filtration (***) 65.4  156.3 400.8 45.3 227.6 
Male 1177.3 406.0 Organs 33.5 6.5 10.1 22.5 75.3 

Raw extracts 10.0 4.0 4.8 10.0 10.0 
Ultra-filtration 160.4 29.9 52.2 39.9 914 

Undefined 461.9 184.0 Organs 39.8 3.5 3.2 52.6 48.6 
Raw extracts 10.0 4.0 4.8 10.0 10.0 

Ultra-filtration 75.3 9.7 17.2 143.2 125.2 

Extract: Organs, total mass of different organs on the fishes collected on Puerto de la Unión (Salvador). Raw extracts: 

mass of acidulated methanol extracts from different organs. Ultra-filtration: mass of extract founds after ultra-

filtration procedure. (*) Specimens mass come from 3 females, 1 male and 2 undefined gender, respectively (**) 

Gonads are referred as: Male, testicles. Females, ovaries. Undefined gender, gonads. (***) Mass express in mg. 

 

 

Figure 138. Punta Chiquirín, La Unión, Republic of El Salvador 

 

Sample preparation  
Sample preparations were carried out by using a methodology previously described273 as 

follow: Tissues were homogenized, two times, using an ultrasonic bath at 55 Hz (5 min) in 40 mL 

of a solution MeOH/H2O 1:4 (1 % CH3COOH). The resulting extract was centrifuged at 10000 

rpm/30 min to give a supernatant. The methanol of the supernatant was removed under 

reduced pressure in a rotary evaporator to afford an aqueous extract that was washed two times 

with 25 mL of chloroform. The resulting aqueous layer was ultra-filtered (Amilcon ® system) 

using two membranes filters of 100.000 Da and 10.000 Da, submitted to Bio Gel P-2 column 

chromatography and finally lyophilized before being analyzed following the guidelines given in 

SANTE/11945/201 5 (Figure 139).  
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Figure 139. Chart flow process employed in the TTX detection from Diodon hystrix. 
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Methodologies used in tetrodotoxin detection 
 

MRM-MS/MS 
Multiple reaction monitoring (MRM) is a targeted mass spectrometry (MS) technique 

that allows the detection and quantification of specific molecules in a complex mixture.274 

MS/MS measurements were carried out using a LC-MS/MS API 3200 System (Applied 

Biosystems) equipped with a triple quadrupole MS/MS, allowing to enhance sensitivity and 

selectivity. Quadrupole filtrates the ions of interest in a process called Collision Induced 

Dissociation (CID); ions generated by ESI are measured in the mass analyzer to obtain the m/z 

value of each. A selected ion (the precursor) is isolated and fragmented by collision with a 

neutral target gas. As a consequence of the inelastic collision, a portion of the translational 

energy is converted into internal energy of the ion, leading to the following decomposition. The 

resulting ions (daughter ions) are again analyzed to give the corresponding fragmentation 

spectrum for the selected ion. The retention time, m/z and fragment ion transitions are taking 

in account for a positive identification.275,276  

The analysis conditions were the following: Mobil phase: CH3CO2NH4 16 mM/MeCN 

(3:7), pH 5.5, 40.0 min isocratic elution on a TSKgel Amide-80 for Hydrophilic Interaction Liquid 

Chromatography (HILIC) column (150 x 2.0 mm i.d.; 5µm, Tosho, Tokyo Japan), flow 0.2 mL/min 

column oven temperature: 25°C. Sample volume injection: 5 µL. Two ion transitions: 320→302 

and 320→162 corresponding to [M+H-H2O]+ and [C8H8N3O]+ ions of TTX were detected in 

Multiple Reaction Monitoring mode. Preparation of calibration curve: A concentrated TTX 

solution was prepared gravimetrically and used fresh daily. Using this solution, seven calibration 

standards were prepared at 0.025, 0.050, 0.100, 0.200, 0.600, 0.800 and 1.01 µg/mL 

respectively. The linear regression showed a good linearity (R2 = 0.997). Daughter ions ratio (DR) 

was estimated on 1.3379±0.2006. Calibration curve and parameters derived from calibration 

process are shown on Supplementary Material. 

 

HPLC-HRMS 
LC/HRMS analyses were performed in a LTQ-Orbitrap Discovery mass spectrometer 

coupled to an HPLC system Accela Thermo Scientific equipped with an electrospray ion source. 

Chromatographic separation was achieved using a 40.0 min isocratic elution on a TSKgel Amide-

80 column (150 x 2.0 mm i.d., 5µm, Tosho, Tokyo Japan) maintained at 25 °C, mobile phase was 

comprised of CH3CO2NH4 16 mM/ CH3CN (3:7) pH 5.5. Sample was dissolved on AcOH (1%). 

Injection volume (µl): 25. Elution pump flow: 0.2 ml/min. Scan Event: FTMS full scan: 65-450 at 

a resolution of 30,000. ESI ion source parameters were set as following: polarity positive; 

capillary temp (°C): 350. Capillary voltage (V): 26.00. Source voltage (KV): 4.50, and Full Scan 

Mode was used. Acquisition parameters conditions were set to our Orbitrap configuration in 

order to maximize analyte response and minimize as much as possible isobaric ion interference 

without significant different error and deviation on the measures. 
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Tandem HPLC-HRMS2 spectrometry conditions 
Tandem high resolution mass spectrometry was also used to detect TTX. Equipment and 

separation conditions were the same as in HPLC-HRMS, nevertheless in this experiment scan 

type chosen was Selected Reaction Monitoring (SRM). In this case, samples were previously 

manually-pass-through a Sep-Pak Plus (C18 Cartridges) Waters. MS conditions were: Parent 

Mass (m/z) 320.00, normalized Collision Energy (eV): 35.0, Acquisition Time (ms): 30.00 and 

mass range detected (m/z): 320.1 → 301.50-302.50 and 320.1 → 161.50-162.50, corresponding 

to [M+H-H2O]+ and [C8H8N3O]+ ions from TTX respectively. Resolution 30,000 and CID 35 % 

 

Post-acquisition data processing 
Post-acquisition treatments of LC-MS/MS data were applied following methodologies 

that were successfully employed in previous metabolite detections in extracts from natural 

sources.178,277 Thus, Thermo Orbitrap files (*.raw) were processing manually by Xcalibur Thermo 

Fisher Scientific V3.0 and software package MZmine 2.21278,279 that allows importing *.raw files, 

filtering data, baseline corrections, building a chromatogram for each mass detected, peak 

deconvolution and identification (using a formula predictor module and search over online data 

bases KEGG, MarinLit and PubChem).280–282 Ion area calculation and linear regression analysis 

was carried out using Microsoft Excel 2013.  

 

2.6.4 Results 
Several specimens of Diodon hystrix were collected on Puerto la Unión, Republic of El 

Salvador in 2013. After processing samples, they were summited to MRM-MS/MS, LC-HPLC-

HRMS and HRMS/MS following the workflow depicted in Figure 137. Mass of specimens and 

extracts are shown in Table 27. The fragment ions selected for quantification and confirmation 

ions were m/z 320.1 → 302.1 (corresponding to loss a molecule of water) and m/z 302.1 → 162.1 

(corresponding to a loss of C8H8N3O) that are in concordance with fragmentation patterns 

previously reported.283 

 

MRM-MS/MS 
The calibration curve used for TTX quantification attempt is shown in Supplementary 

Material (detection limit 6.2 ng/mL). The toxin was detected by comparison of the retention 

time (Rtime) and MS/MS fragments of the sample to those of the standard according to daughter 

ion spectra previously reported (Figure 140).284 Delta sample´s and standard´s retention time 

were calculated by using the following equation: 

 

∆𝑅𝑡𝑖𝑚𝑒 = |𝑅𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 − 𝑅𝑡𝑖𝑚𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒| Equation 14 

 

Tetrodotoxin precursor ion mass was only detected in female gonads (FG) (Rtime = 7.38, 

Δ Rtime = 0.02 min, DR = 0.59) and in undefined gender muscle (MU) (Rtime = 7.49, Δ Rtime = 0.13, 

DR = 0.21), Δ Rtime was calculated using Equation 14. 
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Figure 140. Chromatograms in MRM mode of TTX standard (a), female gonads sample (b) and muscle undefined (c) sample. Arrows show the transition; those on orange color show transitions 
on the samples. However, the expected ratio between the two quantifications ions (1.3) was not seen. (Upper row: 320 → 302 transition. Lower row: 320 → 162).  
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Tetrodotoxin could not be quantified using MRM-MS/MS, presumable because analyte 

concentration is below the quantification limits (0.0062 µg/mL). It is well known that daughter 

ions ratio is severely impacted by analyte concentration. 

Ion transitions found in the samples of female gonads and undefined muscle (Figure 

140) matched with the standard. Nevertheless, daughter ions ratio found is not within the 

suggested ±30% (relative). Using this experimental was not possible to assure the presence of 

the analyte beyond a reasonable doubt (Table 28). For these reasons, other techniques were 

used in order to unequivocally identify the toxin’s presence in D. hyxtris. 

 

 

Table 28. Tetrodotoxin detection in Diodon hystrix using several techniques 

Gender Liver (g) Gonads (g) (**) Kidney (g) Skin (g) Muscle (g) 

Female ND MRM ND HPLC-HRFTMS ND 
Male HPLC-HRFTMS ND ND ND ND 

Unknown LC HRMS2 ND ND ND MRM 
ND Not detected  

 

HPLC-HRMS 
LC-HMRS was selected as a technique not only because it has been widely used on 

natural product detection and metabolites,  285,286 but also because it was recent successfully 

employed in TTX detection. 287 

Accurate mass measured (ADAM) is expressed as the average of the mass detected at 

three different peak positions in the extracted ion chromatogram (Figure 141). The mass accuracy 

is given as the difference between the theoretical and the measured values of the mass (∆ m/z 

ppm) (Equation 15)288 

 

∆ 𝑚/𝑧 =  |
𝑚 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −𝑚 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

𝑚 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
𝑥106𝑝𝑝𝑚| 

Equation 15 

 

Natural isotope pattern used as additional information is a powerful tool to refine the 

number of possible candidates for natural product identification. This information is commonly 

presented as Relative Isotope Abundance (RIA) of carbon 12C and 13C1
12Cn-1 288 (Equation 16). RIA 

was determined using Xcalibur software (Figure X1-SI and Table X1-SI). Isotopic ion abundance 

ratio error (RIA error) did not exceed the maximum recommended value of ǀ16%ǀ for full scan 

mode ESI(+) on peaks with intensities between 1 x 105 and 1 x 106.108,289 

  

𝑅𝐼𝐴 𝑒𝑟𝑟𝑜𝑟 (%) = |100𝑥
𝑅𝐼𝐴𝑒𝑥𝑝 − 𝑅𝐼𝐴𝑡ℎ𝑒𝑜

𝑅𝐼𝐴𝑡ℎ𝑒𝑜
| 

Equation 16 
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LC-ESI(+)-HRMS of tetrodotoxin standard and representative Diodon hystrix sample 

(female skin) are displayed in Figure 141.  

 

 

 

Figure 141. LC-ESI(+)-HRMS (SIM mode) of tetrodotoxin standard (a) and of extract from the female skin 
of Diodon hystrix (b). Total ion current (i), chromatogram extract mass range m/z 320.0-320.20 (ii) and 
high resolution mass spectra (iii) showing the presence of TTX in female skin sample (Δ m/z = 0.87 ppm, 
Δ Rtime = 0.4 min)  

 

A compound that matched with the retention time and exact mass of TTX was found in 

two of the studied samples: female skin (FS) and male liver (ML). The ∆m/z ion ratio errors in 

this study were around 0.8 ppm (Table 29), which is accurate enough to calculate the possible 

molecular formulas for ions and molecules.290 In that table the differences between accurate 

calculated mass and experimentally detected mass in ppm (Δ m/z) and the isotopic ion 

abundance ratio error (RIA error) of M+1/M (13C1/12C) are shown. Due to the sensitivity of this 

method, it is possible the detection of this isotopic ion with an appropriate intensity. Female 

skin sample was the only one that matched with the aforementioned conditions.  
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Table 29 Tetrodotoxin detection by HR-LC/MS in female skin sample of Diodon hystrix 

TTX Standard solution 
Formula R time 

(min) 
CAM (Da) DAM (Da) ADAM (Da) ∆ m/z 

(ppm) 
RIA theo 

(%) 
RIA (%) RIA exp 

(%) 
ǀRIA 

errorǀ 
(%) 

C11H18O8N3
+ 7.41 320.10884 320.10867 320.10857 

 
0.84 

 
    

7.80 320.10858    

8.37 320.10846    

C10
13CH18O8N3

+ 7.41 321.11220 321.11197 321.11191 
 

0.90 
 

11.9 12.80 12.46 4.7 

7.80 321.11191 12.36 

8.37 321.11185 12.22 

C9
13C2H18O8N3

+ 7.41 322.11309 322.11295 322.11278 
 

0.63 
 

1.6 1.46 1.4 12.5 

7.80 322.11282 1.36 

8.37 322.11258 1.36 

Female skin sample 
Formula R time 

(min) 
CAM (Da) DAM (Da) ADAM (Da) ∆ m/z 

ppm 
RIA theo 

(%) 
RIA (%) RIA exp 

(%) 
ǀRIA 

errorǀ 
(%) 

C11H18O8N3
+ 7.67 320.10884 320.10867 320.10856 0.87     

8.15 320.10852    

8.37 320.10849    

C10
13CH18O8N3

+ 7.67 321.11220 321.11160 321.11213 0.21 11.9 12.47 11.79 0.9 

8.15 321.11182 14.52 

8.37 321.11298 8.37 

R time: Retention time in minutes. CAM (Da): Calculated accurate mass in Daltons. DAM (Da): Detected accurate mass 

in three different parts of the chromatogram peak in Daltons. ∆ m/z Average of detected accurate mass in ppm. RIA 

theo (%): Relative isotopic abundance calculated. RIA (%): Relative isotope abundance detected. RIA exp (%): Average 

of relative isotope abundance detected. ǀRIA error (%)ǀ Absolute value of the relative isotope abundance error. 

Calculations: RIA theo (%), was automatically calculated with ChemDraw V16 software, RIA exp (%), was automatically 

calculated by using a Xcalibur V 3 software. ∆ m/z and ǀRIA exp (%)ǀ was calculated by using Equations 2 and 3, 

respectively 

 

The analysis displays a sharp peak at 8.10 min (ΔRtime = 0.37 min) for TTX in female skin 

(Figure 141) (Δ m/z = 1.25 ppm, absolute peak intensity 1.2 x 105) which fully overlap with the 

extracted ion chromatogram of the standard (Figure 142) and also RIAerror was within the 

recommended maximum tolerance value of ǀ16%ǀ (Figure 143). Although any well-defined peak 

is showed in the chromatogram of male liver sample (ML) (Supplementary Material), there is an 

ion that seems TTX because its exact mass (Δ m/z = 1.25 ppm) and retention time (Δ Rtime = 0.08 

min) matched with it. However, the presence of TTX on male liver (ML) sample was rule out 

because the RIA error was bigger than the maximum tolerance value aforementioned (Figure 143). 

This result was confirmed by MRM analysis (Table 28). This method allowed us to calculate the 

RIAM+2/M (13C2/12C) of the standard (Table 29) but did not allow to calculate that value in our 

samples presumably due to the low analyte concentration. Moreover, any of the common 

adduct ions ([M+Na]+, [M+K] +, [M+ACN+Na]+, [2M+Na]+ and [M+H-H2O]+) were found in the 

mass spectra of the studied samples. 
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Figure 142. Overlapping of the LC-ESI(+)-HRMS extracted ion chromatogram of TTX standard (Black line) and Female 
Skin (Red line) under full scan  

 

 

 

Figure 143. Isotopic ion abundance ratio (Blue) and isotopic ion abundance ratio error (Orange) using LTQ-Orbitrap 
on full scan mode.  
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LC HR MS2 analysis 
 

In order to ensure the presence of TTX, samples we analyzed by LC-high resolution (HR)-

MS2. A previous sample filtration step by using C18 Cartridges (Sep-Pak Plus of Waters) was 

carried out to remove any possible matrix interferences. TTX was used as standard to validate 

of the used method. TTX fragmentation was studied in the following samples from D. hystrix: 

Female skin, female gonads, male liver, female skin, undefined muscle and undefined liver. 

Parameters were set up by using a standard solution in order to have the best possible signal to 

noise ratio. TTX standard showed the expected two transitions very clearly (Figure 144, left 

column).   

Molecular formulae and Ring Double Bond Equivalents (RBD) are very helpful tools when 

chemical structures are proposed. 291 They are generated in the Xcalibur 3.0 by using the exact 

mass function provided for the Orbitrap XL. Molecular formulae of the analyzed fragment ions 

matched to those of the reported in literature.283 Two criteria were used for the selection of 

ions: they must be abundant during fragmentation and they must not be originated from the 

same part of the molecule under study. The only sample that showed the expected transitions 

for TTX was the undefined liver (UL) (Figure 144, right panel). Precursor ion at m/z 320 

(C11H18N3O8
+, RBD = 4.5) gave the characteristic fragment ions at m/z 302 (C11H16N3O7

+, Δ m/z = 

0.03 ppm, RBD = 5.5) and at m/z 162 (C8H8N3O+, ∆ m/z: 3.64 ppm, RBD = 6.5). RBD value change 

from 4.5 to 5.5 for fragment at m/z 302 suggests the loss of a water molecule with an adjustment 

on the ring system that includes the formation of an extra 6 member ring [9-O-4-4a-8a] (Figure 

145 middle). On the other hand, RBD value change from 5.5 to 6.5 for fragment m/z 162 suggests 

a mayor modification in the molecule that implies the break of several bonds with the formation 

of the structure displayed in Figure 145, right. The presence of TTX was also established in 

undefined liver sample on the basis on the experimental evidence collected from HR-MS2 

experiment (Table 28) 
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Figure 144. LC-ESI(+)-HRMS2 of tetrodotoxin standard (Left column) and liver of undefined gender (UL) (Right column) of Diodon hystrix; obtained on a linear-trap quadruple-
Orbitrap XL MS (A –above) Extracted ion chromatogram from m/z 320.00 → 302.09-302.1 (A –below) Extracted ion chromatogram from m/z 320.00 → 162.06. (B -Right) 
Fragmentation of the ion eluting at Rtime 28.8±0.1 min, shows the characteristics fragments at m/z 302.09828 m/z (Δ m/z = 0.03 ppm); which indicates the losing of a molecule 
of water on tetrodotoxin molecule (C -Right) Second fragmentation of the ion shows the characteristics fragments at m/z 162.06619 (Δ m/z = 3.64 ppm); which suggests the 
presents of the distinguishing group (5-8)-hydroxyquinazolin-2-amonium, commonly found in TTX fragmentation. LTQ-Orbitrap Discovery was operating with a resolution of 
30000 
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Figure 145. Chemical structures of TTX fragments generated on LTQ-Orbitrap XL, by MS2 experiment  

 

Data analysis by MZmine 
 

Accurate mass is used as a robust tool to identity the presence of anilities in routine 

analysis. 278,291 Laboratories that wish to automatize natural products detection by LC-HRMS, 

should validate their data-analyzing-methodologies until proper software parameters are found. 

Since its introduction, MZmine has been successfully used in metabolomics and natural products 

dereplication over the years 292,293 and in combination with LTQ Orbitrap Hybrid Mass 

Spectrometer for data processing.294,295 We do want to provide an optimized workflow using 

MZmine 2.3 for LC-HRMS data processing which is applicable for TTX detection. Software data-

analyzing Workflow is shown in Figure 146 and parameters used are described below 278,296. 
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Figure 146. Data analysis workflow used on MZmine 2.3 for processing LC-HRMS files (*.raw) and dereplication of 
TTX 

 

Orbitrap files from the samples were analyzed in automatized mode. A peak emerge 

after treating female skin Orbitrap data file with aforementioned workflow (Figure 146), which 

was attributed to the compound of interest. TTX was certainly identified in FS sample with the 

aid of existing high resolution MS, isotope pattern and RDB available on online databases 

records through connection supported by MZmine. MZmine 2 is an appropriate tool to 

automatic peak detection in LTQ Orbitrap files (*.Raw) routinely toxin detection. 
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Figure 147. LC/HRMS (3D projection) of female skin sample from Diodon hystrix 

 

 

2.6.5 Conclusions  
LC-HRMS analysis of several specimens of Diodon hystrix (Porcupinefish) collected in El 

Salvador have demonstrated the presence of TTX (Table 28). Several techniques were used that 

includes MRM-MS/MS, LC-HRMS and LC-HRMS2 along with a post-processing data using MZmine 

2. Detection was validated using a commercially available TTX sample as standard and the values 

obtained were in agreement with the detection parameters described in SANTE 11945/2015. 

Although TTX has been detected in species of the Diodon hystrix, this is the first study of the 

detection of this toxin in fishes collected in El Salvador. The developed approach used here can 

be adapted to detect TTX from other marine sources such as bacteria and invertebrates with 

minimum changes. 
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